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In this project, we developed many new efficient algorithms for analysis of networks. We
have published over 100 papers during the course of this project, and we launched a new website
BigDNDE] for distributing large network data and tools for analyzing them, as detailed below.
Below we detail a few of the research highlights, focusing in particular on recent results.

1 Foundational Research in Graph Algorithms

Within network science, our research develops algorithms to enable efficient and guaranteed-quality
analysis of a broad range of types of networks, from social networks to computer networks and
transportation networks. Real-world social networks of interest include online services (Facebook,
Google+, Twitter), coauthorship/collaboration among people (arXiv, DBLP, patents), phone calls
(AT&T, NSA), in-person interactions (FBI, Pentagon), geographic hierarchical neighborhoods (liv-
ing or working together, on the same block, in the same district or city), and shared interests
(Netflix, Amazon, Match.com). Real-world computer networks of interest include the Internet
backbone, ISP networks, ad-hoc wireless networks, sensor networks, and robot swarms. Real-world
transportation networks of interest include highways, inner-city roads, supply trains, naval supply
routes, flight tracks, and off-road geographic terrains.

One important problem we have studied during the course of this project is belief propagation
control. In a social network, people’s opinions are strongly influenced by their friends’ opinions,
causing behaviors to cascade through the network given a strong enough start. How can we best
exploit such behavioral cascades to infiltrate a known network with a desired idea or belief? For
example, to promote a new political view or regime change during a domestic or international
campaign, on which demographic groups or influential people should we spend time and money
in advertising, lobbying, etc.? Our algorithm efficiently computes the precise budget allocation
for each target in order to maximize overall influence after propagation, with a guaranteed bound
on solution quality. We have experimentally evaluated our algorithm on real-world social net-
works mentioned above, and found it to outperform all previous approaches. This problem has
applications to real-world politics and advertising, in both military and civilian settings.

Belief propagation control is just one prominent example of the many network problems we are
studying, which have applications both within network science and more broadly to the real world
and DoD.

Network coverage: Given a network and a notion of “distance” (travel times, affinity between
people, etc.), choose the fewest nodes to guarantee that every node is within distance d of a chosen
node. For example, in a road network, we might aim to place the fewest emergency response centers

"http://projects.csail. mit.edu/dnd/
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to guarantee a specified maximum response time to an emergency (terrorism, building collapse, fire,
etc.). In a social or computer network, we might want to place infiltration points (spies, wire taps,
etc.) while guaranteeing all communication is within a few hops from infiltration.

Opinion formation: In a social network, people’s opinions tend to be expressed (e.g., in
voting) based on not just personal belief but also the expressed opinion of friends. What are the
dynamics of this system in terms of convergence to a particular idea, and how can a few changes
early on in the system be used to control the final outcome? We have answered these questions
through algorithms and network analysis, and experimentally evaluated our algorithms on real-
world social networks mentioned above.

Collaboration via social networks: How can we incentivize people in a social network to
work together to achieve a common goal? For example, in the DARPA Network Challenge, the
goal was to locate ten balloons around the United States; but more generally, we can imagine goals
such as terrorist detection and tracking (e.g., Boston Marathon bombers) and disaster management
and tracking (e.g., earthquake or biochemical attack). Risk aversion is the reluctance of a person
to accept a bargain with an uncertain payoff rather than another bargain with a more certain, but
possibly lower, expected payoff. We show how to use this principle to define an incentive structure
that guarantees huge groups to form, within a constant fraction of the entire network (where the
constant depends on how risk-averse the agents are). We have evaluated our approach on real-world
data from the DARPA Network Challenge.

Network creation and formation: When many parties pay to build a shared network (such
as the Internet), where improving the network quality serves as incentive to build more, what type
of network topologies will form? We are characterizing key properties of these equilibria topologies,
in particular, the diameter and the overhead compared to a centrally planned solution.

Policy recommendation: Given a socioeconomic game among multiple parties (countries,
armies, political parties, terrorist groups, etc.) in a network, can we find equilibrium strategies that
achieve desired effects (such as minimizing casualties)? We have developed a system called PREVE
to search for these equilibria which suggest life-saving policies. We have applied this system to a real-
world application, using open source data and area experts to develop precise parameters, involving
five parties: the US, India, Pakistani military, Pakistani civilian government, and the terrorist group
Lashkar-e-Taibal (a prominent south Asian terrorist organization responsible for attacks in India,
Kashmir, Pakistan, and Afghanistan). Our results suggest new policies for quantifiably reducing
this real-world conflict.

Coordinated movement: How can we plan the coordinated motion of a collection of agents
(representing robots, soldiers, civilians, vehicles, network messages, etc.) to achieve a global prop-
erty in the network, such as forming a connected or fault-tolerant communication network (given a
model of connectivity), dispersing throughout an environment to ensure coverage or avoid interfer-
ence, collecting agents together into a small number of collocated groups, or arrange into a desired
topological formation such as a grid. The goal is to minimize the required maximum movement
(waiting time) or average movement (expended energy). We characterize the boundary between
tractable and intractable movement problems in a very general set up. Using our general tools, we
determine the complexity of several concrete problems and show that many movement problems of
interest can be solved or approximated efficiently.

Technical approach. Our unique expertise is in the development of mathematically grounded
algorithms, with precise guarantees on the trade-off between computational resources and the qual-
ity /precision of computed solutions. These provably guarantees make for quantifiable improvements
on the state-of-the-art in the many application domains described above.
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The study of algorithms has a tendency to focus on searching for individual solutions to a
specific problem, then moving on to the next problem. Our unique approach is to develop very
general frameworks that apply to an entire category of problems all at once. In this way we may
approach a general theory of algorithms, wherein a given problem of interest can simply be adapted
into the general approach.

Our toolset comes from both algorithms and a branch of mathematics known as graph structure
theory. Planarity, topological structure, and excluded minors offer powerful footholds for building
general algorithmic theories for graph and network problems. We are among the few computer
scientists to know this theory in detail — indeed, we have made major contributions to this theory
in order to develop better algorithms — giving us a unique edge.

Our research develops two main types of algorithms for solving NP-hard network optimization
problems. Approximation algorithms allow the solution to be a small factor 1 + ¢ away from
optimal, but requires polynomial time. Fized-parameter algorithms allow the running time to be
exponential, but only with respect to a parameter other than problem size, while the solution must
be optimal. In general, our goal is to characterize which parts of a problem cause exponential-time
behavior, and how the desired approximation factor 1 + ¢ influences the algorithm’s running time.

Research results and future work. Among our results, together we developed the powerful
bidimensionality theory for network algorithms and better understanding of graph structure theory.
Bidimensionality is now the subject of yearly workshops around the world; for example, in just the
past nine months, we have co-organized a 5-day Dagstuhl workshop in Germany (2013) and a
workshop at the premiere theoretical computer science conference (FOCS 2013).

One offshoot of bidimensionality theory that we developed during this grant is a new technique
called simplifying graph decomposition. Our result shows how to decompose any given network into
a small, desired number of pieces, each of which has low algorithmic complexity. This approach
is a strong generalization of typical graph decomposition, which cuts a graph into many small
pieces. Our more efficient graph decomposition gives us another unique edge in developing efficient
approximation algorithms.

One important direction is to consider weighted networks, where some nodes are more impor-
tant than others and some links represent smaller or larger distances, an aspect often ignored in
social network data. Weights also present significant algorithmic challenges, and we aim to extend
bidimensionality theory in particular to handle such situations. For example, in the network cov-
erage problem above, we have solved the problem in very general graphs, but it remains to fully
support weights on the edges to describe general distance functions.

We have made substantial progress on the social network problems mentioned above, but future
work remains to be done. In belief propagation control and opinion formation, we have solved the
problem of maximizing propagation for a given budget, but it remains to consider the dual problem
of minimizing the budget required to reach a desired level of propagation (e.g., the whole network),
as well as other metrics such as maximizing “bang for the buck” (ratio of propagated effect to
directly influenced parties), or having parties of different levels of importance (both in terms of
desire to convince and their effects on their neighbors). In collaboration via social networks and
network creation and formation, we have solved the problem for many networks of interest, but it
remains to characterize exactly which networks have equilibria with the desired properties and to
determine their structure. In policy recommendation, we have already demonstrated the system in
an important real-world scenario; what remains is to make the system easier to use by policy makers,
and to apply the system to additional scenarios. In coordinated movement, we have developed
algorithms for many interesting scenarios, and are currently working on a more general scenario of
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“moving repairman” where moving supplies (ammo depot vehicles, water or gas supply, etc.) need
to visit moving demands (patrol vehicles, pedestrian soldiers, etc.).

2 Graph Structure of Network Creation Games

We completed the final versions of two of our papers about the graph structure inherent in “network
creation games”, which appeared in the following venues:

Erik D. Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, and Morteza Zadi-
moghaddam, “The Price of Anarchy in Network Creation Games”, ACM Transactions
on Algorithms, volume 8, number 2, 2012, Paper 13.

Erik D. Demaine and Morteza Zadimoghaddam, “Constant Price of Anarchy in Network-
Creation Games via Public-Service Advertising”, Internet Mathematics, volume 8, num-
ber 1-2, 2012, pages 29-45.

Noga Alon, Erik D. Demaine, MohammadTaghi Hajiaghayi, and Tom Leighton, “Basic
Network Creation Games”, SIAM Journal on Discrete Mathematics, volume 27, number
2, 2013, pages 656—668.

3 External Memory

In our Algorithmica paper “Worst-Case Optimal Tree Layout in External Memory” , we give optimal
algorithms to lay out a fixed-topology binary tree of N nodes into external memory with block size
B so as to minimize the worst-case number of block memory transfers required to traverse a path
from the root to a node of depth D. For this fundamental problem, we prove that the optimal
number of memory transfers is

D
S) _ N when D = Q(lgN) and D = O(BlgN),
Blg N
) <§> when D = Q(BlgN).

4 Streaming Algorithms for Massive Network Analysis

In massive streaming networks, the node and connection data is too large and coming in too fast
to even store in the computer’s memory, requiring algorithms to manipulate the data immediately
as it streams by using relatively little memory. Nonetheless, we would like to compute and update
a clustering of the network as the connections streams by.

Streaming algorithms have been developed for polynomial-time problems (the PIs wrote one
of the first papers on this topic), but so far have not been developed for NP-hard graph/network
problems. We successfully tackled this challenging new family of problems using our expertise in
Fixed-Parameter Tractability, Structural Graph Theory, and Approximation Algorithms.

4
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4.1 Streaming Algorithms via Fixed-Parameter Tractability

We newly introduce the approach of parameterized streaming algorithms, based on our exper-
tise with fixed-parameter algorithms. In this approach, the goal is to solve the problem much
better when the optimal solution (output) is much smaller than the network size (input). Specifi-
cally, we aim to characterize the trade-off between overall running time 7'(n, OPT) = O(f(OPT) -
n polylog n), memory space M (n, OPT) = O(g(OPT) polylog n), and guaranteed approximation
factor e(n, OPT) = O(1) or even exact (guaranteed optimal solution).

More precisely, we use the model of streaming graph processing, in which each edge inser-
tion/deletion triggers an update to a compact summary of the graph structure. Few results are
known for optimization problems over such dynamic graph streams. We introduce a new approach
to handling graph streams, by instead seeking solutions for the parameterized versions of these
problems. Here, we are given a parameter k and the objective is to decide whether there is a
solution bounded by k. By combining kernelization techniques with randomized sketch structures,
we obtain the first streaming algorithms for the parameterized versions of Maximal Matching and
Vertex Cover. We consider various models for a graph stream on n nodes: the insertion-only model
where the edges can only be added, and the dynamic model where edges can be both inserted and
deleted. We prove the following results:

e In the insertion-only model, there is a one-pass deterministic algorithm for the parameterized
Vertex Cover problem which computes a sketch using O(k? polylog m) space, where m is the
number of edges, such that at each timestamp in time O(2* polylogm) it can either extract
a solution of size at most k for the current instance, or report that no such solution exists.
We also show a tight lower bound of Q(k?) for the space complexity of any (randomized)
streaming algorithms for the parameterized Vertex Cover, even in the insertion-only model.

e In the dynamic model, and under the promise that at each timestamp there is a maximal
matching of size at most k, there is a one-pass O(k? polylog m)-space (sketch-based) dynamic
algorithm that maintains a maximal matching with worst-case update time O(k? polylogm).
This algorithm partially solves Open Problem 64 from sublinear.info. An application of this
dynamic matching algorithm is a one-pass O(k? polylog m)-space streaming algorithm for the
parameterized Vertex Cover problem that in time O(2* polylogm) extracts a solution for the
final instance with probability 1—¢&/n?(1), where § < 1. To the best of our knowledge, this is
the first graph streaming algorithm that combines linear sketching with sequential operations
that depend on the graph at the current time.

e In the dynamic model without any promise, there is a one-pass randomized algorithm for the
parameterized Vertex Cover problem which computes a sketch using O(nk polylogm) space
such that in time O((nk + 2¥) polylogm) it can either extract a solution of size at most k for
the final instance, or report that no such solution exists.

Some of these results were presented at the top algorithms conference, SODA 2015, and addi-
tional results were presented at SODA 2016.
4.2 Streaming Algorithms via Structural Graph Theory

Motivated by real-world applications, we consider instances of graph streams whose underlying
graphs have a particular structure. In particular, we are interested in graph streams whose un-
derlying graph is a tree, an H-minor-free graph, or most generally, a graph with constant average
degree. We call this streaming model the promised streaming model. Motivating examples of
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the these graph streams include the real-world graphs crawled by the scientists at University of
Koblenz—LandauE] who observed that the average degree of social networks are mostly constant.
For example, they measured that, on large samples of the entire network, the Amazon graph has
average degree 17.7, the Facebook graph has average degree 37.3, the Flickr graph has average
degree 32.7, and the Twitter graph has average out-degree 35.3 (among many others).

Specifically, we consider the problem of estimating the size of a maximum matching when the
edges are revealed in a streaming fashion. When the input graph is planar, we present a simple and
elegant streaming algorithm that with high probability estimates the size of a maximum matching
within a constant factor using O(n2/ 3) space, where n is the number of vertices. The approach
generalizes to the family of graphs that have bounded arboricity, which include graphs with an
excluded constant-size minor. To the best of our knowledge, this is the first result for estimating the
size of a maximum matching in the adversarial-order streaming model (as opposed to the random-
order streaming model) in o(n) space. We circumvent the barriers inherent in the adversarial-order
model by exploiting several structural properties of planar graphs, and more generally, graphs with
bounded arboricity. We further reduce the required memory size to O(y/n) for three restricted
settings: (i) when the input graph is a forest; (ii) when we have 2-passes and the input graph
has bounded arboricity; and (iii) when the edges arrive in random order and the input graph has
bounded arboricity.

Finally, we design a reduction from the Boolean Hidden Matching Problem to show that there
is no randomized streaming algorithm that estimates the size of the maximum matching to within
a factor better than 3/2 and uses only o(n'/?) bits of space. Using the same reduction, we show
that there is no deterministic algorithm that computes this kind of estimate in o(n) bits of space.
The lower bounds hold even for graphs that are collections of paths of constant length.

These results were just presented in a second paper at the top algorithms conference, SODA
2015.

4.3 Streaming Algorithms via Approximation Algorithms

Our third approach is to use our expertise in approximation algorithms to relax the requirement
of an exact solution and thereby enable the solution to NP-hard problems with provable solution
quality guarantees.

We develop the first streaming algorithm and the first two-party communication protocol that
uses a constant number of passes and sublinear space for logarithmic approximation to the classic
Set Cover problem. Specifically, for n elements and m sets, our algorithm achieves a space bound
of O(m - n®log?nlogm) (for any & > 0) using O(4/%) passes while achieving an approximation
factor of O(4'/%log n) in polynomial time. If we allow the algorithm to spend exponential time
per pass/round, we achieve an approximation factor of O(4'/%). Our approach uses randomization,
which we show is necessary: no deterministic constant approximation is possible (even given expo-
nential time) using o(mn) space. These results are some of the first on streaming algorithms for
approximation algorithms. Moreover, we show that our algorithm can be applied to multi-party
communication model.

Table 1| summarized our results and how they improve upon past work. These results were just
presented at a top distributed computing conference, DISC 2014.

http://konect.uni-koblenz.de/about
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’ Result \ Approximation \ Passes/rounds \ Space/communication \ Type

Greedy algorithm Inn 1 O(m - n) deterministic algorithm
Inn n O(n) deterministic algorithm
SDM 2009 O(logn) O(logn) O(nlogn) deterministic algorithm
ICALP 2014 O(v/n) 1 O(n) deterministic algorithm
’ ICALP 2002 \ %logn \ any \ Q(m) \ randomized lower bound ‘
’ This paper ‘ O(4/°p) ‘ O(41/9) ‘ O(m - n%log® nlogm) ‘ randomized algorith ‘
’ This paper \ % logn \ any \ Q(m - n) \ deterministic lower bound ‘

Figure 1: Summary of past work and our results. The algorithmic bounds are stated for the
streaming model, while the lower bounds are stated for the two-party communication complexity
model. We use p to denote the approximation factor of an off-line algorithm solving Set Cover,
which is Inn for the greedy algorithm and 1 for the exponential time algorithm. Furthermore, we
allow any 0 > 0.

5 Social Behavior and Game Theory

An important challenge in real-world networks is understanding the behavior of independent
decision-making agents in the network, each trying to optimize their own benefit. When many
agents play such a game, and continually modify their own strategies to optimize against the other
players’ strategies, what types of equilibria does the system reach? Can we characterize these
equilibria as having useful structural properties which can expect of real systems?

In our recent AAAT 2016 paper, we study the problem of computing Nash equilibria of zero-sum
games. Many natural zero-sum games have exponentially many strategies, but highly structured
payoffs. For example, in the well-studied Colonel Blotto game (introduced by Borel in 1921), players
must divide a pool of troops among a set of battlefields with the goal of winning (i.e., having more
troops in) a majority. Because of the size of the strategy space, standard LP-based methods for
computing equilibria of zero-sum games fail to be computationally feasible. We present a general
technique for computing equilibria of zero-sum games like Colonel Blotto. Our approach takes the
form of a reduction: to find a Nash equilibrium of a zero-sum game, we prove that it suffices to
design a separation oracle for the strategy polytope of any bilinear game that is payoff-equivalent. In
particular, we do not require that the strategy polytope have only polynomially many constraints.

We apply our technique to obtain the first polynomial-time algorithms for a variety of games.
In addition to Colonel Blotto, we show how to compute equilibria in an infinite-strategy variant
called the General Lotto game; this involves showing how to prune the strategy space to a finite
subset before applying our reduction. We also consider the class of dueling games, first introduced
at STOC 2011. We show that our approach provably extends the class of dueling games for which
equilibria can be computed by introducing a new dueling game, the matching duel, on which prior
methods fail to be computationally feasible but upon which our reduction can be applied.

This result received significant media attention, e.g., in Science Daily, in particular for being
the first to solve the Colonel Blotto game after almost 100 years.

6 Influencing Behavior and Game Theory

In a social network, people’s opinions are strongly influenced by their friends’ opinions, causing
behaviors to cascade through the network given a strong enough start. How can we best leverage
such behavioral cascades to infiltrate a known network with a desired idea or belief? For example,

7
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to promote a health-related idea such as “drink clean water”, “don’t smoke”, “exercise”, “get
vaccinated”, “take a flu shot”, etc., on which demographic groups or influential people should we
spend effort in advertising, lobbying, etc. to maximize the final impact after propagation? In the
simplest model, each individual 7 has a threshold 7;, each connection ¢ — j has an influence w(i, j),
an individual ¢ becomes enabled (infected, convinced to exercise, etc.) whenever > . . 1j0q w(J,7) >
7;, and this propagation continues until convergence. The algorithmic problem we studied is, given
a budget for seeding this process, which individuals should we enable to be most effective. As
promised for Phase 2, we developed n®M-time O(1)-approximation algorithms to compute the
precise budget allocation for each target in order to maximize overall influence after propagation,
with a guaranteed bound on solution quality. These results appeared at the World Wide Web
conference.

7 BigDND: Big Dynamic Network Data

Networks are everywhere, and there is an increasing amount of data about networks viewed as
graphs: nodes and edges/connections. We have launched a preliminary version of a new website
called BigDND: Big Dynamic Network Data, http://projects.csail.mit.edu/dnd/. The goal of this
website is to collect together large network datasets and network analysis tools, both our own and
developed by others.

So far, BigDND links to several existing big data sets:

1. Facebook, Flickr, YouTube, LiveJournal, Orkut social network data

2. Google+ social network data with node attributes

3. Twitter data

4. Paper citation data

5. Web graph data

6. Brain connectome data from Open Connectome (from the GRAPHS program)

In addition, we have developed software to analyze the DBLP dataset, which is a comprehensive
database of computer science papers, consisting of a big network of over 4 billion papers and 1.5
billion authors (nodes) and over 9 billion authorship relations (edges). Beyond basic parsing tools,
we combined this dataset with lists of faculty in computer science departments in the United States
to compute a data-based ranking of theoretical computer science groupsE] This type of ranking is
in important contrast to existing approaches. On the one hand, U.S. News and similar rankings are
based on surveys of department heads’ opinions of departments, and generally lack transparency
and well-defined measures. On the other hand, the National Research Council (the working arm
of the United States National Academies, funded by taxpayer money) uses a data-based approach;
unfortunately, it has taken several years to even collect the relevant data, the data has been shown
to have many errors, and they no longer compute a ranking based on their data. By contrast, our
approach is purely data-driven, verifiable, and the data was collected and analyzed efficiently using
our algorithmic big-data tools. Our ranking produced much interest and news, with over 10,000
visits on the day of its release.

4http://projects.csail.mit.edu/dnd /ranking/
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8 Uniform Sampling

In our recent SPAA 2016 paper, we developed the first non-trivial algorithm for the densest sub-
graph problem in the streaming model with additions and deletions to its edges, i.e., for dynamic
graph streams. They present a (0.5-epsilon)-approximation algorithm using O(n) space, where fac-
tors of € and logn are suppressed in the O notation. However, the update time of this algorithm
is large. To remedy this, they also provide a (0.25 — ¢)-approximation algorithm using O(n) space
with update time O(1).

In this paper we improve the algorithms by Bhattacharya et al. by providing a (1—¢)-approximation
algorithm using O(n) space. Our algorithm is conceptually simple — it samples O(n) edges uni-
formly at random, and finds the densest subgraph on the sampled graph. We also show how to
perform this sampling with update time O(l) In addition to this, we show that given oracle access
to the edge set, we can implement our algorithm in time O(n) on a graph in the standard RAM
model. To the best of our knowledge this is the fastest (0.5 — ¢)-approximation algorithm for the
densest subgraph problem in the RAM model given such oracle access. Further, we extend our
results to a general class of graph optimization problems that we call heavy subgraph problems.
This class contains many interesting problems such as densest subgraph, directed densest subgraph,
densest bipartite subgraph, d-cut and d-heavy connected component. Our result, by characterizing
heavy subgraph problems, partially addresses open problem 13 at the IITK Workshop on Algo-
rithms for Data Streams in 2006 regarding the effects of subsampling in this context.

In collaboration with the Sotera Defense team, we have implemented this algorithm and it works
great in practice as well.

9 Spanner Bootstrapping

Very recently, we made substantial and major progress by introducing the “spanner bootstrapping”
techniques, which appeared at the premiere theoretical computer science conference, STOC 2016.

More precisely we present the first polynomial-time approximation scheme (PTAS), i.e., (1+¢)-
approximation algorithm for any constant € > 0, for the planar group Steiner tree problem (in which
each group lies on a boundary of a face). This result improves on the best previous approximation
factor of (logn(loglogn)®M). We achieve this result via a novel and powerful technique called
spanner bootstrapping, which allows one to bootstrap from a superconstant approximation factor
(even superpolynomial in the input size) all the way down to a PTAS. This is in contrast with the
popular existing approach for planar PTASs of constructing light-weight spanners in one iteration,
which notably requires a constant-factor approximate solution to start from. Spanner bootstrapping
removes one of the main barriers for designing PTASs for problems which have no known constant-
factor approximation (even on planar graphs), and thus can be used to obtain PTASs for several
difficult-to-approximate problems.

Our second major contribution required for the planar group Steiner tree PTAS is a spanner
construction, which reduces the graph to have total weight within a factor of the optimal solution
while approximately preserving the optimal solution. This is particularly challenging because group
Steiner tree requires deciding which terminal in each group to connect by the tree, making it much
harder than recent previous approaches to construct spanners for planar TSP by Klein [SIAM
J. Computing 2008], subset TSP by Klein [STOC 2006], Steiner tree by Borradaile, Klein, and
Mathieu [ACM Trans. Algorithms 2009], and Steiner forest by Bateni, Hajiaghayi, and Marx [J.
ACM 2011] (and its improvement to an efficient PTAS by Eisenstat, Klein, and Mathieu [SODA
2012]. The main conceptual contribution here is realizing that selecting which terminals may be
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relevant is essentially a complicated prize-collecting process: we have to carefully weigh the cost and
benefits of reaching or avoiding certain terminals in the spanner. Via a sequence of involved prize-
collecting procedures, we can construct a spanner that reaches a set of terminals that is sufficient
for an almost-optimal solution.

Our PTAS for planar group Steiner tree implies the first PTAS for geometric Euclidean group
Steiner tree with obstacles, as well as a (2 + ¢)-approximation algorithm for group TSP with
obstacles, improving over the best previous constant-factor approximation algorithms. By contrast,
we show that planar group Steiner forest, a slight generalization of planar group Steiner tree, is
APX-hard on planar graphs of treewidth 3, even if the groups are pairwise disjoint and every group
is a vertex or an edge.
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groups or influential people should we spend time and money in advertising, lobbying, etc.? Our algorithm
efficiently computes the precise budget allocation for each target in order to maximize overall influence
after propagation, with a guaranteed bound on solution quality. We have experimentally evaluated our
algorithm on real-world social networks mentioned above, and found it to outperform all previous
approaches. This problem has applications to real-world politics and advertising, in both military and
civilian settings.
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