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Accomplishments/New Findings: 

 We developed a nonlinear dynamical systems approach to auditory processing using gradient

frequency networks of neural oscillators. Oscillators in the network are driven by external

forcing and receive input from other oscillators. Both types of interaction may involve linear

and/or nonlinear coupling, which can evolve over time via a generalized form of Hebbian

plasticity.

 We conducted three types of theoretical analyses to understand signal processing, pattern

formation and adaptation in networks of neural oscillators. First, we analyzed and categorized

the driven behaviors of canonical oscillators under periodic forcing in four parameter regimes.

 Second, we analyzed coupled oscillators for each parameter regime identified in the previous

study.  These studies of systems of coupled oscillators enabled us to better understand and

utilize the complex pattern forming dynamics of GrFNNs.

 Third, we completed several studies of Hebbian plasticity in gradient frequency neural

networks. We expanded a single-frequency network with linear learning rule into a multi-

frequency network with a nonlinear learning rule. We discovered a set of rich dynamics that

are not observed in either single-frequency systems or systems without plasticity. We analyzed

the dynamics of two simple oscillator systems with plastic connections: an oscillator with

plastic coupling to single external input and two oscillators connected by plastic coupling.

 We developed a computational modeling framework for gradient frequency neural networks in

Matlab®: the GrFNN (pronounced griffin) Toolbox. The toolbox was developed collaboration

with the Music Dynamics Laboratory at UConn and has been released to the research

community: https://github.com/MusicDynamicsLab/GrFNNToolbox.

 We subcontracted with ArrayFire to speed up our computational simulations using GPU

acceleration.

 We developed a C++ version of the gradient frequency neural network code that functions as

an application program interface (API). It can be used to develop end-user applications that

run on CPUs, GPU, mobile platforms and embedded devices.

 Next, we developed three models of auditory processing. First, we developed and analyzed a

model of cochlear dynamics based on coupling between linear mechanical resonance of the

basilar membrane and critical nonlinear oscillations of outer hair cells. We obtained analytical

forms for auditory tuning curves of both unidirectionally and bidirectionally coupled systems.

The tuning curves of the model fit auditory nerve tuning curve data from the macaque monkey

well.

 We developed a canonical model of mode-locked neural oscillation in the human auditory

brainstem. We showed that the model could reproduce frequency following responses (FFRs)

to musical intervals recorded noninvasively in humans.

 We developed a model of cortical phase locking to auditory rhythms. We successfully tested

the model’s predictions in behavioral and neurophysiological experiments.
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Summary:  

Many systems in nature, especially biological systems, are nonlinear dynamical systems. 

Auditory perception provides a stunning example of just how powerful such systems can be. 

Humans recognize complex acoustic patterns under challenging listening conditions, such as a 

voice in a crowded room or on a city street. We quickly learn patterns that are significant to us, 

such as the sound of a new dog’s bark or the rhythm of a samba. We segregate sounds from one 

another, so that we can attend to one sound while suppressing others. These and other 

remarkable capabilities of human perception arise from nonlinear dynamical processes in the 

auditory system.  

We have developed a theoretical framework for auditory neural processing and auditory 

perception. Our approach models the auditory system as a dynamical system consisting of 

oscillatory neural networks, and auditory perception as stable dynamic patterns formed in the 

networks in response to acoustic signals. Our models capture neural dynamics using canonical 

dynamical systems. Canonical systems are not detailed neurophysiological models; they are 

generic models that capture the neurocomputational properties of a family of neurophysiological 

models using bifurcation theory. Such models apply across temporal and spatial scales. For 

example, they are appropriate for describing critical nonlinear oscillations of outer hair cells in 

the cochlea, mode-locking of chopper cells to sound in the cochlear nucleus, and entrainment of 

cortical oscillations to auditory rhythms.  

We have made significant theoretical advances in understanding how gradient frequency 

neural networks (GrFNNs) respond to acoustic stimulation and how such networks can learn and 

adapt through Hebbian plasticity. We analyzed and categorized the driven behaviors of canonical 

oscillators under periodic forcing. We conducted series of studies of systems of coupled 

oscillators to better understand and utilize the complex network dynamics of GrFNNs. We 

completed a comprehensive study of Hebbian plasticity in gradient frequency neural networks. 

We discovered a set of rich dynamics that are not observed in either single-frequency systems or 

systems without plasticity.  

We created a computational modeling framework in Matlab, called the GrFNN Toolbox, and 

we have made our models publicly available. We have developed C++ versions of the gradient 

frequency neural network code that can be used to develop end-user applications to run on CPUs, 

GPUs, mobile platforms and embedded devices. We have shown that our models can predict and 

explain various aspects of auditory processing and perception that are difficult to account for by 

more traditional models based on linear signal processing techniques.  

We began development of three important classes of auditory models. First, we developed 

and analyzed a canonical model of cochlear dynamics based on coupling between linear 

mechanical resonance of the basilar membrane and critical nonlinear oscillations in the organ of 

Corti. To validate this model we compared it with auditory-nerve tuning-curve data from the 

macaque monkey. Second, we developed a canonical model of mode-locked neural oscillation in 

the human auditory brainstem. The model successfully predicted complex nonlinear population 

responses to musical intervals. Third, we developed a model of cortical phase locking to auditory 

rhythms. The model predicted the results of behavioral and neurophysiological experiments. 

Our models are consistent with neurophysiological evidence on the role of neural oscillation 

at various levels of the auditory system, and they explain phenomena that other computational 

models fail to explain. The predictions hold for an entire family of dynamical systems, not only 

specific physiological systems. Thus, our model provides a theoretical and computational 

framework for the next generation of auditory processing devices. 
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1. Neural Processing at Multiple Timescales 

Many systems in nature, especially biological systems, are nonlinear dynamical systems. 

This report describes an approach to auditory modeling using canonical dynamical systems. 

Canonical systems are not detailed neurophysiological models; they are generic models that 

capture the computational properties of a family of neurophysiological models using bifurcation 

theory. Our model captures the responses of oscillatory neural systems driven with time varying 

external signals (Large, Almonte, & Velasco, 2010). It is applicable across temporal and spatial 

scales, from pitches to pitch sequences to rhythmic patterns. As such, our models are appropriate 

for describing various phenomena in the auditory system, including critical nonlinear oscillations 

of outer hair cells (e.g., Fredrickson-Hemsing, Ji, Bruinsma, & Bozovic, 2012), mode-locking of 

choppers in the cochlear nucleus (e.g., Laudanski, Coombes, Palmer, & Sumner, 2010), and 

entrainment of oscillations in auditory cortex (e.g., S. Nozaradan, Peretz, Missal, & Mouraux, 

2011). 

This report is organized as follows. The remainder of Section 1 provides a brief introduction 

to gradient frequency neural networks, our canonical model for auditory dynamics. Sections 2 – 

4 then describe a comprehensive set of studies that we carried out to understand the signal 

processing, pattern formation and adaptive properties of GrFNNs. Section 2 analyses signal 

processing properties. Section 3 analyzes the properties of coupled systems of oscillators, 

focusing on mode-locking, which enables complex patterns to form in the networks when 

stimulated with sound. Section 4 analyses plasticity in canonical oscillators, finding a set of rich 

dynamics that are not observed in either single-frequency systems or systems without plasticity. 

Finally, in Section 5 we describe three modeling projects that show how well our models can 

capture auditory processing at various temporal and spatial scales.  

1.1.  Gradient Frequency Neural Networks (GrFNNs)  

Gradient frequency neural oscillator networks (GrFNNs) are canonical neural oscillators 

arrayed along a tonotopic frequency gradient, like filter banks (Patterson et al., 1992). Unlike 

filter banks, however, GrFNNs have nonlinear properties that are appropriate to model networks 

of spiking neurons (e.g., Hodgkin & Huxley, 1952) or mean-field descriptions of neural 

populations (e.g., Wilson & Cowan, 1972) near a Hopf or a Bautin bifurcation (Hoppensteadt & 

Izhikevich, 2001). Dynamical properties associated with these bifurcations have been identified 

in the auditory system (e.g., Fredrickson-Hemsing et al., 2012; Laudanski et al., 2010).  

Our canonical model (Eq. 1) captures the dynamical properties of a network of neural 

oscillators driven with an acoustic signal, x(t), and synaptic connections, cij, between all possible 

pairs of oscillators.  

 
(1)

 
where zi is a complex-valued state variable that represents the amplitude and phase of the ith 

oscillator in the network, and the overdot denotes time derivative, and the roman i is the 

imaginary unit. The time constant, τi, determines the natural frequency, τi = 1/fi. The right-hand 

side of Equation 1 consists of intrinsic terms (all before the summation) and input terms from 

coupling within the network and external drive xi(t) (all after the summation). Depending on the 

parameter values, α, β1, β2 and ϵ, a canonical oscillator exhibits one of several distinct intrinsic 

behaviors available near a Hopf bifurcation or a Bautin (a.k.a. double limit cycle) bifurcation. 

Stability analysis shows that there are four parameter regimes for canonical oscillators, each with 

a distinct set of autonomous and driven behaviors (Kim & Large, 2015) (see Section 2).  
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One key difference between 

the response of nonlinear 

oscillators and the response of 

linear bandpass filters is that 

individual oscillations mode-lock 

to periodic stimuli. Mode-locking 

means that k cycles of an 

oscillation lock to m cycles of the 

stimulus, where k and m are 

integers, as shown in Fig 1.1b (k 

= m = 1 is called phase-locking). 

Frequency (of the stimulus 

relative to the oscillation) and 

coupling strength determine the 

locking mode (Fig 1.1b). Mode-locking responses in an active oscillatory network produce 

frequencies that are not present in its stimulus: harmonics, subharmonics, integer ratios, and 

combinations of stimulus frequencies (Fig 1.1b). This predicts certain types of network 

interactions could carry out complex computations needed to explain the perception of structure, 

for example the perception of pitch at event timescales (Meddis & O'Mard, 2006) and the 

perception of pulse and meter at rhythmic timescales (Large, Herrera, & Velasco, 2015) (see 

Section 3). 

 A second key aspect of our canonical oscillator networks is that they can learn and adapt 

via Hebbian plasticity (Hoppensteadt & Izhikevich, 1996). Equation 2, a Hebbian learning rule, 

determines the dynamics of plastic connections that alter their amplitude and phase depending on 

the amplitude and frequency relationship between its source and target (see Section 4). 

   
(2)

 
In Eq. 2 cij is a complex variable representing the amplitude and phase of the plastic connection 

from the jth oscillator to the ith oscillator. The parameters λ, μ1, μ2, κ, and ϵc determine the 

dynamics of the plasticity. A simulation of the model defined by Equations 1 and 2 shows that, 

unlike linear filters, canonical oscillators 

resonate not only to frequencies present 

in the external signal but also to their 

harmonics, subharmonics, and nonlinear 

combinations (Fig 1.2b). Plastic 

connections grow strong between 

oscillators if they exhibit certain simple 

frequency relationships (Fig 1.2c). In 

the example, a “missing fundamental” 

stimulus is input to the network (200 ad 

300 Hz), and the network responds with 

the missing fundamental frequency (100 

Hz; Fig 1.2b) as well as other related 

frequencies. The connection matrix 

learns amplitude and phase relationships 

of the components (Fig 1.2c shows only amplitude, i.e. | cij |) and this information can be used to 

“bind” the simultaneous components into an integrated percept. 

Figure 1.1. (a) Intrinsic oscillatory dynamics can arise through a Hopf bifurcation, 
where a = 0 is the critical point, between damped (left) and spontaneous (right) 
oscillation. (b) Within each resonance region in the frequency-coupling parameter 
space (c: coupling strength, f: oscillator intrisic frequency, f0: input frequency) the 
oscillator mode-locks to the input at the k:m ratio shown. Insets show example 
inputs and traces produced by the model. 

Figure 1.2. A GrFNN model with external forcing and plastic internal 
connections. (A) Schematic of the model structure. (B) Oscillator 
amplitudes and (C) plastic connection amplitudes after stimulation with an 
external signal containing 200 and 300 Hz sinusoids. Note the harmonic 
structure of the response, including the 100 Hz “missing fundamental”. 
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Summary: The model described by Equations 1 and 2 is a generic population-level model 

(Hoppensteadt & Izhikevich, 1997) that captures the fundamental dynamics observed in neuron-

level models (Brunel, 2000; Stefanescu & Jirsa, 2008), but is amenable to theoretical and 

computational analysis (Aronson, Ermentrout, & Kopell, 1990). The model is invariant over 

temporal and spatial scale, and in Section 5 we use it to model active cochlear resonance to 

sound (Lerud, Kim, Almonte, Carney, & Large, under revision), brainstem phase-locking to 

pitch combinations (Lerud, Almonte, Kim, & Large, 2014), and cortical entrainment to rhythmic 

patterns (e.g., Large et al., 2015). First, however, we describe the theoretical analyses that have 

enabled us to create such models. 

2. Signal Processing by Neural Oscillators 

Despite its simple mathematical form, the canonical model for gradient frequency neural 

networks is still difficult to analyze in its entirety because its dynamics is determined by complex 

interactions among multiple network components. Oscillators in the network are driven by 

external forcing and at the same time receive input from other oscillators, and both types of 

interaction may involve linear and/or nonlinear coupling which can evolve over time via a 

generalized form of Hebbian plasticity (Large, 2011; Hoppensteadt and Izhikevich, 1996). Our 

approach is to analyze individual components of the network separately and attempt to 

understand its overall dynamics as a combination of its component dynamics. To begin, we 

analyzed and categorized the driven behaviors of canonical oscillators under periodic forcing. 

Consider the following differential equation describing an oscillator in the canonical 

model (or simply, a canonical oscillator) driven by sinusoidal forcing of fixed frequency, ω0, and 

amplitude, F: 

 (3) 

where ω = 2πf is the radian natural frequency. To understand the response of a gradient 

frequency network, we focus on how the driven state of an oscillator changes as a function of its 

natural frequency. 

The autonomous behavior of the oscillator (i.e., when F = 0) is readily seen when it is 

brought to polar coordinates using z = reiφ. Then, the amplitude and phase dynamics are 

described by 

 
Depending on the values 

of α, β1, and β2, the 

autonomous amplitude 

vector field (the first 

equation above) can have 

one of four distinct 

topologies. When �̇� 

decreases monotonically 

as r increases, the origin 

is the only fixed point 

which is stable as the 

arrow indicates (Fig 2.1A). An oscillator with this type of amplitude vector field decays to zero 

Figure 2.1. Autonomous behavior of a canonical oscillator in different 

parameter regimes. Amplitude vector field is shown for (A) a critical Hopf 

regime, (B) a supercritical Hopf regime, (C) a supercritical double limit cycle 

regime, and (D) a subcritical double limit cycle regime. Filled circles indicate 

stable fixed points (attractors) and empty circles unstable fixed points (repellers). 

Arrows indicate the direction of trajectories in the vector field. 
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while oscillating at its natural 

frequency. A representative 

parameter regime for this type 

is the critical point of a 

supercritical Hopf bifurcation 

(α = 0, β1 < 0). (A subcritical 

Hopf bifurcation occurs when 

α = 0 and β1 > 0.) When �̇� 

increases from the origin and 

then decreases after a local 

maximum, there is a stable 

nonzero fixed point while the 

origin is rendered unstable (Fig 

2.1B). An oscillator of this type 

shows spontaneous oscillation 

at the amplitude of the stable 

fixed point (unless the initial 

condition is zero). The 

supercritical branch of a 

supercritical Hopf bifurcation 

(α > 0, β1 < 0) is an example. 

When there are three fixed points with two local extrema, two of the fixed points are stable, 

indicating bistability between equilibrium at zero and spontaneous oscillation at a nonzero 

amplitude (Fig 2.1C). As the local maximum in the vector field moves below the r axis by, say, 

decreasing β1, the two nonzero fixed points collide and vanish (Fig 2.1D). This transition is 

called a double limit cycle (hereafter, DLC) bifurcation since it involves two limit cycles (closed 

orbits) in the (r,φ) plane, one stable and the other unstable. Thus, we call the regime shown in 

Fig 2.1C (α < 0, β1 > 0, β2 < 0, local max > 0) supercritical DLC and the one shown in Fig 2.1D 

(α < 0, β1 > 0, β2 < 0, local max < 0) subcritical DLC. The subcritical DLC regime has only one 

stable fixed point at zero but is different from the critical Hopf regime (Fig 2.1A) in that it has a 

local maximum in the vector field. 

To examine how a canonical oscillator responds to external forcing, we bring Equation 3 

to polar coordinates, again using z = reiφ, and express its dynamics in terms of the relative phase 

ψ = φ − ω0t so that a stable fixed point in (r,ψ) indicates a phase-locked state: 

 (4) 

where Ω = ω − ω0 is the frequency difference between the oscillator and the input. We evaluate 

the stability of fixed point(s) for a range of forcing parameters Ω and F wide enough to 

encompass all possible qualitatively different driven behaviors of the four regimes of intrinsic 

parameters introduced above. 

 

 

 

 

Figure 2.2. Driven behavior of a critical Hopf oscillator. (A) Steady-state 

amplitude and relative phase as a function of frequency difference (α = 0, 

β1 = −100, β2 = 0, F = 0.2), with vertical dashed lines indicating the 

frequency differences used for panels B–E, (B) trajectories attracted to a 

stable node in the (r,ψ) plane starting from a set of different initial 

conditions (Ω/2π = 0.1), (C) trajectories attracted to a stable spiral (Ω/2π = 

0.5), (D) relative phase plotted over time for a trajectory in panel B (phase 

locking), and (E) relative phase plotted over time for a trajectory in panel 

C (phase locking). Filled circles in panels B and C indicate stable fixed 

points. 
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2.1 Critical Hopf Oscillators 

A stability analysis shows that a critical Hopf oscillator phase-locks to sinusoidal forcing of any 

frequency and amplitude. For fixed forcing amplitude, the steady-state amplitude r∗ is maximum 

when the forcing frequency 

is the same as the natural 

frequency (i.e., Ω = 0), for 

which the steady-state 

relative phase ψ∗ is zero 

indicating in-phase 

synchronization (Fig 2.2A). 

As the natural frequency 

and the forcing frequency 

become more different, r∗ 

decreases monotonically 

and approaches zero while 

ψ∗ approaches . While the 

fixed point (r∗,ψ∗) remains 

stable for all values of Ω, it 

changes its stability type 

from a stable node to a 

stable spiral as |Ω| increases 

from 0. It is clearly seen in 

the (r,ψ) space that the two 

attractors have distinct local 

trajectories (Fig 2.2B and C). 

The way r and ψ approach 

their steady-state values in time (monotonic vs. oscillating approach) reflects the difference 

between a node and a spiral (only the relative phase is shown in Fig 2.2D and E). 

2.2 Supercritical Hopf Oscillators 

For a supercritical Hopf oscillator under weak forcing, there exist three steady-state solutions for 

small frequency differences, two of which are a saddle-node pair, and just one unstable solution 

for large frequency differences (Fig 2.3A). As the frequency difference increases from zero for a 

fixed forcing amplitude, the saddle and node are lost via a saddle-node invariant-circle (SNIC) 

bifurcation (also called a saddle-node infinite-period or SNIPER bifurcation), which leaves a 

stable (attracting) limit-cycle orbit with an unstable fixed point inside (Fig 2.3A–C). For stronger 

forcing, only one fixed point exists for all values of frequency difference, but it changes from a 

stable node to a stable spiral then to an unstable spiral as |Ω| grows from zero (Fig 2.4A). Now 

the phase-locking boundary is at the transition from a stable spiral to an unstable spiral (i.e., a 

Hopf bifurcation in the (r,ψ) space). 

Outside the phase-locking range for strong forcing, the driven behavior of a supercritical 

Hopf oscillator can be divided into two categories. Just outside the Hopf boundary, the relative 

phase changes over time but is bounded and does not traverse the full 2π range (Fig 2.4D), which 

is called a libration (as opposed to a rotation). When averaged over time, this “phase-trapped” 

oscillation has the same mean frequency as the input frequency, so it can be described as 

frequency locking without phase locking (Hoppensteadt and Izhikevich, 1997). As |Ω| increases 

further, the relative phase starts making full rotations (Fig 2.4E). At this point, the average 

Figure 2.3. Driven behavior of a supercritical Hopf oscillator under weak 

forcing. (A) Steady-state amplitude and relative phase as a function of 

frequency difference (α = 1, β1 = −100, β2 = 0, F = 0.02), with vertical 

dashed lines indicating the frequency differences used for panels B–E, (B) 

trajectories attracted to a stable node in the (r,ψ) plane (Ω/2π = 0.02), (C) 

trajectories drawn to a limit cycle (Ω/2π = 0.04), (D) relative phase plotted 

over time for a trajectory in panel B (phase locking), and (E) relative phase 

plotted over time for a trajectory in panel C (phase slip). In panels B and C, 

filled and empty circles indicate stable and unstable fixed points 

respectively, and red lines show limit-cycle orbits. 
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instantaneous frequency of the oscillator is different from the input frequency and approaches the 

natural frequency as |Ω| approaches infinity. The existence of phase-trapped libration (thus, 

frequency locking) outside the phase-locking boundary is a distinct feature of the Hopf boundary. 

The SNIC phase-

locking boundary and the Hopf 

boundary exist only for weak 

and strong forcing levels 

respectively, but the two types 

of phase-locking boundary 

coexist for a small range of 

intermediate forcing level. 

This region of the forcing 

parameter space contains a 

complicated but well-studied 

set of bifurcations such as the 

Bogdanov–Takens bifurcation 

and the cusp point. Also, it is 

worth noting that the same set 

of bifurcations are found for 

other periodically driven 

nonlinear oscillators or 

populations of oscillators such 

as the forced van der Pol 

oscillator (Holmes & Rand, 

1978) and the forced Kuramoto model (Childs & Strogatz, 2008). However, the canonical model 

analyzed here, with its simple mathematical form, allows closer analytical examination than is 

possible for more complex models. 

2.3 Supercritical Double Limit Cycle Oscillators 

In the interest of space, here we will present a summary of the driven behaviors of supercritical 

DLC oscillators and subcritical DLC oscillators (see Kim & Large, 2015, for a full analysis). 

These are also summarized in Table 1 and Fig 2.5 below. 

When driven by a sinusoid, a supercritical DLC oscillator shows three distinct sets of 

behaviors depending on the strength of the forcing, and many of these behaviors involve 

bistability. Under weak forcing, a supercritical DLC oscillator has two stable fixed points for 

small frequency differences and only one for large frequency differences. The stable fixed point 

with a small amplitude exists for all values of Ω, but the one with a high amplitude (a stable node) 

is lost via a SNIC bifurcation and leaves a limit-cycle rotation (phase slip) where it collides with 

a saddle point. For intermediate forcing amplitudes, the saddle-node pair at high amplitudes still 

exists for small frequency differences, but the stable fixed point at low amplitudes exists only for 

large frequency differences. There is a range of intermediate frequency differences for which no 

stable fixed point exists and all trajectories are attracted to a limit-cycle rotation that the saddle-

node pair leaves. As the frequency difference increases, the fixed point inside the limit cycle 

changes from an unstable node to an unstable spiral and eventually to a stable spiral (i.e. a 

subcritical Hopf bifurcation). When the forcing amplitude is further increased, only one fixed 

point exists for any value of frequency difference. The driven state (r,ψ) of a strongly forced 

supercritical DLC oscillator goes through transitions from a stable node (phase locking), a stable 

Figure 2.4. Driven behavior of a supercritical Hopf oscillator under strong 

forcing. (A) Steady-state amplitude and relative phase as a function of 

frequency difference (α = 1, β1 = −100, β2 = 0, F = 0.2), with vertical 

dashed lines indicating the frequency differences used for panels B–E, (B) 

trajectories attracted to a phase-trapped libration in the (r,ψ) plane (Ω/2π = 

0.5), (C) trajectories attracted to a rotation (Ω/2π = 0.7), (D) relative phase 

plotted over time for a trajectory in panel B (phase-trapped frequency 

locking without phase locking), and (E) relative phase plotted over time for 

a trajectory in panel C (phase slip). In panels B and C, empty circles 

indicate unstable fixed points, and red lines show limit-cycle orbits. 
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spiral (phase locking), a libration around an unstable spiral (frequency locking without phase 

locking), a rotation around an unstable spiral (phase slip), and lastly bistability between phase 

locking on a stable spiral and phase slip on a stable limit cycle. So, a strongly forced supercritical 

DLC oscillator has two phase-locking boundaries, a supercritical Hopf bifurcation and a 

subcritical Hopf bifurcation. 

2.4 Subcritical Double Limit Cycle Oscillators 

Like a critical Hopf oscillator, a subcritical DLC oscillator is attracted to an equilibrium at zero 

when it is not driven. But the presence of a local maximum in the amplitude vector field makes 

its driven dynamics more varied and interesting than that of a critical Hopf oscillator. Like a 

supercritical DLC oscillator, a subcritical DLC oscillator exhibits three different sets of driven 

behaviors depending on the 

forcing amplitude. 

For weak forcing, it 

behaves like a critical Hopf 

oscillator, with its driven state 

attracted to a stable node when 

|Ω| is small and to a stable spiral 

when |Ω| is large. For 

intermediate forcing amplitudes, 

a pair of fixed points appears at 

high amplitudes and they are lost 

via a saddle-node bifurcation at a 

certain frequency difference, but 

this saddle-node bifurcation does 

not leave a limit cycle like a 

SNIC bifurcation. When driven 

strongly, a subcritical DLC 

oscillator has the same set of 

fixed points as a supercritical 

DLC oscillator—a stable node, a 

stable spiral, an unstable spiral, 

and a stable spiral as |Ω| 

increases from zero. A 

supercritical Hopf bifurcation 

occurs at the first phase-locking 

boundary, where a stable spiral 

turns unstable and a stable limit 

cycle grows around it. However, 

the limit cycle does not grow into a rotation that encompasses the origin, which is the case for a 

supercritical DLC oscillator. Instead, it shrinks back and turns into a stable spiral via another 

supercritical Hopf bifurcation. In the absence of a SNIC or subcritical Hopf bifurcation, a 

strongly driven subcritical DLC oscillator shows no bistability and, since the only non-locked 

behavior is a libration, it either phase-locks or frequency-locks to the input for all values of Ω. 

2.5 Classification of Parameter Regimes by Driven Behavior 

We can classify all possible parameter settings for canonical oscillators into four regimes 

with distinct driven behaviors (Table 1 and Fig 2.5). Oscillators with an autonomous amplitude 

Figure 2.5. Stability regions for a canonical oscillator under sinusoidal 

forcing. The stability of driven state (r∗,ψ∗) is shown as a function of 

forcing amplitude and frequency difference for (A) a critical Hopf 

oscillator (α = 0, β1 = −100, β2 = 0), (B) a supercritical Hopf oscillator (α 

= 1, β1 = −100, β2 = 0), (C) a supercritical double limit cycle oscillator (α 

= −1, β1 = 4, β2 = −1, ε = 1), and (D) a subcritical double limit cycle 

oscillator (α = −1, β1 = 2.5, β2 = −1, ε = 1). The color indicates the 

stability type of a stable fixed point if there is one (purple if there are 

two). If there is no stable fixed point, the color indicates the stability of 

an unstable fixed point. Dashed horizontal lines indicate the forcing 

amplitudes used for Figs. 2.2–2.4. 
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vector field that monotonically decreases from zero with no local extremum (Fig 2.1A) have the 

same set of driven behaviors as a critical Hopf oscillator (α = 0, β1 < 0, β2 = 0). Linear oscillators 

(α < 0, β1 = 0, β2 = 0) belong to this category. Oscillators whose amplitude vector fields have one 

local maximum (Fig 2.1B) have the same set of driven behaviors and bifurcations as a 

supercritical Hopf oscillator (α > 0, β1 < 0, β2 = 0). Oscillators with α < 0, β1 > 0, and β2 < 0 are 

divided into three groups depending on whether the local maximum of the amplitude vector field 

is above zero (Fig 2.1C, a supercritical DLC oscillator), is below zero (Fig 2.1D, a subcritical 

DLC oscillator), or does not exist (with the same driven behaviors as a critical Hopf oscillator). 

 

Table 1. Classification of parameter regimes by driven behavior 

 
α β1 β2 Local extremuma Discussed as Bifurcationsb 

− 0 0 None  None 

0 − 0  Critical Hopf  

0 0 −    

− − 0    

− 0 −    

0 − −    

− − −    

− + − (No max)   

+ − 0 One Supercritical Hopf SNIC (low F); 

+ 0 −   Super-Hopf (high F) 

0 + −    

+ − −    

+ + −    

− + − Two (max > 0) Supercritical DLC SNIC (low F); 

SNIC, Sub-Hopf (mid F); 

Super-Hopf, Sub-Hopf (high F) 

− + − Two (max < 0) Subcritical DLC None (low F); 

SN (mid F); 

Super-Hopf, Super-Hopf (high F) 

SNIC, saddle-node bifurcation on an invariant circle; Super-Hopf, supercritical Hopf bifurcation; Sub-Hopf, 

subcritical Hopf bifurcation; SN, saddle-node bifurcation. 
a The number of local extrema in the autonomous amplitude vector field. 
b Bifurcations at phase-locking boundaries. 

 

3. Pattern Formation, Analysis and Recognition 

As shown in Section 1, we use dynamic patterns of multi-frequency oscillations formed in 

gradient frequency neural networks to explain and model auditory neural processing and auditory 

perception. Here we present the results of a series of analysis for systems of coupled oscillators 

which were done to better understand and utilize the complex network dynamics of GrFNNs. 

3.1 Stability Analysis of Coupled Oscillators: Phase-Locking 

Here we analyze the following system of two canonical oscillators coupled to each other: 

 

  (5) 

 

whose polar form is 
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  (6) 

 

where zi = rieiφi,ψ = φ1 − φ2 and Ω = ω1 − ω2. We present the analysis of two coupled oscillators 

for each parameter regime identified in Section 2. 

Critical Hopf oscillators (α = 0, β1 < 0, β2 = 0). Eliminating cos ψ∗ from the steady-state 

amplitude equations reveals that there are only fixed points with symmetric amplitudes (i.e. r1
* = 

r2
*). Then, we can reduce Eq. 6 to a two-dimensional system with the phase equation 

independent of amplitude (r ≡ r1 = r2): 

 

 
 

The steady-state solution 

of the phase equation 

above indicates that 

there is a phase-locking 

boundary at |Ω| = 2c. 

There is a node-saddle 

pair when |Ω| < 2c, 

which vanishes at the 

boundary (Fig. 3.1). 

When |Ω| > 2c, there is 

no ψ∗ (i.e. no phase-locking) and ψ rotates in either positive or negative direction. Note that ψ 

changes slowly (a “bottleneck”) near 𝜓 =
𝜋

2
 when Ω > 2c and near 𝜓 = −

𝜋

2
  when Ω < −2c. 

The steady-state solution of the amplitude equation shows that nonzero steady-state 

amplitude exists for |Ω| < 2c and it drops to 

zero at the boundary (Fig. 3.2). The 

Jacobian matrix and its trace and 

determinant suggest that the fixed point 

always lies on the border between stable 

nodes and stable spirals (it is a star node 

with both eigenvalues at −2c). Zero solution 

= 0 is also a possibility for coupled 

critical oscillators, regardless of |Ω| being 

greater or smaller than 2c. A perturbation 

analysis shows that the zero solution is 

unstable for |Ω| < 2c, and stable for |Ω| ≥ 2c. 

Supercritical Hopf oscillators (α > 

0, β1 < 0, β2 = 0). These are two possible 

solutions for two coupled supercritical 

oscillators: solutions with symmetric 

Figure 3.1. Vector field of the relative phase of two coupled oscillator with 

symmetric amplitudes when 0 < Ω < 2c (left), Ω = 2c (middle), and Ω > 2c (right). 

Figure 3.2. Steady-state amplitude and relative phase of 

two coupled critical Hopf oscillators (α = 0, β1 = −100, c = 

1). Though the fixed points are colored orange, they are all 

star nodes. 
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amplitudes and those with asymmetric 

amplitudes. The symmetric solution is 

. 

Examination of the Jacobian matrix 

indicates the first solution (the bigger r∗) is 

always a stable node and the second one, if 

it exists, is a saddle point. The stable node is 

lost via a saddle-node bifurcation at the 

locking boundary, which is predictable from 

the observation that the relative phase 

rotates right outside the boundary (Fig. 3.3, 

bold lines). The asymmetric solutions are 

 
and the other amplitude is obtained by 

. 

However, an examination of the Jacobian matrix reveals that asymmetric solutions are all saddle 

points. So, the only stable solutions are coupled supercritical Hopf oscillators are symmetric 

solutions (Fig. 3.3). 

Supercritical DLC oscillators (α < 0, β1 > 0, β2 < 0, local max > 0). Fig. 3.4 shows the 

stability of fixed points for supercritical DLC oscillators with two different levels of coupling 

strength. Symmetric solutions (thick lines) exist only when |Ω| ≤ 2c. Within this range, there is 

only one stable nonzero fixed point with symmetric amplitudes, which is always a node. They 

also have stable fixed points with asymmetric amplitudes, due to their bistability. When coupling 

is weak enough, stable asymmetric solutions exist for all values of Ω. For stronger coupling, they 

exist for large values of |Ω| only. Three distinct behaviors are possible for |Ω| > 2c. Zero solution 

is stable so that both oscillators can decay to zero if initial amplitudes are small. When both 

initial amplitudes are big enough, oscillators can stay not locked to each other, with relative 

phase ψ rotating. If one oscillator starts from small initial amplitude and the other from big 

amplitude, they could phase-lock with asymmetric steady-state amplitudes. 

Subcritical DLC oscillators (α < 0, β1 > 0, β2 < 0, local max < 0). Subcritical DLC 

Figure 3.3. Steady-state amplitudes (both symmetric and 

asymmetric) and relative phase of two coupled 

supercritical Hopf oscillators (α = 1, β1 = −100, c = 1). 

The thick lines indicate fixed points with symmetric 

amplitudes and the thin lines those with asymmetric 

amplitudes. 

Figure 3.4. Steady-state amplitude and relative phase of two coupled supercritical DLC oscillators (α = 

−1, β1 = 4, β2 = −1) with weak coupling (c = 0.2, left) and strong coupling (c = 1.2, right). Thick lines 

represent symmetric solutions and thin lines asymmetric ones. The dashed lines indicate the phase-

locking boundary for symmetric behaviors |Ω| = 2c. 
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oscillators have nonzero symmetric r*’s for a subset of |Ω| ≤ 2c. When coupling is weak and 

satisfies the following condition, there is no nonzero r*
 for all values of Ω and zero solution is the 

only stable fixed point: 

 . 

 

This is when the local maximum in amplitude vector field is below zero even for Ω = 0. With 

stronger coupling, nonzero symmetric r*’s exist for the following range of Ω, which is a subset 

of |Ω| ≤ 2c: 

. 

As shown in Fig. 3.5, fixed points with asymmetric amplitudes exist for coupled subcritical DLC 

oscillators. Most of them are unstable saddle points, but with strong coupling there is a narrow 

range of |Ω| just outside |Ω| = 2c where stable spirals exist. 

3.2 Stability Analysis of Coupled Oscillators: Mode-Locking 

When two oscillators have natural frequencies whose ratio is close to an integer ratio, they can 

mode-lock to each other via resonant monomials. Two canonical oscillators mode-locking to 

each other can be described by 

, 

for which we assume β2 < 0 in order to make the system stable given arbitrarily high k and m. 

We bring the system to polar coordinates using zi = rieiφi and define ψ = mφ1 − kφ2 and Ω = mω1 − 

kω2 to get 

 
 

Assuming symmetric solutions, the system can be a two-dimensional system of r (≡ r1 = r2) 

and ψ, for which the steady-state solutions can be obtained by solving 

Figure 3.5. Steady-state amplitude and relative phase of two coupled subcritical DLC oscillators (α = −1, 

β1 = 2.5, β2 = −1) with weak coupling (c = 0.3, left) and strong coupling (c = 1.2, right). 
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. 

To obtain asymmetric solutions, we 

must go back to the original three-

dimensional system. We do not 

present the details of the procedure 

since equations involved in getting 

asymmetric solutions are too 

complicated to list here. Since mode-

locking dynamics do not change 

qualitatively for different k’s and m’s, 

a general overview of both symmetric 

and asymmetric behaviors is presented 

below for k = 2, m = 1 only. 

As shown in Fig. 3.6, both 

supercritical Hopf oscillators and critical Hopf oscillators have only symmetric solutions. For 

both, stability is lost through a saddle-node bifurcation. Supercritical DLC oscillators have both 

symmetric and asymmetric stable solutions (Fig. 3.7, left). Note that for asymmetric solutions, 

which are stable spirals,  is bigger than . There is no asymmetric solution with . This is 

because the system is asymmetric with respect to r1 and r2 due to unequal k = 2 and m = 1. 

Subcritical DLC oscillators also have both symmetric and asymmetric solutions, but only a half 

of symmetric solutions are stable (Fig. 3.7, right). 

4. Hebbian Learning and Scene Analysis 

Hoppensteadt and Izhikevich (1996, 1997) showed that a weakly connected network of neural 

oscillators of identical natural frequencies can memorize phase differences between them if 

synaptic connections change in time according to complex Hebbian learning rule: 

 

Figure 3.6. Steady-state amplitude and relative phase of two 

oscillators coupled via resonant monomials for 2:1 mode-

locking: supercritical Hopf oscillators (α = 1, β1 = −1, β2 = −1, ε 

= 0.9, c = 1, left) and critical Hopf oscillators (α = 0, β1 = −1, β2 

= −1, ε = 0.9, c = 1, right). 

Figure 3.7. Steady-state amplitude and relative phase of two supercritical DLC oscillators (α = −1, β1 = 4, 

β2 = −1, ε = 0.9, c = 1, left) and two subcritical DLC oscillators (α = −1, β1 = 2.5, β2 = −1, ε = 0.9, c = 1, 

right), each coupled via resonant monomials for 2:1 mode-locking. 
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where ′ = d/dτ, τ = εt is ‘slow’ time, and γ and kij are positive real numbers. Note that the learning 

rule has only a linear intrinsic term and an input term. When zi and zj oscillate at the same 

frequency, the input term 𝑘𝑖𝑗𝑧𝑖𝑧�̅� becomes a complex constant whose phase is the phase 

difference between zi and zj. So, the phase of cij eventually comes to match the phase difference 

between the oscillators it connects. 

We expanded Hoppensteadt and Izhikevich’s single-frequency network with linear 

learning rule into a multi-frequency network with nonlinear learning rule. We show that this 

expansion gives rise to a set of rich dynamics that are not observed in either single-frequency 

systems or systems without plasticity. Here, we analyze the dynamics of two simplest oscillator 

systems with plastic connections: an oscillator with plastic coupling to single external input and 

two oscillators connected by plastic coupling. 

4.1 Plastic Coupling to External Forcing 

Consider a single oscillator z that is driven by external forcing x via plastic coupling c. 

Introducing fully expanded intrinsic terms to both the oscillator equation and the learning rule 

gives us the following system: 

 
where κ is a positive real number representing learning rate. 

From the form of the learning rule, 

we can treat the connection c as an oscillator 

whose natural frequency is zero. (Note that 

there is no imaginary number like iω in the 

intrinsic part of the equation.) This means 

that c resonates maximally when its input 

𝜅𝑧�̅�  has constant phase, which happens 

when z and x oscillate at the same frequency. 

When z and x are not oscillating at the same 

frequency, on the other hand, c is driven by 

an input that oscillates at the difference 

frequency and, given this frequency is not too far from zero, we can expect that c would phase-

lock to this oscillating input and oscillate at the difference frequency (Fig. 4.1). 

To carry out the analysis further, we transform the system to polar coordinates. Assuming 

sinusoidal forcing of constant amplitude and frequency (x = Feiϑ, �̇� = ω0) and defining z = reiφ 

and c = Aeiθ, it becomes 

 
Since the only angle that appears on the right-hand side of the above equations is θ + ϑ − φ, we 

define it as ψ and get the following three-dimensional system: 

 

 

 
 0  1 2 3 4 5 6 7 8 9 10 

Time 

Figure 4.1. Waveform of sinusoidal forcing x, a critical Hopf 

oscillator z, and plastic coupling c. 
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where Ω = ω − ω0. Since the fully expanded system is difficult, if not impossible, to solve, let us 

examine the following truncated version (i.e. we assume β2 = µ2 = 0): 

 
 

Now that both the oscillator and the learning rule have multiple parameter regimes with 

distinct behaviors, we are going to briefly describe each combination of the regimes for oscillator 

and learning rule. First, let us examine the system consisting of a critical Hopf oscillator and 

linear learning rule—we call it a critical-linear system. Fig. 4.2 shows r∗, A∗, ψ∗ and steady-state 

�̇� of a critical-linear system as functions of Ω. The critical-linear system has a stable fixed point 

for all values of Ω, a stable node for small |Ω| and 

a stable spiral for large |Ω|. Notice that the 

oscillator’s instantaneous frequency is slower 

than its natural frequency when the oscillator’s 

natural frequency is greater than the input 

frequency, and the other way around when the 

natural frequency is smaller than the input 

frequency. See also that the connection’s 

instantaneous frequency, �̇� , is always between 

zero and Ω (marked by the red dashed line). Since 

�̇� = �̇� − 𝜔0 when the system is in a steady state, 

this indicates that �̇� is always between ω and ω0. 

We also observe in Fig. 4.2 that as |Ω| increases, 

�̇� approaches Ω and hence �̇� approaches ω. So, 

when |Ω| is large, z oscillates near its natural frequency while c oscillates with small amplitude to 

cope with the big difference between z’s instantaneous frequency and the input frequency. 

For a critical-critical system, stable fixed points exist only for small values of |Ω| and 

they appear to lie on the border between stable nodes and stable spirals. Outside the locking 

range, both the oscillator and the connection slowly decay to zero with their amplitude 

fluctuating. The critical-supercritical system shown in Fig. 4.3 exhibits interesting dynamics. 

Figure 4.2. Steady-state solutions and their stability for 

a critical-linear driven system (α = 0, β1 = −1, β2 = 0, ε = 

0, λ = −1, µ1 = 0, µ2 = 0, εc = 0, κ = 1, F = 1). 

Figure 4.3. Steady-state solutions and their stability for 

a critical-supercritical driven system (α = 0, β1 = −1, β2 = 

0, ε = 0, λ = 1, µ1 = −1, µ2 = 0, εc = 0, κ = 1, F = 1). 

Figure 4.4. Steady-state solutions and their stability for 

a supercritical-supercritical driven system (α = 1, β1 = 

−1, β2 = 0, ε = 0, λ = 1, µ1 = −1, µ2 = 0, εc = 0, κ = 1, F = 

1). 
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Contrary to the critical-linear system shown earlier, �̇� converges to zero (thus �̇� approaches ω0) 

as |Ω| increases toward infinity. This is because the connection has nonzero spontaneous 

amplitude so that its amplitude cannot be lowered indefinitely. The supercritical-linear and 

supercritical-critical systems have similar overall dynamics to the critical-linear system, except 

that the oscillators’ amplitude converges to their nonzero spontaneous amplitude as |Ω| increases. 

The supercritical-supercritical system shown in Fig. 4.4 has stable fixed points for only small |Ω| 

and the locking boundary is a saddle-node bifurcation point. Outside the locking range, both the 

oscillator and the connection fluctuate near their spontaneous amplitudes and intrinsic 

frequencies.  

4.2 Two Oscillators with Plastic Coupling 

The dynamics of two canonical oscillators connected through plastic coupling can be described 

by 

 

 

Defining zi = rieiφi  and cij = Aijeiθij, the above system is transformed to 

 
Note that there are only two distinct arguments for trigonometric functions on the right-hand side 

of the equations above. Defining them as ψ12 = θ12−φ1+φ2 and ψ21 = θ21 − φ2 + φ1 turns the above 

eight-dimensional system into a six-dimensional one: 

 
where Ω = ω1 − ω2. 

From the definition of ψ12 and ψ21, we can see that �̇�12 = �̇�1 − �̇�2 and �̇�21 = �̇�2 − �̇�1 

when the system is in a steady state (i.e. �̇�12 = �̇�21 = 0). In other words, the connections 

oscillate at the instantaneous frequency difference of the oscillators they connect. This also 

means that when two oscillators have different instantaneous frequencies, two connections 

DISTRIBUTION A: Distribution approved for public release.



 

should have instantaneous frequencies of the same 

magnitude but in opposite directions (i.e. �̇�12 =

−�̇�21 ). Another property that can be expected 

from the definition of ψ12 and ψ21 is that steady-

state θ12, θ21 and φ1 −φ2 should be neutrally stable 

when Ω = 0, as was observed for driven oscillators 

with plastic coupling to input. 

We can reduce the dimension of the 

system further by assuming that two oscillators 

and two connections show symmetric behaviors. 

This is a valid as well as useful assumption, since 

stable fixed points are always symmetric for many 

parameter regimes. However, it does not capture 

any of asymmetric behaviors that can be stable 

attractors for supercritical DLC oscillators. Using the substitutions r ≡ r1 = r2, A ≡ A12 = A21 and ψ 

≡ ψ12 = −ψ21, we get the following three-dimensional system: 

 
As we did above for oscillators with plastic coupling to external forcing, we will briefly 

examine different possible combinations of the regimes for oscillator and learning rule. The 

critical-critical system (Fig. 4.5) has stable nonzero symmetric solutions for only small values of 

|Ω|. The symmetric steady-state behavior of a critical-supercritical system does not look much 

different from that of a critical-critical system. It too has nonzero stable fixed points for small |Ω| 

only. But note that since the learning rule is in a supercritical Hopf regime, A∗ is always greater 

than its spontaneous amplitude. The supercritical-linear system is similar to the driven system in 

the same regime—a stable node for small |Ω| and a stable spiral for large |Ω|. A difference 

between the two systems is that the coupled system shown here is unstable and blows up for 

small values of |Ω| when κ ≥ β1λ. Fully expanded intrinsic damping terms with negative β2 and µ2 

solve this problem. The supercritical-critical system shown in Fig. 4.6 has also two types of 

stable fixed points (nodes and spirals) but these exist for small values of |Ω|. It appears, however, 

that for high enough κ all unstable fixed points in 

the figure turn stable and become stable spirals. 

The supercritical-supercritical coupled system, 

like its driven counterpart, has stable nodes of 

amplitudes greater than spontaneous amplitudes 

for small values of |Ω| only.  

Here we showed the analysis of symmetric 

solutions only. Numerical simulations suggest, 

however, that stable steady-state behaviors are 

always symmetric for these systems consisting of 

truncated canonical models of oscillators and 

connections. So, we did not miss any stable 

solutions above. Simulations also show that stable 

asymmetric solutions exist when supercritical 

Figure 4.5. Symmetric steady-state solutions and their 

stability for a critical-critical coupled system (α = 0, β1 = 

−1, β2 = 0, ε = 0, λ = 0, µ1 = −1, µ2 = 0, εc = 0, κ = 1). 

Figure 4.6. Symmetric steady-state solutions and their 

stability for a supercritical-critical coupled system (α = 

1, β1 = −1, β2 = 0, ε = 0, λ = 0, µ1 = −1, µ2 = 0, εc = 0, κ = 

0.8). 
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DLC regimes are used, but analysis of the kind we did for truncated models is difficult to do for 

asymmetric behaviors because it requires solving the six-dimensional system with nonzero β2 

and µ2. 

5. Computational Models of Physiological and Behavioral Data 

As described in the preceding sections, we have developed a generic population-level model 

that is amenable to theoretical analysis. We have made significant theoretical advances in 

understanding signal processing, pattern formation and plasticity in networks of neural 

oscillators. In this section we describe now we have applied this approach to model active 

cochlear resonance to sound (Lerud et al., under revision), brainstem mode-locking to pitch 

combinations (Lerud et al., 2014), and cortical entrainment to rhythmic patterns (Large, et al., 

2015) .  

5.1 A Canonical Nonlinear Cochlear Model 

We developed and analyzed a canonical model of cochlear dynamics based on coupling 

between linear mechanical resonance of the basilar membrane and critical nonlinear oscillations 

in the organ of Corti. Through dynamical analysis, we obtain analytical forms for auditory tuning 

curves of both unidirectional and bidirectional systems. To validate this model we compared it 

with auditory nerve (AN) tuning curve data from the macaque monkey (Joris et al., 2011). We 

found that the model tuning curves fit the macaque data with good accuracy. A fuller description 

if this model is forthcoming (Lerud, Kim, Almonte, Carney & Large, under revision). 

Modern models of the cochlea focus on the nonlinear oscillatory responses of outer hair 

cells (Julicher, 2001; Kern & Stoop, 2003). Outer hair cells poised at or near oscillatory (Hopf) 

instability (see Section 2) are thought to be responsible for the cochlea's extreme sensitivity, 

excellent frequency selectivity, and amplitude compression (Camalet, Duke, Julicher, & Prost, 

1999; Eguìluz, Ospeck, Choe, Hudspeth, & Magnasco, 2000). Models of OHC nonlinearities 

consist of dynamical equations in the form of critical oscillators that capture generic aspects of 

nonlinear resonance (Fredrickson-Hemsing et al., 2012; Hoppensteadt & Izhikevich, 1997). Such 

models use the normal (truncated) form of the Hopf bifurcation discussed above in Section 2, 

(Equation 3). Equation 4 shows system behavior in terms of amplitude r and phase angle . A 

canonical cochlear model in which each segment of the cochlea is represented by Equation 3 

(and equivalently, 4) can account for a nontrivial subset of cochlear dynamics such as sharp 

mechanical frequency tuning, exquisite sensitivity, and a large dynamic range (Eguìluz et al., 

2000).  

Starting with normal form models of outer hair cell nonlinearities as a theoretical 

framework, we developed an extended canonical model taking into account linear basilar 

membrane dynamics, critical nonlinear outer hair cell dynamics, and the coupling between the 

two. In the first model, linear basilar membrane oscillators drive critical nonlinear outer hair cell 

oscillators. In a second model, bidirectional coupling was introduced, such that the nonlinear 

elements reciprocally drive the linear filtering elements. Both models can be solved to determine 

how threshold tuning properties depend on parameters, and both models produce tuning curves 

that closely match responses measured in the macaque AN (Joris et al., 2011). In addition, our 

analysis shows that the bidirectionally coupled model produces intrinsic oscillations, such that 

near the empirically measured threshold there exists a bifurcation boundary between 

nonsynchronized and synchronized physiological responses (e.g.,Johnson, 1980). 
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5.1.1 Unidirectional Model 

We used pairs of coupled oscillators to model the dynamics of cochlear segments. In each 

pair, one oscillator represents BM displacement dynamics, and the other represents organ of 

Corti (OC) dynamics, including the outer hair cells, the tectorial membrane, and other supporting 

structures. Input to the complex drives the BM oscillator, which is intended to account for the 

dynamical effects of the cochlear fluid traveling waves that drive the BM. The OC energy source 

stems from critical oscillations that cause the organ of Corti to vibrate. Thus, the model exhibits 

both BM filtering and critical oscillations that capture the amplification, compression, and 

frequency selectivity of cochlear processing (Eguìluz et al., 2000).   

The natural frequency of each BM-OC complex is set to correspond to the best frequency 

of the cochlear segment that it represents. We equate the state of the OC oscillator with the signal 

that is transmitted to the AN. These broad considerations lead to a coupled set of canonical 

oscillator equations for modeling a BM-OC complex: 

 

 
 

The state variable zBM represents the dynamics of the BM, while zOC represents the 

dynamics of the OC, including the nonlinearities of the OHCs. For simplicity, we assume a linear 

BM. This leads to bandpass filtering behavior, making the model conceptually similar to that of 

(Julicher, Andor, & Duke, 2001). The linear damping parameter,  < 0, is determined by 

fitting tuning-curve data. For the OC we assume critical nonlinear oscillation, i.e.,  = 0, 

resulting in optimal amplification. The nonlinear damping parameter  < 0 provides amplitude 

compression in the OC and is also determined by fitting tuning-curve data. Finally, the parameter 

c21 governs the relative strength of forcing of the OC by the BM and is determined by fitting the 

data as well.  

Because the model is described in terms of the complex state variables zBM and zOC, it can 

be rewritten in polar form, giving rise to amplitude and phase equations: 

 

 
Given the threshold amplitude r*

OC, which is a small number that we hold constant across tuning 

curves, the formula for F only in terms of model parameters is 

 

 
F is normally in pascals which can then be converted to the stimulus level L in dB SPL by L=20 

log (F/p0) - G, where p0 = 20Pa represents the reference pressure, and G the gain of the middle 

ear filter in dB. 
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To determine tuning curves that can be compared with auditory-nerve data, we first pass 

the acoustic stimulus through a linear filter to approximate the amplitude and phase response of 

the middle ear (Bruce, Sachs, & Young, 2003; Zilany & Bruce, 2006). The middle-ear filter is a 

simplified form of that of Bruce (2003). Zilany and Bruce developed a fifth-order continuous-

time transfer function and represented it as a fifth-order digital filter using a bilinear 

transformation for a sampling frequency of 500 kHz, with the frequency axis pre-warped to give 

a matching frequency response at 1 kHz. To ensure stability of the digital filter, it was 

implemented in a second-order system form by cascading digital filters. Once the MEF and 

cochlear BM-OC oscillatory complexes are defined, the resulting waveform is provided as input.  

 The three parameters,   < 0,  < 0, and c21 > 0, are determined using a search 

procedure that adjusts model parameters to obtain a sufficiently close match to the data. We held 

the threshold r*
OC = 0.1 constant and fit each curve individually. The results of the parameter 

searches are shown in green in Figure 5.1 A, B, and C, for low, mid, and high frequency tuning 

curves from the Joris et al. data set, respectively. The average root-mean-square error for the fits 

in was 6.9219 dB. It was noted that both  and varied within a single order of magnitude 

over all tuning curves, and c21 was a reliable linear function of CF. 

5.1.2 Bidirectional Model 

A more realistic configuration of the BM-OC oscillatory complexes is to use bidirectional 

coupling between the two oscillators rather than unidirectional coupling used in the previous 

model. Thus, our second model considers the effect of OC dynamics on the BM. With 

bidirectional coupling, the dynamics of an oscillatory complex are governed by 

 

 
 

with c12  being the coupling coefficient of the OC oscillator feeding back to the BM oscillator. 

Similarly to the unidirectional model, we can get a closed-form formula for forcing amplitude F 

expressed as a function of threshold amplitude r*
OC, frequency difference , and model 

parameters: 

 

 
 

where 

 
 

Stability analysis of this system reveals that bidirectional coupling introduces an important 

change in the dynamics of BM-OC complexes. With unidirectional coupling and with   set to 

zero or below, both the BM and OC oscillators decay to zero when not driven by external forcing. 

With bidirectional coupling, however, the two oscillators provide input to each other and as a 
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result they have nonzero steady-state amplitudes even in the absence of external forcing. A 

consequence of having nonzero spontaneous amplitude is that a BM-OC complex with 

bidirectional coupling may not phase-lock to external forcing if its natural frequency is too 

different from forcing frequency or if forcing is not strong enough. Figures 5.1D,E&F show 

resonance regions or “Arnold tongues” for a bidirectional model within which the model phase-

locks to external forcing. Steady-state solutions (or fixed points) may exist outside the resonance 

region, but they are not stable (i.e., the model is not attracted to them). Typically, steady-state 

amplitudes r*
OC and r*

BM are unstable when they are smaller than the spontaneous amplitudes. In 

comparison, a BM-OC complex with unidirectional coupling and   ≤ 0 phase-locks to 

external forcing of any frequency and amplitude.  

Due to the 

possibility of 

unstable solutions 

for bidirectional 

models, the forcing 

amplitude F should 

be examined for its 

stability when the 

threshold amplitude 

r*
OC set below the 

spontaneous 

amplitude of zOC. To 

compare tuning in 

this model to the 

tuning in the 

unidirectional 

model, we choose 

the coupling, c12, 

such that 

spontaneous 

amplitude is just 

below threshold 

amplitude, r*
OC = 

0.1. Figure 5.1 

D,E&F show the 

tuning curves (red) lie just above the phase-locking boundary, and are similar to the tuning 

curves for the unidirectional model. The bidirectional model did not provide significantly better 

fits to the tuning-curve data. However, the bidirectional model makes the important prediction 

that cochlear and AN phase-locking will be observed before amplitude of firing frequency 

increases significantly. This prediction matches empirical observations (e.g., Johnson, 1980). 

Another important feature of this bidirectional model is spontaneous oscillation. It is well known 

that many mammalian cochleae exhibit spontaneous otoacoustic emissions, and this aspect of 

auditory nonlinearity cannot be predicted with a unidirectionally coupled model.  

Summary: Nonlinear responses to acoustic signals arise through active processes in the 

cochlea, whose exquisite sensitivity and wide dynamic range can be explained by critical 

nonlinear oscillations of hair cells. We studied how the interaction of critical nonlinearities with 

Figure 5.1. Top: Fits of the unidirectional model to low (A), mid (B), and high (C) 
frequency AN fibers from the Joris (2001) data set. Data is in blue, model fits are in 
green. Bottom: Resonance regions of the bidirectional model for low (D), mid (E), and 
high (F) frequency AN fibers, using the same parameters. Coupling from OC to BM, 
was chosen so that spontaneous amplitude was slightly below threshold amplitude, 
r*

OC = 0.1. The red contours show threshold amplitude. The BM-OC model phase-
locks to external forcing in the parameter regions where the fixed point is either a 
stable node (red) or a stable spiral (yellow). Non-phase locked regions (saddle points) 
are shown in blue. 
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the basilar membrane and other organ of Corti components could determine tuning properties of 

the mammalian cochlea. We developed a canonical model in which the dynamics of the basilar 

membrane–organ of Corti interaction is captured using pairs of coupled oscillators tuned to a 

gradient of natural frequencies. We first developed a minimal model in which a linear oscillator, 

representing basilar membrane dynamics, is coupled to a nonlinear oscillator poised at a Hopf 

instability, which captures the nonlinear responses of outer hair cells and related organ of Corti 

components. Parameters were determined by fitting the auditory-nerve tuning curves of macaque 

monkeys. We then developed a more sophisticated model, taking into account bidirectional 

coupling. We found that the unidirectionally and bidirectionally coupled models account equally 

well for threshold tuning, but the bidirectionally coupled model also exhibited low amplitude, 

spontaneous oscillation, providing a model that phase-locks to sound.  

5.2 Brainstem Processing of Pitch Combinations 

While some nonlinear responses arise through active processes in the cochlea, others arise 

in neural populations of the cochlear nucleus, inferior colliculus and higher auditory areas. 

Recently mode-locking, a generalization of phase locking that implies an intrinsically nonlinear 

processing of sound, has been observed in mammalian auditory brainstem nuclei. We developed 

a canonical model of mode-locked neural oscillation in brainstem that predicts the complex 

nonlinear population responses to musical intervals that have been observed in the human 

brainstem (for complete details, see Lerud et al., 2014). 

 In central auditory circuits, action potentials phase-lock to both the fine time structure 

and the temporal envelope modulations of auditory stimuli at many different levels, including 

cochlear nucleus, superior olive, inferior colliculus, thalamus, and A1 (Langner, 1992). 

Traditionally, phase-locked spiking in the central auditory system is thought to represent an 

essentially passive transmission of synchronized basilar membrane motion. An alternative 

possibility is that active circuits in the central auditory system carry synchronized neural activity 

forward. If this is the case, nonlinearities observed at the level of the brainstem might also arise 

due to mode-locking (see Section 3), a phenomenon that has been observed in the auditory 

brainstem (Langner, 1992), and is physiologically distinct from the mechanical compression and 

half-wave rectification that occurs in the organ of Corti. 

Mode-locking to acoustic signals has been observed in guinea pig cochlear nucleus 

chopper and onset neurons (Laudanski et al., 2010), and mode- locking to the difference tone of 

two dichotically presented stimulus frequencies has been observed in vivo and isolated to the 

inferior colliculus of the chinchilla (Arnold and Burkard, 1998, 2000). Mode-locked spiking 

patterns are often observed in vitro under DC injection (Brumberg and Gutkin, 2007), and active 

oscillations have been observed in vivo in the inferior colliculus of the chicken (Schwarz et al., 

1993). Such observations lead to the possibility that the nonlinear responses observed in the 

human auditory brainstem might arise, in part, due to mode-locking neurodynamics.  

We modeled nonlinear responses to musical intervals that have been measured in the 

human auditory brainstem response (Lee et al., 2009, see Fig. 2). In that study, the brainstem 

representation of the musical intervals comprised not only stimulus frequencies, but also 

numerous resonances at frequencies that were not physically present in the stimulus. How did 

these frequencies arise? The stimuli were the intervals major sixth (G and E, “consonant”) and 

minor seventh (F# and E, “dissonant”) which have fundamental frequency ratios of 1.6 (166 

Hz/99 Hz) and 1.7 (166 Hz/93 Hz), making it unlikely that interaction of the fundamental 

frequencies created strong distortion products in the cochlea (Dhar et al., 2009, 2005; Knight and 

Kemp, 2001). Moreover, the responses of trained musicians were significantly enhanced 
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compared with those of novice listeners, implying experience- based differences that would not 

have arisen at the level of the cochlea or auditory nerve (e.g., Large, Kozloski, & Crawford, 1998; 

Laudanski et al., 2010).  

The stimuli from the Lee et al. (2009) study were used as input to a cochlear model (see 

Section 5.1), which in turn provided input to two brainstem network layers. The characteristic 

frequencies of the cochlear layer and both brainstem layers spanned four octaves with 99 

oscillators per octave. Thus, each layer included 397 oscillators, with characteristic frequencies 

ranging from 64 Hz to 1024 Hz, encompassing the range of frequencies for which time-locked 

responses have been observed in midbrain physiology (Langner, 1992). The cochlear model 

includes a middle ear filter and simulates the basilar membrane and the organ of Corti (cf. 

Jülicher et al., 2001 B). The cochlea is connected to the first brainstem layer, representing the 

cochlear nucleus (CN), and the CN is connected to the second brainstem layer, representing the 

inferior colliculus/ lateral lemniscus (IC/LL).  

We modeled FFRs from Lee et al., responses to both the consonant and dissonant intervals. 

The stimulus was input to the cochlea, all oscillator equations were numerically integrated for 

the length of the stimulus, and the responses in all layers were stored. To compute the model 

brainstem FFR, the responses of all oscillators in each layer were averaged, leaving a single time 

series for each layer. The model FFR was a weighted average of the cochlea, CN, and IC/LL 

layers. This weighted average was filtered (3rd-order digital Butterworth low-pass, 450 Hz cutoff) 

to account for the lowpass effect of the skull, meninges, and scalp on the FFR. Finally, the 

resultant model time series were averaged and fast Fourier transformed to produce a model fit. 

The model fits, for the consonant and dissonant intervals were optimized with a single degree of 

freedom through a series of simulations. In the simulations, the parameter ε (Equation 1) was 

systematically varied between zero and one to yield the highest correlation for each fit.  

Fig. 5.2 shows the predicted brainstem responses. The canonical population response 

predicts each peak in the brainstem response with remarkable accuracy for both intervals 

(consonant: R2=0.77, p<0.0001; dissonant: R2=0.67, p<0.0001). The more subtle differences 

could not be accounted for by manipulation of ε alone, implying that incorporation of other 

Figure 5.2. Comparisons of model predictions and auditory brainstem responses of nonmusicians to (A) the 

consonant interval (99 Hz, 166 Hz) and (B) the dissonant interval (93 Hz, 166 HzThe labels above each spectral 

component refer only to their specific frequencies as functions of the primaries, and do not necessarily reflect the 

generating processes of those components. 
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network properties into the model, i.e., synaptic coupling, will be necessary to explain the 

responses of listeners. This is consistent with the interpretation that the refinement of auditory 

sensory encoding is driven by synaptic plasticity that links learned representations to the neural 

encoding of acoustic features (Lee et al., 2009).  

Summary: A single parameter of a model brainstem network was manipulated to fit Lee et 

al.’s (2009) brainstem FFR data. The parsimony of the model, its basis in neurophysiological 

observations of mode-locking, and the quality of the fits all speak to the potential of this 

theoretical approach. We are currently developing improvements to enable more comprehensive 

simulations of the early auditory system that include all relevant aspects of cochlear dynamics, as 

well as parameterization of CN and IC/LL dynamics. In comprehensive models, parameter fitting 

is a significant issue. We are also exploring models of synaptic plasticity for neural oscillator 

networks (see Equation 2 and Section 4) in order to better explain the responses of trained 

listeners. This approach may lead to an understanding of general neural signal processing 

principles underlying music and pitch perception. Moreover, canonical analysis of plasticity in 

neural oscillator networks may help us to understand the role of learning in modulating these 

responses.  

5.3 Cortical Synchronization to Complex Rhythms 

We have developed a model that makes detailed, quantitative predictions about cortical 

population rhythms hypothesized to underlie human rhythm perception. We directly tested the 

predictions in behavioral and neurophysiological experiments. In particular, our model makes 

predictions about the perception of pulse and meter in complex rhythms as well as activity within 

auditory and motor systems.  

Pulse and meter perception arise from complex interactions within a widespread 

auditory-motor network (Lee, Skoe, Kraus, & Ashley, 2009). EEG and MEG studies have 

directly tested the neural dynamics that emerge during rhythm perception. One group of studies 

has looked at how steady state evoked potentials (SS-EP) are affected by pulse perceptions and 

by different tempi. Will and Berg (e.g., Chen, Penhune, & Zatorre, 2008; Grahn & Rowe, 2009) 

reported substantial SS-EP responses to isochronous stimuli, but only in the delta/theta range, 

with the strongest SS-EP response for 2Hz stimuli, a rate which corresponds to the optimal 

pulse-tempo identified in numerous listening, tapping synchronization, and event-interval 

discrimination experiments (2007). Another study found that while periodic rhythm elicited a 

sustained response at the rate of the stimulus, meter imagery elicited an additional subharmonic 

resonance corresponding to the metric structural interpretation (McAuley & Jones, 2003). 

Similarly, the amplitude of the SS-EPs at pulse and meter frequencies of complex rhythms is 

selectively enhanced (S. Nozaradan et al., 2011). While these studies support the notion that 

neural activity synchronizes to rhythms, synchronization cannot be unambiguously attributed to 

oscillatory entrainment because they do not rule out the possibility that SS-EPs may be driven 

bottom-up by the stimulus itself.  

Other EEG/MEG studies have demonstrated synchronization of high-frequency power 

modulations (in the beta/gamma-band range 15-50Hz) to the temporal structure of sounds. One 

EEG study found that fluctuations in induced beta- and gamma-band power synchronized with 

periodic and metrical rhythms, and was unaltered even when sounds were omitted, emphasizing 

its top-down anticipatory (rather than bottom-up reflexive) nature (Sylvie Nozaradan, 2012). 

Similarly, MEG studies found anticipatory induced beta-band responses for periodic and metrical 

sequences, but not for randomly timed sequences (Snyder & Large, 2005), and subharmonic 

responses were observed in induced beta band activity when subjects were instructed to impose a 
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subjective meter on a periodic stimulus, closely resembling those produced by physical accents  

(Fujioka, Large, Trainor, & Ross, 2009). MEG source analysis has revealed beta-band 

interactions in auditory and motor networks during musical rhythm processing (Iversen, Repp, & 

Patel, 2009). Given the role of beta in motor processing and long-range intra-cortical interaction, 

these findings are consistent with the idea that the motor system influences the perception of 

sound, even in the absence of overt movement. Thus, beta and gamma band responses to 

auditory rhythms as well as SS-EPs are in line with the basic prediction that neural rhythms 

synchronize to the pulse.  

While empirical observations demonstrate neural synchrony, the hypothesis of entrained 

neuronal oscillation remains controversial. The most straightforward objection is that 1) apparent 

entrainment of SS-EPs reflects overlapping of transient responses such as the N1-P2 complex 

(Sussman, Steinschneider, Gumenyuk, Grushko, & Lawson, 2008; Tremblay, Billings, & Rohila, 

2004). A related possibility is that 2) observed synchrony may be a passive response, like that of 

a linear band-pass filter. If synchrony is passive then 3) observed neural processes would not be 

capable of the cognitive computations necessary for structure perception (Patel & Iversen, 2014). 

Fortunately, it is possible to identify active responses because entrainment reflects interaction of 

the stimulus with intrinsic neural dynamics.  

5.3.1 The Auditory-Motor Resonance Model 

We used two gradient frequency networks (see Equation 1) to model the functional 

coupling of auditory-motor networks observed in rhythm perception tasks without a motor 

component. The sensory network is intended to capture auditory cortical entrainment, while the 

motor network is intended to capture the 

dynamics of a broadly distributed 

network including basal ganglia and 

cortical areas. The sensory network takes 

a rhythmic input, sends output to a motor 

network, and the motor network send 

input back to the sensory network  

(Large et al., 2015). Connections within 

and between networks are assumed to be 

plastic and tuned by musical 

enculturation (cf., Hannon and Trehub, 

2005; see also Section 4).  

Although the model makes only 

general assumptions regarding 

underlying neural structures (e.g., Chen 

et al., 2008), it makes strong 

commitments about the oscillatory 

dynamics of auditory-motor interactions 

(Will and Berg, 2007; Fujioka et al., 

2012; Nozaradan et al., 2013). The 

sensory oscillators are tuned to operate 

near a Hopf bifurcation; the motor 

oscillators are tuned to operate near a 

double limit cycle bifurcation (see 

Section 2). The double limit cycle 

Figure 5.3. The network was stimulated with (a) an isochronous 

rhythm and (b) a “missing pulse” rhythm. Output of the sensory 

network is in green and output of the sensory network is in blue.  

The mean field time series (left) was obtained by summing the 

output of all the oscillators in the network over time. The SS-EP 

was obtained by Fourier analysis (FFT) of the mean field time 

series. The Fourier analysis (FFT) of the stimulus envelope is 

shown in black on the sensory SS-EP axis. 

DISTRIBUTION A: Distribution approved for public release.



 

regime of the motor network means that the model can capture synchronization-continuation 

behavior, continuing to produce rhythmic behavior after the stimulus. To predict mean field time 

series as observed in EEG recordings (e.g., Will and Berg, 2007; Stefanics et al., 2010), we sum 

the output of all oscillators in each network (Figure 5.3, left). To predict steady state evoked 

potentials (SS-EPs) we take a frequency analysis (DFT) of the mean field (Figure 5.3, right).  

As shown in Figure 5.3A, for a periodic stimulus, both sensory and motor networks 

produce synchronized oscillations at the pulse frequency, and generate harmonics (Repp, 2008) 

and subharmonics (Vos, 1973; Bolton, 1894; Nozaradan et al., 2011). In the case of a complex 

rhythm, however, it becomes clear that the two networks are doing something quite different 

from one another. The mean field time trace for the sensory network represents the input rhythm 

rather faithfully, producing well-defined pulses at input event times. By contrast, the motor 

network entrains at the pulse frequency. The rhythm itself contains no energy at the pulse 

frequency (or its second subharmonic; DFT in Figure 5.3B, SS-EP, solid black), however, in the 

motor network the strongest response is found at the pulse frequency. In other words, the 

development of the pulse percept 

depends on the interaction of these 

two oscillatory systems.  

This predicts that an 

oscillatory network interaction can 

lead to spontaneous pulse induction 

in complex rhythms—even in the 

most extreme case of a rhythm for 

which there is no energy at the pulse 

frequency. Thus, the theoretical 

prediction is that pulse may be 

perceived at a frequency that is not 

physically present in the rhythmic 

stimulus (Large, 2010; Velasco and 

Large, 2011).  

5.3.2 Behavioral Data 

To test behavioral 

predictions, we asked participants to 

listen to eleven rhythms ranging from 

isochronous to highly complex. 

Participants were instructed to listen 

to each rhythm until they heard a 

steady pulse, and then tap along with 

the rhythm at that rate. Rhythms were 

presented at five levels of complexity 

(0–4) and at five different tempi (i.e., 

pulse frequencies): 2.28Hz (420 ms), 

2.17 Hz (460 ms), 2 Hz (500 ms), 

1.85 Hz (540 ms), and 1.72 Hz (580 

ms). The simplest rhythms 

(complexity 0) were isochronous, the 

most complex rhythms contained no 

Figure 5.4. (a) Tapping frequencies were normalized to 2 Hz to 

allow comparison between trials at different tempos. Tapping 

frequency distributions (red histograms) were computed by 

binning normalized instantaneous tapping frequencies from 0 

Hz to 5.00 Hz in bins widths of 0.05 Hz. Distributions were 

computed for each rhythm separately, including every tap 

interval across trials. Black lines show amplitude spectrum of 

the stimulus envelope for comparison. (b) Circular means of tap 

phases for each trial (blue circles) and grand mean for each 

complexity level (red line). 
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spectral energy at the pulse frequency (complexity 4). Different combinations of tempo and 

rhythm were presented in a pseudorandom order such that consecutive trials always had different 

rhythms, and different tempos. Thus, participants were forced to find both the frequency and the 

phase of the pulse anew for each rhythm; they could not simply tap at the same tempo 

throughout the experiment.  

We measured instantaneous tapping frequency distributions to determine whether 

subjects induced a pulse at the intended frequency. Instantaneous tapping frequency was 

computed as 1/ITI (ITI = inter-tap interval in seconds) and tapping frequencies were normalized 

to a frequency of 2 Hz so they could be combined into a single distribution at each level of 

complexity. Spectral analysis (DFT) of the stimulus rhythms (Figure 5.4A, black) shows that at 

the hypothetical pulse frequency amplitude decreases with increasing complexity. At complexity 

level 4, the amplitude is precisely zero at 2 and 1 Hz for each rhythm. Normalized instantaneous 

tapping frequency (Figure 5.4A, red histogram) displays a main peak at the normalized pulse 

frequency of 2Hz for all rhythms at all levels of complexity, with lesser peaks at 1 and 0.5Hz, 

and for some rhythms, a diffuse peak around 4Hz. Thus, the participants most often tapped the 

predicted pulse frequency even for the most complex rhythms, which had no spectral amplitude 

at that frequency.  

Next, we examined synchronization for each trial. The sequence of tap times was 

converted into a sequence of phases relative to the predicted pulse frequency, and the circular 

mean was computed for each trial (Batschelet, 1981; Figure 5.4B; blue circles). The grand mean 

was then computed for each complexity level (Figure 5.4B, red line). As predicted by the model, 

participants synchronized—either in-phase or anti-phase—predominantly at the missing pulse 

frequency. This behavior is consistent with the prediction that formation of the pulse percept 

arises due to entrainment of emergent neuronal oscillations. It also rules out the potential 

alternatives that synchronization is merely a consequence of a common rhythmic input, or that 

the pulse percept may arise due to linear resonance. Theoretically speaking, it is critical to 

distinguish the role of a common stimulus frequency from the intrinsic dynamics of an emergent 

oscillation (Whittington et al., 2000), and the missing pulse rhythms used here enabled us to 

dissociate the two.  

5.3.3 Neural Data 

The theoretical model also makes strong 

physiological predictions that must also be put to 

empirical test. The prediction is that in listening to 

these ‘missing pulse’ rhythms, the pulse frequency 

will be observed in auditory and motor activity 

despite its absence from the stimulus acoustics. Fig 

5.5 shows MEG data from n=8 participants, 

listening passively to two of the complex ‘missing 

pulse’ stimuli (MP1 and MP2) used in the model 

simulations (Tal et al, submitted). The spectra of 

responses from right and left auditory cortices show 

the emergence of peaks at the 2Hz ‘missing pulse’ 

(and in one case its 1Hz subharmonic; p<0.05 for 

all relative to adjacent frequencies; regions of 

interest selected based on an independent auditory 
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Figure 5.5. (a) Synchronized neural activity was 

found in left and right auditory cortices in 

response to both complex rhythms. (b) Energy 

was found at the missing pulse (here, 2 Hz) and 

its second subharmonic (1 Hz) consistent 

neither of which were present in the stimuli. 
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localizer task; Source localization performed using SAM beamforming). Moreover, we found 

that the magnitude of the ‘missing pulse’ response is correlated with pulse perception across 

individuals, such that participants who perceived the pulse quickly had stronger responses than 

participants who took longer to perceive a pulse (MP1: r=-0.81, p<0.005; MP2: r=-0.6, p<0.05; 

data not shown). These findings confirm the falsifiable physiological predictions of the model, 

they show that neural frequencies correspond to listener’s perceptions, and they conclusively rule 

out transient or passive explanations of neural synchrony. Thus, this experiment provided strong 

evidence for the viability of the model as a theoretical framework for explaining rhythm 

perception. 

 Summary: We have made significant progress in understanding the role of neural 

oscillations and the neural structures that support synchronized responses to musical rhythm. Our 

neurodynamic model that shows how self-organization of oscillations in interacting sensory and 

motor networks could be responsible for the formation of the pulse percept in complex rhythms. 

In a pulse synchronization study, we tested the model’s key prediction that pulse can be 

perceived at a frequency for which no spectral energy is present in the amplitude envelope of the 

acoustic rhythm. The result shows that participants perceive the pulse at the theoretically 

predicted frequency. Synchronized neural activity consistent with model predictions has also 

been observed in auditory cortex, providing strong evidence for the viability of this theoretical 

framework for explaining rhythm perception. Our model is one of the few consistent with 

neurophysiological evidence on the role of neural oscillation, and it explains a phenomenon that 

other computational models fail to explain. Because it is based on a canonical model, the 

predictions hold for an entire family of dynamical systems, not only a specific one. Thus, this 

model provides a theoretical link between oscillatory neurodynamics and the induction of pulse 

and meter in musical rhythm.  

6. Concluding Remarks 

In this project, we developed a theoretical framework for auditory neural processing and 

auditory perception. We modeled the auditory system as a dynamical system consisting of 

oscillatory networks, and auditory perception as stable dynamic patterns formed in the networks 

in response to acoustic signals. We developed GrFNNs, generic models that capture the 

neurocomputational properties of a family of neurophysiological models using bifurcation theory. 

We made significant progress in understanding the signal processing, pattern formation and 

plasticity in GrFNNs. We developed three models that exploit these properties to model 

important aspects of auditory neurophysiology and auditory perception. Future modeling efforts 

based on canonical dynamical systems could bring us closer to understanding fundamental 

mechanisms of hearing, communication, and auditory system development.  

In addition to these accomplishments, we produced a computational framework for GrFNNs 

in Matlab, sped up our computational simulations using GPU acceleration, and created a C++ 

version of the GrFNN code to develop end-user applications that run on CPUs, GPU, mobile 

platforms and embedded devices. We anticipate that this computational framework will power 

the next generation of auditory processing hardware and software. In ongoing work, we are 

exploring the abilities of such networks to address the auditory scene analysis problem.  
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