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CONQUEST Quarterly Progress Report #1 for the Period 
2 September 2016 –  1 December 2016 (3 Months)

Section A. Task Progress 

Task 1.1:  QKD operation and security analysis for a naval atmospheric link with a 
realistic eavesdropper 
The slides attached to this report provide an update regarding Task 1 progress. 

Task 2.1: Maritime-implementable QKD protocols 

General security proof of discrete-modulation CV QKD 

Saikat Guha has been in discussions with Kamil Bradler of CipherQ Corp. on extending the proof 
technique of Lutkenhaus et al., PRA 79, 012307, which proved security and a rate lower bound for 
a binary-input (BPSK) CV QKD protocol. The main challenge in extending this proof technique 
to an M-ary is that this requires us to retain the entire relative "geometry" of the M purifications 
of the Eve's states (i.e., M choose 2 inner products). We are investigating a way where we could 
argue that the symmetry of the transmitted ensemble (e.g., a M-ary PSK constellation) is preserved 
in the symmetry of a particular purification of Eve's conditional states, which lets us proceed with 
evaluating bounds to conditional entropies using only a few parameters that describe that 
geometry, and in turn will hopefully lead to a rate lower bound with a simple-to-implement key 
map that only has a few quantities that Alice and Bob need to estimate during the channel 
estimation step.  

Better post-processing for BPSK CV QKD in lieu of slightly-reduced rate 

Saikat Guha and Masahiro Takeoka has been working on the attached draft [BPSK_CVQKD.pdf] -
- of work being done in collaboration with Hari Krovi and Norbert Lutkenhaus -- on simple post-
processing schemes for BPSK QKD protocols (much smaller communications overhead at the 
expense of slightly reduced rate, but yet with the optimal linear rate-transmittance scaling), and 
also a new rate-upper-bound proof that establishes the optimal rate attainable with a 2-state QKD 
protocol with heterodyne detection.  

Task 3: Maximizing the information efficiency of QKD 
Floodlight Quantum Key Distribution (FL-QKD):  Theory 

(1) We have completed an analysis of FL-QKD using K-ary phase-shift keying (K-PSK) and 
quadrature amplitude modulation (QAM) , thus generalizing from our initial work on binary 
PSK.  For the fiber channel, K-PSK allows the secret-key rate (SKR) against the optimum 
collective attack, to be doubled, but QAM beyond 4-ary (which is the same as 4-PSK), offers no 
advantage.  A conference paper on this work will be submitted to CLEO 2017 this month, and a 
journal article is in preparation.
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(2) We are continuing to work on the coherent-attack security of FL-QKD and hope to complete a 
security proof and SKR assessment during the next quarter. 
 
(3)  The preceding theory was done for a quiescent channel, e.g., optical fiber.  In previous work 
on another program we have done some analysis of FL-QKD for the atmospheric channel, and we 
are beginning to extend that work. 
 
Floodlight Quantum Key Distribution (FL-QKD):  Experiment 

(1)  We have previously performed a table-top proof-of-principle FL-QKD experiment that 
demonstrated a 55 Mbps SKR using 100 Mbps binary PSK on a channel with 10 dB of attenuation 
(equivalent of 50 km of optical fiber).   That experiment’s modulation rate (and hence its SKR) 
were limited by the capabilities of the equipment on hand at that time.  We have now acquired the 
equipment needed to run a table-top experiment at a 10 Gbps modulation rate, and we are 
proceeding to perform an FL-QKD experiment that should achieve a 1 to 2 Gbps SKR on a channel 
with 10 dB of attenuation. 
 
(2)  We are working to implement a field-programmable gate array (FPGA) implementation for 
our FL-QKD system’s servo control, which will be a great convenience for future experiments. 

Task 4:  Improved hardware-domain signal processing 
Photonic Integrated Circuit Work 

We have demonstrated high-speed polarization-encoded QKD using silicon photonic integrated 
devices. The QKD transmitter is a polarization-dependent Mach-Zehnder modulator designed on 
a CMOS-compatible silicon-on-insulator photonics platform. The transmitter generates arbitrary 
polarization qubits at gigahertz bandwidth with an extinction ratio better than 30 dB at 1480 nm 
using high-speed carrier-depletion phase modulators. We tested the performance of this device in 
a 104m field test between two different buildings at MIT. The experiment, done with a clock rate 
of 62.5 MHz, generated secret keys at a rate of 623.3 kbps along with a bit error rate of 1.77% and 
a phase error rate of 0.67%. We are currently implementing further protocol improvements, such 
as asymmetric basis selection and faster clock rate, to bring the secret key rate well into the Mbps 
range. The work shows the potential of using advanced photonic integrated circuits to enable high-
speed quantum-secure communications.  

Task 5: QKD network via un-trusted quantum nodes 
Non-deterministic amplifiers for use as quantum repeaters for CV QKD 

Boulat Bash and Saikat Guha are investigating the efficacy of using NLAs for quantum repeaters 
for CV-QKD -- an idea recently put forth by Tim Ralph and collaborators. We have explicitly 
evaluated the rate performance afforded by a single NLA repeater station, implemented using the 
"quantum-scissors" based approach. A detailed calculation has been carried out of the post-
selected state at the end between Alice and Bob, and the probability of success associated with 
that. We have found -- from calculating the reverse coherent information of that heralded 
entangled state, and accounting for the heralding probability -- that there is no improvement over 
the TGW bound using this one-station NLA repeater approach. This does not yet prove this does 
not work, but it suggests we may need either (a) more repeater nodes, or more likely (b) some 
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form of cross-channel multiplexing, for this to beat the TGW bound. There is no known form of 
CV QKD quantum repeater that is known to beat the TGW bound (upper bound on the rate of the 
best direct-transmission QKD protocol). We are working on both of those directions. 

Task 6: Important technical issues to address current deficiencies in the 
theory/practice of QKD 

Exploring novel non-Gaussian receivers for CV QKD for better finite-key performance 

Saikat Guha and Zachary Dutton have been exploring the performance of the Bondurant receiver 
for demodulating the coherent-state M-ary PSK alphabet. The Bondurant receiver works using a 
conditional-nulling strategy, a style of optical receiver implemented by the BBN group earlier 
[Nature Photonics 6, 374–379 (2012)]. In prior work funded by the InPho program, the BBN team 
had shown that the generalized Bondurant receiver can attain a factor of 4 improvement in the 
error probability exponent of demodulating M-ary PSK (or for that matter any M-ary coherent 
state alphabet). We have now found that that improved demodulation error exponent translates 
into better finite-length rate performance. We have derived a semi-analytic expression for the full 
transition matrix of the generalized Type-I Bondurant receiver for demodulating M-ary PSK, and 
translated that to calculating capacity and dispersion (latter quantifies the finite-length rate). So 
far, we have completed an analysis of the finite-length rate performance improvement afforded by 
the generalized Bondurant receiver for classical communication (just the I(A;B) term, not yet the 
\chi(B;E) term, which in turn will complete the full secret-key rate calculation). We intend to write 
this up as a paper soon, and then extend the analysis to key rate. We expect that this receiver or 
some variant of it will improve the finite-key-length performance of discrete modulation CV QKD 
protocols. Details attached in the short memo. 

The LSU team has been investigating finite-energy bounds on QKD protocols. To this end, we had 
thought a paper of Ryo Namiki would be useful for this purpose since there was a claim that it was 
possible to use CV teleportation to simulate a pure-loss channel of a lower transmissivity with one 
having a higher transmissivity. Upon further inspection of Namiki's paper, we found that there is 
an error and so we are thinking of alternative methods for devising finite-energy bounds. 

The LSU team has devised a measure of quantum steering that uses conditional mutual information 
and which we call intrinsic steerability. We proved several properties of this measure that establish 
it as a steering monotone. We suspect that it will find applications in one-sided device independent 
quantum key distribution as a bound on secret key rates achievable in that setting.  

Takeoka and the LSU team determined the optimal Fisher information when estimating the excess 
noise in a thermal channel with a fixed transmissivity. This should be useful for estimation of 
excess noise in quantum key distribution protocols. 

Section B. Planned Activities/Schedule 
A program kickoff meeting was held at BBN on October 7th with all team members in 
attendance.  See attached slides from kick-off meeting.  Monthly team meetings have been 
scheduled and the last monthly meeting was held via teleconference on November 23rd.  The 
next scheduled team meeting will be held at MIT on December 15th.  BBN’s internal team 
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meetings are scheduled for every other Tuesday morning.  For information regarding planned 
technical activities, see the updates provided in Section A above.  

Section C.  Equipment Purchased 
No equipment has been purchased or constructed at this time. 

Section D.  Key Personnel 
There have been no changes in personnel. 

Section E.  Accomplishments 
See updates provided in Sections A and B above and in both attachments – program slides and two 
memos – entitled, “Binary modulated CV QKD: simplified post-processing at the expense of small 
reduction in rate, and optimal post processing that meets rate upper bound” and “Capacities and 
coding efficiencies for the Sequentual Waveform Nulling with phase shift keying modulation.” 

Section F.  Anticipated Problems 
There are no anticipated problems or issues to report at this time. 

Section G.  YR1 CONQUEST Budget 



Binary modulated CV QKD: simplified post-processing at the expense of small
reduction in rate, and optimal post processing that meets rate upper bound
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1 National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
2 Quantum Information Processing Group, Raytheon BBN Technologies, Cambridge, MA 02138, USA

3 Institute for Quantum Computing, University of Waterloo, Waterloo ON, N2L 3G1, Canada
(Dated: December 1, 2016)

Continuous variable (CV) quantum key distribution (QKD) has a practical advantage in its imple-
mentation since it can use conventional optical telecom components, and does not require cryostats
to support good-quality single photon detectors required for discrete variable QKD protocols. On
the other hand, one of CV QKD’s practical drawbacks is the highly complicated signal modula-
tion and classical post processing of the output of the heterodyne detector, and the associated low
transmission ranges due to electrical noise bandwidth limitations of the detector. In this paper, we
extend the binary phase shift keyed (BPSK) CVQKD protocol investigated in Zhao et al., Phys.
Rev. A 79, 012307 (2009) in two ways. First, we show that the post processing protocol described
in the above paper is optimal in the sense that it achieves the secret-key-generation capacity (with
unlimited two-way public authenticated communication) of a pure-loss bosonic channel under the
constraints of the BPSK coherent-state alphabet and heterodyne detection. Second, we propose a
suite of simplified post processing protocols which attain slightly suboptimal key rate performance
while greatly reducing the cost of post processing and classical communication.

I. INTRODUCTION

Quantum key distribution (QKD) is a protocol to share
secret key between two distant parties Alice and Bob such
that the key is provably secure against an eavesdrop-
per, Eve, who has unlimited eavesdropping technology
allowed by quantum mechanics. QKD is now not only
with a scientific interest but also emerging as a prac-
tical technology and has been implemented in the field
testbeds around the world [1–4].

Many of the QKD protocols rely on single photon de-
tector [5] which is technically a hard part and often limits
the practical performance and cost of the system. Al-
ternative protocols are called continuous variable QKD
(CVQKD) where the information from Alice is encoded
in the quadrature of optical field and is detected by
quadrature measurements such as homodyne or hetero-
dyne detectors at Bob’s side. The practical advantage
of CVQKD is that their detectors are commonly used in
conventional optical communication and thus one can use
off-the-shelf technologies developed in that field. On the
other hand, the drawbacks are complications of the quan-
tum signal modulation and the classical postprocessing.
A standard CVQKD protocol, known as the GG02 proto-
col [6], uses coherent state modulated in phase space with
continuous Gaussian distribution which is more compli-
cated than the discrete modulations used in other QKD
protocols. In addition, the measured data is also contin-
uously distributed which should be properly discretized
and processed at the classical postprocessing step. This
makes another complication (mostly at error correction)
in practical systems.

Another practical problem is the data length at the
key distillation step. In single photon detection based
QKD, photon detection probability at Bob is propor-

tional to the channel transmittance, which is very small
for long distance channels. Since only the photon de-
tected outcomes are distilled for the final key generation,
the amount of data used at the key distillation is much
smaller than the number of pulses originally sent from
Alice. In CVQKD on the other hand, since the detec-
tion outcomes are continuous values of quadratures, all of
the measured outcomes must be used for the distillation
process. This makes the distillation process of CVQKD
more complicated than that of the single photon detec-
tion based QKDs.

One possibility to overcome these techinical issues is to
consider discretely modulated CVQKD using for exam-
ple binary phase shift keyed (BPSK) modulation [7–9].
The reason that Gaussian modulation is more commonly
used than the discrete modulation is of its security as-
pect. Since discretely modulated signal ensembles has
non-Gauissian statistics, the security proof of the dis-
cretly modulated CVQKD becomes nontrivial and com-
plicated. However, regardless of this complication, the
lower bound of the achievable key rate against collective
attacks for the BPSK modulation has been shown for a
pure-loss channel [8] and later for general channels [9].

In this paper, we extend the BPSK CVQKD protocol
proposed in [8, 9] and further investigate its postprocess-
ing part toward establishing the QKD protocol benefit-
ing all the above practical advantages. More precisely, we
pursue the QKD protocol with the minimum postprocess-
ing cost whereas keeping the merits of off-the-shelf optical
technologies and simple signal modulation format. Fig-
ure 1 summarizes the steps of the classical postprocessing
of the BPSK CVQKD in [9]. After measuring the quan-
tum signals and storing continuous variable measurement
outcomes, Alice and Bob do channel estimation by usnig
a part of the data and then sifting the keys (if necessary).

Typeset by REVTEX
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FIG. 1: Classical postprocessing in continuous variable quan-
tum key distribution. EC: error correction. PA: privacy am-
plification.

The sifted key Y is then mapped to two variables Ỹ and
U where the former is the discretized data used for the
key distillation and the latter is publically announced to
Alice which contributes to increase the mutual informa-
tion (and thus the final key rate) between Alice and Bob.

Throughout the paper, we refer the process Y → (Ỹ , U)
as the key map.

Our paper has two main contributions. First, we prove
that the key map in Zhao et al.’s protocol [9] is optimal
in the sense that it achieves the capacity of a pure-loss
bosonic channel under constraint of the physical setting
of the BPSK CVQKD. In addition, as a minor result, we
propose the “efficient” version of Zhao et al.’s protocol by
using the idea of the efficient protocol proposed for BB84
protocol [10]. This protocol can improve the key rate and
also does not require active switching of the detectors.
Second, we propose simpler key maps reducing the cost of
classical processing and communication whereas keeping
suboptimal key rate performance in a pure-loss bosonic
channel. We believe the results contribute a way toward
developing a provably secure CVQKD protocol taking the
advantages of optical communication components, simple
signal modulation, and simple classical postprocessings.

II. EFFICIENT BPSK-CVQKD PROTOCOL

In this section, we revisit the BPSK-CVQKD proto-
col proposed in [8, 9] and consider its “efficient” version.
We consider only the asymptotic limit of the inifnitely
long key exchanges. Alice picks a binary-valued ran-
dom variable X ∈ {0, 1} with equal probabilities, and
transmits one of the two BPSK coherent state pulses
|αx〉A ∈ {|−α〉, |α〉}, x = 0, 1, with α ∈ R, |α|2 = n̄ to
Bob through the quantum channel. While Bob’s receiver
is assumed to be a heterodyne receiver in [9], we replace
it with the asymmetric heterodyne receiver meaning that
the signal pulse is split via an asymmetric (non-50/50)
beamsplitter with transmittance ηBS > 0.5 and then the
real quadrature of the transmitted signal and the imagi-
nary quadrature of the reflected signal are measured by
homodyne detectors. This asymmetric detection is simi-
lar to the idea of the “efficient” protocol in BB84 [10] and
contributes to gain the key rate. In the limit of infinitely
long pulse sequence, the channel estimation is possible

even taking ηBS → 1.

Let Y be the strings of the sifted key, i.e. the mea-
surement outcome of the real quadrature after sifting the
signals used for channel estimation. After the channel es-
timation, Bob performs the key map which maps a string
of y to announcement u and discretized key ỹ. The an-
nouncement is publically announced to Alice to help her
key distillation process. Then Alice and Bob do the error
correction and the privacy amplification to distill the key
from (X, Ỹ ) conditioned on U . The key map particularly
considered in [9] is u = |y| and ỹ is the sign of y which
we call the infinite discretized key map.

In the following, we consider a specific scenario such
that the channel is estimated to be a pure-loss channel
with transmittance η ∈ (0, 1]. In addition, we assume
that the quantum devices in Alice and Bob’s sides do not
have any imperfection and also they can perform ideal
error correction and privacy amplification. Two reasons
for choosing this scenario: 1) it simplifies the key rate
analysis, and more importantly, 2) in a pure-loss channel,
we can prove the optimality of the infinite discretized
key map in the sense that it achieves the capacity of the
efficient BPSK-CVQKD protocol in this channel. The
rigorous statement of the capacity and its proof will be
given in Sec. IV.

In the limit of ηBS → 1 with the above assumption, the
conditional probability of Bob’s measurement outcome y

is given by p(y|X = 0) ≡ p(y|0) = 1√
π
e−(y−

√
2ηn̄)2

and

p(y|X = 1) ≡ p(y|1) = 1√
π
e−(y+

√
2ηn̄)2

. Under these

assumptions, the key rate lower bound against collective
attacks with the infinite discretized key map is obtained
from [9] by taking zero excess noise. It is given by

R(∞) ≥
∫ ∞

0

dy f(y)

[
1− h(εy)− h

(
1 + κ

2

)
+h

(
1 +

√
1− 4εy(1− εy)(1− κ2)

2

)]
, (1)

where f(y) ≡ p(y|0) + p(y|1), εy = p(y|0)
p(y|0)+p(y|1) =

1
1+e4

√
ηn̄|y| , and κ = e−2(1−η)n̄. The key rate in (1) max-

imized over n̄ gives the achievable rate of the BPSK-
CVQKD with the infinite discretized key map. With this
key map, Bob ideally announces the continuous value
u = |y| to Alice via a public channel which costs ad-
ditional classical information transmission. In practice,
|y| should be discretized. The amount of classical in-
formation for U is therefore approximately given by m
bits/pulse for 2m discretization.

As we mentioned, the key rate in Eq. (1) is indeed the
capacity of the efficient BPSK-CVQKD in a pure-loss
channel, that is, the infinite discretized key map is the
best strategy to maximize the key rate under the fixed
physical setup of the efficient BPSK-CVQKD.
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III. SIMPLIFIED KEY MAPS

In this section, we propose two simplified key maps
for the BPSK-CVQKD. Although the infinite discretized
key map is optimal for maximizing the key rate, the cost
for the classical processing and communication could be
large since the announcement U should be continuous
variable in ideal. Our simplified key maps can reduce the
classical cost significantly whereas keeping the subopti-
mality of the achievable key rates. Again, for simplicity,
we calculate the achievable key rate under the assump-
tions that the quantum channel between Alice and Bob is
estimated to be a pure-loss channel and Eve’s attacks are
restricted to be collective attacks. The key rate calcula-
tion for each key map is along with [9] which we describe
in detail in Appendix for completeness.

A. 2-bin discretized key map

Bob makes a hard decision, based on the sign of y, to
obtain, Ỹ ∈ {0, 1} and does not send any announcement

to Alice (i.e. U ∈ {∅}). Ỹ is interpreted as an output of
a binary symmetric channel BSC(ε) with X as the input
where ε =

∫∞
0
p(y|0)dy = 1

2erfc (
√
ηn̄). The lower bound

of the key rate is given by

R(2) ≥ 1− h(ε)− h
(

1 + κ

2

)
+h

(
1 +

√
1− 4ε(1− ε)(1− κ2)

2

)
, (2)

where κ = exp[−2(1− η)n̄] and h(p) = −p log2(p)− (1−
p) log2(1− p) is the binary entropy function. This rate is
maximized over n̄ for each given η. Since U ∈ {∅}, Bob
can fully save the classical communication cost for the
announcement.

B. 3-bin discretized protocol

Next simplest is the 3-bin discretization. Bob makes
a two-step decision: first assign U = {0, 1} for {|y| ≥
δth, |y| < δth} where δth is a positive threshold parameter,
and u = 1 is regarded as a failure outcome. That is,
by the announcement, Bob tells Alice success or failure
for each pulse which costs 1 bit/pulse. For each success
event, Bob assigns ỹ = {0, 1} for negative and positive y,
respectively, and use it to distill the final keys. The key
rate is thus a function of the success probability Psucc =
1
2 (2 + erf (

√
ηn̄+ δth)− erf (

√
ηn̄− δth)) and is given by

R(3) ≥ Psucc

[
1− h(ε̃)− h

(
1 + κ

2

)
+h

(
1 +

√
1− 4ε̃(1− ε̃)(1− κ2)

2

)]
, (3)
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FIG. 2: Key rates for various CV QKD protocols.

where

ε̃ =
1− erf (

√
ηn̄+ δth)

2 + erf (
√
ηn̄− δth)− erf (

√
ηn̄+ δth)

. (4)

Again, the above key rate is maximized over n̄ for each
given η. In this key map, we have a freedom to choose
δth. In the following, we consider three options: 1) op-
timize δth such that the key rate is maximized for each
gievn η, 2) choose δth such that Psucc is equal to η and 3)
choose δth such that Psucc is equal to

√
η. The idea of the

second option is to mimic the success probability of the
single-photon based protocols such as BB84 which could
significantly reduce the classical communication and pro-
cessing cost for the key distillation. The third option is
in between 1) and 2).

In summary, the classical communication cost for the
announcement is 1 bit/pulse (success or failure informa-
tion) and that for the key distillation depends on the
choice of δth.

C. Key rate comparison

Figure 2 plots the key rates as a function of channel
loss for 2-bin, 3-bin, and infinite discretized key maps.
Also for comparison, the standard CVQKD protocol with
Gaussian modulation and actively switched homodyne
detection also plotted [5, 6] (see also [11] for a summa-
rized key rate expression). There are several observa-
tions. First, scaling of all the key rates except the 3-
bin discretized key maps with Psucc = η and

√
η are

O(η). This is known to be the optimal rate-loss scal-
ing for any point-to-point QKD protocols in a pure-loss
channel [11–13]. Second, the key rate gap between the
Gaussian CVQKD and the efficient BPSK-CVQKD with
the infinite discretized key map is relatively small (fac-
tor of 3.7 for small η). As mentioned in the introduc-
tion, the efficient BPSK-CVQKD has practical advan-
tages compared to the Gaussian-CVQKD such as simple
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FIG. 3: Success probabilities of the 3-bin discretized key maps
with different thresholds.

modification and non-necessity of active switching at de-
tection. Third, moreover, the rate degradation by the
simplification of the key map from infinite to 2 or 3-bin
discretizations in the BPSK-CVQKD is rather small (less
than factor of 1.6) whereas the announcement cost is zero
(2-bin) or 1 bit/pulse (3-bin). These observations show
the potential of the BPSK-CVQKD with the simple key
maps as classical cost effective protocols.

For the 3-bin discretized key map, it is observed that
the reduction of the success probability clearly decreases
the key rate scaling. In other words the plots show the
trade-off between the key rate scaling and the classical
data cost at the key distillation step. In the straight
line region, the key rates roughly scales as O(η1.7) and
O(η1.3) for Psucc = η, and

√
η, respectively. The length

of {ỹ} processed at the key distillation step depends on
the success probability at the key map. In Fig. 3, we
plot the success probabilities for the different 3-bin key
maps. Even though the rate scaling reduces for lower
success probabilities, Figs. 2 and 3 still suggest the use-
fulness of the non-optimal 3-bin key map. For example,
comparing the 3-bin key map with Psucc =

√
η by the

inifinite discretized key map at 20dB losses, the key rate
of the former is 42% of the latter whereas the length of
ỹ to be distilled for the former reduces to only 6% of the
latter. That is, with the 3-bin key map with Psucc =

√
η,

while the obtainable key rate reduces to 2/5 of the best
key rate in the efficient BPSK CVQKD, one can com-
press the necessary data length for the key distillation
less than 1/16 of the original signal length n.

IV. PROOF OF THE UPPER BOUND

In this section we provide a rigorous proof of the op-
timality of the infinite discretized key map. The precise
statement of our capacity theorem is as follows.

Theorem 1 The secret key capacity of the lossy bosonic

channel of transmissivity η, under constraint of (a)
BPSK coherent state transmission of mean photon num-
ber n̄, and (b) asymmetric heterodyne measurement used
at the receiver, is given by:

CBPSK
s =

∫ ∞
0

dy f(y)

[
1− h(εy)− h

(
1 + κ

2

)
+h

(
1 +

√
1− 4εy(1− εy)(1− κ2)

2

)]
,(5)

where f(y) ≡ p(y|0) + p(y|1) and εy = p(y|0)
p(y|0)+p(y|1) =

1
1+e4

√
ηn̄|y| .

Proof. Due to the constraints (a) and (b), after the
transmission of the BPSK signals and detection via an
asymmetric heterodyne receiver with ηBS → 1, Alice,
Bob, and Eve share copies of ccq-state:

ρXYE =
∑
x

∫ ∞
−∞

dy pX(x)pY |X(y|x)|x〉〈x|X

⊗|y〉〈y|Y ⊗ |γx〉〈γx|E , (6)

where X ∈ {0, 1}, Y is a continuous variable

with pY |X(y|0) = 1√
π
e−(y−

√
2ηn̄)2

and pY |X(y|1) =
1√
π
e−(y+

√
2ηn̄)2

, and γx ∈ {±
√

1− ηα};x = 0, 1. Also

it is easy to show that pX(0) = pX(1) = 1/2 maximizes
the key rate. Thus the secret key capacity corresponds to
the maximum key rate extractable from copies of ρXYE .

The achievability is already shown in (1). To prove
the converse, we use the intrinsic information quantity
which was shown to be an upper bound to the maximum
extractable key rate from i.i.d. multiple copies of a tri-
partite shared quantum state ρABE [14].

I(A;B ↓ E)ρ ≡ inf I(A;B|E′)ρ, (7)

where I(A;B|E′)ρ is the quantum conditional mutual
information of state ρABE′ and the infimum is taken
over all completely positive trace preserving maps ΛE→E′

from E to E′ where ρABE′ = (IAB⊗ΛE→E′)(ρABE). We
may choose the map ΛE→E′ as the identity operation, to
give us a (potentially loose) upper bound.

Then applying it to our ρXYE in Eq. (6), we get the
upper bound of the secret key capacity as

CBPSK
s ≤ I(X;Y |E)ρ

= H(XE)ρ +H(XE)ρ −H(XY E)ρ −H(E)ρ,

(8)

where H(X)ρ is the von Neumann entropy of the state
ρX . ρXE , ρXE , ρE are the reduced density matrices of
ρXYE . The reduced density matrices and the von Neu-
mann entropies are calculated as follows:

ρY E =
∑
x

∫ ∞
−∞

dy pX(x)pY |X(y|x)|y〉〈y|

=

∫ ∞
0

dy f(y)|y〉〈y|Y

⊗{εy|γ0〉〈γ0|+ (1− εy)|γ1〉〈γ1|}E , (9)
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where f(y) = pY |X(y|0) + pY |X(y|1) and εy =
pY |X(y|0)

pY |X(y|0)+pY |X(y|1) , which implies

H(Y E)ρ = H(Y )ρ +

∫ ∞
0

dy f(y)

×h

(
1 +

√
1− 4εy(1− εy)(1− κ2)

2

)
,

(10)

where κ2 = |〈γ0|γ1〉|2 = e−4(1−η)n̄. Similarly,

ρXE =
1

2
(|0〉〈0|X ⊗ |γ0〉〈γ0|E + |1〉〈1|X ⊗ |γ1〉〈γ1|E),

(11)

leading to:

H(XE)ρ = h(1/2) = 1. (12)

Similarly,

ρE =
1

2
(|γ0〉〈γ0|E + |γ1〉〈γ1|E), (13)

leading to:

H(E)ρ = h

(
1 + κ

2

)
. (14)

Finally,

H(XY E)ρ = 1 +H(Y )ρ. (15)

Substituting these into Eq. (8), we obtain the upper
bound

CBPSK
s ≤

∫ ∞
0

dy f(y)

[
1− h(εy)− h

(
1 + κ

2

)
+h

(
1 +

√
1− 4εy(1− εy)(1− κ2)

2

)]
,

(16)

which coincides with the lower bound, thereby complet-
ing the proof.

V. CONCLUSIONS

In this paper, we extend the BPSK CVQKD protocol
proposed in [8, 9] and investigate the minimum postpro-
cessing cost whereas keeping the merits of off-the-shelf
optical technologies and simple signal modulation for-
mat of the BPSK CVQKD. Frist, we have proved that
the key map in Zhao et al.’s protocol [9] is optimal in the
sense that it achieves the capacity of a pure-loss bosonic
channel under constraint of the physical setting of the
BPSK CVQKD. Also, we propose the “efficient” version
of Zhao et al.’s protocol as a CVQKD version of the effi-
cient BB84 protocol proposed in [10]. This protocol can
improve the key rate while not requiring active switching
of the detectors. As a second contribution, we have pro-
posed simpler key maps, the 2-bin and 3-bin discretized
key maps, and show that they keep suboptimal key rate
performance in a pure-loss bosonic channel while reduc-
ing the cost of key map and annoucement in classical
post processing. In addition, we point out that in the
3-bin discretized key map, it is even possible to reduce
the classical communication cost for the error correction
and privacy amplification step which has been one of the
technical drawbacks in CVQKD. We show a tradeoff be-
tween the key generation rate and the failure probability
of the key map where the latter contributes to reduce the
data length for the error correction and privacy ampli-
fication. Depending on the channel and other technical
conditions, one can design appropriate threshold for the
key map.

The results shown here are useful toward developing a
CVQKD protocol taking the advantages of optical com-
munication components as well as simple signal modula-
tion and classical postprocessings. The remaining impor-
tant task is to develop a security proof and tight key rate
lower bound applicable to arbitrary quantum channel.
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Appendix: Achievable key rates for the efficient
BPSK-CVQKD with the 2-bin and 3-bin discretized

key maps

In this appendix, we describe detailed derivation of
the key rate lower bound for the efficient BPSK-CVQKD
with 2-bin, and 3-bin key maps.

Our security analysis follows the one in [9] based
on [15, 16], but assuming a pure-loss bosonic chan-
nel. As usual, we consider the (virtual) entanglement
protocol in which Alice prepares the entangled state
1√
2
(|0〉A|−α〉A′ + |1〉A|α〉A′) and then sends system A′

to Bob through a quantum channel A′ → B. We assume
that Eve can make any purification on the state shared
by Alice and Bob, which we denote as ψABE .

In the asymptotic limit of long key length, the secret
key generation rate R against any collective attacks is
lower bounded by [9],

R ≥ I(X; Ỹ |U)− max
ψABE

I(Ỹ ;E|U)ρ, (A.1)

where Ỹ ∈ 0, 1 is the sign of y measured by Bob which
cotains the information about Alice’s BPSK encoding, U
is some information announced from Bob to Alice (and
Eve) via a public channel. The second term is a quantum
conditional mutual information for the ccq state

ρUỸ E ≡ TrA [MB→UỸ (ψABE)]

=
∑
u,ỹ

p(u, ỹ)|u〉〈u|U ⊗ |ỹ〉〈ỹ|Ỹ ⊗ ρ
u ỹ
E , (A.2)

where M includes Bob’s asymmetric heterodyne mea-
surement B → Y and the key map Y → UỸ .

Suppose Bob obtains the distribution p(y|X = 0) ≡
p(y|0) = 1√

π
e−(y−√ηα)2

and p(y|1) = 1√
π
e−(y+

√
ηα)2

at the channel estimation step. This specifies that
Bob’s conditional states before the measurement are
|±√ηα〉〈±√ηα|. Thus the purification held by Alice,
Bob, and Eve should have the following form:

|Ψ〉ABE =
1√
2

(|0〉A|−
√
ηα〉B |φ−〉E + |1〉A|

√
ηα〉B |φ+〉E) .

(A.3)
where Bob and Eve’s systems should preserve the inner
product of the signal sent from Alice:

|〈−α|α〉| = |〈−√ηα|√ηα〉〈φ−|φ+〉|. (A.4)

This implies that

|〈φ−|φ+〉| = |〈−
√

1− ηα|
√

1− ηα〉|
= exp[−2(1− η)n̄] = κ, (A.5)

where n̄ = |α|2. These observations uniquely characterize
the optimal purification.
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Also, the conditional state of (A.3) on Bob’s hetero-
dyne measurement is

|Ψy〉AE =
1√

2π1/2p(y)

(
e−(
√
ηα+y)2/2|0〉A|φ−〉E

+e−(
√
ηα−y)2/2|1〉A|φ+〉E

)
, (A.6)

where

p(y) =
1

2
(p(y|0) + p(y|1))

=
1

2
√
π

(
e−(
√
ηα+y)2

+ e−(
√
ηα−y)2

)
. (A.7)

1. 2-bin discretized key map

For the 2-bin discretized key map, the effective channel
including a quantum channel, Bob’s measurement, and
the key map is simply given by a classical binary sym-
metric channel with error ε = 1

2erfc(
√
ηn̄). Since there is

no announcement from Bob, the first term of (A.1) is

I(X; Ỹ |U) = I(X; Ỹ ) = 1− h(ε). (A.8)

For the second term of (A.1), we need to derive Eve’s
state conditioned on Bob’s outcome ỹ. From (A.6) we
obtain the cq-state held by Bob and Eve as

Ψ̃
(2)

Ỹ E
=

1∑
ỹ=0

pỸ (ỹ)|ỹ〉〈ỹ|Ỹ ⊗ Ψ̃ỹ
E

=
1

2

(
|0〉〈0|Ỹ ⊗ Ψ̃0

E + |1〉〈1|Ỹ ⊗ Ψ̃1
E

)
, (A.9)

where pỸ (0) =
∫ 0

−∞ dy p(y) = 1/2,

Ψ̃0
E = 2

∫ 0

−∞
dy p(y)Ψy

E

=
1√
π

∫ 0

−∞
dy
(
e−(
√
ηα+y)2

|φ−〉〈φ−|E

+e−(
√
ηα−y)2

|φ+〉〈φ+|E
)

=
1 + erf(

√
ηα)

2
|φ−〉〈φ−|E +

1− erf(
√
ηα)

2
|φ+〉〈φ+|E ,

(A.10)

and similarly

Ψ̃1
E =

1− erf(
√
ηα)

2
|φ−〉〈φ−|E

+
1 + erf(

√
ηα)

2
|φ+〉〈φ+|E . (A.11)

These allow us to calculate the necessary entropies:

I(Ỹ ;E|U)Ψ̃(2) = I(Ỹ ;E)Ψ̃(2)

= H(E)Ψ̃(2) −H(E|Ỹ )Ψ̃(2)

= h

(
1 + κ

2

)
−h

(
1 +

√
1− 4ε(1− ε)(1− κ2)

2

)
,

(A.12)

where κ is in (A.5) and ε = 1
2erfc (

√
ηn̄). Then from

(A.8) and (A.12), we have a desired result.

2. 3-bin discretized key map

The 3-bin discretized key map includes failure
events with probability 1 − Psucc where Psucc =
1
2 (2 + erf (

√
ηn̄+ δth)− erf (

√
ηn̄− δth)). The effective

channel of a quantum channel and Bob’s measurement is
then modeled by a binary earsure channel with a sym-
metric error

ε̃ =
1− erf (

√
ηn̄+ δth)

2 + erf (
√
ηn̄− δth)− erf (

√
ηn̄+ δth)

. (A.13)

The conditional mutual information between Alice and
Bob is then calculated to be

I(X; Ỹ |U) = Psucc (1− h(ε̃)) . (A.14)

After Bob’s measurement and key map, Bob and Eve
hold the following ccq-state:

Ψ̃
(3)

UỸ E
= pU (0)|0〉〈0|U ⊗

(
pỸ (0)|0〉〈0|Ỹ ⊗ Ψ̃ỹ=0

E

+pỸ (1)|1〉〈1|Ỹ ⊗ Ψ̃ỹ=1
E

)
+pU (1)|1〉〈1|U ⊗ |2〉〈2|Ỹ ⊗ Ψ̃u=1

E , (A.15)

where

pU (0) =

∫ −δth
−∞

dy p(y) +

∫ −∞
δth

dy p(y)

=
1

2

(
2 + erf

(√
ηn̄+ δth

)
− erf

(√
ηn̄− δth

))
≡ Psucc, (A.16)

pU (1) = 1− Psucc, pỸ (0) = pỸ (1) = 1/2,

Ψ̃ỹ=0
E =

2

Psucc

∫ −δth
−∞

dy p(y)Ψy
E

=
1

2Psucc

{
(1 + erf(

√
ηn̄− δth))|φ−〉〈φ−|E

+(1− erf(
√
ηn̄+ δth))|φ+〉〈φ+|E

}
, (A.17)
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and similarly,

Ψ̃ỹ=1
E =

1

2Psucc

{
(1− erf(

√
ηn̄− δth))|φ−〉〈φ−|E

+(1 + erf(
√
ηn̄+ δth))|φ+〉〈φ+|E

}
. (A.18)

Then we have the conditional entropies:

H(E|U)Ψ̃(3) = PsuccH(E|u = 0)Ψ̃(3)

+(1− Psucc)H(E|u = 1)Ψ̃(3) ,

(A.19)

H(E|UỸ )Ψ̃(3) =
Psucc

2
(H(E|u = 0, ỹ = 0)Ψ̃(3)

+H(E|u = 0, ỹ = 1)Ψ̃(3))

+(1− Psucc)H(E|u = 1)Ψ̃(3) ,

(A.20)

and thus the second term of (A.1) turns out to be

I(Ỹ ;E|U)Ψ̃(3) = H(E|U)Ψ̃(3) −H(E|UỸ )Ψ̃(3)

= Psucc

(
h

(
1 + κ

2

)
−h

(
1 +

√
1− 4ε̃(1− ε̃)(1− κ2)

2

))
.

(A.21)

Combining Eqs. (A.14) and (A.21), we get the desired
result.
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We calculate the complete error transfer matrix for a sequentual waveform nulling (SWN) receiver
applied to communication link with M -ary phase shift keying modulation. We use this to calculate
the capacity and dispersion as a function of mean photon number per pulse, which in tern gives us
the coding efficiency of the SWN. The results are compared with heterodyne detection as well as
the optimal Helstrom measurement. As expected, we find the reduced error rate of the SWN yields
a slightly improved capacity than heterodyne when considering envelope defined by all possible M .
The dispersion comparison between different receivers is non-trivial as a function of power per pulse,
though the SWN recveiver shows a clear advantage over heterodyne in the useful operational range
of 1 < N0 < 10.

Bondurant [1] first proposed a receiver capable of beating the error rate of coherent detection with a 4-PSK alphabet,
based on a sequential nulling strategy in which a LO mixes with the signal to null out the m = 0 modulation waveform,
and then successfully nulls m = 1, 2, . . . as single photon clicks are recorded. This strategy was generalized in for any
alphabet [2]. Here we focus on the case of an aribtrary MPSK alphabet utilizing the same strategy as Bondurant’s
original proposal.

In particular we analyze the error rate for M = 2, 4, 8, 16 and calculate the complete error transfer matrix. Assuming
M possible waveforms, equally spaced in phase and labelled m = 0, 1, 2, . . .M − 1. Upon obtaining l clicks over the
course of pulse detection, the SWN receiver will guess l. The transition matrix elements, in the absence of dark
counts, are P (l|m) = 0 for alll > m. For l < m:

P (l|m) =

∫ T

t1=0

Pm(t1)dt1

∫ T

t2=t1

Pm−1(t2 − t1)dt2 · · ·
∫ T

tl=tl−1

Pm+1−l(tl − tl−1)dtl

∫ ∞
tl+1

Pm−l(tl+1 − tl)dtl+1 (1)

where Pk(t) = λke
−λkt and λk = (2N0/T )[1− cos(2πk/M)]. Here N0 is the mean photon number per pulse and T is

the pulse length. And finally for l = m:

FIG. 1: Error rate versus mean photon number for M = 8 for the SWN receiver (blue), and compared with heterodyne (red)
and Helstrom limit (green).
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FIG. 2: Shannon capacities of the SWN (blue), Heterodyne (red) and Helstrom limited (green) receivers for M = 2, 4, 8, and
16. The dashed curve shows the Heterodyne limit for an unconstrained modulation format log2(1 +N0) while the solid black
curve shows the Holevo bound.

FIG. 3: Dispersion of the SWN (blue), Heterodyne (red) and Helstrom limited (green) receivers for M = 8.

P (m|m) =

∫ T

t1=0

Pm(t1)dt1

∫ T

t2=t1

Pm−1(t2 − t1)dt2 · · ·
∫ T

tm=tm−1

P1(tm − tm−1)dtm (2)

This transition matrix can be used firstly to calculate the receiver error rate. The results for M = 8 are plotted
in Fig. 1. The results for heterodyne and the Helstrom limit. One sees, as expected that as the photon number N0

increases, the SWN receiver beats heterodyne and scales as the Helstrom limit. It actually performs worse thatn
heterodyne at low photon number, with a cross over between 1 and 10 photons. Secondly, we use the transition
matrix to calculate the Shannon capacities. We plot the cases M = 2, 4, 8, 16 in Fig. 2. Each receiver, as N0 increases
asymptotically approach log2(M). We see that the envelope of the SWN receivers exceeds the heterodyne case and
even exceeds the unconstrained heterodyne limit below(the dashed curve) N0 < 10. Above this point using a QAM
modulation format becomes optimal - though we’d expect the SWN applied to this modulation would maintain its
advantage.

Finally, the dispersion is calculated using the same transition matrices. The results for M = 8 are plotted in Fig. 3.
For dispersion, a lower value means a lower variance in error rate which allows coding with shorter block lengths.
One sees the the SWN and heterodyne recievers experience a cross over just below N0 < 1 , above which the SWN is
superior. The capacity for a finite block length code can be calculated as C −

√
V/nErfc−1(2ε) , where Erfc−1(x) is

the inverse complementary error function and ε is the targeted error rate. Two examples are shown in 4.
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FIG. 4: Capacity (dotted curves) and finite block length capacity (solid curves) for the SWN and heterodyne receivers versus
block length n. The first plot shows M = 8 at N0 = 0.8 where the SWN has a clear advantage. The second shows N0 = 0.1
which is very near the cross-over point where neither recievers has much advantage. ε = 10−6 in these plots.
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