
Standard Form 298 (Rev 8/98) 
Prescribed by ANSI  Std. Z39.18

W911NF-12-1-0378

401-874-5844

New Reprint

61817-CS.26

a. REPORT

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

13.  SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

15.  SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17.  LIMITATION OF 
ABSTRACT

15.  NUMBER 
OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

Approved for public release; distribution is unlimited.

Heuristic dynamic programming with internal goal representation

In this paper, we analyze an internal goal structure

based on heuristic dynamic programming, named

GrHDP, to tackle the 2-D maze navigation problem. Classical

reinforcement learning approaches have been introduced

to solve this problem in literature, yet no intermediate reward

has been assigned before reaching the final goal. In this paper,


The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 
of the Army position, policy or decision, unless so designated by other documentation.

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office 
 P.O. Box 12211 
 Research Triangle Park, NC 27709-2211

Goal representation heuristic dynamicprogramming (GrHDP), Maze navigation/path planning, Adaptive dynamic programming 
(ADP), Reinforcement learning (RL)

REPORT DOCUMENTATION PAGE

11.  SPONSOR/MONITOR'S REPORT 
NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)
    ARO

8.  PERFORMING ORGANIZATION REPORT 
NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER
Haibo He

Zhen Ni, Haibo He

611102

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection 
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

University of Rhode Island
Sponsored Projects
70 Lower College Road, Suite II
Kingston, RI 02881 -1967

1



ABSTRACT

Heuristic dynamic programming with internal goal representation

Report Title

In this paper, we analyze an internal goal structure

based on heuristic dynamic programming, named

GrHDP, to tackle the 2-D maze navigation problem. Classical

reinforcement learning approaches have been introduced

to solve this problem in literature, yet no intermediate reward

has been assigned before reaching the final goal. In this paper,

we integrated one additional network, namely goal network,

into the traditional heuristic dynamic programming (HDP)

design to provide the internal reward/goal representation. The

architecture of our proposed approach is presented, followed

by the simulation of 2-D maze navigation (10*10) problem.

For fair comparison, we conduct the same simulation environment

settings for the traditional HDP approach. Simulation

results show that our proposed GrHDP can obtain faster

convergent speed with respect to the sum of square error, and

also achieve lower error eventually.
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Abstract In this paper, we analyze an internal goal struc-
ture based on heuristic dynamic programming, named
GrHDP, to tackle the 2-D maze navigation problem. Classi-
cal reinforcement learning approaches have been introduced
to solve this problem in literature, yet no intermediate reward
has been assigned before reaching the final goal. In this paper,
we integrated one additional network, namely goal network,
into the traditional heuristic dynamic programming (HDP)
design to provide the internal reward/goal representation. The
architecture of our proposed approach is presented, followed
by the simulation of 2-D maze navigation (10*10) problem.
For fair comparison, we conduct the same simulation envi-
ronment settings for the traditional HDP approach. Simula-
tion results show that our proposed GrHDP can obtain faster
convergent speed with respect to the sum of square error, and
also achieve lower error eventually.

Keywords Goal representation heuristic dynamic
programming (GrHDP) · Maze navigation/path planning ·
Adaptive dynamic programming (ADP) ·
Reinforcement learning (RL)

1 Introduction

In the past decades, reinforcement learning (RL) and adap-
tive dynamic programming (ADP) techniques have been fre-
quently employed for the prediction and optimization to find
the optimal control policy over time. For instance, heuristic

Communicated by C. Alippi, D. Zhao and D. Liu.

Z. Ni · H. He (B)
Department of Electrical, Computer and Biomedical Engineering,
University of Rhode Island, Kingston, RI 02881, USA
e-mail: ni@ele.uri.edu; he@ele.uri.edu

dynamic programming (HDP), dual heuristic dynamic pro-
gramming (DHP), and globalized dual heuristic dynamic pro-
gramming (GDHP), have been proposed in Werbos (1992,
1990) to seek the optimal control policy (solution for Bell-
man’s equation). Various versions of ADP, such as the action-
dependent (AD) designs and model-based designs, are devel-
oped and presented with the learning and control capabili-
ties on various applications. More recently, high-level under-
standing of ADP also discussed the fundamental principles
for ADP on the optimization and learning capabilities over
time Werbos (2013, 2008, 2009). For instance, the online
direct HDP was proposed and developed in Si and Wang
(2001), Yang et al. (2009), Liu et al. (2012), where the authors
took the advantages of the potential scalability of the adap-
tive critic designs and the intuitiveness of Q-learning. It was
also an online learning scheme that simultaneously updated
the value function and the control policy. For model-based
DHP/GDHP design, the authors demonstrated the conver-
gent analysis in terms of cost function and control law in
Liu et al. (2012), Wang et al. (2012), Liu and Wei (2013).
In addition, the performance comparison among HDP, DHP
and GDHP are studied and presented with the the auto-
lander helicopter problem in Prokhorov and Wunsch (1997),
Prokhorov (1997), Prokhorov et al. (1995). Recent research
books provided the deep overview of RL and ADP on both
stability/convergent analysis and various of complex indus-
trial applications Si et al. (2004), Lewis and Liu (2013).

Recent papers on the exploration of internal reward (goal)
have demonstrated the significance in ADP/RL communities.
It has been proposed and demonstrated in He et al. (2011,
2012a,b) that a three-network architecture can achieve bet-
ter control performance comparing with the traditional ADP
design on several balancing benchmarks. In addition, hierar-
chical HDP design is presented with significant improvement
with respect to the average successful trial number, compar-
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2102 Z. Ni, H. He

ing with both three-network design and the traditional ADP
design in Ni et al. (2012a,b), He et al. (2012c). Furthermore,
people also showed that the performance of ADP controller
could be improved by second-order learning algorithm on
complex industrial system in Fu et al. (2011a,b,c). In addi-
tion, stability analysis on dual-critic design with tracking
controller has been provided and verified on numerical sim-
ulation benchmarks in Ni et al. (2013). Real-time tracking
control with this dual-critic design on visual reality/simulink
platform is also presented in Ni et al. (2013), Fang et al.
(2012).

Maze navigation is the typical Markov decision process
(MDP) benchmark and has been tested in the ADP/RL com-
munity. For instance, in Pang and Werbos (1996), Wunsch
(2000), it has been proposed to learn the value table with
adaptive-critic designs in a closed-loop form with simulta-
neous recurrent neural network (SRN). In Ilin et al. (2006,
2007, 2008), the authors proposed to improve the learning
process with cellular SRN and Kalman filter integrating into
ADP design on the same problem. Furthermore, in Wier-
ing and Van Hasselt (2007), the authors compared classical
Q-learning, Sarsa(λ), conventional actor-critic design and the
proposed QV-learning on the maze navigation benchmark,
and showed the improved learning process with the proposed
approach. Although recent advancements of ADP research
have demonstrated many critical applications across different
domains, it has been recognized that the 2-D maze navigation
problem is a significant challenge for the society Werbos and
Pang (1996).

In this paper, we extend our previous work on goal repre-
sentation design for MDP benchmarks Ni et al. (2013), and
focus on the comparison between the proposed approach and
the traditional HDP approach. From the viewpoint of proof-
of-concept, we conduct the same simulation environment
setting for both approaches and adopt the gradient descent
method as the learning algorithm. In specific, there are three
neural networks in our proposed goal representation HDP
(GrHDP) approach: an action network, a critic network, and
a goal network. The motivation is to represent the detailed
goal signal, which can be able to be tuned adaptively and effi-
ciently, according to the system state. In this way, rather than
a discrete reinforcement signal in the traditional ADP and
RL approach, our goal network can automatically provide
an internal goal signal based on the (external) reinforcement
signal, to achieve optimal action selection. For fair compari-
son, we evaluate our proposed GrHDP approach and regular
HDP approach with the same parameter settings. The learn-
ing curves show that GrHDP and HDP can both learn the
value table online. However, our proposed GrHDP approach
can not only show faster convergent speed, but also achieve
lower sum of squared error in the end.

The rest of the paper is organized as follows: Sect. 2 shows
the architecture design of our proposed GrHDP framework

on the maze navigation problem, and also provides the learn-
ing algorithm for the goal network. Simulation results on
GrHDP and HDP under the same environment settings are
presented and compared in Sect. 3. Finally, the conclusion is
provided in Sect. 4.

2 GrHDP structure for maze navigation

We provide the interaction diagram between the proposed
GrHDP design and the maze/environment in Fig. 1. From
this figure, we can see that the action network observes the
system state from the maze/environment and provides the
action based on the current state. The (external) reward will
be provided by the environment based on the performance
of the corresponding action. As for the HDP controller (i.e.
the middle part in Fig. 1), we keep the similar design with
traditional the HDP in Si and Wang (2001). That is to say,
we adopt model-free action dependent (AD) design for our
GrHDP and also use the gradient descent algorithm for the
learning of all the neural networks. Instead of the traditional
(external) discrete reward assignment in maze navigation, our
proposed GrHDP design integrates a goal network to learn
from (external) reward r , and provide the critic network with
a detailed internal reward s. In this paper, we defined the
(external) reward as

r =
⎧
⎨

⎩

1,

−0.2,

0,

reach the goal
out o f bound
regular move

(1)

The explicit explanation for this reward on the maze is also
presented in the lower part of Fig. 1.

We employ typical multi-layer perceptron (MLP) struc-
ture for the all the neural networks here. In order to closely
connect the goal network with the critic network, we set the
internal reward s to be one of the inputs for the critic network.
Therefore, the input of the goal network and critic network
can be denoted as xg = [X, u] and xc = [X, u, s], respec-
tively. The inputs for the action network is the current system
state vector, and the outputs of the action network refer to
the four directions (i.e. the outputs of the action network is a
4 ∗ 1 vector). In order to show our original contribution, we
will only discuss the learning algorithm of goal network and
briefly provide the error (objective) function for both critic
network and action network.

2.1 Learning in goal network

In literature, people generally assign the instant reward to be
0 unless the agent reaches the goal in the maze navigation
problem Mitchell (1997), Sutton and Barto (1998). In recent
years, there seems to be growing attention to see if there is
any improvement if a non-zero instant reward is assigned
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Heuristic dynamic programming with internal goal representation 2103

Fig. 1 The proposed GrHDP framework on maze navigation. Two dash lines separate the diagram into three parts: goal representation, traditional
HDP design, maze navigation benchmark

for the agent during the learning process He (2011), He et al.
(2012c). Various reward/cost functions are defined according
to different applications, however, such reward/cost functions
are strongly domain-oriented and it is difficult to define such
a proper function in general. Therefore, it is desirable to find a
general reward/cost function that can be able to learn and self-
adjust in various environment. In this paper, we propose to
build a general mapping between the system state (including
the control action) and the internal goal signal by using a
neural network. In addition, we integrate such a network into
the HDP framework. The internal goal signal can then be
represented as

s = f (X, u). (2)

The motivation of this design is to introduce the goal net-
work to represent the internal reward/goal, and approximate
the discounted total future reward. Thus we define the inter-
nal reward/goal as

s(k) = r(k + 1) + γ r(k + 2) + γ 2r(k + 3) + · · · (3)

where γ is the discounted factor, and r is the (external) reward
signal defined in (1). Here the sequence of r(k +1), r(k +2),
r(k + 3)... are the future reward signals.

Therefore, the error function for goal network is defined
as

eg(k) = γ s(k) − [s(k − 1) − r(k)]. (4)

and

Eg(k) = 1

2
e2

g(k). (5)

The state vector is X = [x1, x2, . . . xn], where n is number
of element in state vector, and the control action is u =
[u1, u2, . . . um], where m is the number of element in control
vector. The input vector for the goal network is defined as
xg = [X, u] and the output is the internal goal s, which is a
scalar here. Sigmoid function is defined as

φ(x) = 1 − e−x

1 + e−x
. (6)

to constrain the output into [−1, 1]. Here sigmoid function is
applied on all hidden nodes and the output node as presented
in Fig. 2. The forward paths of goal network is provided as
follows.

s(k) = φ(l(k))

l(k) =
Ngh∑

i=1
ω

(2)
gi (k)yi (k)

yi (k) = φ(zi (k)), i = 1, . . . , Ngh

zi (k) =
n∑

j=1
ω

(1)
gi, j (k)x j (k) +

m+n∑

j=1+n
ω

(1)
gi, j (k)u j−n(k)

(7)

where zi and yi refer to the input and the output of the i-th
hidden node. l is the input for the output node. ω

(1)
g and ω

(2)
g

denote the weights of the input to hidden layer and the hidden
to output layer in the goal network, respectively. Ngh is the
number of hidden node in goal network. We have denoted
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2104 Z. Ni, H. He

Fig. 2 MLP structure of goal network. Sigmoid function is applied for
both hidden nodes and output nodes

these parameters in Fig. 2, where readers can easily follow
the forward learning paths in (7) for the goal network.

We adopt gradient descent method to minimize the
approximation error in (5). The weights from hidden to out-
put layer are tuned as

∂ Eg(k)

∂w
(2)
gi (k)

= ∂ Eg(k)

∂s(k)

∂s(k)

∂l(k)

∂l(k)

∂w
(2)
gi (k)

(8)

The weights from input to hidden layer are tuned as

∂ Eg(k)

∂w
(1)
gi (k)

= ∂ Eg(k)

∂s(k)

∂s(k)

∂l(k)

∂l(k)

∂yi (k)

∂yi (k)

∂zi (k)

∂zi (k)

∂w
(1)
gi, j (k)

(9)

The weights are tuned in the order of goal network, critic
network and action network. After the weights in goal net-
work are tuned, we fix these weights thereafter and start to
tune the weights in the critic network and action network.

2.2 Learning in critic network and action network

The critic network and the action network in our design are
similar with the existing designs in Si and Wang (2001), Yang
et al. (2009), He and Jagannathan (2007). We introduce one
more input, namely internal reward signal s, for the critic
network and aim to help the value function approximation.
In addition, the error (objective) function for critic network
is different with those in existing designs. As the critic net-
work is set to approximate the discounted total future internal
reward/goal s with value function J , we can write the value
function as

J (k) = s(k + 1) + γ s(k + 2) + γ 2s(k + 3) + · · · (10)

Then the error function of critic network can be defined
as

ec(k) = γ J (k) − [J (k − 1) − s(k)]. (11)

and

Ec(k) = 1

2
e2

c (k). (12)

We apply the same gradient algorithm to minimize Ec as
above. Once we finish the weights-tuning in the critic net-
work, we will start the online learning of action network.

As the objective of the action network is to maximize the
total reward, we define the error function of action network
as

ea(k) = J (k) − Uc. (13)

and

Ea(k) = 1

2
e2

a(k). (14)

where Uc is the ultimate utility function. The same as the
critic network, we adopt the gradient descent algorithm here
to minimize (14).

2.3 Learning on maze navigation

In maze navigation benchmark, we assume that the agent
starts with the initial state from the updating sequence (each
updating sequence is assumed to visit all the state enough
times). Our proposed GrHDP controller learn to provide the
action based on the position of the agent. We apply winner-
take-all (WTA) method to determine the direction for the
agent to go. The goal network will provide the internal goal
based on the direction and the updated state of the agent.
This internal goal signal is set as one of the input for the
critic network, which will then evaluate the performance of
the agent for the corresponding action.

In our learning process, we keep checking if the agent is
out of bound or reaching the goal after the action. If the agent
is out of bound, we will set the punishment and start another
trial. If the agent reaches the goal, we assign the reward and
regard this as the end of the trial. Otherwise, the agent is
kept moving forward (i.e. we adopt the infinite step looking-
ahead). We update the J (x, u) value table after each trial, and
compare the learned value table with the reference value table
to show the learning process. We will terminate the learning
process when the trial number satisfies the maximum number
we assign. In this simulation, we set independent runs to show
that the learning process could be duplicated. We show the
learning curves and value tables by taking the average of the
results in different runs.

3 Simulation results and analysis

3.1 Algorithm implementation

The environment of the 2-D maze navigation is presented in
the lower part of Fig. 1. In this simulation, we denote that
the instant reward between any two state x and x ′ by taking
the action u as r(x, x ′) or r(x, u). We assume that there are
N possible states in the maze. The transition probabilities
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between the two state x and x ′ can only take the value of 0 or
1 (i.e. the maze navigation problem here is a deterministic and
finite MDP). Thus, the Bellman’s equation can be rewritten
as

J ∗(x, u) = arg max
u

(
r(x, u) + γ

N∑

j=1

J ∗(x ′, u′)
)

(15)

where J ∗(x, u) is the maximum total reward at state x by
taking the action u.

In this maze navigation benchmark, our objective is to
employ learning algorithms to learn the value table online
so that the agent can move according to the direction that
maximizes the total reward (towards the goal location). For
fair comparison, we conduct our proposed GrHDP and tra-
ditional HDP algorithm with the same environment settings
and initial parameters. The algorithms and parameter settings
for both approaches are summarized as:

1. HDP: Online model-free HDP proposed in Si and Wang
(2001) is used here. The initial learning parameters are set
as: lc = 0.005 and la = 0.01, where lc and la refer to the
learning rate of critic network and action network, respec-
tively. The stopping criteria are: Nc = 20, Na = 30,
Tc = 1e − 4 and Ta = 1e − 4. That is to say that the
learning process of critic/action network will be termi-
nated either if the error drops under the threshold Tc/Ta

or the iteration number meets the threshold Nc/Na .
2. GrHDP: The same parameters are applied here if our

proposed GrHDP approach has the same architecture as
those of the HDP approach above. In addition, the ini-
tial parameters for the goal network are: lg = 0.012,
Tg = 1e−4 and Ng = 25. Furthermore, for fair compar-
ison, we also set that the GrHDP and HDP start with the
same initial weights between [−0.3, 0.3] and the same
updating sequence.

3.2 Simulation setup and study

In the simulation, we assume that (1) every state in the maze
has been visited enough times; (2) every action (up, down,
left, right) has been taken enough times for each state; (3)

for every initial state, the agent can go infinite steps forward
unless it reaches the goal or it hits the bound. The input for
the action network is the current state vector that

xa = [x1, x2] (16)

The input for the goal network and the critic network are that

xg = [x1, x2, u1, u2, u3, u4] (17)

and

xc = [x1, x2, u1, u2, u3, u4, s] (18)

respectively. In this benchmark study, we define the the sys-
tem state and control action as follow:

x1: the coordinate of horizontal (x) axis;
x2: the coordinate of horizontal (y) axis;
u1: the direction—up;
u2: the direction—down;
u3: the direction—left;
u4: the direction—right.

We assign that Uc = 1 and normalize the inputs for the
action network to be in [0, 2]. We set 10 independent updat-
ing sequences for 10 runs (i.e. the updating sequence in each
runs is independent). Each run includes 500 trials and each
trial starts with the initial state loaded from the updating
sequence. We set infinite step looking-ahead in our simula-
tion studies. Each trial can only be terminated when the agent
reaches the goal or hits the bound. Therefore, the steps that
the agent move in each trial are not necessary the same. The
J (x, u) table is initialized as all zero at the very beginning
and is only updated after the agent finish each trial. We then
normalized the J (x, u) values to be in [0, 1] to show the
difference with the reference value table.

We assume that both our proposed GrHDP approach and
the traditional HDP approach start with the same initial
weights (uniformly initialized in [−0.3, 0.3]) and the same
updating sequence. The learning rates and internal stopping
criteria for both approaches are also set to be the same. Adap-
tive learning rate (ALR) is used in our simulation. The initial
learning rates for the action network, critic network and the
goal network are set to be 5e − 3, 1e − 2 and 1.2e − 2,
respectively, and they will be decreased by dividing 2 every
10 trials. We keep the learning rates to be 1e − 10 thereafter
if they are under 1e − 10 after dividing. In addition, we also
set a counter for the four actions/directions taken for all the
states. For a specific state, for instance, if any action (i.e. up,
down, left, right) is taken over a preset number (like 30 in this
case study), we will randomly pick up another direction from
the remaining choices as the final decision. We hope that all
the directions could be tried enough times to guarantee that
the agent can learn from both failure and success.

In this simulation study, we introduce Q reference value
table according to the distance between the current location
and the goal as that in Ilin et al. (2008), Ni et al. (2013).
The values for the states that are one step from the goal are
assigned to be 1 and the values for the other states will drop

1
L+W for each step, where L and W refer to the length and
width of the maze, respectively. For maze size of 10∗10, the
difference between each step is set as 0.05. Therefore, we
define the Q reference table as

Qref (x1, x2) = 1 − 1

L + W
· (L − x1 + W − x2 − 1)

(19)
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Furthermore, we define the sum of squared error as

Esum = 1

2

x1=L ,x2=W∑

x1=1,x2=1

(
J (x1, x2) − Qref (x1, x2)

)2
(20)

In this case study, we set the maze size as 10 ∗ 10 and the
goal locates at [10, 10]. The learning curves are presented
in Fig. 3, where the x axis refers to the number of the trial
and the y axis refers the sum of squared error. Note that
all the curves presented here are the average values of 10
independent runs.

From Fig. 3, we can see that both approaches start with
the same sum of squared errors as we initialize J (x, u) to be
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Fig. 3 The learning curves for the sum of squared errors with GrHDP
and HDP approaches, respectively
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Fig. 4 The histogram of internal goal in ten independent runs. Ten
different colors are adopted to represent ten independent runs

all zero at the very beginning. When the agent starts to move,
one can see that our proposed GrHDP approach shows faster
convergent speed with regard to the sum of squared errors.
Moreover, our proposed GrHDP approach can also achieve
lower steady error than that with HDP approach. In addition,
we also provide the histogram of internal goal sr in 10 inde-
pendent runs in Fig. 4. The statistical results show that the
internal goals are within the range that is almost symmet-
ric with zero point. Furthermore, we provide the value table
learned with our proposed GrHDP approach in Fig. 5, the
values in which are the average of 10 runs. We can obtain
the tendency that the values become larger if the the agent
approaches the goal in the upper-right corner. The surface
plot of this value table (i.e. the same value table in Fig. 5)

Fig. 5 The value table for the 10 ∗ 10 maze. The value in each blank
refers to the max value that the agent can obtain among the four possible
directions
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Fig. 6 The surf plot of the value table for the 10 ∗ 10 maze. The value
of the goal location has been set to 1 in this plot
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is presented in Fig. 6, where x-axis and y-axis refer to the
coordinates of the agent and z-axis refers to the correspond-
ing J value. It is clear to see the smooth surface and the value
goes bigger from the origin (i.e. [0, 0]) to the goal location
(i.e. [10, 10]).

In addition, we have also compared the computational
cost for both approaches. Here we only count the compu-
tation time for the part of learning algorithms (i.e. only the
weights tuning are counted in both approaches). As the learn-
ing procedure is focus in the first 200 trials, we would like
to compare the time-cost in this region for both approaches.
Simulation results show that our proposed GrHDP approach
requires 0.023s per trial, comparing with 0.016s per trial
with HDP approach (simulations are conducted based on Sun
server with 16 GB memory, Intel Xeon CPU 3.60 GHz and
Matlab R2013a). Certainly, our proposed GrHDP approach
include one more neural network and thus could take addi-
tional memory space for this goal network. Our key inter-
ests from this perspective in this paper are the convergent
speed and the optimal policy, in which our proposed approach
achieves much better performance compared to the regular
HDP approach.

4 Conclusions

In this paper, a goal representation heuristic dynamic pro-
gramming is introduced and analyzed for a classical maze
navigation benchmark. We studied the GrHDP architecture
design and its learning algorithms. In order to demonstrate the
improved performance, we compare the learning results of
our proposed GrHDP approach with that of traditional HDP
approach based on a 10 ∗ 10 maze navigation benchmark
under the same environment settings. The learning curves
and the value table justify the improved performance com-
paring with traditional HDP approach.
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