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1 Abstract

The objective of this work is the development of efficient signal processing techniques for the de-
tection and classification of military munitions in shallow underwater environments using data
collected from synthetic aperture sonar (SAS) systems. In this final report we first address the
problem of detecting the presence of underwater munitions using the multichannel coherence anal-
ysis framework. Our detection hypothesis is that the presence of munitions in the sonar backscatter
collected from a hydrophone array will lead to higher levels of coherence compared to the backscat-
ter from the seafloor alone. This method has been found to produce excellent detection performance
on other sonar datasets. Here, detection results are presented on a sonar dataset which was col-
lected in a relatively controlled and clutter-free environment. Results are presented using standard
performance metrics such as probability of detection (Pd), probability of false alarm (Pfa), and
Receiver Operating Characteristic (ROC) curve characteristics.

The goal of the second part of this work is to develop a robust target classification method
that can be applied to the detected contacts to discriminate munitions from non-hostile man made
objects and competing clutter. This method is developed based upon the Matched Subspace Classi-
fier (MSC) using multidimensional Acoustic Color (AC) data extracted from the raw sonar returns.
Scattering models developed by APL-UW were acquired to generate the required training dataset
for various UXO and non-UXO objects. This was done owing to the fact that actual sonar data
from a wide range of UXO and non-UXO objects is scarce in realistic situations. Although, it may
be somewhat ambitious to expect model data capture all the essential features of these objects for
target characterization, it will provide us with clues on how to augment the training datasets using
perhaps a limited training samples from sonar returns of actual objects to improve the robustness
in different environmental conditions. Our classification hypothesis is that spectral content of the
sonar backscatter display unique acoustic signatures providing excellent discrimination between
different classes of detected objects. Classification results of the MSC using three different signal
subspace construction methods are presented on three real sonar datasets. The first two sonar
datasets, PondEX09 and PondEX10, were collected for various underwater objects using a rail sys-
tem in a pond under relatively controlled and clutter-free conditions. The third dataset, TREX13,
was also collected using the same rail system but in the bay area off of the Panama City coast
where other factors such as school of fish, water turbulence, seafloor roughness, and target range
were more realistic. Results are presented using standard performance metrics such as probability
of correct classification (PCC), probability of false alarm (PFA), ROC curve, and confusion matrix
of the classifier.

2 Objective

The objective of this work is the development of automatic target recognition (ATR) algorithms
for the detection and classification of military munitions in shallow underwater environments using
data collected from SAS systems. Specifically, one of the technical questions that will be answered
in this work is whether or not multichannel detection [1] using the Generalized Likelihood Ratio Test
(GLRT) can detect munitions with sufficiently high probability of detection and localization while
at the same time providing high false alarm rejection capability. For this problem, the hypothesis is
that the presence of munitions in the sonar backscatter collected from a hydrophone array will lead
to higher levels of coherence compared to the backscatter from the seafloor alone. This increase
in coherence can give one an indication of which areas of the field may contain possible munitions
and subsequent classification and further analysis may then be conducted in those areas. A new
version of this detector which looks for high coherence in two frequency bands of the received data
was developed and tested in this study. As the detector must be applied to the entire target field,
it is important that the developed methods are computationally efficient as well as providing high
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detection rates at a sufficiently low false alarm rate. In this report, we present detection results
of the new version of the multichannel detection technique when applied to the PondEX10 dataset
consisting of sonar backscatter from multiple munitions.

The specific objective of the second part of our work is the development of efficient methods
for the classification of military munitions in shallow underwater environments using data collected
from SAS systems. Specifically, the technical question that is addressed in this work is whether or
not the Matched Subspace Classifier (MSC) [2] can successfully be trained on model-based sonar
data of various UXO-like objects and then be applied to real sonar datasets to discriminate muni-
tions with sufficient accuracy from other natural or man-made competing objects. The motivation
here is related to the fact that collecting real UXO data in realistic settings is a difficult, if not
impossible, task. Thus, by using physical models to construct a signal subspace spanned by the
acoustic response of a particular target over a range of aspect orientations, our hypothesis is that
the matched subspace classifier in [2] can provide an effective classification method that remains
robust to changes in target aspect. Moreover, by keying in on specific target responses, the clas-
sifier will correspondingly exhibit low false alarm rates. The development of systems that can be
trained on model-based data with guaranteed performance on real data could provide a significant
contribution toward solving this difficult problem. Throughout the course of this research, proof-
of-concept of the proposed methods will be provided by applying the trained classifier to one or
more representative real datasets for evaluation purposes. These include, but are not limited to,
multiple datasets from the PondEX09 and PondEX10 exercises as well as a more recently acquired
dataset referred to as TREX13.

The comprehensive testing of the MSC and its application to the classification of munitions
using SAS systems is another primary objective of this work. To this end, we test the hypothesis
that the spectral features captured in the AC data, extracted from the sonar backscatter from
various objects, display unique features providing excellent discrimination between different classes
of detected objects. In this final report, we will present new classification results of the MSC when
trained via K-SVD [3] and LP-KSVD [4] methods on synthetic AC data that has been generated
via a fast ray model. These classifier systems are then applied to the entire PondEX and TREX13
datasets to test the generalization ability of the classifier.

3 Background

The Department of Defense (DoD) is currently responsible for clearing many sites which are poten-
tially contaminated with munitions as a result of past training and weapons testing activities. In
many cases, these activities occurred near or were performed in shallow water environments where
munitions pose serious threats to public safety and the environment. The ultimate goal of this
work is to provide the DoD with improved detection and characterization techniques as it strives
to find safer and more cost-effective technologies for underwater munitions remediation. This seed
research responds to SERDP SON MRSEED-14-01 in Wide Area and Detailed Surveys for rapid
and highly efficient detection and classification of underwater UXOs found in contaminated sites.

Various methods have also been developed for modeling the acoustic response of objects with
geometries typically observed in mine and UXO-hunting applications and using this information
for the purposes of classification. In [5], the authors considered SAS imaging of simple targets by
combining models for reverberation, acoustic penetration, and target scattering into a unified model.
This is then used to generate pings suitable for SAS simulations over a range of environmental
and experimental conditions. Experimentally measured target scattering from proud and buried
targets are then used to validate the model through several simulations. In [6], the authors analyze
experimental results from a SAS data set collected in a fresh water pond. These measurements were
conducted to investigate discrimination capabilities based on the acoustic response of targets for
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underwater UXO applications. Results from this study show that it is possible to use the acoustic
template as a fingerprint to uniquely identify a given target. In [7], it was further shown that
these acoustic-color (AC) features are useful for discriminating similarly shaped targets. In [8] and
[9], the PI and his team developed new coherent-based feature extraction and SAS-like acoustic
color for detection and classification of underwater mines and UXO objects using the Canonical
Coordinate Analysis (CCA) framework. New feature and decision-level fusion algorithms were also
developed in [10] and [11] using a hidden Markov model (HMM) and a Collaborative Multi-Aspect
Classifier (CMAC) to improve classification of mine-like objects while reducing the false alarms
when multi-pings/aspects sonar data are available.

4 Materials and Methods

In this section, we first give a brief review of the theory that motivates the detection algorithm
studied in this project. More specifically, we will begin by reviewing the theory of multichannel
detection using broadband coherence [1], [12]. A discussion on the fast ray model [13], [14] used
in generating synthetic AC and SAS datasets as well as a review of the theory that motivates the
classification algorithm studied in this project are then provided. This includes the general theory
of the MSC classifier [2] as well as the two subspace learning methods, K-SVD and LP-KSVD,
which were utilized in training the signal subspaces for the MSC.

4.1 Detection Using Broadband Coherence

In this section, we give a brief review of the theory of multichannel coherence [1], [12] and discuss the
technical approach used to apply this theory for the detection of underwater munitions. Consider
a set of L random data matrices {Xi}Li=1 with each matrix

Xi =


xi[0, 0] xi[0, 1] · · · xi[0, N − 1]
xi[1, 0] xi[1, 1] · · · xi[1, N − 1]

...
...

. . .
...

xi[M − 1, 0] xi[M − 1, 1] · · · xi[M − 1, N − 1]

 ∈ CM×N (1)

representing a 2-dimensional, zero-mean random process captured at sonar platform i. In this

particular application, the random variable xi[m,n] represents the nth temporal sample collected

from the mth hydrophone element in an array from the ith frequency band. Stacking the columns

of Xi to form the vector xi = vec (Xi), the composite vector z =
[
xT1 · · · xTL

]T
has covariance

matrix

R = E
[
zzH

]
=


R11 R12 · · · R1L

RH12 R22 · · · R2L
...

...
. . .

...
RH1L RH2L · · · RLL

 ∈ CLMN×LMN

with Rik = RHki = E
[
xix

H
k

]
∈ CMN×MN . This matrix captures all space-time second-order

information within and between the random vectors {xi}Li=1.

We now assume we are given an experiment producing P iid realizations {xi[p]}Pp=1 of the

random vector associated with the ith frequency band. In the contexts of this problem, these P
independent copies represent multiple pings collected from each frequency band. All P realizations
may then be used to form the data matrix

Z = [z[1] · · · z[P ]] =

 x1[1] · · · x1[P ]
...

. . .
...

xL[1] · · · xL[P ]

 ∈ CLNM×P (2)
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where z[p] =
[
xT1 [p] · · ·xTL[p]

]T
. Using the Generalized Likelihood Ratio Test (GLRT) to test the

null hypothesis that R = blkdiag {R11, . . . , RLL} involves forming an estimate of the composite
covariance matrix

R̂ =
1

P
ZZH =

1

P

P∑
p=1

z[p]zH [p] =


R̂11 R̂12 · · · R̂1L

R̂H12 R̂22 · · · R̂2L
...

...
. . .

...

R̂H1L R̂H2L · · · R̂LL


and computing the following likelihood ratio [1]

Λ =
det R̂

det D̂
=

det R̂∏L
i=1 det R̂ii

(3)

Finally, assuming that all L data sequences are jointly 2-dimensional WSS and using results on
determinants of asymptotically large block-Toeplitz matrices, similar arguments as that given in [12]
shows that, as M, N →∞, the likelihood ratio given in (3) can be extended to the 2-dimensional
frequency domain

Λ
1

MN → exp

{∫ π

−π

∫ π

−π
ln

det Ŝ(ejθ, ejφ)∏L
i=1 Ŝii(e

jθ, ejφ)

dθ dφ

4π2

}
(4)

with Ŝ(ejθ, ejφ), −π < θ ≤ π, −π < φ ≤ π

Ŝ(ejθ, ejφ) =


Ŝ11(e

jθ, ejφ) Ŝ12(e
jθ, ejφ) · · · Ŝ1L(ejθ, ejφ)

Ŝ∗12(e
jθ, ejφ) Ŝ22(e

jθ, ejφ) · · · Ŝ2L(ejθ, ejφ)
...

...
. . .

...

Ŝ∗1L(ejθ, ejφ) Ŝ∗2L(ejθ, ejφ) · · · ŜLL(ejθ, ejφ)

 ∈ CL×L (5)

an estimated composite power spectral density matrix. Here, Ŝik(e
jθ, ejφ) represents a quadratic

estimate of the cross-power spectrum between channels i and k at frequency θ and wavenumber φ.
Thus, the likelihood ratio becomes a frequency/wavenumber dependent Hadamard ratio integrated
over the Nyquist band. This likelihood ratio can then be compared to a threshold (determined
experimentally based upon some training data) to decide whether or not UXO’s are present. More-
over, the test statistic given in (4) is computationally efficient as the estimated cross-spectral matrix
in (5) can be computed using a Fast Fourier Transform (FFT) of the waveforms received by each

channel. More specifically, if we let X
(p)
i (ejθ, ejφ) ∈ C represent the two dimensional FFT of the pth

realization of the data matrix given in (1) at frequency θ and wavenumber φ, then the cross-power
spectrum may be computed as

Ŝik(e
jθ, ejφ) =

1

P

P∑
p=1

X
(p)
i (ejθ, ejφ)

(
X

(p)
k (ejθ, ejφ)

)∗
(6)

4.2 Scattering Models Utilized in Classifier Development

In order to tackle the task of constructing template signals to reliably represent the various UXOs
in our MSC system, the work of the Co-PI on modeling scattering from objects at a water-sediment
interface has been utilized [13]-[15]. The scattering model allows for monostatic SAS data sets to
be simulated via a fast ray model that combines an acoustic ray approximation for propagation in
a fluid-filled halfspace with scattering from a target in a number of conditions and media. This fast
modeling is beneficial for generating large datasets for the MSC signal subspace construction. In
this section we will discuss this scattering model as well as its utility in our classifier’s development.
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Figure 1: The path 1 is a direct path. The paths 2 and 3 interact with the sediment once and
scatter from the target in a bistatic direction. Path 4 is a back-scattering path with two bottom
interactions.

Under typical operation for a short-range SAS platform, air-water scattering paths can be
ignored, because paths that interact with the air-water interface are either removed by time-gating
the received signals or are naturally suppressed by the directivity of the source and receiver. In
addition, the separation distance between the actual source and receiver is much smaller than the
distance between the interface and the target, so the source and receiver can be considered to be
co-located. Under these conditions, only the four ray paths that are shown in Figure 1, associated
with the actual source and receiver and their images in the sediment, contribute to the scattered
pressure. In this model, a source, receiver, and target are at locations rs, rr, and rt respectively
and a single image source is located at rsi with image receiver at rri . The source, receiver, and
target are denoted by S, R, and T , respectively; while S1 and R1 in Fig. 1 are the image source
and image receiver. To distinguish path 2 and path 3, the source and receiver are shown at distinct
locations; and with our assumption of co-located source and receiver, paths 2 and 3 are reciprocal
and paths 1 and 4 are back-scattered. With the specification of an image source and image receiver,
the scattering from a target has been reduced to a superposition of 4 free-field scattering problems.
Under operational conditions, the distance associated with each path satisfies d� λ where λ is the
wavelength of the pressure. The scattered steady-state pressure can then be written as

ps = p0A (ki,ks, ω)
exp(ikr)

r
(7)

where p0 is the amplitude of the incident pressure, A is the scattering amplitude, ki and ks are unit
vectors associated with the direction of the incident and scattered fields, ω is the angular frequency,
r is the range from the target to a field point in a target-centered coordinate system, and exp(ikr)/r
is a spherically diverging wave, respectively. The scattering amplitude contains all the information
concerning the material properties of the target (e.g., density) and the directionality of the scattered
field. A scattering amplitude can be determined from an analytic solution to a scattering problem
(e.g., scattering from a spherical target), direct measurement from an actual target, or numerical
simulation (e.g., a finite element (FE) model for a given target as was used in Figures 4(c)).

Figure 2: Free-field scattering assumes a portion of an incident wave is scattered to a distant
observation. Here, α represents a characteristic dimension of the target.

Combining the ray model paradigm with free-field scattering as given in (7), the spectrum of
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the total scattered pressure can be written as

P (ω) =

[
A1(ω)

d1d2
eiωt1 +

V (θg)A2(ω)

d2d3
eiωt2 +

V (θg)A3(ω)

d1d4
eiωt3 +

V 2(θg)A4(ω)

d3d4
eiωt4

]
r0Psrc(ω) (8)

with d1 = |rs − rt|, d2 = |rt − rr|, d3 = |rsi − rt|, and d4 = |rt − rri |. The time delays are
then t1 = (d1 + d2)/c, t2 = (d2 + d3)/c, t3 = (d1 + d4)/c, and t4 = (d3 + d4)/c; with c being
the speed of sound in water. The pressure spectrum Psrc(ω) represents the frequency spectrum of
the transmitted wave packet from the source, and r0 is a reference distance associated with the
calibration of the source (typically, r0 = 1 m). The scattering amplitudes Ak(ω) in (8) depend on
the locations of the sources, receivers, and target. Note the indices of Ak correspond to the path
enumeration described before. The reflection coefficient at the water-sediment interface, which is
represented by V (θg) and is a function of the grazing angle θg, is defined as follows

V (θg) =
ρ sin(θg)− (κ2 − cos2(θg))

1/2

ρ sin(θg) + (κ2 − cos2(θg))1/2
(9)

where ρ = ρ2/ρ1 and κ = (1 + νδ)/ν with ν = c2/c1. Here c1 and ρ1 are the speed of sound and
density for the water, and c2, ρ2, and δ are the speed of sound, density, and loss parameter for the
sediment. An inverse Fourier transform of P (ω) thus gives a generated sonar signal that includes
the four primary acoustic paths for a target near an interface.

4.3 AC Data Generation

In order to create synthetic AC data for classifier training, raw sonar returns generated by the
above method were processed. Generation of AC data amounts to forming the intensity of the
returned spectral power over the entire range of aspect angles that are modeled in a linear path
SAS (LSAS) run. This is accomplished by the following procedure: First, Finite Element (FE)
model [15] is implemented to produce scattering amplitude signal for an intended target or non-
target objects. These scattering amplitudes are modeled for acoustic transmissions and returns in
the frequency range of 0-31 kHz. Next, the half-space model including the four described ray paths
in (8) is utilized to generate a raw sonar return dataset by generating the modeled returns of a
target using the IFFT of (8) over a pre-generated coordinate set representing the various positions
along a linear path making soundings. In this simulation model (as in the PondEX09-10 and TREX
data) an LFM incident signal is used which provides spectral information of an object’s response
in the range of 0-31 kHz. Next, these raw soundings are matched filtered (pulse compressed) with
the original transmit signal. Then the FFT is taken of these pulse compressed soundings. The new
series is windowed to 0-31 kHz to remove the unused frequency portions and isolate the frequency
range of interest. Finally, the aspect dimension of the AC is determined as a function of the path
and target locations and the corresponding aspect of each transformed pulse-compressed sounding
is plotted against the frequency axis with a cool-hot color mapping that represents spectral energy
intensity for a given frequency and aspect. An example of AC data generated for a 21 m simulated
LSAS run with a target at a 10 m range and with the source/receiver elevation 3.8 m above the
water-sediment interface is given in Figure 3.

As can be seen from this figure, the observed aspect angles are limited to ≈ 86◦ corresponding
to the limited aspect orientations that an observing sonar interface experiences in a 21 m linear
path sounding an object at a range of 10 m. As an arbitrary trajectory of a SAS platform can be
modeled with the fast ray model [13], the model was used to generate LSAS sonar data, with a target
located at the center of the LSAS path, at a variety of ranges, with the sonar interface elevated 3.8
m above the sediment, corresponding to the PondEX and TREX data collection procedures. This
was repeated for several objects present in the testing data, a list of which and their characteristics
is given in Table 2.
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Figure 3: Acoustic Color data for 3 ft Aluminum Cylinder using LSAS Fast Ray Model

Figure 4: AC data of a bullet-shaped aluminum UXO replica at 10 m range generated via (a)
Data collected during PondEX10 (SERDP MR-1665). (b) FEM and Kirchoff-Helmholtz integral
result. (c) Fast ray model method with a scattering amplitude derived from the scattered pressure
computed in (b).

AC data generated for template signals via the described scattering model was then utilized as
training data for an implementation of our MSC classifier. The major benefit of utilizing the ray
model developed in [13]-[15] is that, after a free-field scattering amplitude for a desired object is
collected or modeled via FE methods, the regeneration of the ray model, simulating various aspects
and orientations, is far simpler than re-running these variations with the same slow FE method
[15]. A great deal of spectral information for object discernment seems to be present in these AC
plots, but, as can be observed from Figure 4(c), the fast ray model generated AC’s seem to preserve
a great deal of the expected spectral information of a modeled object when compared to the AC
data created from real sonar soundings of the same object in Figure 4(a).

The procedure for generating testing AC data for real raw sonar data from the PondEX10
experiment, such as that shown in Figure 4(a), is very similar to the procedure performed on
the synthesized sonar data described above. A raw sonar data time series collected from the
PondEX10 experiment is first matched filtered with a replica of the transmit signal that was used
in the experiment and this new pulse compressed data is further filtered to remove returns from
the neighboring objects from those of the object of interest. This filtering utilizes a reversible SAS
imaging process, a spatial filtering process using a 2-D Tukey window [16], and a pseudo-inverse
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filtering. This inverse filter maps the SAS image back to the pulse compressed version that now
has less interference from neighboring objects. These filtered pulse compressed signals are then
transformed to the frequency domain via FFT. This process is repeated for all aspects of LSAS and
the power spectrum is then generated and plotted to display AC for each object in the real sonar
data sets.

4.4 Classification Using Matched Subspace Classifier

In this section, we give a review of the theory behind the MSC. This classifier operates on the
multidimensional AC data vectors described above. This is done with the assumption that such
vectors, each belonging to a given class, can be formed using some linear combination of basis
vectors associated with that class (i.e. signal observations take the form of the classical linear
model). In our case, these basis vectors consist of the acoustic frequency responses (or AC) of
an object at a given aspect angle. The MSC considered in this work is a special instance of the
Weighted MSC discussed in [2], with identity weighting matrix. For signal subspace training, we
use the standard singular value decomposition (SVD) [17], K-SVD [3] and LP-KSVD [4] signal
subspace construction methods. The standard SVD is used as a benchmark as it is the suggested
signal subspace choice for Matched Subspace Detectors/Classifiers [18]. The last two signal-specific
dictionary learning methods are presented in Sections 4.4.1 and 4.4.2.

Our classification problem is referred to as an M−ary classification problem in which the fol-
lowing hypothesis is to be tested: Our observation contains image sources from M possible classes
and one is uniquely most likely to be generating the signal. For a simple consideration of classifying
‘UXO’ vs. ‘non-UXO’, M = 2.

We will begin by defining the M−ary classification problem by considering m = 0 ... M − 1
hypotheses each satisfying the signal model,

Y = HmΘ + N ∈ RN×Q. (10)

Here, our observation matrix is represented by Y, a sum of the signal subspace component HmΘ,
where Hm ∈ RN×K is a matrix whose columns are basis vectors that span the subspace associated
with the mth object class, an unknown parameter matrix Θ ∈ RK×Q, and an additive zero-mean
noise matrix N ∈ RN×Q. The distribution of the noise matrix is unknown, and hence it is not
possible to derive the Maximum Likelihood Estimates (MLE) of the unknown parameters [2]. We
can equivalently express (10) for a single observation vector yq (or qth column of Y) as,

yq = Hmθq + nq (11)

where nq is the qth column of matrix N and θq is the qth column of Θ. The model-based AC

subspaces Hm can be constructed for the mth object class utilizing different subspace reconstruction
methods. Here, we used the SVD [17], K-SVD [3] and and LP-KSVD [4] dictionary construction
methods.

The core idea behind the weighted MSC is the implicit suppression of large amplitude residuals
by weighting each of the row residual terms in the discriminant function

Jm = tr{(Y −HmΘ)TW(Y −HmΘ)} = ||W
1
2 (Y −HmΘ)||2F , ∀m ∈ [1, ...,M ] (12)

where W is a diagonal matrix with weights along the diagonal, corresponding to row-weighting,
and ||A||2F represents the squared Frobenius norm of matrix A which is ||A||2F = tr{AAT } . For
a given weight matrix W, the weighted least-squares estimate of Θ under the mth hypothesis is
found using

Θ̂ = (HT
mWHm)−1HT

mWY. (13)
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Using Θ̂ in (13) we can get the value of the discriminant function in (12) at this solution i.e.

Jm = tr{(YTW(I−Em)Y)} (14)

where Em is an oblique projection onto subspace 〈Hm〉 i.e. Em = Hm(HT
mWHm)−1HT

mW. This

discriminant function can be reinterpreted as the orthogonal projection of the weighted data matrix
Z = W1/2Y onto subspace 〈W1/2Hm〉, or equivalently, zq = W1/2yq, for single vector observation
yq ∈ Y:

Jm = tr{(ZT (I−PW 1/2Hm
)Z)} (15)

where PW1/2Hm
= W1/2Hm(HT

mWHm)−1(W1/2Hm)T is the projection matrix onto the subspace

spanned by the columns of matrix W1/2Hm. This weighted MSC classifier assigns a class label to
an observation vector yk based on the following criterion,

m∗ = arg min
m∈[1,M ]

Jm = arg min
m∈[1,M ]

{zTq
(
I−P

W
1
2Hm

)
zq}. (16)

Figure 5: Weighted Matched Subspace Classifier geometric perspective [2]

As Figure 5 and equation (16) indicate, this classifier measures the energy in each of the sub-
spaces 〈W1/2Hm〉 and selects the class label corresponding to the subspace that contains the
largest amount of energy. If the noise vector nq is assumed to be normal with covariance matrix
E
[
nqn

H
q

]
= σ2I, then the criterion given in (16) also corresponds to the decision that minimizes the

probability of assigning an erroneous class label. It is important to note that for W = I, this MSC
reduces to the standard Matched Subspace Classifier/Detector [18], which builds our classification
approach throughout this work.

4.4.1 Signal Subspace Generation using K-SVD Method

Using the fast-ray model provided by APL-UW, a large database of AC signals was created matching
aspect resolution and frequency resolution of those generated for the real sonar data. Using this
abundance of model signals, the K-SVD [3] subspace construction method was implemented forming
various Hm’s for the two classes. A brief description of this method is given in this subsection.

The purpose of K-SVD is to create an optimal signal-dependent dictionary that reduces the
dimension of a signal vector by representing it as a sparse linear combination of relatively few
atoms. More specifically, K-SVD aims to solve a constrained minimization problem to reduce the
reconstruction error in a set of training vectors. Let Ym ∈ RN×Q be a matrix consisting of class

m (m = 0, 1) training data vectors y
(m)
q from Section 5.2.1.1 for q ∈ [1 · · ·Q] as its columns,
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Hm ∈ RN×K be the dictionary matrix to be found, and Xm ∈ RK×Q be the sparse representation
of Ym in terms of its dictionary atoms. Note it is desired that the number of non-zero elements

of each x
(m)
q be substantially less than N as the dimension should be reduced in this process. The

constrained optimization problem [3] is given by,

min
Hm,Xm

{‖Ym −HmXm‖2F } subject to , ‖x(m)
q ‖0 ≤ τ, ∀q (17)

where || · ||2F is the Frobenius norm of a matrix, and || · ||0 is the `0 norm which counts the non-zero
elements of a vector.

During the training, the K-SVD algorithm is composed of two-phases. First, a sparse represen-

tation phase where for each y
(m)
q the corresponding x

(m)
q is computed based on a given Hm using

a pursuit method such as Orthogonal Matching Pursuit (OMP) [19]. Second, a dictionary update
phase where hk ∈ Hm is updated based on minimizing the reconstruction error using the SVD of a
restricted error matrix ER

k . The steps of this procedure are outlined in Table 1. These two phases
are repeated until convergence through monotonic MSE reduction, a more detailed description of
which is given in [3].

Table 1: K-SVD Algorithm

K-SVD Optimal Dictionary Construction Algorithm:

Initialization: Set the dictionary matrix H(0)
m ∈ RN×K with K randomly se-

lected l2 normalized columns of Ym. Set J = 1. Repeat following steps until a
stopping rule is met.
Sparse Coding Stage: Generate Xm by computing the sparse representation

x
(m)
q for each y

(m)
q based on Hm using the Fast-OMP pursuit method [19].

Dictionary Update Stage: Each column hk, k ∈ [1, ...,K], in H(J−1)
m is up-

dated by:

1. Compute k−exclusive error matrix Ek = Ym −
∑

j 6=k hjxj∗, where xj∗ is

the jth row of Xm.

2. Define column indices of training data Ym that use the kth atom in their
reconstruction via Hm: ωk = {i |1 ≤ i ≤ Q, xk∗(i) 6= 0}.

3. Compute ER
k and xR

k , the restricted error matrix and coefficient vector
respectively, by selecting only columns of Ek corresponding to ωk indices
and likewise for entries of xk∗ (i.e. discard zero entries in the row vector).

4. Apply SVD: ER
k = USVT . The updated dictionary column ĥk is the first

column of U and the updated coefficient vector x̂R
k = v1S(1, 1), where

S(1, 1) is the first and largest singular value in the SVD of ER
k .

Set J = J + 1 and repeat until convergence.

4.4.2 Locality Preserving Extension of K-SVD

In Locality Preserving K-SVD or LP-KSVD method [4], the goal is to preserve the local geometry
of a non-linear manifold while determining the optimal linear support Hm. For our problem, it is
assumed that a given AC data point yq resides on a non-linear but smooth manifold describing all
the AC data points. This method is an unsupervised method which attempts to learn discriminative
atoms hk by forcing their updates to be made solely from samples in their local neighborhood
on the manifold. There are two main benefits to the LP-KSVD approach in comparison with
the K-SVD [3]. First, the employed local coding has closed-form solution which makes it more
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computationally efficient compared to sparsity driven algorithms such as the OMP used in the
K-SVD method. Secondly, the dictionary is optimized for both its capability in representation
and its locality preservation property, which is in contrast to sparse coding which only solves for a
representational dictionary [4]. In this section, we will give a brief outline of the theory motivating
the LP-KSVD method.

To begin, there are two main objectives of LP-KSVD. First, is establishing a compact dictionary
Hm = [h1,h2, ...,hK ] ∈ RN×K such that linear combinations of hi’s can approximate the nonlinear
manifold M ⊂ RN . Since we have no access to the true M, Hm is estimated based on Ym (here
Ym is the training samples for the mth class). The second objective is learning hi’s as landmark
points, which are capable of preserving the locality on M. This dictionary learning problem can
be formulated as:

min
Hm,Xm

||Ym −HmXm||2F (18)

s.t.

{
xij = 0 if hi /∈ Ωτ (yj) ∀i, j

1Txj = 1 ∀j

where the reconstruction error term measures the fitness of Hm to Ym similar to K-SVD in (17); the
matrix Xm ∈ RK×Q contains Q local reconstruction codes, with xj being the code for reconstructing
yj in terms of Hm, and Ωτ (yj) denotes the neighborhood containing τ nearest dictionary atoms of
yj in terms of Euclidean distance (i.e. `2 norm). The first constraint dictates that every training
sample yj can only be re-constructed by its τ nearest-neighbor dictionary atoms. The second
constraint allows the reconstruction coefficients to be invariant to translation of the data. The
main goal is to choose hi to be sufficiently close toM. Moreover, to learn hi’s as landmark points,
it is further required that each hi be locally representative with respect to a small patch on the
manifold M.

The proposed LP-KSVD solves (18) iteratively by alternating between the two variables Hm

and Xm. This is done by first fixing Hm and solve for the best co-efficient matrix Xm and then, we
update Hm as well as Xm together. Iterations are terminated if either the objective function value
is minimized below some preset threshold or a maximum number of iterations has been reached.
The steps for solving the local reconstruction codes and local dictionary optimization are described
in details in [4].

5 Results and Discussion

5.1 Broadband Coherence Detector Results

In this section, we provide results of the broadband coherence statistic given in (4) when applied
to the PondEx10 dataset collected at the NSWC - Panama City, FL. Moreover, the results of this
detector are compared and benchmarked to the Hadamard ratio given in (3) which does not rely
on the wide sense stationary assumption when constructing the likelihood ratio. For a review of
the dataset used in this section, the reader is referred to [20].

5.1.1 Formation of the Test Statistic

To form detection decisions, each sonar return at a particular ping within the run was first matched-
filtered by correlating the received waveform with the LFM transmit signal. Each matched filtered
signal was then partitioned into non-overlapping windows of length N = 281 (cross-track) corre-
sponding to a range resolution of approximately 0.25m. For every 0.25m in the direction of the
rail system (along-track), the time series collected over a P = 100 ping window were appropriately
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Figure 6: The matched filtered signals associated with each ping are delayed to account for increases
in path length as the array moves along the rail.
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Figure 7: Processing of the data to form the likelihood ratio involves filtering the time series
collected by each sensor element into two frequency bands, using all P pings to estimate the cross-
spectral matrix Ŝ(ejθ, ejφ), and finally computing Λ by integrating coherence over the Nyquist
band.

lagged to account for the delay corresponding to the increase in path length as the array moves

along the rail system. Figure 6 (a) gives the geometry of this procedure where, if the mth ping
exhibits a range of rm from the area of the target field that is of interest and there exists a ping
separation of δ, then the range to the target area at ping m + p is simply rm+p =

√
r2m + (pδ)2.

This increase in path length can then be used to determine the relative delay between each ping
and one may then account for this accordingly. Figure 6 (b) gives an example of the matched
filtered response from a target both before and after accounting for relative time delays. After
accounting for time delay, Figure 7 gives a block diagram of the subsequent processing steps used
in the formation of the likelihood ratio for each 0.25× 0.25 m location within the target field. As
shown in this figure, the time series for each sensor element and for each ping is first filtered into

L = 2 non-overlapping frequency bands using two 8th-order Butterworth filters, one a lowpass filter
to remove high frequency content and the other a highpass filter to likewise remove low frequency
content. This filtering is done independently for all M = 5 sensor elements in the array and the

resulting time series are vectorized to form the vector xi[p] for the pth ping. This is done for all
P = 100 pings and the data from both frequency bands is concatenated to form the data matrix Z
given in (2). A 2-dimensional Fast Fourier Transform (FFT) is then applied to the data from both
frequency bands and the estimated cross-spectral matrix Ŝ(ejθ, ejφ) given in (6) is computed. The
likelihood ratio given in (4) is finally formed by numerically integrating the frequency/wavenumber
Hadamard ratio using a trapezoidal rule approximation.
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Figure 8: Receiver Operating Characteristic (ROC) curve for the PondEx10 dataset.

(a) SAS Image (b) Broadband Coherence (c) Hadamard Ratio

Figure 9: Beamformed SAS and likelihood ratio images for both detection methods at 0◦ object
orientation.

5.1.2 Detection Results

The broadband coherence detector given in (4) was applied to all 10 runs of the PondEx10 dataset
and compared to the Hadamard ratio given in (3). Using all 50 objects in the dataset (10 runs × 5
objects per run) as well as a randomly selected set of locations corresponding to background, Figure
8 displays the ROC curve for both detection methods. This curve is formed by varying the threshold
of the detector over a range of values and, at each threshold, comparing the percentage of targets
that are detected to the average number of background realizations per image that are mis-detected.
From this figure it is clear that, by taking advantage of the WSS assumption, the broadband
coherence detector outperforms the Hadamard ratio. One can also see that the broadband coherence
detector performs well at discriminating UXO from background as the proposed technique detects
all of the objects after only about an average of one false alarm per image. The broadband coherence
detector also exhibits a knee-point (the point where Pd+Pfa = 1 which is shown by a small circle in
Figure 8) at a probability of detection of Pd = 99%. Compared to the results of the detector from
the previous report [20], one can see that this new version of the broadband coherence detector
exhibits a 3% improvement in Pd at the knee-point of the ROC curve over that of its previous
version.

Figures 9 (a) and 10 (a) show the beamformed SAS images generated using k-omega beamform-
ing for a run with 0◦ object orientation and one with 80◦ orientation, respectively. Note that, at
0◦ orientation the objects are broadside while a 90◦ orientation corresponds to situation where the
nose of the objects are pointed toward the array. Figures 9 (b) and 10 (b) likewise show images
of the broadband coherence statistic given in (4) computed at every 0.25× 0.25 m location in the
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(a) SAS Image (b) Broadband Coherence (c) Hadamard Ratio

Figure 10: Beamformed SAS and likelihood ratio images for both detection methods at 80◦ object
orientation.

target field for this two runs. Likewise, Figures 9 (c) and 10 (c) show images of the likelihood ratio
for the Hadamard ratio detector given in (3). From these images one can see that both methods are
able to detect the objects with relative ease when at an orientation of 0◦ but have more difficulty
when the objects are oriented at 80◦. However, by comparing the likelihood ratios of the broadband
coherence and Hadmard ratio detectors, one can once again visually observe that the broadband
coherence detector does a better job of discriminating target from background.

5.2 MSC Classifier Results

In this subsection, we provide results of the MSC when tested on the PondEX09, PondEX10
and TREX13 datasets. First, brief reviews of the training and testing datasets will be provided.
Following these discussions, we present the performance of the MSC when tested on PondEX09 and
PondEX10 datasets using MSC with signal subspace components extracted via the regular SVD,
K-SVD, and LP-KSVD methods. This is repeated for the TREX13 objects in two different range
groupings.

5.2.1 Description of Training and Testing Datasets

5.2.1.1 Fast-Ray Model Generated Dataset – Training The Fast-Ray model can be uti-
lized to create AC data for a variety of environments and simulated runs. Using the model and
procedures described in Sections 4.2 and 4.3, raw sonar runs for 10 different objects used in the
PondEX and TREX experiments were modeled. The modeled runs were designed to replicate the
condition of the PondEX and TREX data. In particular, these runs were generated for a 21 m
path length at horizontal ranges of 10 m and 30 m, with the source/receiver interface elevated 3.8
m above the sediment. These synthetic sonar datasets and their corresponding AC data were gen-
erated for two different environments. Both modeled environments simulated water sound speeds
matching those that were used in the generation of the scattering coefficients in (8) which were
generated via FE method. Similar to the testing data, object rotations from −80◦ to +80◦ in 20◦

increments, were generated to give AC data for 360◦ of aspect for each object and environment.
This was then repeated for the two ranges we observed in TREX13 data collection, 10m and 30m.
It must be mentioned that dictionaries were trained for each of the test sets separately, with FRM
training data that matched the appropriate range and included only the objects viewed in that
experiment.

For each object, the AC data generated was decimated along the frequency dimension to have
N = 310 frequency bins spanning the 0− 31 kHz frequency band corresponding to approximately
100 Hz separation of frequency bins. After generating AC’s at stops that one might encounter in
a 21 m run, each training set was uniformly sub-sampled to a set containing 1/7th of all possible
aspects of our synthetic training data. Using these synthetic sonar datasets, signal subspaces were
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Table 2: Fast Ray Model training data – experiment objects for which FRM exists

No. Class FRM Name Object Description

1 non-UXO alcyl2ft 2 ft Aluminum Cylinder
2 non-UXO alcyl3ft 3 ft Aluminum Cylinder
3 non-UXO alpipe 2 ft Aluminum Pipe Section
4 UXO aluxo 100 mm Aluminum Rocket Round
5 UXO ssuxo 100 mm Solid Steel Rocket Round
6 UXO bullet 105mm air 105 mm Bullet (Air Filled)
7 UXO bullet 105mm h2o 105 mm Bullet (H2O Filled)
8 UXO howitzer cap air 155 mm Howitzer with Cap (Air filled)
9 UXO howitzer cap h2o 155 mm Howitzer with Cap (H2O filled)
10 UXO howitzer nocap 155 mm Howitzer no Cap

trained using the methods described in Sections 4.4.1 and 4.4.2. For the trained dictionaries to be
used in Pond testing, the training data was truncated to the frequency bins of the incident LFM
signal power, spanning 1 − 30.5 kHz, hence leading to AC vectors with NPond = 295 dimensions.
Similarly, for the TREX dictionaries, since the incident LFM was in the 3 − 30.5 kHz frequency
range, the resulting truncated AC vectors were NTREX = 275 dimensional. Dictionaries of sizes
HPond ∈ R295×K ,HTREX ∈ R275×K (for 10m and 30m ranges) were generated using sparsity factor
τ = 10 for both LP-KSVD and KSVD methods. Here K = 400 for non-UXO class and K = 600
for the UXO class. As was mentioned before, and in contrast to the SVD method, in K-SVD and
LP-KSVD testing, the sparsity of reconstruction codes was enforced by applying OMP algorithm.
The number of iterations used in training was chosen to be 30 as this was found to be acceptably
close to minimum achievable reconstruction error. Table 2 enumerates and briefly describes each of
the training data objects used. For the SVD subspace training, the top 30 non-UXO eigenvectors,
associated with the 30 largest eigenvalues, of the non-UXO training set were kept whereas for the
UXO training set, the top 50 eigenvectors were kept. Objects 1, 3, 4, and 5 were only observed in
the PondEX experiments while all 10 objects were present in the TREX13 test set.

5.2.1.2 PondEX Datasets – Testing Figure 11 shows the layout of the PondEX09 and Pon-
dEX10 experiments including the relative locations of the rail-mounted sonar system and the place-
ment of objects in the target field. The 21 m rail the sonar system is mounted on is fixed to eliminate
platform motion as the sonar interface moves along its track. The sonar transmit signal is a 6 msec
LFM over 0− 31 kHz with a 10% taper between the leading and trailing edges to minimize ringing
in the transmitted signals. Sonar backscatter is received with L = 6 hydrophone elements that are
arranged in a linear array normal to the seafloor.

As can be seen from Figure 11, the target field in PondEX10 contained five objects at a time,
all of which were located approximately 10 m from the rail system and are proud on the sandy
bottom. For each run that was made in the PondEX data collection, the orientation of the axes
of symmetry for all the observed objects were the same relative to the fixed sonar rail. Nine total
object orientations were used, ranging from −80◦ to +80◦ in 20◦ increments, where the run with 0◦

object orientation designates a configuration where an object’s major axes of symmetry is parallel
to the rail system. Each run of data consists of 769 pings in which the sonar platform moved along
the fixed rail in increments of 0.025 m, transmitting and receiving once for each fixed position. The
data was sampled at 1 MHz and the sonar platform was tilted at a fixed 20◦ grazing angle for all
runs (angle of the sonar main response axis with respect to the horizontal plane).

Since the useful spectral information in the collected data has a Nyquist frequency well below
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Figure 11: Layout of the target fields for PondEx09 and EX10 data collection [21]

Figure 12: Inverse SAS filtering [14]

the sampled rate, the 1 MHz data was down-sampled by a factor of 10 resulting in effective sampling
frequency of 100 kHz. Owing to the fact that the LFM incident signal for PondEX experiments
has a range of frequency 1 − 30.5 kHz, only those frequency bins were retained resulting in AC
feature vector dimension of NPond = 295. In the PondEX experiments since the objects are laid
out very close together, to generate AC data for each individual object free of the influence of
the neighboring ones, a procedure using the Inverse-SAS filtering process [14] is utilized. This
procedure is depicted in Figure 12 which shows this inverse-SAS filtering to remove neighboring
object returns from the pulse-compressed data.

As this classifier is applied to the output of the previously developed broadband coherence-based
detector [22], the detected regions of interest (ROI) that contained objects of interest were tested
by the classifier. A hard-limiting power threshold was implemented in gathering test aspects from
detected regions of interest. This threshold selects observations from the filtered runs by summing
the squared frequency bin components in a single AC aspect and determining the total power of
the observation. Those aspects that meet the hard-limiting threshold are kept. For too aggressive
threshold, the top 5% of aspects will be chosen. That is, at least 5% of aspects in detected ROI’s
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Table 3: Objects in the Pond EX09-10 experiment testing data

FRM Name # Runs/Aspects

alcyl2ft 10/3282
alpipe 10/1580
aluxo 10/315
ssuxo 10/717

Total # Tested: 5894

are picked for testing. One might note the difference in prevalence of class samples. This is also
due to this power threshold. It was found that for the Aluminum Cylinder and Aluminum Pipe,
many views of the object would return soundings above the set threshold that isolated the best
UXO type soundings.

5.2.1.3 TREX13 Dataset – Testing The same rail system described in the PondEx experi-
ments was utilized in the TREX13 data collection process. However, the environmental conditions
were vastly different as the TREX13 dataset was collected in the bay area off of Panama City
coast. The LFM incident signal used in the TREX13 dataset had power in the frequency range
of 3 − 30.5 kHz. Thus, using the same frequency sampling, the AC feature vector dimension for
TREX13 becomes NTREX = 275, i.e. truncating the original N = 310 frequency bins spanning
0 − 31 kHz, to those that span 3 − 30.5 kHz. Additionally, the same Inverse-SAS filtering, AC
generation, and hard-limiting threshold processes described in Section 5.2.1.2 were implemented to
obtain filtered data AC portions for each object in the TREX test set. Table 4 lists those objects
and ranges for which Inverse-SAS filtered runs exist. Ranges 10m and 30m were used in our testing
to further validate the performance of the classifier on data from a more realistic environment when
compared to PondEX dataset.

Table 4: TREX13 available target ranges

No. TREX # FRM Name 5m 10m 15m 20m 25m 30m 35m 40m

1 Target 17 alcyl2ft X

2 Target 7 alcyl3ft X X X

3 Target 16 alpipe X X X

4 Target 20 aluxo X X X X

5 Target 21 ssuxo X X X X

6 Target 25 bullet 105mm air X X X X

7 Target 29 bullet 105mm h2o X X X

8 Target 9 howitzer cap air X X X X

9 Target 28 howitzer cap h2o X X X

10 Target 8 howitzer nocap X X X X

5.2.2 Classification Results and Analysis

5.2.2.1 PondEX Testing Results To make a classification decision for a given sonar ping
observation, the corresponding AC data vector of dimension NPond = 295 that contains the spec-
tral features of an underwater UXO or non-UXO object at a particular aspect is applied to the
classifier. For the MSC, this decision-making is implemented using the classification rule given in
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(16). The same process can be carried out for all object aspects in a run in the PondEX09 and
PondEX10 testing dataset. However, using the more general decision rule (15) for MSC, one can
make decision on an augmented data matrix Y that contains multiple AC observation vectors at
different aspects. This multi-aspect decision-making provides better opportunity to discriminate
between UXO and non-UXO object classes. Moreover, multi-aspect classification is more amenable
to actual operational situations where several views from an underwater objects are received. Here,
we use three aspects of an object to perform classification decision. Although, in the PondEX ex-
periments aspect separation is uniform due to the rail system, to account for platform instability in
a realistic data collection scenario aspect separation is modeled by a uniformly distributed random
variable s ∼ unif {8, 16} which shuffles data, beginning with the first aspect in a given run that
meets the power threshold. Note that the procedure does not shuffle between rotations of objects,
only the order in which the aspects of a single linear run are encountered is changed.

(a) ROCs for three methods (3 Asp/dec.) (b) ROCs for LP-KSVD on Pond data (3 Asp./dec.)

Figure 13: ROCs for Pond data

Figures 13a and 13b give the Receiver Operating Characteristic (ROC) curves of the classi-
fier for a three-aspect decision and using 50 Monte Carlo trials (one for each random three-aspect
combination with a fixed initial aspect) for SVD, K-SVD, and LP-KSVD dictionaries. More specif-
ically, Figure 13a gives the average performance over 50 Monte Carlo trials in which each filtered
run (single rotation) dataset is grouped into 3 aspects with a uniformly distributed separation, as
mentioned before. As can be observed by the 3 blue circles in Figure 13a, the ROC curves for the
SVD, K-SVD, and LP-KSVD exhibit knee-point (the point where PCC + PFA = 1) probability of
correct classification of PCC,SV D ≈ 85.41%, PCC,KSV D ≈ 90.07%, PCC,LP−KSV D ≈ 93.20% proba-
bility of false alarm PFA,SV D ≈ 14.59%, PFA,KSV D ≈ 9.93%, PFA,LP−KSV D ≈ 6.80%, respectively.
These results show that the MSC performs very well in discriminating ‘UXO’ vs. ‘non-UXO’ in
the PondEX dataset in spite of the fact that there are indeed obvious discrepancies between the
model data used for training and the AC sonar data of actual objects. Additionally, the best
overall results for the PondEX datasets are obtained for a classifier trained and tested using data
from LP-KSVD dictionary learning method. Figure 13b, on the other hand, shows the best and
worst performance over 50 trials for this method. This ROC plot indicates that the classification
performance is indeed statistically consistent over 50 trials.

Table 5 displays the confusion matrix for the MSC. It was found that the most common type
I error (i.e. ‘UXO’ mis-classification) occurred for the Stainless Steel UXO object (Table 3, object
4), which was most commonly mis-classified as 2 ft Aluminum Cylinder. All the observed type
II errors (i.e. False Alarms) occurred for samples of Aluminum Pipe object, which were almost
equally mis-classified as the Aluminum and Stainless Steel UXO classes. These results suggest
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that the inclusion of specific misleading aspects in the training of subspaces could potentially have
a significant influence on the power of FRM data in representing different classes. Additionally,
the results in Figure 13a and Table 5 reveal much improved performance of our approach when
compared to the results of previously tested classifiers [14], including: kernel matching pursuit,
support vector machine, and relevance vector machine, which at best demonstrated target vs. non-
target discrimination with PCC ≈ 90% and PFA ≈ 10%. However, in these previous cases the
classifiers were trained on real sonar data whereas here training was exclusively done on model-
generated datasets via the fast ray model [13].

Table 5: Confusion matrix of classified signals (LP-KSVD)

Truth-Decision ‘non-UXO’ ‘UXO’

alcyl2ft 1.0000 0
alpipe 0.9681 0.0319
aluxo 0.0297 0.9703
ssuxo 0.2103 0.7897

5.2.2.2 TREX13 Fixed Range Testing Results The same procedure described for the Pon-
dEX datasets was repeated for TREX13 datasets for the 10m and 30m runs and for all testing
datasets for which FRM training data exist (See Table 4). Note that for the 30m runs, the classifier
had to be retrained to include the corresponding model-generated data. Additionally, as mentioned
before for the TREX13 datasets the AC feature vector is N = 275 dimensional. Again, the aspects
of a single rotation run, which met the power threshold, were ordered starting with the first high
powered aspect and making aspect separation s ∼ unif {8, 16}.

Figure 14b shows the ROC curves for a three-aspect MSC on the 10m run datasets using 50
Monte Carlo trials for the SVD, K-SVD, and LP-KSVD dictionaries. The ROC knee-point perfor-
mance for these methods are at probability of correct classification of PCC,SV D ≈ 95.1%, PCC,KSV D ≈
90.1%, PCC,LP−KSV D ≈ 91.3%, and probability of false alarm PFA,SV D ≈ 4.9%, PFA,KSV D ≈
9.9%, PFA,LP−KSV D ≈ 8.7%, respectively. Here, the best overall results for the TREX13 datasets
were obtained for a classifier trained and tested using data from the SVD dictionary learning
method.

Figure 14a shows the ROC curves for a three-aspect MSC classifier on the 30m run datasets using
the SVD, K-SVD, and LP-KSVD dictionaries. The ROC knee-point performance for these methods
are at probability of correct classification PCC,SV D ≈ 83%, PCC,KSV D ≈ 86%, PCC,LP−KSV D ≈
88% and probability of false alarm PFA,SV D ≈ 17%, PFA,KSV D ≈ 14%, PFA,LP−KSV D ≈ 12%,
respectively. Again, these results attest to the fact that our three-aspect MSC classifier exclusively
trained on model data performs very well in discriminating ‘UXO’ vs. ‘non-UXO’ in the TREX13
dataset. Also, as in the PondEX datasets the best overall results for the TREX13 datasets are
obtained for a classifier trained and tested using data from LP-KSVD dictionary learning method.
Table 6 displays the confusion matrix for the MSC at the decision threshold which corresponds to
choosing the minimum statistic between UXO and non-UXO classes in (16).

6 Conclusions and Implications for Future Research/Implementation

6.1 Conclusions and Discussions

The objectives addressed in the current study revolved around the development and testing of UXO
detection and classification algorithms from sonar data. A multichannel detection strategy relying
on the theory of the GLRT was developed using the broadband coherence method in [1]. For this
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(a) ROCs for 10m TREX13 dataset (3 Asp/dec.) (b) ROCs for 30m TREX13 dataset (3 Asp./dec.)

Figure 14: ROCs for TREX13 dataset

Table 6: Confusion matrix of classified signals (LP-KSVD) at 30m

Truth-Decision ‘non-UXO’ ‘UXO’

alcyl3ft 0.8116 0.1884

alpipe 0.9339 0.0661

aluxo 0.1582 0.8418

ssuxo 0.5556 0.4444

how cap h2o 0.0332 0.9668

how nocap 0.0983 0.9017

problem, our detection hypothesis was that the presence of munitions in the sonar backscatter
collected from a hydrophone array over two distinct frequency bands will lead to higher levels of
coherence compared to the backscatter from the seafloor alone. This increase in coherence can
give one an indication of which areas of the target field may contain potential munitions that
will further be analyzed by a UXO vs. non-UXO classifier. Relying on the use of the GLRT
and making an assumption that the received time series are wide sense stationary, the amount
of coherent information among the channels is measured using the broadband coherence statistic.
This multichannel detector was then applied to a dataset collected in a pond facility designed to
collect acoustical sonar data from underwater objects in a relatively controlled and clutter-free
environment. Results of this preliminary experiment show that the broadband coherence statistic
is indeed capable of detecting munitions lying on the seafloor from background as the ROC curve
of the detector exhibited a 100% probability of detection with an average of 1 false alarm per
image. This suggests that the presence of munitions in the sonar backscatter does indeed lead to a
higher level of coherence and that the proposed methodology would be capable of finding regions
containing munitions in the target field. This detector could not be tested on the raw TREX13
datasets due to data distribution limitation.

The second objective considered in this seed research was the use of scattering models from
various UXO and non-UXO objects for training purposes. The scattering model that has been de-
veloped by the APL-UW subcontractors allowed for monostatic SAS data sets to be simulated via
a fast ray model that combines an acoustic ray approximation for propagation in a fluid-filled halfs-
pace with scattering from a target (UXO or non-UXO) in free-space. This fast modeling provides a
large database for feature extraction and classifier training during the classifier development. The
hypothesis tested here is whether or not the classifier trained exclusively on model-generated sonar
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data of various UXO-like objects provides enough generalization ability to discriminate munitions
with sufficient accuracy in real sonar datasets. This is critical as real sonar data for a wide range
of UXOs and in various operational and environmental conditions is currently unavailable. Thus,
the development of classification systems that are originally trained on model-based data would
provide us with clues on what additional information extracted during the actual field operation
can be used to augment the training for optimal performance.

Finally, the third task in this study was the development of a MSC-based UXO vs. non-
UXO classifier using several dictionary learning methods. The model-generated data via the fast
ray model provides an over-complete dictionary for creation of signal subspaces used in the MSC
classifier. In this work, we used three different methods namely the regular SVD, K-SVD [3] and
LP-KSVD methods [4]. AC data was used in conjunction with these methods to produce the
training and testing datasets for the classifier. Once MSC was properly trained on the model-
generated data, it was tested on real PondEX09, PondEX10, and TREX13 datasets. Our binary
classification results for UXO vs. non-UXO reveal significant performance improvements when
compared to the existing results [11],[14]. What is particularly notable about these results is that
the utility of the fast ray model in representing real sonar data for classification purposes has been
confirmed. Among the three dictionary learning methods, LP-KSVD was found to consistently
provide better results on both datasets. For the PondEX experiments, the knee point performance
for LP-KSVD exhibits PCC ≈ 93.2%, PFA ≈ 6.8%; while for the TREX13 experiment at the 30m
range, the knee point performance for LP-KSVD was at PCC ≈ 87.9%, PFA ≈ 12.79%. Comparing
the two datasets, the degradation in the classification performance for the TREX13 datasets is
mostly attributed to more realistic and challenging bottom conditions and larger number of objects
with similar characteristics.

6.2 Possible Future Research/Implementation

This seed research surfaced many critical problems that can be pursued in future research oppor-
tunities. Below is a list of only a few items that we believe are worthy of further research.

• Task 1: Broadband Coherence Detector with Adaptive Thresholding:

Although the broadband coherence detector is fully capable of discriminating time series
corresponding to UXO objects from those corresponding to seafloor background, one of the
most difficult parts of implementing it in any realistic scenario will be determining a detection
threshold that is robustly capable of achieving a desired false alarm rate over the wide range of
environments that may be encountered. To achieve this, we propose to adapt this parameter of
the algorithm as data is collected within the environment by fitting a parametric distribution
to the broadband coherence statistics produced from that data. The parameters of this
distribution may then be recursively updated as new data is collected to give the detector
the ability to adapt to changing statistical behavior in the likelihood ratio. Note that this
unsupervised approach relies on an assumption that it is very unlikely to observe a UXO object
so that the statistics of the likelihood ratio are a good indication of that for background alone.

• Task 2: Incremental Training for Better Robustness: Our results presented in this
report clearly indicate the promise and effectiveness of the developed methods for detection
and classification of munitions from sonar data. However, it is obvious that the spectral
features in the AC data for a specific target vary significantly depending on the object’s
burial condition, seafloor properties and roughness, actual orientation of the object, range
and grazing angles with respect to the sonar, etc. Although, it is unrealistic to expect model
data will capture all such variations for target characterization, it can provide us with clues
on how to augment the training datasets using perhaps a limited training samples from sonar
returns of actual objects to improve the robustness in different environmental conditions.
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The importance of this data augmentation beyond the Fast Ray Model data and incremental
training using real data to improve classification performance is demonstrated here. Several
PondEX object samples (only 2 % of training from real PondEX test data) that correspond
to the same objects in the TREX13 dataset were added to the model-generated training
set to form the dictionary training set and build the MSC classifier. The trained system
was then tested on TREX 10m run datasets. It was found that the addition of real Pond
samples from the relevant objects improved the overall results noticeably. The knee-point
performances of the SVD, K-SVD, and LP-KSVD for this incremental training test were
PCC,SV D ≈ 96.70%, PCC,KSV D ≈ 90.43%, PCC,LP−KSV D ≈ 94.1% and probability of false
alarm PFA,SV D ≈ 3.30%, PFA,KSV D ≈ 9.57%, PFA,LP−KSV D ≈ 5.9% respectively. Clearly,
we didn’t attempt to optimize this data selection process based upon the information content
of the selected sample for classification purposes. Additionally, we had to retrain (in batch)
all the dictionaries and consequently the MSC classifier, which is not obviously an efficient
way of doing this training. Thus, we propose to accomplish this by developing new methods
for optimal sample selection and incremental training that can update the parameters of the
MSC classifier iteratively in order to learn the new and informative samples taken in the new
environment while guaranteeing the stability of the previously learned samples.

Figure 15: Incremental Learning Result, 10m TREX13 (3 Asp/dec.)

• Task 3: Nonlinear Extension of MSC:

Figures 16 (a) and (b) shows the decision boundary and the distribution of the MSC’s test
statistics for UXO and Non-UXO objects in the TREX13 10m runs and LP-KSVD and SVD
dictionaries, respectively. As can be seen, there are several objects that are misclassified for
both object types. One of the reasons for this imperfect performance has to do with the
fact that the MSC is a linear classifier designed based upon the subspaces associated with
the UXO and Non-UXO classes. It is well-known [23] that certain non-linearly separable
classification problems can easily be converted to linearly separable problems by mapping the
data to a high dimensional feature space using kernel-producing nonlinear mapping functions.
In this particular application, there is no guarantee that under all conditions the solution of
the optimization problem for the model using the LP-KSVD or SVD will lead to features
that are sparse and confined to the subspace associated with the class of the object. In
other words, the resultant features could “leak” into subspaces associated with the opposite
classes, hence leading to possible misclassifications and false alarm as can be seen in Figures
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16. To overcome such issues, we propose to investigate the kernel-based extension of the
MSC classification framework. It is also interesting to investigate what types of kernels can
provide the best results for the corresponding structured learning. We propose to investigate
this issue thoroughly in this task.

(a) LP-KSVD dictionary. (b) SVD dictionary.

Figure 16: Decision Boundary, 10m TREX13 (3 Asp/dec.)

• Task 4: Multi-Aspect Classification Fusion:

In a real operating environment, the decision about the presence and type of an object is
typically made based upon the observation of the properties of the sonar returns at several
aspect angles or pings. This is due to the fact that the multi-aspect processing yields substan-
tial improvements in performance, resolution, and sensing of the 3-D properties of the object
in a non-isotropic environment. Inspired by these desired properties, we have developed two
different general frameworks [9], [11], [8], [10], [24] for performing multiple-aspect or multiple
ping processing of sonar data. The framework in [9], [8] is based upon the idea of multi-aspect
feature extraction that uses the two-channel canonical coordinate decomposition method to
extract robust features with maximum coherence (or mutual information) from pairs of sonar
pings with certain separation. The idea is that the coherence pattern extracted from the
UXO objects differ from those of the Non-UXO objects, hence aiding the overall classification
process. The theme of the other framework is multi-aspect classification using either (a) a
decision-level multi-aspect fusion [24], which linearly or non-linearly combines the individual
classification decisions, generated at several aspects, or (b) a feature-level multi-aspect fusion
[10] using HMM to generate one decision based upon observing a sequence of AC feature
vectors at various aspects with ceratin separations, or (c) a collaborative decision-making
process [11], which uses sort of a combination of the feature-level and decision-level fusion
methods. In this work, we propose to carefully study and test these different methods and
compare their results with the multi-aspect MSC classier in (15). Moreover, we intend to
revisit those weighting matrix methods mentioned in the original MSC method [2] which can
limit the influence of large error amplitudes for certain measurements or de-emphasize less
important AC features by assigning small corresponding weights.

• Task 5: Comprehensive Testing & Evaluation:

We shall test and evaluate the performance of the developed detection and classification
methods developed in this phase of research on several real (e.g., PondEX, TREX13, and
BayX) sonar data sets collected in different environmental and background conditions. The
specific issues that will be thoroughly studied include:
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1. Design and test the modified version of the broadband coherence detector using the pro-
posed adaptive thresholding in many different environmental and operating conditions.

2. Using real and synthesized sonar data determine the effectiveness of the developed adap-
tive dictionary learning and sparse representation methods in different situations. We
will investigate how the model and dictionaries can be designed to guarantee robustness
to partial burial and occlusion of the targets. Use these dictionaries to build matched
subspace classifiers and test their target versus non-target classification performance
using the ROC curve and confusion matrix.

3. The developed kernel matched subspace classifier will be thoroughly tested on the same
sonar datasets. The classification performance of the kernel-based MSC will be bench-
marked against the linear weighted MSC using the commonly used performance metrics.
In addition, robustness to the environmental variations will be evaluated on both Pon-
dEX and TREX13 datasets.

4. Benchmark the performance of one of the above-mentioned multi-aspect classifier against
the matched subspace classifier in (15) which uses multiple AC feature vectors in the
data matrix.

5. Prepare interim and final reports to document all the developments and results of this
research after the first and second years. We plan to publish our results in various IEEE
Transactions. Our results, publications, reports, and algorithms will be made available,
as part of our technology transfer plans.
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