ACTIVE, PROGRAMMABLE, AND
MoBILE CODE NETWORKING

Secure Quality of Service Handling:

SQOoSH

D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis, Steve Muir, and Jonathan M. Smith,

University of Pennsylvania

This work was supported
by DARPA under Con-
tract #N66001-96-C-852,
with additional support
from the Intel Corpora-
tion.

ABSTRACT

Proposals for programmable network infras-
tructures, such as active networks and open sig-
naling, provide programmers with access to
network resources and data structures. The moti-
vation for providing these interfaces is accelerated
introduction of new services, but exposure of the
interfaces introduces many new security risks. The
risks can be reduced or eliminated via appropri-
ate restrictions on the exported interfaces. In this
article we describe some of the security issues
raised by active networks. We then describe our
secure active network environment architecture.
SANE was designed as a security infrastructure
for active networks, and was implemented in the
SwitchWare architecture. SANE restricts the
actions loaded modules (including “capsules™)
can perform by restricting the resources that can
be named; this is further extended to remote
invocation by means of cryptographic credentials.
SANE can be extended to support restricted con-
trol of quality of service in a programmable net-
work element. The Piglet lightweight device
kernel provides a “Virtual Clock” type of schedul-
ing discipline for network traffic, and exports sev-
eral tuning knobs with which the clock can be
adjusted. The ALIEN active loader provides safe
access to these knobs to modules that operate on
the network element. Thus, the proposed SQoSH
architecture is able to provide safe, secure access
to network resources, while allowing these
resources to be managed by end users needing
customized networking services. A desirable con-
sequence of SQoSH’s integration of access con-
trol and resource control is that a large class of
denial-of-service attacks, unaddressed solely with
access control and cryptographic protocols, can
now be prevented.

INTRODUCTION

This article describes one approach to providing
quality of service (QoS) guarantees in a network
using a secure active network infrastructure
(Secure Active Network Environment, SANE)
and a novel low-overhead multiprocessor operat-
ing system (Piglet). We begin by discussing the
notion of security, provide a constructive defini-
tion useful for asserting general security proper-
ties, and discuss the mapping of this definition

onto computer networks, and outline the chal-
lenges of securing programmable network infras-
tructures, which the remainder of the article
addresses.

SECURITY

It is attractive to think of security as a clearcut
property of a system, as in the definition of odd
and even numbers. Unfortunately, security is not
as easily abstracted, since it is fundamentally a
context-dependent property of an engineered sys-
tem. For example, some applications can tolerate
near-infinite delays, while others have strict real-
time requirements. Thus, a system design which
guarantees reliable and eventual action may be
considered secure in the first case but inadequate
(e.g., against “denial-of-service” or DoS attacks)
in the latter (e.g., a military command and con-
trol system susceptible to DoS attacks).

In general, a secure system is one that meets
or exceeds an application-specified set of security
policy requirements. So, for example, in message
delivery, the high-level requirements may be that
the correct information gets to the right person,
in the right place, at the right time. The details of
“right” are determined by the application’s needs;
for example, timely message delivery is crucial
for battlefield or stock-trading tasks.

SECURITY FOR ACTIVE NETWORKS

Active networks are proposed for packet-switched
networks which are programmable, perhaps on a
per-user or even per-packet basis. The more
aggressive proposals share the property that
“programs” are loaded into network elements on
the fly, providing rapid dynamic reconfiguration
of the network infrastructure.

Security for active networking is a major chal-
lenge, as well as a widespread and legitimate
cause for concern. One view of information secu-
rity can be characterized as getting the right
information to the right person at the right place
and time. This is the positive statement of a secu-
rity policy; other security policies might assert
what cannot occur. The flexibility of an active
networking infrastructure has the potential effect
of hugely expanding the threat model for attacks
on the network infrastructure. For example, DoS
attacks can now be made against a variety of
resources, such as CPU cycles, output link band-
width, and storage, since these are exposed either

0163-6804/00/$10.00 © 2000 IEEE

IEEE Communications Magazine = April 2000

wholly or in part to loaded programs.

Typical reasons to defer consideration of
security, aside from simple difficulty, are the
negative consequences of making a system more
secure on flexibility, usability, and performance.
Since programming-language-based approaches
to active networking offer advantages in terms of
flexibility and usability, and performance opti-
mizations for these environments are ongoing,
providing security to such an environment would
offer an attractive design point among the vari-
ous trade-offs.

THE THREAT MODEL FOR
QoS PROVISION IN AN ACTIVE NETWORK

An active network infrastructure is very different
from the current Internet. In the latter, the only
resource consumed by a packet at a router is the
memory needed to temporarily store it and the
CPU cycles necessary to find the correct route.
This overhead is generally quite small compared
to the cost of executing an active packet, and
thus strict resource control in the routers was
considered noncritical. While this approach has
worked well, it is fairly easy to mount DoS
attacks due to the simple resource model.
Attacks to the infrastructure itself are possible,
and result in major network connectivity loss.
Finally, it is very hard to provide enforceable
QoS guarantees.

In the context of QoS, a secure system is one
that is secure against two types of threats, which
we denote admission failures and policing failures.

An admission violation is one where an unau-
thorized reallocation of bandwidth/resources
occurs. For example, a Resource Reservation
Protocol (RSVP)-capable router might be asked
to reallocate bandwidth away from one flow to
one that has not paid for/has no right to the
bandwidth. The policing mechanism is working
correctly; it is applying a QoS specification admit-
ted by the network infrastructure. Unfortunately,
the specification was unauthorized. This is as
much a threat in RSVP or other resource reser-
vation systems as it is in an active network; the
greater concern in the active network is a direct
consequence of the more complex resource
model. Thus, an active infrastructure must be
able to correctly identify and authorize users (or,
more generally, principals in the system). The
SANE architecture provides such services [1].

A policing violation is one where the specified
QoS is correct, but the system fails to deliver
what is requested. For example, a network ele-
ment incorporating a computer might be subject
to DoS attacks based on “receive livelock,” or
may experience “QosS crosstalk.” A second exam-
ple is aggressive use of bandwidth on a shared
output port, which denies bandwidth to a process
with QoS requirements. This is a threat to basic
IP routers with FIFO queuing disciplines. Piglet
[2], briefly described later, provides the necessary
mechanism to enforce QoS policing.

SQOSH APPLICATIONS
The proposed Secure QoS Handling (SQoSH)
architecture provides a powerful new tool for
managing resources in a network. It controls
access to managed resources, and integrates this

control with the resource management mecha-

nisms provided by the Piglet operating system.

While the SANE/Piglet combination represents

the first instance of the SQoSH architecture, we

believe that compelling applications will moti-

vate deployment of SQoSH and SQoSH-inspired

architectures. Examples include:

= Economic algorithms for robust adaptive
control: Active QoS is well adapted to this
environment for two reasons. First, it is
critical that resources sold match those
delivered if the marketplace is to work. Sec-
ond, the recovery strategies for flows that
are outbid in an auction may be quite com-
plex (e.g., aggregating several flows, each of
which delivers a portion of the request,
searching for a different route, delaying
until the resources required become avail-
able at the desired prices, or combinations
of different strategies). We expect that cap-
turing these complex decisions can be done
most easily by active packets in a pro-
grammable infrastructure.

= Military applications, where hierarchical
command responsibility maps to multiple
classes of service and security: The SQoSH
architecture ensures that control requests
are authenticated, autonomous network ele-
ments bootstrap into a secure state, and
(once admission requests are validated) ser-
vice will be delivered. For example, a com-
mand channel of 2 percent of bandwidth
could be preserved at all times. For commer-
cial applications this might be considered
wasteful, while military uses might dictate
provision of such a no-delay override facility.

THE SQOSH ARCHITECTURE

The goal of SQoSH is to protect against two types
of threats to QoS provision, admission and polic-
ing. Balancing performance, flexibility, and securi-
ty considerations suggests that we make common
operations (e.g., those used to classify packets)
cheap, and make less common operations more
expensive if this contributes to reducing the cost
of common operations. An example of this
approach is to provide heavyweight authentica-
tion mechanisms at the level of aggregates of
packets such as channels or flows so that these
checks need not be done on individual packets.
This suggests an architecture where authenti-
cation and other resource management decisions
are “front-loaded” to reduce the cost of subse-
guent decisions. We view this scheme as one
where expensive static checks are traded for
cheaper dynamic checks. Thus, the SQoSH archi-
tecture echoes similar design decisions made in
restricting programmability to the control plane
and similar, although not equivalent, decisions
made in the overall SwitchWare architecture.
This division of functions into admission/
authentication and policing/provision is the
approach we have chosen for SQoSH. Figure 1
illustrates the SQoSH architecture at a high
level. The SANE system is the only means of
access to resource management interfaces pro-
vided by Piglet. Heavyweight cryptographic oper-
ations required for granting access to Piglet
resources are performed by SANE as a front-

The proposed
SQoSH
architecture
provides a
powerful new
tool for managing
resources in a
network. It
controls access to
managed
resources, and
integrates this
control with
the resource
management
mechanisms
provided by the
Piglet operating
system.

IEEE Communications Magazine = April 2000

Control packet

Management
packet

SANE

Piglet Piglet

Packet

Packet

Packet

m Figure 1. The SQoSH architecture.

end. Piglet is thus assured that any resource
requests have been authenticated, and thus
needs to focus on whether the resources can be
allocated to the validated request. Packets des-
tined for SANE are demultiplexed by Piglet,
which provides basic packet delivery operations
for SANE. The active environment provided by
ALIEN allows for considerable flexibility in arbi-
trating and managing the protected resources.

Since Piglet is intended as an asymmetric
multiprocessor operating system, multiple
instances of Piglet can manage multiple network
line cards. A full-scale SQoSH system would
consist of a multiprocessor with a Piglet instance
on each device-managing processor (a resizable
subset of all the processors in the system). In
this way, all device 1/O can be managed by Piglet.
Since a typical model for scheduling resources is
activity triggered by a device interrupt, Piglet can
manage interrupts, buffering, status polling, and
so on, and protect the host operating system
from device-initiated actions.

SECURITY AND SAFETY IN
SWITCHWARE

While the SQoSH architecture is portable across
many active networking environments, our exper-
imental prototype is constructed in the context
of the SwitchWare architecture. SwitchWare is
based on the approach of using restricted seman-
tics to contain the behavior of potentially mis-
chievous programs. This has the benefit that
enforcing restrictions can be performed once at
compile or link time, resulting in lower cost than
an OS approach such as memory protection,
which requires repeated checks at runtime.
These semantic restrictions depend on the
integrity of other system components such as the
operating system and shared libraries. The
semantic restrictions are enforced with a strongly
typed language which supports garbage collec-
tion and module thinning.

The SwitchWare project is a joint effort of
the University of Pennsylvania and Bellcore

(now Telcordia). The overall project goal is to
accelerate network evolution by turning store-
and-forward networks into store-COMPUTE-
and-forward networks, an approach we
originated in the Protocol Boosters [3]. The goal
is to build a network infrastructure which bal-
ances flexibility, usability, security, and perfor-
mance. The current infrastructure provides a
model where modules can be loaded into the
node on the fly by the ALIEN active loader [4].
The basis of the ALIEN approach is restrict-
ing a general mode of computation. Caml pro-
vides the general model, and ALIEN provides
the restrictions. The loader is sufficiently power-
ful that the extreme case of “capsules” can be
supported by treating each packet as a module,
although a more typical use of the facility is to
add a service used by streams of inactive packets.
More precisely, Caml provides a model of
computation equivalent to that of a Turing
machine. By itself, this computation model is
secure since it involves no shared resources. In
practice, since we are running on a real machine,
we have DoS attacks that arise because our CPU
and memory resources are finite. Additionally,
the actual Caml environment also includes a run-
time system that, among other features, provides
access to operating system primitives, which, in
turn, provide access to shared resources. Further-
more, under this runtime, memory is a shared
resource. The role of ALIEN is to control the
access to these shared resources and thereby
ensure that a loaded program (called a switchlet)
does not exceed its resource limits (ALIEN is not
responsible for determining those limits).

THE SECURE ACTIVE NETWORK
ENVIRONMENT

An illustration of SANE in the context of the
overall SwitchWare network element architec-
ture is shown in Fig. 2.

SANE builds on ALIEN in order to provide
security services for an active network. These
services include:
= Secure bootstrapping and component recov-

ery using the AEGIS architecture [5].
= Cryptographic primitives provided as

ALIEN libraries.
= Packet encryption and authentication, for

both data packets and active capsules.
= A key establishment protocol (KEP), which

allows nodes or users to establish secret
keys and exchange certificates. This proto-
col is used for:
—Secure bootstrap component recovery in
AEGIS [6]
—Session-key establishment and principal
authentication and authorization. The prin-
cipals can authenticate each other and
exchange authorization credentials. We
make use of KeyNote [7] credentials to
specify the resource usage and access con-
trol policies ALIEN enforces.

—Secure neighbor discovery once the node

boots. The node may also establish trust

relationships with its neighbors; these may
then be used by mobile-agent types of appli-
cations, or to secure other critical infra-

IEEE Communications Magazine =April 2000

structure information (e.g., routing updates).

= Administrative domains allow a set of net-
work elements under the same administra-
tive control to restrict security requirements
when communicating with each other. Bor-
der elements act as present-day firewalls
and may require extensive authentication
before allowing access to the internal net-
work. Furthermore, they can impose restric-
tions on active packets by encapsulating
them in active “wrappers.”

= Naming services allow for secure module
identification.

SANE SUMMARY

The SANE elements are combined into a system

using the following design principles:

= Dynamic checks, performed while the active
node is operating, should be as fast as pos-
sible, since they are done many times.

= Static checks, performed before the active
node enters the operating state, can be
expensive, since they are done infrequently
(typically once).

= System performance can be improved by
trade-offs that decrease the cost of the
dynamic checks at the expense of more
costly static checks, or, ideally, by using
static checks to eliminate the need for any
dynamic checking at all, analogous to “once
at compile time” versus “many at runtime.”

RESOURCE CONTROL

Resource control on the active switch is imposed
by the runtime system, as specified by the cre-
dentials exchanged during key establishment.
Piglet controls resource usage based on the cre-
dentials acquired by SANE. The protected
resources include access to standard and loaded
modules, CPU cycles, memory allocated, number
of packets, latency and bandwidth requirements,
and so on. For the Piglet experiments we report
later that we have limited resource management
to network bandwidth. There is a great deal of
further research necessary to determine which
are the right resources to manage and how to
resolve conflicting resource requests.

Since a tenet of our approach is controlled
module loading, SANE must manage loading
modules in a secure fashion if it is to be useful
in an active network. It must control which mod-
ules are loaded, and by whom. SANE associates
cryptographic credentials with modules. SANE
can either require a certificate for loading a par-
ticular module, or allow universal loading of the
module. Examples where such universal loading
may be useful include low-cost operations like
pi ng, as well as the security operations used for
bootstrapping the security relationship with
remote switches. There are two classes of certifi-
cates that can be presented by a user packet
requesting access to a resource via a module. An
administrative certificate allows loading of any or
all modules into the system; it is intended for
management and emergencies as might arise,
and can be thought of as analogous to a “master
key” granted by the switch administrator. More
commonly, certificates are used to permit load-
ing of selected modules. For system resources
(e.g., memory or bandwidth), the certificates can

Active Active
packet packet
.. ("

4
PLAN
A\

4) Service
Switchlet e
I Active router
module loader

Operating system kernel
(protection and device mgmt.)

AEGIS secure bootstrap of
hardware, firmware, and OS

> Remote

authentication

> Remote

recovery

m Figure 2. SANE’s relation to SwitchWare.

also specify the allowed usage patterns (e.g., “no
more than 4 Mb/s”). As a result, this scheme
allows fine-grained control of switch resources.

PIGLET

While the SANE architecture presents a secure
resource management interface to switchlets, the
underlying system must be capable of providing
the appropriate capabilities to implement that
interface. In the SQoSH architecture those capa-
bilities are provided by Piglet [8], a multiproces-
sor operating system designed to provide
applications with low overhead direct access to
network resources.

PIGLET: STRUCTURE AND ARCHITECTURE

The Piglet architecture is based around the con-
cept of an active kernel — one or more system
CPUs are dedicated to continually running the
lightweight device kernel (LDK). The LDK con-
sists of only those parts of the operating system
that directly interact with physical devices; like
other vertically structured operating systems, it
implements only the minimal set of functions
necessary to support direct user-level access to
those devices, namely protection, translation,
and multiplexing.

This has two primary benefits: first, since it
runs continuously the LDK communicates with
devices by polling, rather than using interrupts,
thus eliminating the possibility of interrupt-
based livelock, potentially reducing kernel
response time and greatly simplifying the kernel
implementation; second, applications invoke ker-
nel services using shared memory communica-
tion, a much lower-overhead mechanism than
the conventional system-call trap. We believe
that in systems where 1/O makes up a large frac-
tion of the workload, such as an active network
element, these two benefits combined more than
compensate for the cost of dedicating one pro-
cessor to running the LDK.

Reducing System-Call Overhead — To evalu-
ate how successfully Piglet manages to reduce
the invocation overhead for system services, we

IEEE Communications Magazine = April 2000

franeset t *

pi gl et_create_frameset (int tx_bufs,

i nt

int rx_bufs,
unsi gned options);

piglet set filter (franeset _t *flow,

i nt

filter_t *filter);

pi gl et _set _vcl ock (franeset t *flow,

unsi gned peri od,
unsigned limt);

m Figure 3. Flow management functions in Piglet.

1 Here and in our experi-

mental results we use the

convention that 1 Mb/s =
(106) bfs.

Modal RTT (ps)

Payload (bytes) Linux Piglet
64 199 161
256 253 215
1024 468 413

m Table 1. Modal ping round-trip times.

performed a simple experiment. The standard
pi ng program was modified to use the Piglet
shared-memory interface to send echo packets.
We then measured the round-trip time for vari-
ous sizes of packet, and compared these to the
times measured for the unmodified program in
the same test environment. Since the only differ-
ence between the two tests was the mechanism
used to send packets, any differences in round-
trip time can be attributed to the overhead of
those mechanisms.

Table 1 shows the modal round-trip time
measured for various sizes of packets; a more
detailed histogram and analysis of these results
is presented in [8].

These figures show that the difference in
round-trip time, or equivalently the difference in
the overhead of sending a packet, varies from 38
ps to 55 ps, there being some dependence on
payload size due to Piglet performing less data
copying than Linux. We believe that such a
reduction, due to the Piglet architecture, could
be significant in a system such as a SQoSH node,
where a large proportion of the workload is in
1/0O operations.

RESOURCE MANAGEMENT IN PIGLET

Piglet’s network resource management functions
are based on an abstract data structure known as a
frameset. A frameset consists of independent
transmit and receive queues into which frames,
each corresponding to a network packet, can be
placed. Services can be associated with framesets
in order to manipulate and process frames —
since services form an integral part of the Piglet
OS, they have full access to the host system and
can thus perform almost any conceivable function.

For the purposes of network element applica-
tions each frameset is logically associated with a
network flow. The exact details of a flow specifi-

cation are bound only by the packet-filtering
mechanism employed by Piglet to classify
received network packets into flows (and hence
demultiplex to the appropriate frameset). A flow
can be defined as broadly as “all packets received
on this network interface” or as specifically as
“all packets sent by host 158.130.6.140 to TCP
port 5005 on host 158.130.4.4.”

Figure 3 shows prototypes for the principal
functions used to manage framesets. pi gl et _
creat e_franeset is used by an application to
create a frameset, specifying the transmit and
receive buffer sizes and an option field indicat-
ing, among other things, which services should
be used to process this frameset. Once the frame-
set has been created, pi gl et _set _filter is
called to associate a flow specification with the
frameset.

An example of a service provided by Piglet is
the Virtual Clock algorithm, a mechanism for
scheduling a network link across multiple flows
and controlling the rate at which each flow
sends data. Virtual Clock is parameterized by
the clock period and maximum amount of data
to be sent in that period; tuning these two
parameters allows an application to specify not
only its bandwidth requirement but also the
degree of burstiness of its traffic. The function
pi gl et _set _vcl ock is used to convey these
parameters to Piglet.

SQOSH RESOURCE MULTIPLEXING
USING PIGLET

The specific problem we address is that of multi-
plexing a single network interface between a
number of uncooperative applications, each of
which may have specific requirements. This is
exactly the challenge faced in secure multiplexing
of resources once a policy has been validated. In
this example, the resource we wish to divide
among these applications is network bandwidth.

THE EXPERIMENTAL DESCRIPTION

The experimental setup for this test consists of
two PCs connected to an AsanteFast 100 Mb/s
Ethernet hub by 3Com 3¢905 network interface
cards. The sender is a 200 MHz dual-processor
Pentium Pro PC running RedHat Linux 5.0 with
the Piglet kernel replacing the standard Linux
kernel. The receiver is a 200 MHz uniprocessor
Pentium Pro PC running RedHat Linux 4.2 with
Linux kernel 2.0.31. Both machines are idle
apart from the test applications, and the test net-
work has no other traffic.

The experiment consists of three applications
all trying to send a large amount of data from
the sender to the receiver. The results are plot-
ted in Fig. 4. Each application has different
bandwidth requirements:
= A — an unconstrained sender that uses as

much bandwidth as is available. This can be

viewed as the source of a DoS attack in the
context of SQoSH
= B — a sender constrained to run at 40 Mb/s!
= C — a sender constrained to run at 10 Mb/s

The application used to send the data is the
standard ttcp augmented with an option to set
the Virtual Clock parameters (period and time).

IEEE Communications Magazine = April 2000

These parameters are passed to the Linux
TCP/IP stack by set sockopt () system calls,
where they are then passed to Piglet to create
application-specific framesets with those param-
eters. This is the only modification made to the
Linux networking code.
Applications A, B, and C each start and stop
sending their data at different times, and the
per-application bandwidth is measured every
second and plotted in Fig. 2 as the three heavy
lines. The three thinner lines show reference
bandwidth measurements for each sender with
no competing applications over a 30 s period.
= After 1s, B starts sending at 40 Mb/s.2
= After 5 s, A starts sending as fast as possi-
ble. Piglet’s guarantee of 40 Mb/s to B lim-
its A to approximately 40 Mb/s also.
= After 9 s, C starts sending at 10 Mb/s, caus-
ing A’s bandwidth to decrease by approxi-
mately 10 Mb/s.

= After =15 s, B stops sending; A’s bandwidth
thus increases to approximately 10 Mb/s
below the absolute limit.

= After =20 s, A stops sending.

= After =29 s, C stops sending.

EXPERIMENTAL RESULTS

We see from Fig. 2 that Piglet’s queue schedul-
ing mechanism provides controlled multiplexing
of the shared network resource, despite the fact
that the applications are not cooperating to
share the resource; neither they nor the host
O.S. (Linux) are aware of the constraints
imposed on them.

The applications which have specific band-
width requirements receive exactly that amount
of bandwidth, even when an application with no
specified constraint is competing for the same
resource. This ability to add resource manage-
ment to a standard host operating system is one
of the key strengths of Piglet, and enables its
easy integration into SQoOSH.

RELATED WORK

QOS PROVISION AND MANAGEMENT

QoS provision and management has a wide-rang-
ing literature. A lot of the early work was stimu-
lated by the promise of asynchronous transfer
mode (ATM) networks. The demand for these
services was stimulated by multimedia traffic.
The relevant promise was the control of multi-
plexing behavior in both endpoints and network
elements, with the idea that ATM hardware-sup-
ported queuing disciplines, such as Fair Queuing
or its many variants, could be used to allocate
bandwidth resources, and for the most part pro-
vide delay bounds. While such hardware support
remains attractive, the signaling software has
proved sufficiently unwieldy that the potential for
managed bandwidth remains largely unrealized.
The attraction of integrated services did
serve, however, to revitalize and stimulate
research into integrated services in the IP Inter-
net community. This research program resulted
in the RSVP proposal for signaling resource
reservations to network elements by endpoints.
Neither ATM signaling protocols nor RSVP
provide the integrated admission control and
policing of SQoSH. It is presumed that adminis-

----- 40 Mb/s (ref.)
------ 10 Mb/s (ref.)
Max B/W
40 Mb/s
10 Mbls

[©2 N
o O
!

Bandwidth (Mb/s)
N W b O
o O O o

=
o

o

Time (s)

100
90 -

- — N~
80 1 | —— Max B/W (ref.)

m Figure 4. Per-channel bandwidth as a function of time.

trative entities are trusted in either system, while
policing is delegated; to hardware in the ATM
setting, and to some lower layer through the
Internet subnet-specific layer in the RSVP case.
Some extensions for securing signaling are dis-
cussed by Schuba [9]. An additional limitation of
these systems is that their policing is limited to
bandwidth management.

SECURE RESOURCE CONTROL IN
ACTIVE AND PROGRAMMABLE NETWORKS

SANE has no direct analogs in ongoing work on
active networks [10]. While ANTS uses MD5
hashes (“fingerprints”) to name on-demand
loaded modules, the hashes provide unique
names rather than security. The ANTS execution
environment depends on the Java programming
language for protection, a dependency shared by
many active network prototypes. Unfortunately,
as Wallach et al. [11] note, Java’s security is sus-
pect. The remote authentication and namespace
security aspects of SANE address issues ignored
in these systems, and could be applied even in
cases where Java is used (e.g., to provide integri-
ty checking of the JVM or layers beneath it, as
well as on-demand loaded modules).

PLAN [12] is a part of the SwitchWare pro-
ject at the University of Pennsylvania. The PLAN
project is investigating the trade-offs brought
about by using a different language for active
packets than is used for active extensions. PLAN
is designed so that pure PLAN programs will not
be able to violate the security policy. Because
this limits the operations that can be performed,
PLAN programs can call services which can be
either active extensions or facilities built into the
system, perhaps requiring authentication and
authorization before allowing access to the
resources they protect.

The Safetynet Project [13] at the University of
Sussex has also designed a new language for active
networking. They have explicitly enumerated what
they feel are the important requirements for an
active networking language and then set about
designing a language to meet those requirements.
In particular, they differ from PLAN in that they
hope to use the type system to allow safe accu-

2 ttcp actually tries to send
as fast as possible, but
Piglet constrains packet
transmission to 40 Mb/s.

IEEE Communications Magazine = April 2000

The SQoSH
architecture
provides
controlled access
to allocations of
system resources
in an Active

Network element.

It is more
generally
applicable to any
resource
allocation or
policing scheme
where remote
allocation and
deallocation of
resources is
required.

mulation of state. They appear to be trying to
avoid having any service layer at all.

An architecture which extended a protection
model from the local domain to a distributed
environment was provided by Sansom et al. [14],
where protection was enforced locally with mem-
ory-protection enforced capabilities. The capa-
bilities were extended to remote nodes via
cryptographic means. SANE provides more gen-
eral mechanisms and could thus be specialized
to such an application (moving memory-protect-
ed objects about the network) but more impor-
tantly guarantees local integrity before extending
itself into the network.

Security of active networks is a broad evolv-
ing area. We suggest Moore [15] as a source of
additional information in this area.

SQOSH AND OTHER ENVIRONMENTS

The Cambridge University Nemesis operating sys-
tem has considerable potential for supporting
SQoSH functionality since its single-layer multi-
plexing model can readily be adapted to the
SQoSH policing requirements. The RCANE sys-
tem [16] follows the ALIEN architecture but uti-
lizes the capabilities of Nemesis to provide resource
management and control in a manner equivalent
to Piglet’s role in the SQoSH architecture.

Another system with great potential is the
Arizona Scout/Escort operating system with its
support for end-to-end resource allocations,
called paths. Paths, in spirit, are the right idea
for end-to-end allocation in an active network.
The security infrastructure is not as complete as
SANE, with its secure initialization, public-key
infrastructure, ALIEN active loader, and remote
module authorization certificates. We believe
that, like Nemesis, Scout could readily be adapt-
ed to support SQoSH.

CONCLUSIONS AND FUTURE WORK

The SQoSH architecture provides controlled
access to allocations of system resources in an
active network element. It is more generally
applicable to any resource allocation or policing
scheme where remote allocation and dealloca-
tion of resources are required. We believe that
this new architecture is well suited to providing
secured resource allocation in an integrated ser-
vices internetwork.

An example of the general architecture can
be constructed using SANE as a protective
mechanism for resource allocations available
from the Piglet operating system. We have
demonstrated Piglet partitioning bandwidth
using a Virtual-Clock-like queue scheduling dis-
cipline. The measurements showed the effective-
ness of Piglet on this task.

Since SANE operations are in the SQoSH
“control plane,” they are performed infrequently
relative to the policing functions; thus, the cost of
its cryptographic mechanisms has a minor effect
on overall performance. An additional benefit of
SANE'’s use of a public-key infrastructure is the
presence of this infrastructure for preserving pri-
vacy and integrity of media streams if required.

We believe that SQoSH represents a practical
advance in automating and securing the adminis-
tration of remote network elements of any type.

We present the threat model SQoSH addresses,
and show that these attacks can be thwarted.
Typical architectures and implementations pro-
vide no protection against such attacks, except
perhaps via inflexibility. In any environment
where resources and resource allocations have
value, SQoSH ensures that the resources are
allocated as intended.

REFERENCES

[1] D. S. Alexander et al., “A Secure Active Network Envi-
ronment Architecture: Realization in SwitchWare,” |EEE
Network, Special Issue on Active and Programmable
Networks, vol. 12, no. 3, 1998, pp. 37-45.

[2] S. J. Muir and J. M. Smith, “Functional Divisions in the
Piglet Multiprocessor Operating System,” SIGOPS Euro.
Wksp., Sept. 1998.

[3] D. C. Feldmeier et al., “Protocol Boosters,” IEEE JSAC,
Special Issue on Protocol Architectures for the 21st
Century, Apr. 1998, pp. 437-43.

[4] D. S. Alexander, “ALIEN: A Generalized Computing
Model of Active Networks,” Ph.D. thesis, Univ. of PA,
Sept. 1998.

[5] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A Secure
and Reliable Bootstrap Architecture,” Proc. 1997 IEEE
Symp. Security and Privacy, May 1997, pp. 65-71.

[6] W. A. Arbaugh et al., “Automated Recovery in a Secure
Bootstrap Process,” Proc. Network and Dist. Sys. Securi-
ty Symp., Internet Society, Mar. 1998, pp. 155-67.

[7] M. Blaze et al., “The Keynote Trust Management Sys-
tem Version 2,” Internet RFC 2704, Sept. 1999.

[8] S. J. Muir and J. M. Smith, “Piglet: A Low-Intrusion Ver-
tical Operating System,” Tech. rep. MS-CIS-00-04, Univ.
of PA, Jan. 2000.

[9] C. Schuba et al., Analysis of a Denial of Service Attack
on tcp,” IEEE Sec. and Privacy Conf., May 1997, pp.
208-23.

[10] D. L. Tennenhouse et al., “A Survey of Active Network
Research,” IEEE Commun. Mag., Jan. 1997, pp. 80-86.

[11] D. S. Wallach et al., “Flexible Security Architecture for
Java,” Proc. 16th ACM Symp. Op. Sys. Principles, Oct. 1997.

[12] M. Hicks et al., “PLAN: A Programming Language for
Active Networks,” Tech. rep. MS-CIS-98-25, Dept. of
Comp. and Info. Sc., Univ. of PA, Feb. 1998.

[13] I. Wakeman et al., “Designing a Programming Language
for Active Networks,” submitted to Hipparch Special Issue
of Network and ISDN Sys., June 1998; http://www.
cogs.susx.ac.uk/projects/safetyne/papers/isdn.ps.gz

[14] R. D. Sansom, D. R Julin, and R. F. Rashid, “Extending
a Capability Based System into a Network Environ-
ment,” Proc. 1986 ACM SIGCOMM, Aug. 1986.

[15] J. Moore, “Mobile Code Security Techniques,” Tech.
rep. MS-CIS-98-28, Univ. of PA, May 1998.

[16] P. Menage, “RCANE: A resource Controlled Framework
for Active Network Services,” 1st Int’l. Working Conf.
Active Networks, Lecture Notes in Comp. Sci., no.
1653, Springer-Verlag, July 1999, pp. 25-36.

BIOGRAPHIES

D. ScoTT ALEXANDER is a member of technical staff at
Lucent, Bell Labs. His work is in the area of active network-
ing. He earned his Ph.D. and M.SE. in computer science
from the University of Pennsylvania. He earned a B.A. in
computer science from Rice University.

WiLLIAM A. ARBAUGH received a Ph.D. from the University of
Pennsylvania in 1999. He currently consults for business and
government on a wide range of security issues. His research
interests include communications, and embedded and oper-
ating system security. He has served as a senior computer
scientist with the Research Group of the U.S. Department of
Defense, and as a senior software engineer and tactical com-
munications platoon leader with the U.S. Army. He earned
an M.S. in computer science from Columbia University and a
B.S. from the United States Military Academy.

ANGELOS D. KEROMYTIS [M] (angelos@dsl.cis.upenn.edu) is a
Ph.D. candidate at the University of Pennsylvania. His
research interests include communications and operating sys-
tem security, firewalls, and cryptographic protocols design
and analysis. He earned an M.S. in computer science from
the University of Pennsylvania, and a B.S. from the University
of Crete, Greece. He is a member of ACM, USENIX, and IACR.

IEEE Communications Magazine = April 2000

STEVE MUIR is a Ph.D. candidate at the University of Penn-
sylvania. His research interests include operating systems,
networking, and dynamically reconfigurable systems. He
earned a B.A. and an M.Eng. in electrical and information
sciences from the University of Cambridge.

JONATHAN M. SMITH [SM] (jms@central.cis.upenn.edu) is a
professor in the Penn CIS Department. He was previously
at Bell Telephone Laboratories and Bellcore, where he
focused on UNIX internals, tools, and distributed comput-
ing technology. He was also a member of a technology
transfer team on computer security. At Penn, his current
research interest is programmable network infrastructures:
"Protocol Boosters" provide a methodology for using such
infrastructures, and "SwitchWare" is an idealized pro-
grammable infrastructure. He is a member of ACM and
Sigma Xi, and has consulted extensively for industry and
government. He has patented technology for key-agile
encryptors using asynchronous (ATM) networks and ultra
high-speed ATM encryptors.

This ability to
add resource
management
to a standard
host O.S. is
one of the key
strengths of
Piglet, and
enables its easy
integration
into SQOSH.

IEEE Communications Magazine = April 2000

