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1 Proposed Research and Technical Objectives 
 

 

Changes in the dynamic morphology of the wing in flapping flights directly affect the 

instantaneous aerodynamic forces and therefore flight behavior. The wing shape and how it 

moves through the flow is the primary mechanism for momentum transfer to the fluid in the 

flapping flights. During this project period, high-fidelity CFD simulation and adjoint 

analysis/optimization tool has been used to study the aerodynamic role of wing morphology 

models built from the previous year and their interaction in a vast parametric space including 

aspect ratio, direction of flexibility (chord-wise, span-wise, etc.). Aerodynamic performance has 

been evaluated by looking at lift production, power consumption, and efficiency. Novel tools for 

studying wing morphing during complicated flapping flights have been developed to understand 

the underlying physics of flexible wings in flying insects and birds towards the bio-inspired wing 

designs with superior aerodynamic performance. In this funded work, we built up a team with 

experts from two institutes and hope to address the following basic questions about the 

aerodynamics of flapping flight: 

1. What are the detailed features of morphing flapping wings and how to build up high-fidelity 

kinematic models?  

2. What is the proper way(s) to characterize the wing morphing and describe the key motion 

components? 

3. What is the vortex dynamics and associated aerodynamics in morphing wing flapping flight?  

4. How to design morphing wing kinematics to achieve the optimal performance of the wing 

beyond biology?  

5. What is optimal solution for 2D and 3D rigid/flexible flapping wings, and what we can learn 

from these mathematically optimal solutions? 

 

 

 

2 Physics-based Morphology Analysis 
 

 

In this part, four sections regarding the physics-based morphology analysis on the proposed 

topic are presented. We briefly summarize these works in the following.  

(1) Joint-based morphing surface reconstruction 

DISTRIBUTION A: Distribution approved for public release.
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 A high-accurate kinematics measurement tool is developed to quantify the propulsor 

flexion and body kinematics of animals in free flight. 

(2) High-fidelity Numerical Simulations on the Aerodynamics of Morphing wings   

 An immersed boundary method for deformable attaching bodies (IBM-DAB) is 

developed to handle direct numerical simulations in some extreme situations that are 

commonly exist in nature, including solid bodies with sharp edges and those with 

deformable, attaching membrane bodies. 

 The 3D wake structures and aerodynamic performance of a freely maneuvering 

hummingbird is studied in detail. Our simulation results show asymmetric wake structure 

between inner and outer wings of the hummingbird. A unique duel-ring vortex structure, 

which is the source of the wake asymmetry, is found in the wake of one of the two wings 

of the hummingbird. The duel-ring vortex structure corresponds to larger wing twisting 

and lower drag production, which creates unbalanced aerodynamic forces to help with the 

maneuver 

 Free forward flight of cicadas has been investigated through high speed photogrammetry, 

three-dimensional surface reconstruction and computational fluid dynamics simulations. 

We report two new vortices generated by the cicada body. One is the thorax generated 

vortex, which helps the downwash flow, indicating a new phenomenon of lift 

enhancement. Another is the cicada posterior body vortex, which entangles with the 

vortex ring composed of wing tip, trailing edge, and wing root vortices.  

 A new lift-enhancement mechanism due to the wing-body interaction has been found in 

cicada forward flight. Our results have shown that due to wing-body interaction, the 

wing-body model of the cicada flight had a 18.7% increase in total lift production 

compared with the sum of the lift generated in body-only and wings-only models, and 

about 65% of this enhancement was attributed to the body. This resulted from a dramatic 

improvement of body lift production from 2% to 11.6% of the total lift produced by the 

wing–body system. Further analysis of the associated near-field and far-field vortex 

structures has shown that this lift enhancement was attributed to the formation of two 

distinct vortices shed from the thorax and the posterior of the insect, respectively, and 

their interactions with the flapping wings. 

 Aerodynamic effects of the wing morphing in dragonfly forward flight is computationally 

investigated. We use the reconstructed model to explore the effects of morphing wings, 

first by removing camber while keeping the same time-varying twist distribution, and 

second by removing both the camber and the spanwise twist. Our simulation results 

revealed that the surface deformation can improve the aerodynamic functions in two 

ways: 1) improving the power economy by preventing the tip vortex bursting; and 2) 

improving the leading-edge vortex attachment by suppressing the generation of the 

secondary vortex. As a result, the spanwise twist can boost the aerodynamic efficiency up 

to 20%, especially during the wing translational phase. 

 Aerodynamic functions and associated vortex formation of the two-pair wings of a 

dragonfly in turning maneuver is numerically investigated. The wing kinematics analysis 

indicate that during the turn there are large asymmetries between the wing pitch angle 

and wing stroke angles especially for forewings, while asymmetries in wing deviation 

angle are generally small. The asymmetrical wing kinematics generate unbalanced forces 

in both vertical and horizontal directions. During the downstroke, the force generated by 

the outer wings are higher than inner wings. By contrast, the inner wings generate higher 
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forces during the upstroke. The unbalanced forces lead to the torques along its body axis 

in three directions. Specifically, both forewings and hindwing contribute to the roll torque 

generation, whereas forewings are dominant in generating pitch and yaw torques. To 

examine the effect of forewing-hindwing interaction on the aerodynamic performance, 

two additional cases, one with forewings only and the other with hindwings only, are 

carried out. Our results indicate that the interaction can lead to a slight forces reduction, 

but can save the aerodynamic power up to 11%. 

 

(3)  Low-dimensional Modeling (SVD) and Analysis of the Morphing wing kinematics  

 The aerodynamic roles of wing morphing of a hovering dragonfly is studied in detail. A 

spherical-coordinates-based singular value decomposition (SSVD) method is developed 

and applied to decompose the morphing wing kinematics of the dragonfly into simple 

modes. Results have shown that the first two SSVD modes contain 93.1% of the hovering 

wing motion. The mode 1 (flapping mode) consists of a simple flapping motion, and the 

mode 2 (morphing mode) contains dynamic wing morphing in both span-wise and chord-

wise directions. By evaluating the aerodynamic role of the SSVD modes using a high-

fidelity flow simulation, we further conclude that the first two modes can recover more 

than 96% of the lift production and 91% of the lift economy comparing to the original 

flapping wing aerodynamics whereas the mode 1 only produces 5% of the lift and 4% of 

the lift economy. The associated flow mechanisms of the morphing mode are found to be 

the reduced wing tip vortex and improved attachment of leading-edge vortex 

(4) Optimization of low-dimensional morphing wing models 

 We further investigated optimal configurations of dominant modes on aerodynamic 

performance for the dragonfly wing. The corresponding optimized low dimensional wing 

models, which can beyond biological levels of aerodynamic performance, are obtained. 

The associated flow mechanisms are found to be the improved LEV strength and the 

reduced TV strength.   

 

2.1 Joint-based 3D Surface Reconstruction 

Recently, advanced photogrammetry technology has been used to study flapping wings in 

nature. Along with the highly accurate surface reconstruction method [1], researchers are capable 

of digitizing detailed propulsor kinematics, as well as deformation from high-speed images. 

However, the conventional reconstruction method has several hard constraints regarding some 

details of the experiments, such as the camera location/orientation, the lens angle of view, 

marker points on the objects, etc. For example, it is usually difficult for us to configure three 

orthogonal high-speed cameras to conduct experiments. For some fast and agile flyers, such as 

hummingbird, it is not possible for us to use lenses with a small angle of view due to their large 

movements. Perspective error becomes a big issue in those cases. Moreover, placing marker 

points on the wings could be hard due to the wings’ size or properties. A more robust 

reconstruction method is needed to deal with diverse flapping wings in nature. 

A joint-based surface reconstruction method is developed in Autodesk Maya to solve the 

above problems in this work. Here we use a case of a maneuvering hummingbird to demonstrate 

the new method.  

 

1) Static Model and Virtual Joints  
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In order to perform the reconstruction, a realistic static model of the hummingbird with some 

carefully configured motion controllers, which are so called “virtual joints”, is needed at first. 

  

 
Figure 1. (a) Static model of hummingbird with virtual joints; (b) virtual joints configuration 

based on real hummingbird skeletal anatomy. 

 

Figure 1(a) shows the static model of the hummingbird with virtual joints, which is manually 

created with Autodesk Maya. The dimensions of the model strictly match with the real 

hummingbird we are going to study. The virtual joints have six degrees of freedoms (three 

translations and three rotations) to control the motion of adjacent vertices of the model. Figure 

1(b) shows the virtual joints configuration at the hummingbird wing, which presents large 

deformation during the flapping motion. This kind of configuration can model both the span and 

chordwise morphing of the wing. As shown in the figure, the virtual joints are built based on a 

real hummingbird’s skeletal anatomy. However, some parts of the wing, which presents large 

motion in flight, do not really have bone structures, such as the wing tip region. We also add 

virtual joints to control the motion for those parts. 

 

2) Wing and Body Surface Reconstruction  

 

The hummingbird maneuvering flight is then reconstructed using the joint-based hierarchical 

subdivision surface method. The hummingbird wings are marked with white marker points to 

facility the three-dimensional surface reconstruction. After the videotaping was done, the pose of 

the model is adjusted to match one frame of the three directions of high-speed videos by 

controlling the virtual joints in six degrees of freedom, including three rotations and three 

translations. Marker points on the wings served as references to further tune the location of 

vertices on the wing models.  The wing models are generated with Catmull-Clark subdivision 

surfaces [2], which is a specific cubic spline surface representation that can generate smooth 

surfaces from meshes of arbitrary topology [3]. Similar procedure is applied to the hummingbird 

model frame by frame. As an example, Figure 1(a, b, and c) show the poses of the corresponding 

reconstructed hummingbird model. 

(a) (b) 
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Figure 2. Reconstructed model of hummingbird maneuvering flight at (a) t=0 ms, (b) t=47 ms, 

and (c) t=77 ms. 

 

2.2 High-fidelity Numerical Simulations on the Aerodynamics of Morphing Wings 

 

1) Immersed Boundary Method for Deformable Attaching Bodies  

 

The governing equations considered are the 3D unsteady Navier-Stokes equations for a 

viscous incompressible flow with constant properties given by: 

 
 

0
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i

i ji i i

j j j
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t x t x x



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


                 

                                        (1) 

where , 1, 2, 3i j    , iu  are the velocity components, p  is the pressure, and   and   are the fluid 

and kinematic viscosity.  

The Navier-Stokes equations(1) are discretized using a cell-centered, collocated (non-

staggered) arrangement of the primitive variables iu  and p . In addition to the cell-center 

velocities iu , the face-center velocities iU , are computed (see Figure 3). The equations are 

integrated in time using the fractional step method, which consists of three sub-steps. In the first 

sub-step of this method, a modified momentum equation is solved and an intermediate velocity 
*u  is obtained. A second-order, Adams-Bashforth scheme is employed for the convective terms 

while the diffusion terms are discretized using an implicit Crank-Nicolson scheme, which 

eliminates the viscous stability constraint. In this sub-step, the following modified momentum 

equation is solved at the cell-nodes: 

 
   1 1* *

1 1 1
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2 2
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j j i j j j j

U u U uu u u up
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     


       

       
                      

     (2) 

where 
x




 corresponds to a second-order central difference. This equation is solved using a line-

SOR scheme [4]. 

(a) (b) (c) 
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Figure 3. Schematic describing the naming convention and location of velocity components 

employed in the spatial discretization of the governing equations. 

 

The second sub-step requires the solution of the pressure correction equation: 

 
1 *

1
n

i i

i

u u p

t x



 

  
 


                                                   (3) 

which is solved with the constraint that the final velocity 1n

iu   be divergence-free. This gives the 

following Poisson equation for the pressure correction: 

 
*

1 1 i

i i i

Up

x x t x

 

   

 
 
 

                                                (4) 

and a Neumann boundary condition imposed on the pressure correction at all boundaries. 

This Poisson equation is solved with a highly efficient geometric multigrid method [5], 

which employs a modified strongly implicit procedure (MSIP) [6] smoother. The ability to 

employ such methods is another key advantage of the current Cartesian grid approach over body-

conformal unstructured grid approaches. Geometrical multigrid methods are relatively simple to 

implement and have very limited memory overhead. Furthermore, when coupled with powerful 

smoothers like line-Gauss-Siedel or MSIP, they can lead to a numerical solution of the pressure 

Poisson equation which scales almost linearly with the number of grid points. In contrast, for 

unstructured body-conformal methods, one has to either resort to algebraic multigrid methods [7, 

8] or other more complex methods such as agglomeration multigrid [9]. Another choice for 

solving the pressure Poisson equation would be Krylov subspace based methods (such as 

conjugate gradient or GMRES) but these require effective preconditioners to provide good 

performance. Our past experience with both stationary and non-stationary iterative methods [10-

12] indicates that geometric multigrid methods are very well suited for sharp interface immersed 

boundary methods, and we have therefore used this method in the current solver. 

Once the pressure correction is obtained, the pressure and velocity are updated as: 
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                                                     (5) 

 

The motions of natural animals are reconstructed using the method introduced in Section 2.1. As 

shown in Figure 4(a), the surface of a reconstructed model is represented as unstructured mesh 

with triangular elements. The trunk body of the hummingbird is modeled as “solid body”, and 

the wings are modeled as “membrane body”, which presents zero thickness in the simulation. 

The two types of bodies firmly attached with each other, and the boundary conditions near the 

body intersections are difficult to deal with. Here, a new approach is introduced to overcome the 

computational difficulties. 

 

 
Figure 4. (a) Example of a hummingbird model with unstructured surface mesh of triangular 

elements; (b) 2D schematic describing the methodology which handles deformable attaching 

bodies. 

 

Figure 4(b) shows a 2D schematic plot of the approach. The dashed lines are immersed 

boundaries and the solid lines are the corresponding stair boundaries. For the membrane body, 

the stair boundaries are chosen as the closest fluid cell faces to the elements on the immersed 

boundary. As shown in the figure, several conflicting faces can be identified. The conflicting 

faces are stair boundaries which directly connect to the intersection of the solid and the 

membrane stair boundaries. The boundary conditions on the conflicting faces need special 

treatments. The velocity of one conflicting face may be calculated according to a reference 

velocity of the solid immersed boundary at one time step. For the next time step, the reference 

(a) (b) 

Fluid Cell Face Center 

Conflicting Face Center 

Solid Body 

Boundary Intercept 

Membrane Body 

Boundary Intercept 
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velocity may be altered to the velocity of the membrane immersed boundary due the motion of 

the moving boundaries. This will cause a discontinuity of the velocity boundary condition on the 

conflicting face for those two time steps, which will cause numerical instability and eventually 

lead to the divergence of the flow solver. 

In order to solve the above problem, the velocities of the conflicting faces are corrected 

accordingly. Here we describe the method using the upper conflicting face (Figure 4b) as an 

example. From the center of the conflicting face, we first drop two lines perpendicular to the 

solid and membrane immersed boundaries. There we get two boundary intercept, sBI  and mBI . 

Another two fluid cell faces which are close to the conflicting face can be found, and the 

corresponding face centers are 1F  and 2F . An interpolation stencil (shaded area) is formed 

according to the four points. In 3D cases, the stencil consists of eight points (two boundary 

intercept and six fluid cell face centers). The conflicting face velocity can then be calculated as 

follows: 

 
 

 
1 2 3 1 1 2 3 2 1 2 3 2 3

2

4 1 3 5 1 6 2 7 3 8

, ,CFU x x x C x x x C x x C x x

C x x C x C x C x C O

  

      
                                  (6) 

The eight unknown interpolation coefficients can be determined in terms of the face 

velocities of the eight points of the interpolation stencil: 

      
1

1 2 8 1 2 8, ,..., , U ,..., U
T T

C C C V U


                                       (7) 

where iU  are the face velocities at the interpolation stencil points and  V  is the Vandermonde 

matrix. This process continues until the velocities of all conflicting faces are corrected. 

 

2) Asymmetric Aerodynamic Forces and Wake Structures of a Maneuvering hummingbird 

 

Hummingbirds perform turning maneuvers as often as they hover or cruise, especially when 

they need to forage from one location to another. However, to date, turning flight has received 

little attention and there is no detailed forces and three-dimensional flow structure data to 

achieve a quantitative analysis of hummingbird in a turning maneuver. To fill this gap, a high-

speed photogrammetry system and three-dimensional joint-based surface reconstruction 

technology are used to reveal hummingbird wing kinematics and deformations during a free 

maneuvering flight. The aerodynamic performance is then studied using an in-house immersed 

boundary method (IBM) based computational fluid dynamics (CFD) solver. To the best of our 

knowledge, this is the first study on the unsteady aerodynamics of hummingbird in maneuvering 

flight.  

 

DISTRIBUTION A: Distribution approved for public release.



  

 

15 

 

 

 
Figure 5. (a) Schematic plot showing hummingbird body yaw motion; (b) time course of body of 

the maneuvering hummingbird. A top view of the hummingbird at the top of the figure indicates 

the yaw throughout the maneuver. Yaw (red), pitch (black), and roll (blue) histories are shown 

first, followed by path position histories in horizontal (green) and vertical (black) direction. 

 

To better interpret the characteristics of body and wing kinematics, we divided the whole 

maneuvering process into three phases according to the body yaw angle. Figure 5 shows a 

schematic plot of hummingbird body yaw motion and the time course of body kinematics. We 

can see from Figure 5(b) that there are in total six strokes of this flight. The hummingbird is first 

at an “accelerating phase” (1st stroke), in which the bird initiates the yaw turn. The body yaw 

angle start to increase while the other two Euler angles stay unchanged within this phase. After 

that, the hummingbird enters a “turning phase” for the following three strokes (2nd to 4th stroke). 

The body yaw angle keep increasing and shows an oscillating profile, which indicates an active 

control of the turning for the hummingbird. The body roll angle shows a little bit decrease and 

the body pitch angle stays unchanged. The last two strokes of the flight (5th to 6th stroke) are 

called the “recovering phase”, in which the body yaw angle stays at a high value and shows a 

small increase, while the other two Euler angles stay unchanged. The hummingbird is recovering 

from a turning status to a hovering status within this phase. The path position of this flight 

(Figure 5b) shows a little bit descending motion in vertical direction for the first two strokes, and 

the motion in horizontal direction is limited. We have observed similar phases in other 

maneuvering high-speed videos we shoot. The similarity suggests that the body motion result 

from similar aerodynamic or dynamic mechanisms. 

In order to determine how hummingbird change wing motion to perform the turning, we also 

study the wing kinematics of this flight. Figure 6(a) shows the three Euler angles defining the 

wing position in the wing-root coordinate system (X'Y'Z'), in which the X'-axis is parallel with 

the body longitudinal direction, the Y'-axis is along the lateral direction and the Z'-axis complies 

with the right-hand rule. The mean stroke plane connected the wing root and wingtips at the start 

and end of the downstroke. The stroke position angle ϕ(t) defines the angular position of the 

wing in the mean stroke plane, with 0° aligning with the negative direction of the Y'-axis. The 

deviation angle θ(t) is the angle between the base-to-wingtip line and the mean stroke plane. The 

pitch angle α(t) is defined as the angle of the wing chord with respect to the tangent of the wing 

trajectory. 
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Figure 6. (a) Schematic plot showing hummingbird wing Euler angles definition; Time course of 

wing stroke (b), wing deviation (c), and wing pitch angles (d) during the turning phase. The wing 

Euler angle histories over the 3rd stroke are shown in solid curves. Angle differences for other 

strokes in the turning phase with respect to the 3rd stroke are shown as error bars. Red and blue 

correspond to the inner and outer wings, respectively. Shaded areas stand the downstrokes and 

unshaded areas stand the upstrokes. 

 

The time course of wing Euler angles during the turning phase are shown in Figure 6(b, c, d) 

according to the above definitions. We can see from the figure that asymmetries of the wing 

kinematics between inner and outer wings can be identified in the turning phase, especially for 

the time course of wing deviation angle and pitch angle. As shown in Figure 6(b), the wing 

stroke angle history shows one peak for a flapping cycle, which locates at the end of the 

downstroke. The amplitude of the wing stroke angle is around 120° for both inner and outer 

wings. However, the inner wing stroke angle is a little bit smaller (7% smaller) during the 

downstroke in turning phase, while it is almost the same comparing to that during the upstroke. 

For the wing deviation angle history, the plot shows two valleys for a flapping cycle, which is 

located near the mid of downstroke and the mid of upstroke, respectively. Much greater 

differences can be observed for the wing deviation angle history. The inner wing deviation angle 

history shows larger amplitude and smaller value in both downstroke and upstroke. This is 

because of the outer wing stroke plane of the hummingbird is tilted up in the turning phase, and 

also, the figure eight motion of the outer wing is smaller comparing to that of the inner wing. For 

the wing pitching angle histories, all plots show one valley and one peak near the mid 

downstroke and mid upstroke, respectively. More importantly, the wing pitching angle histories 
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show great asymmetry between the inner and outer wings in the turning phase. The valley value 

of the inner wing pitching angle is much smaller than that of the outer wing, while the peak value 

is much greater. It leads to the average angles of attack during both the downstroke and the 

upstroke being much smaller for the inner wing. 

CFD simulation is conducted using the kinematics of the wings and the body from the three-

dimensional surface reconstruction. The time course of the averaged aerodynamic forces 

produced in the turning phase (average over the 2nd~4th stroke) are shown in Figure 7(a, b). We 

can see from Figure 7(a) that the lift coefficients for both inner wing and outer wing show two 

peaks in one complete stroke. The peaks locate at around 50% of each half stroke, and it is worth 

noting that the average values of the lift coefficient in downstroke are much higher than that in 

upstroke. This conforms to the previous conclusion made on a hovering hummingbird by Song et 

al. [13]. However, the double peaks in upstrokes, which are also reported by this paper, are not 

observed in this maneuvering case. A possible explanation for that is, due to the body motion of 

the maneuvering hummingbird, the effects of wake capture during the stroke reversal is 

weakened.  

 

 
Figure 7. Time course of lift (a) and drag (b) coefficients during the turning phase of 

hummingbird pure yaw turn. The force coefficient histories over the 3rd stroke are shown in 

solid curves. Force coefficient differences for other strokes in the turning phase with respect to 

the 3rd stroke are shown as error bars. Red and blue correspond to the inner and outer wings, 

respectively. Shaded areas stand the downstrokes and unshaded areas stand the upstrokes. 

 

Besides the lift force, horizontal force is also important in maneuvering flight since it can 

generate torque to drive the turn, especially for the pure yaw turn case. Figure 7(b) shows the 

drag coefficient history of this maneuvering flight. We can see from the plot that the horizontal 

force generated by the inner wing is always greater than that generated by the outer wing. Such 

force asymmetry in horizontal direction can accelerate the turn in downstroke and damps the turn 

in upstrokes. This half-cycle-based turning strategy is more flexible comparing to some other 

nature flyers, like the fruit flies, their wings always generate resultant torque towards the turning 

direction when they perform the maneuvering flight. It is much easier for the flyer to stop the 

turn and adopt an alternative flight motion based on what it needs, which is often the purpose of 

pure yaw turn.  

1
2

DISTRIBUTION A: Distribution approved for public release.



  

 

18 

 

 

The vortex formation over a stroke cycle (the 3rd stroke) is shown in Figure 8, in which the 

vortex structures are identified by the Isosurface of Q-criterion (Q=10). The vortex structures are 

colored by the non-dimensional pressure. The stroke cycle starts from the downstroke. Figure 8(a) 

shows the vortex structures at t/T=0.24, which corresponds to the peak of the vertical force 

during downstroke (Figure 8a). The most significant vortex structures at this moment is the 

formation of leading-edge-vortex (LEV). The LEV attaches well to the wing surface. More 

importantly, the LEV, the tip vortex (TV), the trailing-edge vortex (TEV), and the root vortex 

(RV) are connected end to end, forming a vortex loop, within which the air moves downward. A 

previously shed vortex loop (PVL) can also be observed. It was generated during the upstroke 

prior to this moment, and the PVL is connected to the newly formed vortex loop by the TEV. 

Similar vortex structures are found in hovering hummingbirds in previous studies [13-15]. 

As time advances to t/T=0.33, as shown in Figure 8(b), which corresponds to the peak of 

horizontal force in downstroke (Figure 8b), the wings are near the end of downstroke and rotate 

rapidly along their own axis. The outer wing LEV is divided into two branches, known as dual 

LEV [3], and two shed vortices, SLEV and STEV, can be identified. New vortex structures can 

be found at the outer side of the hummingbird for this time instance. The LEV, TV and STEV 

are connected with each other to form a vortex ring near the outer wing tip region. Also, the LEV, 

SLEV, TEV and RV are connected to form another vortex ring. It is worth noting that the 

directions of the vortex tube STEV and SLEV are opposite. Similarly, the PVL can be observed 

and it is connected to the later newly formed vortex ring. At the inner side of the hummingbird, 

the LEV develops and the newly formed vortex ring grow larger. However, the major vortex 

structures stay the same as we described at t/T=0.24.  

At the end of the downstroke (t/T=0.48), as shown in Figure 8(c), the dual-ring vortex 

structure at the outer side of the hummingbird still can be observed. The vortices convect further 

downstream and the PVL starts to dissipate. The dual-ring vortex structure begins to merge to a 

single vortex ring.  

During the upstroke (t/T=0.73), as shown in Figure 8(d), which corresponds to the peak of 

vertical force at upstroke (Figure 8a). The major vortex structures are similar to that at t/T=0.24, 

except for the more complex and stronger vortices due to larger angle of attack of the wings in 

upstroke (Figure 8c). At t/T=0.88, which corresponds to the peak of horizontal force at upstroke, 

the dual-ring vortex structure can be observed. Differently, it is the inner side of the 

hummingbird that presents the double loop vortex structure. At the end of upstroke, as shown in 

Figure 8(f), the dual-ring vortex structure still exists and the two vortex rings start to merge to a 

single vortex ring. 

For all time instances discussed above, the inner side and outer side of the hummingbird 

show significant asymmetry in vortex wake structures. The unique dual-ring vortex structure 

exists in the outer side during downstroke and exists in the inner side during upstroke. Such dual-

ring vortex structure is responsible for the wake asymmetry. The kinematic difference of the 

inner and outer wings may result in the unique dual-ring vortex structure, and further influence 

the wake structures of the inner and outer side of the hummingbird.  
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Figure 8. (a-f) Time course of vortex development of the 3rd stroke of the hummingbird pure 

yaw turn, visualized by the Q-criterion. The vortex structures are colored by non-dimensional 

pressure. 
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Concluding Remarks: 

A three-dimensional direct numerical simulation was performed for a maneuvering 

hummingbird with a very accurate wing and body motion reconstructed from high-speed images. 

The simulation captures the aerodynamic force and power characteristics in the entire 

maneuvering process and also details of the flow field, including the unsteady wake structures in 

both near and far field. Our results on the maneuvering hummingbird kinematics suggest that 

hummingbird sustained yaw turns by tiling up the outer wing stroke plane and suppressing the 

outer wing figure eight motion; also by increase the wing pitching angle in downstroke and 

decrease the wing pitching angle in upstroke to create wing angle of attack asymmetry between 

inner and outer wings. For the wake structures, strong asymmetric wake topology is identified. 

More importantly, a unique dual-ring vortex structure, which is the source of the wake 

asymmetry, is found in the wake of one of the two wings of the hummingbird. The dual-ring 

vortex structure corresponds to larger wing twisting and lower drag production, which creates 

unbalanced aerodynamic forces to help with the maneuver. 

 

(3) Computational investigation of cicada aerodynamics in forward flight 

 

Many aerodynamic mechanisms of force generation by flapping wings have been proposed 

based upon studies on rigid mechanical models, including wing-wake interactions and rotational 

circulation[16], delayed stall during the translation portion of the stroke [17], axial flow 

stabilized leading edge vortex (LEV) [18], and rotational accelerations [19]. Although studies on 

wing models have substantially advanced the understanding of insect’s flight, wing model has 

intrinsic restrictions such as wing rigidity and simplified kinematics. In this work, a realistic 

wing-body model a cicada (Tibicen linnei) is employed to investigate the aerodynamic 

performance and the wake patterns in insect forward flight.  

The cicada flight is reconstructed using template-based hierarchical subdivision surface 

method. Marker points on the wings are digitized in each recorded image at each time step. As 

an example, Figure 9a shows a raw picture a cicada during downstroke. Figure 9b presents a 

comparison between a real cicada and the reconstructed result. Figure 10 shows the three Euler 

angle quantifying the flapping kinematics of the forewing and hindwing.  

 
Figure 9. Real cicada and its reconstruction. (a) Raw picture; (b) Comparison of real and 

reconstructed cicada. 

 

(a) (b) 
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Figure 10. Stoke angle (0 lateral, downstroke positive), deviation angle (upward positive), and 

pitch angle (rotation around wing span, smaller than 90 when leading edge is forward) for the 

forewing (a) and the hindwing (b). 

After the model is built, we carry out the high-fidelity simulation on the cicada forward flight. 

The vortex formation over a stroke cycle is shown in Figure 11, in which the vortex structures 

are identified by the iso-surface of Q-criterion (Q=10). At the onset of the downstroke (Figure 

11a), an LEV is uniformly distributed along each leading edge. A forewing starting vortex (FSV) 

is formed along the extruded forewing trailing edge (partial of which is hooked with the leading 

edge of the hindwing). The LEV connects to the FSV through forewing tip vortex (FTV). On 

each hindwing, a trailing edge stopping vortex (TSV) is created and is about to be shed during 

the pronation. As wings further stroke down (Figure 11b), three-dimensional LEV develops due 

to the onset of wingtip vortices [20]. A hindwing starting vortex (HSV) forms at the hindwing 

trailing edge. Surrounding the cicada wing, the leading edge vortex, forewing tip vortex, and 

trailing edge vortices (FSV and HSV) all together form a horseshoe-like vortex structure. At the 

mid-downstroke (Figure 11c), the LEV is fully developed and a cone shape FTV is formed on 

the dorsal surface of the wing. The starting vortices (FSV and HSV) from the forewing and the 

hindwing are merged. Near the root of the hindwing, a wing root vortex (WRV) is generated on 

each side of the cicada. At the end of the downstroke (Figure 11d), the vortex rings are elongated. 

A strong tip vortex is developed from the hindwing (HTV), entangling with forewing tip vortices 

(FTV). At the mid-upstroke (Figure 11e), the vortices emanated from the posterior cicada body 

are elongated and intertwined with the wing root vortices. A stopping vortex (SV) shed 

forwardly during supination can also be seen. At the end of upstroke (Figure 11f), the vortex tube 

previously formed in the downstroke from the posterior cicada body has been detached, with 

each arm hooked to the vortex ring generated in the downstroke. Eventually, the vortex ring in 

each side of the body will merge with the PBV, and potentially form one big vortex ring after 

several stroke cycles. 
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(c) 

(d) 
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Figure 11. Time course of vortices development, visualized by Q-criterion. The left and middle 

columns are back view and top view respectively, and the vortex structures are colored by 

spanwise vorticity. The right column shows the structures in projection view, colored by 

streamwise vorticity. Color bars in the first row apply to figures in the same column. 

 

Figure 12a shows the velocity vector and two-dimensional streamlines in a transverse plane 

cutting through the wing and part of the body. The LEV, TXV and WRV actually form a jet 

through which strong downwash flow is induced near the mid-wing region. Figure 12b is the 

velocity vector in a transverse plane half the body length behind the cicada, at which the trailing 

edge stopping vortices (TSV) are cut. The pair of TSV approaches to the center plane due to self-

induction. The induced flow by TSVs can potentially enhance the formation and development of 

the wing root vortex, and therefore indirectly help the downwash. The wing root vortex induces 

upwash flow proximal to the hindwing and the body, but the affected region is far smaller than 

the estimated upwash region generated by bumblebees [21]. 

 

 
Figure 12. Transverse plane cut at mid-downstroke. (a) Cut through wing and body (b) Cut 

through the near wake (no wings or body being cut).  Contour of Q-criterion, velocity vector, and 

two-dimensional streamline seen from the back view.  

 

Concluding Remarks: 

Free forward flight of cicadas is investigated through high speed photogrammetry, three-

dimensional surface reconstruction and computational fluid dynamics simulations. We report 

two new vortices generated by the cicada body. One is the thorax generated vortex, which helps 

the downwash flow, indicating a new phenomenon of lift enhancement. Another is the cicada 

posterior body vortex, which entangles with the vortex ring composed of wing tip, trailing edge, 

and wing root vortices. Some other vortex features include: independently developed left and 

right hand side leading edge vortex, dual core leading edge vortex structure at the mid-wing 

region, and near wake two-vortex-ring structure. In the cicada forward flight, approximately 79% 

of the total lift is generated during the downstroke. Cicada wings experience drag in the 

downstroke, and generate thrust during the upstroke. Energetics study shows that the cicada in 

(a) (b) 
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free forward flight consumes much more power in the downstroke than in the upstroke, to 

provide enough lift to support the weight and to overcome drag to move forward. 

 

(4) New lift enhancement mechanism of wing-body interaction in cicada forward flight 

Following the above study, we further investigate the aerodynamic role of those body-

generated vortices in cicada forward flight. A new lift enhancement mechanism, which is 

associated with wing-body interaction, is found. In this work, in order to examine the effects of 

WBI, two simplified models, WN (wings-only) and BD (body-only), are created based on the 

original reconstructed WB (wing-body) model. In the WN model, the same wing kinematics are 

kept as the WB model. For the BD model, only the body with the same inclination angle as that 

of the WB model is employed. By isolating the coupling of the body and wing models, we desire 

to investigate the inherent nature of body-involved unsteady force generation mechanism by 

comparing both aerodynamic performance and associated wake structures. 

The comparisons of the instantaneous forces on the cicada body and the right wing are shown 

in Figure 13(a) and (b), respectively. In each plot, solid lines indicate simulation results from the 

WB case while dashed lines represent either the BD or WN model. The overall lift force 

produced by the wings and the body together is increased by about 18.7% according to Table 1, 

which suggests a significant aerodynamic benefit generated by WBI. This is mainly because of 

the lift increment on the cicada body, which contributes about 65% of the total lift enhancement. 

The body lift accounts for about 11.6% of the total lift generation in the WB model, whereas the 

body can only produce less than 2% of the total lift when separated from the wings and 

simulated under the same flow conditions. Therefore, the body plays a more important role in 

force generation when it interacts with the flapping wings. 

 

Table 1. Cycle-averaged lift coefficient and its enhancement due to wing-body interaction. 

LC  Single-wing Body Overall 

WB 0.415 0.109 0.939 

WN/BD 0.389 0.013 0.791 

(%)LC  6.7 738 18.7 

 

 
Figure 13. Time traces of lift and thrust coefficients of the body (a) and a single wing (b) during 

the fourth flapping cycle when both the aerodynamic forces and flow reach a periodic state. Peak 

1 and 2 in figure (a) occur at t/T=0.3 and 0.74, respectively. 
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Pressure distribution on the body and the wings are analysed. The pressure coefficient is 

defined as   20.5pC p p U  , where p  is the pressure in the freestream. The above force 

comparison indicates that the lift on the body increased a lot, so we plot the surface pressure on 

the body in Figure 14. Figure 14a is the pressure on the body in the WB model at t/T=0.3, at 

which the first peak of the body lift is observed. Two low-pressure regions on the thorax and 

posterior body can be clearly observed at this moment, which coincide with the locations of 

TXVs and PBVs, implying that they were generated by the two vortices. At the time instant 

t/T=0.74, at which the second lift peak occurs, the low-pressure regions generated by the PBVs 

disappears (Figure 14b), leaving only one low-pressure region on the body. This is because 

PBVs have already detached with the body. In addition, during upstroke, this low-pressure 

region moves to the top surface of the body and follows the movement of TXVs (Figure 14c). 

According to this analysis about the spacial and temporal change of the pressure on the body, the 

high body lift generated during downstroke is attributed to both TXVs and PBVs, while the lift 

peak which occurs at the mid-upstroke is mainly due to the TXVs. 

 

 
Figure 14. Surface pressure coefficient distribution on the body for the WB model at selected 

instants: (a) t/T=0.3; (b) t/T=0.74; (c) t/T=0.9.  

 

 
Figure 15. Pressure difference between the upper and lower wing surface ( pC ) of the right 

wing for the WB model (a) and WN model (b), respectively. (c) Shows the difference pC  of  

between (a) and (b). 
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Figure 16. Isosurface of pressure coefficient ( 0.2pC   ) at t/T=0.3 for (a) the WN model and (b) 

the WB model. Wake schematic for (c) the WN model and (d) the WB model at t/T=0.3. 

 

To compare the surface pressure on the wing, we plot the difference of the pressure 

coefficient between the lower surface and the upper surface ( pC ) in Figure 15. Figure 15(a,b) 

indicate that the overall features of the pressure on the wing in WB and WN are similar. The 

outer half of the wing, especially on the leading-edge region, generates most of the lift force. The 

difference of pC  between WB and WN is mainly located on the wing root region (see Figure 

15c). An average 6.5% enhancement in wing lift production can be found in the WB model. This 

is attributed to the aforementioned enhancement of the strength of the LEVs near the wing root. 

Isosurface contours of a low-pressure level have been plotted in Figure 16(a) and (b) for WN 

and WB, respectively, at t/T=0.3. Noticeable in both plots is a large region of low pressure right 

behind the wings which is due to the LEVs, RVs, forewing tip vortices (FTVs) and hindwing tip 

vortices (HTVs). However, for the WB model, an additional low-pressure region can be found 

behind the head and the thorax, which extends to the region between the sides of the abdomen 

and the hindwings. Figure 16(c) and (d) show the schematic of the correlation between vortex 

structures and regions of low pressure in Figure 16(a) and (b), respectively. The major vortical 

structures of the WN and WB models are identified. According to Figure 16, the extension of the 
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low-pressure region is due to the distinct and strong vortex structures, TXVs and PBVs, created 

by WBI. As a result, lift production on both the body and the wings were enhanced. More details 

about this work can be found in Ref. [22]. 

 

Concluding remarks 

The effects of wing–body interaction (WBI) on aerodynamic performance and vortex 

dynamics have been numerically investigated in the forward flight of cicadas. Flapping wing 

kinematics was reconstructed based on the output of a high-speed camera system. Following the 

reconstruction of cicada flight, three models, wing–body (WB), body-only (BD) and wings-only 

(WN), were then developed and evaluated using an immersed-boundary-method-based 

incompressible Navier-Stokes equations solver. Results have shown that due to WBIs, the WB 

model had a 18.7% increase in total lift production compared with the lift generated in both the 

BD and WN models, and about 65% of this enhancement was attributed to the body. This 

resulted from a dramatic improvement of body lift production from 2% to 11.6% of the total lift 

produced by the wing–body system. Further analysis of the associated near-field and far-field 

vortex structures has shown that this lift enhancement was attributed to the formation of two 

distinct vortices shed from the thorax and the posterior of the insect, respectively, and their 

interactions with the flapping wings. Simulations are also used to examine the new lift 

enhancement mechanism over a range of minimum wing–body distances, reduced frequencies 

and body inclination angles. This work provides a new physical insight into the understanding of 

the body-involved lift-enhancement mechanism in insect forward flight. 

 

(5) Aerodynamic effects of morphing wings in dragonfly forward flight 

 

Although some encouraging progress have been made in advance our knowledge on flapping 

morphing wings [23-25], most of the previous studies are more focused on the aerodynamic 

performance rather than the vortical structures. So far, there is still a lack of qualitative and 

quantitative descriptions on the vortex formation of deformable wings, which can lead to 

improved models for the design of biomimetic propulsors, and also provide a better understand 

of vorticity transport mechanisms of morphing wings in nature. The present work is meant to fill 

some of the knowledge gaps in this regard. The high-speed photogrammetry system, 3-D surface 

reconstruction technology and numerical simulations are used to reveal the effects of morphing 

wings of a forward flight dragonfly. Specifically, the flapping morphing wing kinematics of a 

free-flight dragonfly are measured and quantified first (see Figure 17). We then use the 

reconstructed model (original case) to explore the effects of morphing wings, first by removing 

camber while keeping the same time-varying twist distribution (twist-only case), and second by 

removing both the camber and the spanwise twist (rigid case). Numerical simulations are carried 

out using an in-house immersed-boundary-method-based direct numerical simulation solver. To 

get a better understand of the aerodynamic roles of morphing wings, the leading-edge vortex, the 

wing surface pressure distribution, and wake structures were analyzed and compared in detail for 

the model wings.  
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Figure 17. (a) Chord-lines of dragonfly forewing (dashed line) and hindwing (solid line) at a few 

instances. (b) Definition of wing orientation angles, wing stroke angle ( ) , wing deviation angle

( ) , wing pitch angle ( ) , and camber deformation (h/ c) . (c-e) Time course of wing kinematics 

of dragonfly hindwing. (c) Wing stroke angle ( )  and wing deviation angle ( ) . (d) and (e) are 

the wing pitch angles ( ) and camber deromation (h/ c)  of different sections along the wing span, 

respectively. The downstroke period is shaded as a gray color. 

Using the above-reconstructed wing kinematics, the aerodynamic forces and power required 

for the flapping motion of three hindwing models were computed using the CFD solver, as 

shown in Figure 18. The stroke plane angle of hindwings were 77with respect to the horizontal 

plane, which indicates that the hindwings flapped with nearly a vertical stroke. Therefore, the 

positive vertical force was typically created during the downstroke, and slight negative force was 

formed during the upstroke. The magnitude of the instantaneous vertical of the twist-only wing 

was smaller than that of the rigid wing, as clearly shown in the middle position of the stroke 

when the twist angle of the hindwing was largest. The instantaneous vertical force of the original 

wing with camber variation was similar to that of the twist–only wing during the downstroke. 

Due to the cruising motion, the force component in the horizontal direction is close to zero, and 

only slight thrust was produced for compensating the body fraction drag during the upstroke. The 

aerodynamic power consumption in the plot shows that the rigid wing requires more energy for 

flapping in comparison with the other models. 

(b) (a) 

(c) (d) (e) 
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Figure 18. Time course of lift (a), thrust (b) and power (c) of the hindwing. 

 

Concluding remark 
More details about this work can be found in Ref. [26]. Major contributions are summarized 

as follows. In this study, a high-speed photogrammetry system, 3-D surface reconstruction 

technology and numerical simulations are used to reveal the effects of morphing wings of a 

cruising dragonfly. Specifically, the flapping morphing wing kinematics of a free-flight 

dragonfly are measured and quantified first. We then used the reconstructed model to explore the 

effects of morphing wings, first by removing camber while keeping the same time-varying twist 

distribution, and second by removing both the camber and the spanwise twist. Our simulation 

results revealed that the surface deformation can improve the aerodynamic functions in two ways: 

1) improving the power economy by preventing the tip vortex bursting; and 2) improving the 

leading-edge vortex attachment by suppressing the generation of the secondary vortex. As a 

result, the spanwise twist can boost the aerodynamic efficiency up to 20%, especially during the 

wing translational phase. 

 

 

 

 

(6) Aerodynamics of a dragonfly turning maneuver 

 

Clever maneuvers can be commonly observed in insect flight for capturing food and/or 

avoiding predators. Unlike most other insects such as flies, wasps and cicadas either reduced 

their hind-wings or mechanically coupled fore and hind wings, dragonflies have maintained two 

independent-controlled pairs of wings throughout their evolution [27]. Their neuromuscular 

system allows them to actively change many aspects of wing motion in a single wing, such as the 

angle of attack, stroke amplitude, and stroke plane. Most previous studies of are focused on the 

aerodynamics of dragonfly-like tandem wings in steady flight motion. Although the unsteady 

free flights of dragonflies have also been studies [28-30], their works were limited on reporting 

the wing kinematics and associated flight dynamics. The present effort is meant to fill some of 

the knowledge gaps in this regard. Specially, a high-speed photogrammetry system and 3-D 

surface reconstruction technology [1] are used to reveal dragonfly wing kinematics during a 
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turning maneuver flight (see Figure 19). The aerodynamic performance and the flow structures 

(see Figure 20) is then studied using an in-house immersed-boundary-method-based 

computational fluid dynamics (CFD) solver. This work aims to investigate the aerodynamic 

characteristics of forewings and hindwings and its associated forewing-hindwing interaction 

effects in a turning maneuvering motion. 

 
Figure 19. Motion reconstruction of dragonfly taking-off maneuver. The side panels show 4 of 

110 frames recorded by high-speed videography. 

More details about this work can be found in Ref. [26]. Major contributions are summarized 

as follows. The asymmetrical wing kinematics generate unbalanced forces in both vertical and 

horizontal directions. During the downstroke, the force generated by the outer wings are higher 

than inner wings. By contrast, the inner wings generate higher forces during the upstroke. The 

surface pressure distribution shows that the majority of the force is generated around the leading-

edge. The unbalanced forces lead to the torques along its body axis in three directions. 

Specifically, both forewings and hindwing contribute to the roll torque generation, whereas 

forewings are dominant in generating pitch and yaw torques. To examine the effect of forewing-

hindwing interaction on the aerodynamic performance, two additional cases, one with forewings 

only and the other with hindwings only, are carried out. Our results indicate that the interaction 

can lead to a slight forces reduction, but can save the aerodynamic power up to 11%. 
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Figure 20. 3-D vortex structures in the flow during the early turning motion, where the time 

stamp from (a) to (d) is 23, 29, 35 and 40 ms. The vortex loop from the downstroke is marked by 

dashed. 

 

 

 

2.3 Low-dimensional Modeling and Analysis of the Morphing Wing Kinematics 

 

1) Spherical-coordinates-based Singular Value Decomposition (SSVD) 

 

Singular value decomposition (SVD, also known as POD or PCA in some fields of 

application) is a powerful method for data analysis aimed at obtaining low-dimensional 

approximate descriptions of a high-dimensional process or dataset [31]. The most remarkable 

feature of the SVD is its optimality: it provides the most efficient way of capturing the dominant 

components of any dataset with only a finite and often surprisingly few numbers of modes. In 

gait analysis, PCA has yielded insights into human walking strategies and the interrelationships 

in terms of temporal, kinematic and kinetic variables. Urtasun and colleagues [32] have used 
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PCA to identify invariant or common features within the whole body kinematics of a 

contemporary dance movement pattern. For animals in nature, Bozkurttas and colleagues [33] 

have used SVD to study the pectoral fin kinematics and its associated aerodynamics of bluegill 

sunfish. Representing the motions as a linear sum of principal components has become a widely 

accepted animation technique [34, 35]. SVD and other similar methods are closely related, and 

the close connections and equivalence of these various methods can be found elsewhere [31].  

SVD can be considered as an extension of the traditional eigenvalue decomposition for the 

non-square matrix, which contains dataset that represent the wing motion in both time and space. 

Displacements of all m  nodes on the wing surface at n  distinct instants in time are stored in this 

matrix, named displacement matrix. The displacement matrix (denoted by A ) is as follows: 
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A                                                    (8) 

The displacements stored in above matrix are calculated as follows: 

 

t t ref

i i i
t t ref

i i i
t t ref

i i i

r r r

  
  

  

  
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                                                                (9) 

where  , ,t t t

s s sr     denote the coordinates of the node s  at time instant t . Note that the spherical 

coordinate system is used here.  , ,ref ref ref

i i ir     denote the coordinates of the node i  at a specific 

reference time instant. An SVD of the displacement matrix A  can then be factorized as 

 3 3 3 3

T

m n m m m n n n   A U S V                                                         (10) 

where 
3 3m mU  and 

T

n nV  are two orthogonal unitary matrices; 
3m nS  is a diagonal matrix in which 

the diagonal values are called the singular values of A , which are unique. The diagonal elements 

iiS  consist of  min ,r m n   non-negative numbers 
i  , which are arranged in descending order, 

i.e. 
1 2 0n      . Within the SSVD procedure, the 

i  values are the square roots of the 

eigenvalues of 
T

AA , whereas the eigenvectors of 
T

AA  make up the columns of U  and T
V  

respectively. In the above expression, V  represents the change in each mode with time, and U  

contains the eigenvectors corresponding to the spatial distribution of the modes. The singular 

values 
i  can be interpreted as the weight contributions of each mode in the SSVD. Thus, the 

‘shape’ of any particular mode (say the kth mode) can be extracted by zeroing out all the singular 

values except for the kth value, and reconstructing from the SVD as in Eqn(10). Similarly, lower 

dimensional (say rank K n ) approximations to the dataset can be obtained by using an 

approximation to S  denoted by 
KS  wherein 

1 2 0K K n        and reconstructing from the 

SSVD as follows: 

 
T

K KA US V                                                                  (11) 

 

2) Low-dimensional Morphology Analysis of Flapping Wing Flight in Nature 
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In this section, we will first show details of the SSVD for the forewing motion of a hovering 

dragonfly. The displacement matrix A  is now subjected to SSVD. In the following part, the 

forewing motion of a hovering dragonfly will be used to demonstrate the decomposition results. 

30 snapshots of the wing motion for one complete flapping cycle are used in the decomposition. 

As expected, the SSVD leads to 30 distinct singular values, and the spectrum for the first ten 

singular values of the wing motion is shown in Figure 21 along with a cumulative plot for the 

same data. The normalized singular value for kth mode 
*

k  is defined as: 

 
*

1

/
n

k k i

i

  


                                                                    (12) 

The singular values are normalized by the sum of all singular values. Therefore, the 

cumulative values sum to unity. A number of interesting observations can be made from this plot. 

First, the singular value spectrum shows three distinct ranges: the first between mode 1 - 2, in 

which we see a rapid decrease in the amplitude, the second from mode 2 - 4 in which there is a 

much slower reduction in amplitude and, finally, the range from mode 4 - 30 that has negligible 

(less than 2%) total contribution. The rapid initial decrease in the spectrum is significant which 

suggests that a small number of modes contain most of the essential features of the wing gait. In 

fact, the cumulative values show that the first two and three modes capture about 93.1% and 96.0% 

respectively of the total motion. In fact, only the first mode captures close to 84.7% of the 

motion of the wing, which is a clear demonstration of the ability of SSVD to represent the 

dataset with the least possible number of modes. 

The gait corresponding to individual modes can be extracted as described above, and the 

surface conformations for each of these extracted modes are then constructed using the original 

wing mesh with triangular elements. The first two modes are highly distinct and relatively easy 

to interpret, and we briefly describe the key qualitative features of these modes. Figure 22(b, c) 

shows mode 1 and mode 2 at five different times during one flapping cycle. Also shown on the 

left for direct comparison are the wing motion from the experiment (also called the ‘mode-all’ 

case, since it contains all the SSVD modes). In these figures, the colors reflect wing deformation 

by plotting contours of distances between vertices on the wing surface to the corresponding least 

square plane of the wing. Mode 1 involves very large rotating motion about the wing root, which 

is called the ‘flapping’ motion. The wing flaps back and forth with certain offset angle. And also, 

the mode one shows minimum deformation during the stroke. This mode is actively produced by 

the dragonfly through flight mussels at the wing root.  
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Figure 21. The SSVD spectrum of the first ten modes for the dragonfly right forewing kinematics. 

The left ordinate shows /
i i
  , and the right ordinate shows the cumulative value of the left 

ordinate. 

 

 

 
Figure 22. Wing motions of (a) experimental kinematics (also called the mode-all case), (b) 

SSVD mode 1, (c) mode 2 and (d) low-dimensional model mode 1+2. The wings are colored 

with distances between wing surfaces and corresponding least square planes. The distances are 

normalized by wing mid chord length. 

 

Mode 2 is a twisted motion primarily in the span-wise direction, which occurs along the span 

axis of the wing. It presents as chord-wise rotations of the wing during the reversal phase. In 

contrast to mode 1, this mode is primarily a result of flow-induced deformation. It can be 

deduced from the fact that there are no muscles in the wing surface that could produce 
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deformation in the wing. Furthermore, the deformation is primarily in the direction of the flow 

relative to the wing motion, which supports the assertion that this mode is flow-induced. The rest 

of the modes in the spectrum are associated with relatively small motions that are not very 

distinct. We, therefore, do not describe these individually, although we will consider the effect of 

mode 3 on the aerodynamics in the following sections. 

SSVD has decomposed the wing motion into its orthogonal components and helped us 

understand the key features of the nature flyers wing motion. The SSVD results can also be used 

to reconstruct low-dimensional approximations of the mode-all case using a subset of the 

orthogonal modes. Lower dimensional models of the wing gait are synthesized by successively 

adding modes to Mode 1. The forewing motion of a hovering dragonfly is used to demonstrate 

the method. Figure 22(a, b, d) shows the surface snapshots at four different time instances during 

one flapping cycle for mode 1 and mode 1+2 in comparison to the complete (mode-all) motion. 

The similarity between the wing shapes for Mode 1+2 and the Mode-All/experiment cases is 

evident in this figure. Removal of higher SSVD modes from the motion is analogous to filtering 

the experimental data in space and time. 

The SSVD analysis suggests one natural approach to the development of the robotic wing. 

Since a small number of modes capture a significant portion of the motion, it stands to reason 

that a systematic procedure for developing a robotic wing would involve designing actuation 

mechanisms that reproduce a small number of these modes. The question that remains to be 

answered is what kind of performance can we expect from these lower dimensional wing models, 

and how does the performance scale as we include additional modes? This will allow us to make 

a rational compromise between the complexity of wing design and wing performance. It should 

be noted here that the performance is a consequence of the flow associated with these low-

dimensional wing models. Thus, even though the modes are kinematically linear (and therefore 

additive), the performances are not expected to scale linearly with the modes since the flow is 

governed by the Navier-Stokes equations that are nonlinear. Thus, the answer to the above 

question requires that we explicitly determine the performances for these low-dimensional wing 

models. The following sections describes our approach to answering this question. 

We further study the effects of increasing the dimensionality of the forewing motion of the 

hovering dragonfly on the aerodynamic performances. The effects of model dimensionality on 

the quantitative characteristics of the wing are investigated, including force production and lift 

economy. 

The time variations of lift, drag and power coefficients are presented for all the low-

dimensional gaits and compared to the mode-all case in Figure 23(a - c), respectively. Several 

observations on how each SSVD mode contributes to the performances of the wing can be made 

from these results. It should be noted that only mode 1 can be simulated by itself. However, 

given the underlying nonlinearity of the flow, the contribution of mode 2 and mode 3 are 

investigated by considering the differences in the performances from the lower-level gait. Thus, 

the effect of mode 2 on performance is obtained by analyzing the differences between the 

performances of the mode 1 and mode 1+2 cases. Similarly, the effect of mode 3 on wing 

performances can be assessed by comparing the performances of the mode 1+2+3 case with that 

of the mode 1+2 case. 

DISTRIBUTION A: Distribution approved for public release.



  

 

36 

 

 

 
Figure 23. Comparison of the time variation of aerodynamic performances between the mode-all 

and low-dimensional gaits. (a) lift; (b) drag; (c) power. 

 

Table 2. Cycle averaged aerodynamic performance of the mode-all and low-dimensional 

gaits. 

 * (%) 
LC  DC  PWC    Lift production 

(%) 

Mode-all 100 0.752 1.021 0.776 0.969 100 

Mode 1 84.7 0.149 1.464 1.087 0.137 19.8 

Mode 1+2 93.1 0.749 1.100 0.818 0.916 99.6 

Mode 1+2+3 96.0 0.750 1.082 0.813 0.923 99.7 

 

As we can see in Figure 23 that the aerodynamic performances are very similar for all cases 

except for the mode 1 only case. For the lift production, Figure 23(a) shows that all cases 

produce positive lift except for mode 1 case, which negative lift can be observed during the 

upstroke. Also, the lift production for mode 1 case during downstroke is much smaller (about 2.5 

times smaller) than other cases. For the drag production, Figure 23(b) shows that the drag is 

much higher for mode 1 only case during the downstroke. For upstroke, the drag productions are 

very similar for all cases. These are because the lack of wing rotation about the span axis, which 

is included in the deformation mode (mode 2). During the downstroke, the wing angle of attack 

for mode 1 case is much greater than other cases, and it leads to less lift and more drag 

production (Figure 23b). During the upstroke, the wing angle of attack for mode 1 case is greater 

than 90 degrees due to lack of wing rotation about the span axis, and negative lift produces at 

this phase. The involvement of the deformation mode (mode 2) can greatly improve the lift 

production and reduce the drag produced by the wing. 

For the aerodynamic power histories (Figure 23c), we can see that all cases present two peaks 

during the cycle, and the amplitude of power consumption for mode 1 case is much greater than 

other cases at both down and upstrokes. This suggests that involving the deformation mode 

(mode 2) can also reduce the power consumption of the dragonfly.  

Cycle averaged aerodynamic performances are listed in Table 2. We can see from the table 

that mode 1+2 is a good approximation of the original wing motions mode-all. It contains only 

two dominant SSVD modes, and the motion is recovered over 90%. The associate aerodynamic 

(a) (b) (c) 
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performances of mode 1+2 case are very similar to the mode-all case as. The lift production is 

recovered 93% of the original motion.  

For the wake structures, we cut slices along the wingspan to see the leading edge vortex 

structures and measure the associated circulations evaluated at each slice. Figure 24 shows the 

corresponding results. We can see from the figure that for all cases, the LEV shapes gradually 

grow bigger from the wing root to wing tip. More importantly, the corresponding vortex 

structures are very different in mode 1 only case comparing to other cases. The LEV shapes are 

much bigger, and the associated attachment is bad in mode 1 case. For other cases, the LEV 

shapes are similar. Small differences can be observed near the wing tip region. At mid 

downstroke (t/T=0.25), the LEV attachment is pretty good for all cases except for the mode 1 

only case. However, at mid upstroke (t/T=0.75), the LEV attachment is not as good as that at mid 

downstroke.  

 
Figure 24. 2D slices of the leading edge vortex along the wingspan (10%~90%) at two time 

instances for (a, b) mode-all, (c, d) mode 1, and (e, f) mode 1+2 cases. The corresponding vortex 

center are marked with green dots at each slice. The contours represent normalized span-wise 

vorticity. 

(a) (b) 

(c) 

(e) 

(d) 

(f) 
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Quantitative measurements related to the LEV attachments of all cases discussed above are 

conducted. We first determine the LEV centers based on vortex shapes shown in Figure 24. After 

that, we measure the distances, which are named as lift-off distances, between LEV centers 

(green dots) and the wing surface to evaluate the LEV attachments. Figure 25 shows the results 

at mid downstroke (t/T=0.25) and mid upstroke (t/T=0.75). For the mode 1 only case, the lift-off 

distances are much higher than other cases in both time instances, which indicates bad LEV 

attachment. In addition, the ranges of the lift-off distance are much wider in mode 1 only case for 

both time instances. It ranges from 0.15 chords to 0.55 chords at mid downstroke, and from 0.20 

chords to 1.09 chords at mid upstroke. Moreover, at mid downstroke, a small peak of lift-off 

distance shows up at 60% span and then drops at 70% span, which corresponds to the shed of 

LEV at 70% span in Figure 24(c).  

For the mode-all and mode 1+2 cases, the lift-off distances are quite similar. The differences 

are less than 8% and 10% for each span location at mid downstroke and mid upstroke, 

respectively. More importantly, at both time instances, two distinct ranges of the lift-off 

distances can be observed. The first range is from 10% to 60% span, where the lift-off distance 

increases slowly. It suggests that the LEV attached pretty well with this range. The second range 

is from 60% to 90% span, where a rapid increase in lift-off distance can be observed. The LEV is 

lifted by the tip vortex and starts to merges with the tip vortex at this point.  

 

 
Figure 25. Distances of LEV center to the wing surface (lift-off distances) at (a) t/T=0.25 and (b) 

t/T=0.75 for mode-all, mode 1, and mode 1+2 cases. 
 

The lift-off distances at mid downstroke are almost twice as much as that at mid upstroke for 

all cases and span locations, which indicates that the LEV attachment at downstroke is much 

better than upstroke. 

Quantitative measurements of LEV circulation distributions along the wingspan are also 

performed for all cases discussed above based on the 2D flow slices shown in Figure 24. Figure 

26 shows the corresponding results at mid downstroke (t/T=0.25) and mid upstroke (t/T=0.75). 

The circulation is calculated and normalized as follows: 

 *

S
ref

c
d

U
   S                                                              (13) 

Where S  stands the surface of LEV shapes shown in Figure 24;   is vorticity on S ; refU  is 

reference velocity, which is chosen as the average velocity of wing mid chord; c  denotes the mid 

(a) (b) 
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chord length. We can see from Figure 26 that the LEV circulations of mode-all, mode 1+2 and 

mode 1+2+3 cases are very close. The difference is less than 7% at mid downstroke and 3% at 

mid upstroke. For all cases, the LEV circulations gradually increase from the wing root to wing 

tip and drops a little bit near the wing tip region. Maximum circulation can be observed at around 

80% span, and the corresponding value for mode 1 only case is about 1.5 and l.3 times larger 

than that of other three cases at mid downstroke and mid upstroke, respectively.  
 

 
Figure 26. LEV circulations at (a) t/T=0.25 and (b) t/T=0.75 for mode-all, mode 1, and mode 

1+2 cases. 

 

In summary, we have studied three-dimensional flows around the forewing of a hovering 

dragonfly in this section, focusing on the effects of model dimensionality. Both qualitative 

observations and quantitative measurements are performed. The results show that for cases of 

mode-all, mode 1+2 and mode 1+2+3, the wake structures in both far and near field are similar, 

while significant differences can be found in mode 1 only case. Quantitative measurements of 

the flow field at two time instances (t/T=0.25 and 0.75) are performed in all cases, including the 

LEV lift-off distances and circulations. The results show the similarity in all cases except for the 

mode 1 only case, which has much greater LEV lift-off distances and circulations.  

 

Concluding Remarks: 

In this work, a combined experimental and computational method is developed to study the 

complex morphing wing kinematics and its associated aerodynamics of a hovering dragonfly. 

SSVD analysis shows that the wing motion can be described by only three dominant modes. The 

first two dominant modes, which contain 93.1% of the total motion, are highly distinguishable. 

The mode 1 (flapping mode) consists of a simple flapping motion, and the mode 2 (morphing 

mode) contains morphing in span-wise and chord-wise directions. The simulation results show 

that with the help of the mode 2, the lift production and lift economy are greatly improved 

comparing to the mode 1 only case. Also, the mode 1+2 case can recover 96% of the lift 

production and 91% of the lift economy of the original case. By studying the unsteady flow field 

of all cases, we conclude that the SSVD mode 2 can greatly reduce the large tip vortex found in 

the mode 1 only case. In addition, the leading edge vortex attachment is greatly improved for the 

cases with the mode 2. 

 

(a) (b) 
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2.4 Optimization of Low-dimensional Morphing Wing Models 

 

In this section, we investigate the optimal configurations of dominant modes on aerodynamic 

performance for the dragonfly wing. Figure 27 shows the convergence histories of the three 

design variables, 1W , 2W , and  . The objective functions are chosen as the cycle averaged lift 

coefficient and the lift efficiency. The initial guesses of the design variables correspond to the 

low dimensional model Mode 1+2 ( 1 1W  , 2 1W  , and 0  ). We can see from the figure that 

the two optimization case converge within 6 iterations. 

 
Figure 27. Convergence history for design variables (a) 1W , (b) 2W , and (c)   of the two 

optimization cases. 

 

Figure 27 shows the time histories of aerodynamic performance of the two optimization 

cases along with the case of low dimensional model Mode 1+2 for comparison. We can see that 

the case Opt LC  shows largest amplitude of the lift production during the downstroke among the 

three cases, while the case Opt   presents lowest of that. During the upstroke, the case Opt   

shows largest amplitude of the lift production among the three cases, while the case Mode 1+2 

(a) (b) 

(c) 
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presents lowest of that. For the power consumption, the case Opt   shows the lowest power 

consumption.  

 
Figure 28. Comparison of the time course of aerodynamic performance of Mode 1+2 and 

optimized wing gaits. (a) Lift; (b) power. 

 

Table 3 lists the cycle averaged aerodynamic performance for the two optimum cases and the 

case Mode 1+2. Comparing to the case Mode 1+2, the thrust production of the Opt LC  case is 

increased by 7.7%, and the propulsive efficiency of the Opt   case is increased by 51.6%. The 

SSVD modes can greatly improve the aerodynamic performance of the flapping wing, especially 

for the lift efficiency.  

 

Table 3. Cycle averaged hydrodynamic performance of Mode 1+2 and optimized wing gaits. 

 

Cases 
LC  PWC    

Mode 1+2 0.750 0.818 0.917 

Opt LC  0.808 0.730 1.107 

Opt    0.738 0.531 1.390 

 

Figure 29 shows the wake structure at the t/T=0.27 (near the mid downstroke) and t/T=0.73 

(near the mid upstroke) of the three cases. We can see that the general wake structures are similar 

for all the cases. However, the case Opt LC  shows the strongest LEV and case Opt   shows the 

weakest wing tip vortex. 

(a) (b) 
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Figure 29. Wake structures for the (a) Mode 1+2, (c) Opt LC , (e) Opt   at t/T=0.27; wake 

structures for the (b) Mode 1+2, (d) Opt LC , (f) Opt   at t/T=0.73. 

 

 

 

(a) (b) 

(c) 

(e) 

(d) 

(f) 
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Concluding Remarks: 

In this work, we have investigated the optimal configurations of dominant SSVD modes on 

aerodynamic performance for the dragonfly wing. The optimized low dimensional wing models, 

which can beyond biological levels of aerodynamic performance, are obtained. The associated 

flow mechanisms are found to be the improved LEV strength and the reduced TV strength. 

 

 

 

3 Adjoint Optimization  
 

The mechanism of flapping-wing aerodynamics provides an efficient way to generate necessary 

lift and thrust and is the most common way of flying adopted by birds and insects. In comparison 

to other flying mechanisms used by nature’s flyers and artificial flying machines, flapping shows 

many attractive characteristics such as agility, hovering capability, efficiency at low Reynolds 

number, etc. Although some understanding is achievable through carefully designed numerical 

simulations [[36] Dong, H., Mittal, R. & Najjar, F. 2006 Wake topology and hydrodynamic 

performance of low aspect-ratio flapping foils. J. Fluid Mech. 566, 309–343. 

-40], the problem’s large parametric space prevents further physical understanding and 

optimization through a direct parametric study.  

To achieve an understanding of all the control parameters, one often chooses to reduce the 

complexity of the physical model and/or the size of parametric space. Based on a quasi-steady 

model with 11 control parameters, Berman & Wang [41] were able to use a hybrid algorithm of 

the genetic method and simplex method to minimize the power consumption of insect flights. 

Ghommem et al. [42] used an unsteady vortex-lattice method and a deterministic global 

optimization algorithm for the optimization of flapping wings in forward flight with active 

morphing, where only 4–8 parameters were considered. Milano & Gharib [43] applied a genetic 

algorithm in an experimental setting to maximize the average lift from a flapping flat plate by 

limiting the number of control parameters to only 4. Trizila et al. [44] has used a combined 

approach with numerical simulation and surrogate modelling to explore a three-parameter design 

space for a three-dimensional plate in hovering motion. Building a map of the entire desire space 

is useful for some problems but may not be necessary for others. On the other hand, the 

computational cost was still high even with a surrogate model and prevents the study from 

including more parameters, and the accuracy was limited by the surrogate model. There have 

also been efforts to use gradient-based methods for optimization. Tuncer & Kaya [45] and 

Culbreth, Allaneau & Jameson [46] used a gradient-based method to optimize the flapping-wing 

motion for better thrust and efficiency. They used direct numerical simulation for each set of 

control parameters and then computed the gradient of the cost function subject to the 

perturbation of parameters directly by finite difference. Since all parameters were evaluated 

individually and required their own simulation, the process became extremely expensive, and the 

former work was limited to 4 parameters and the latter included cases of from 1 to 11 parameters. 

Different from the above works, an adjoint-based method is capable of obtaining the gradient 

information simultaneously for an arbitrary number of input parameters by one single 

computation in the adjoint space. Consequently, the total computational cost to obtain the 

sensitivity of a cost function to all control parameters is independent of the number of control 

parameters. Thus an adjoint-based method is suitable for the sensitivity analysis and optimization 
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of problems with a large input space but a small output space, such as the study of kinematics 

and deformation of flexible flapping wings. Depending on the order of applying the 

discretization and adjoint formulation, there are two types of adjoint approaches: the continuous 

approach [47,48] and the discrete approach [49,50]. Nadarajah & Jameson [51] and Collis et al. 

[52] have discussed the pros and cons of the two approaches. In the current work, we take the 

continuous approach for its simplicity and clarity in the governing equation for adjoint space, 

which has mathematical terms which may be interpreted as representing the generation, 

convection and dissipation of adjoint variables [53]. However, use of the continuous adjoint 

approach on flapping wings has been scarce because of the difficulty in defining the perturbation 

at a moving or deforming boundary [54]. In their work of applying an adjoint-based method to 

obtain the gradient information for the shape optimization of a plunging airfoil, Nadarajah & 

Jameson [55] used a mapping function to transfer the physical domain with a moving boundary 

to a computational domain with a fixed boundary so that traditional adjoint-based methods for a 

fixed domain can be directly applied (and the trouble relating to the moving boundary is 

avoided). Although the idea was straightforward, the mapping function increased considerably 

the complexity of the formulation even for their simple case where only the shape (as a steady 

function) of a rigid flapping airfoil was optimized. In other words, Nadarajah and Jameson were 

only able to optimize the steady part of an unsteady mapping function. When the moving 

trajectory and dynamics morphing (as an unsteady function) need to be optimized for a flapping 

wing, the complexity reaches a much higher level and yields the mapping-function approach 

infeasible. To deal with the increased complexity introduced by an unsteady morphing domain, 

we choose to apply non-cylindrical calculus [54,56] to derive adjoint equations directly in a 

morphing domain and to optimize the moving boundary in its original space without using a 

mapping function. The advantage of choosing non-cylindrical calculus over the unsteady 

mapping function has been demonstrated by Protas & Liao [56] with a comparison of the two 

approaches in deriving the adjoint equation for a one-dimensional heat equation with a moving 

boundary. 

Using a continuous adjoint approach to handle the large parametric space and non-cylindrical 

calculus to handle the moving boundary, we can study the optimal moving trajectory and 

arbitrary deformation of a flapping wing. The optimal solutions of different configurations (a 

two-dimensional rigid flapping plate, a two-dimensional flexible flapping plate, a three-

dimensional rigid flapping plate and a three-dimensional flexible flapping plate) for different 

control goals (thrust performance, propulsive efficiency and lift performance in hovering) 

provide a unique opportunity to understand the flapping-wing mechanism and the role of 

flexibility through a detailed comparison of optimal and non-optimal controls, corresponding 

flow fields and other aerodynamic performance indicators. 

 

3.1 Governing equations for adjoint optimization 

 The basic derivation and notation of the continuous adjoint equations are similar to those 

used by Bewley et al. [47] and Wei & Freund [48], although those works dealt only with 

problems with a fixed domain. The inclusion of non-cylindrical calculus to formulate the adjoint 

equations a with morphing domain or moving boundary has been suggested by Moubachir & 

Zolesio [54] within a mathematical framework only and later by Protas & Liao [56] with 

numerical implementation for simple problems (e.g. the one-dimensional heat equation). We 

followed the same idea and extended its application to work for the Navier–Stokes equations.  
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1) Governing equation and cost function 

 

Though the approach is not limited to a particular shape or motion, for the convenience of 

discussion, we consider a scenario where a plate is plunging and/or pitching with a prescribed 

velocity V(t). The flow dynamics is described by the incompressible Navier–Stokes equations, 
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where Ω denotes the fluid domain, S denotes the solid boundary, the primary variable q=[u, p] 

for pressure and velocity, the operator 

  2

2

( ) , 0,

i

i

i ji i

j j i

u

x
N F

u uu u p

t x x x


 
 
  
   
   
     

q  

For demonstration purpose, we pick a simple cost function J, which is to minimize the 

overall difference between the velocity u at a downstream region Ω0 and a target velocity 𝐮Ω0
in 

that region for time period (0, T): 
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This choice of cost function provides the convenience of having an obvious optimal solution: 

𝐮 = 𝐮Ω0
, which makes an easy validation of the approach. 

 

2) Adjoint equation and gradient calculation 

 

Introducing non-cylindrical calculus to define the boundary perturbation and adjoint 

variables q*=[u*, p*] and Z*are as Lagrange multipliers, we get derive the adjoint equation with 

controls for moving boundary: 
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where 
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The above formulation defines the adjoint equations with a set of desirable boundary and 

initial conditions, where t=T is considered the ‘initial’ time, since the adjoint system typically 

evolves backwards in time. With the definition of the adjoint system, the gradient is given by:  
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When the control is related to the change of boundary location and corresponding velocity, it 

provides a way to compute gradient information as a function of adjoint solutions only.  

It is noticed that the first term in the gradient is for the perturbation of the boundary velocity 

and is the same as the term derived by the traditional approach for a fixed domain (which can 

still have velocity control on the boundary), and the second term is for the domain variation and 

is unique for a moving boundary/domain and the current approach. 

 

3.2 Numerical algorithm 

 

We applied different moving-boundary treatments to compute the forward (physical) flow 

field and the backward (adjoint) ‘flow’ field, including (i) immersed boundary method [57], (ii) 

arbitrary Lagrangian–Eulerian method [58] and (iii) for simple rigid cases, a moving reference 

frame algorithm [59]. The numerical simulations using different boundary treatments yield 

similar results and efficiency. 

A staggered Cartesian mesh with local refinement through stretching functions is chosen for 

the benefit of both computational efficiency and numerical stability. We apply a second-order 

central difference scheme for spatial discretization, a third-order Runge–Kutta/Crank–Nicolson 

scheme for time advancement and a typical projection method for incompressible flow 

conditions [60]. With the similarity shown in the form of adjoint equations and flow equations, 

we apply similar numerical algorithms to solve the adjoint equations backwards in time, which 

leads to similar computational cost for the adjoint computation. 

The gradient can be achieved after both the flow and adjoint equations are solved once. In 

some cases, when the control space is large and the gradient is not smooth, it may be necessary 

to apply a Sobolev inner product or Savitzky–Golay smoothing filters to smooth out the gradient. 

Meanwhile, in the main iteration to update the gradient, the Polak–Ribiere variant of the 
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conjugate gradient method is used; within each main iteration, Brent’s method is used to 

determine the optimal step size along each direction and this process requires a couple of 

subiterations. 

 

3.3 Validation of adjoint-based optimization solution and gradient information 

 

To assure the accuracy of the current approach, in this section we first compare the optimal 

solution given by the adjoint-based algorithm to a known optimal solution, then make a further 

comparison between the gradient information computed by the adjoint approach and the gradient 

computed by a ‘brute-force’ finite difference approach. 

Here, we consider a rigid plate plunging normally to an incoming flow. The control ϕ is the 

plunging velocity at each individual time moment. We pick the same cost function as discussed 

in section 3.1 for easy validation. 

 
Figure 34. A typical snapshot showing the plunging plate, the flow and the observation region. 

 

For validation, we first perform a simulation while using the target control ϕ0, and record the 

velocity field  𝐮Ω0
 in Ω0  as the target velocity. With some arbitrary initial control ϕ1 , the 

velocity in Ω0 is u. The difference between u and 𝐮Ω0
, as indicated by the cost function, should 

drive the control to match ϕ0 if the optimization algorithm works. 

Figure 35 shows the performance of the optimization algorithm by: (i) checking the change 

of the cost function and the gradient norm (to show the local slope of the control space) with the 

number of iterations; (ii) a direct comparison of the control functions (the initial ϕ1, the target 

ϕ0 and the optimal ϕp). The cost function value is reduced by an order in only 2 main iterations 

(with several line-minimization steps for each main iteration) and by an order of 103 in 12 main 

iterations; the local gradient norm is also reduced by an order of 102 and reaches a ‘flat spot’ in 

12 main iterations. At the same time, the control is changed from the initial ϕ1 to the optimal ϕp. 

As we can expect from the reduction of the cost function, the optimal control matches very well 

with the target control until approximately t=8. The control cannot be improved much after t=8 

because of the information delay due to the distance between the observation region Ω0, where 

the cost function is defined, and the plate, where the control is applied. The travelling time 

between these two points would require the simulation and the cost function to include future 

events at t > 10 in Ω0 for optimization of the plate velocity in the time period 8<t <10. 

To further confirm the accuracy of the gradient (and the associated efficiency for the 

optimization), we validate the gradient information itself by a comparison between the gradient 

obtained by the adjoint approach and the gradient computed directly by a finite difference 

approach. The finite difference approach perturbs the control with a small value at each time 

moment individually and calculates the gradient directly. Although the direct approach is 

straightforward and considered accurate, its computational cost is proportional to the number of 

control parameters. Figure 36 then compares the gradients computed by the adjoint method with 
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the ones computed by the finite difference method, which shows good accuracy with 

extraordinary time saving. 

To test the sensitivity of the algorithm to initial values and verify its independence of a 

particular function format, we run the same test with the same target control but with a very 

different initial control. As it is shown in figure 37, the same convergence rate is observed, and 

the same optimal solution is reached (for the controllable time region). 

 
Figure 35. Adjoint-based optimization for the plunging velocity: (a) change of the cost 

function J and the gradient norm |g| with the number of iterations; (b) comparison of the 

initial control ϕ1 (– – – –), the target control ϕ0 (— . —) and the optimal control ϕp (——). 

 
Figure 36. Comparison of the gradient g between the values computed by the adjoint method 

(line) and the finite difference approach through direct perturbation (square). 
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Figure 37. Adjoint-based optimization for the plunging velocity with a different initial control. 

 

3.4 Applications to optimize the kinematics and deformation of flapping wings 

In this section, the adjoint-based algorithm is applied to three cases: (i) a rigid plate in 

combined plunging and pitching motion with an incoming flow; (ii) a flexible plate in plunging, 

pitching and prescribed deformation with an incoming flow; (iii) a three dimensional (rigid or 

flexible) plate in hovering motion. For the first two cases, the control goals are drag reduction 

(i.e. thrust enhancement) and propulsive efficiency improvement; the control parameters include 

the phase delay between the plunging and pitching (for the rigid plate) and the phase delay and 

amplitude of the pitching motion and the first two eigenmodes (for the flexible plate). For the 

last case, the control goal is lift increase; the control parameters include the translational 

amplitude, the amplitude and phase delay of the rotational motion and (for the flexible plate) the 

amplitude and phase delay of the first eigenmode in chordwise bending. 

 

1) Optimization of a rigid plunging and pitching plate 

 

Anderson et al. [61] suggested the critical role of the phase delay between the pitching and 

the plunging motion in thrust production and propulsive efficiency, therefore, it is chosen to be 

the control parameter for drag reduction. The phase delay is optimized in two steps. First, we 

consider the phase delay to be a constant in time and search for its optimal value. Second, after 

the optimal constant is found, we use this value as an initial condition to optimize the phase 

delay further by allowing its variation in time. The two-step strategy brings the control to a good 

neighbourhood in a simple control space (with a constant phase delay) before it becomes a more 

complex control space (with a time-varying phase delay).  

For the constant phase delay, we start with an arbitrary initial value φ1 = 30o. It only takes 2 

iterations to reach the optimal value φp = −77.3o. The corresponding drag coefficients, used as 

the cost function, is reduced from 0.120 to -0.198. For the time-varying phase delay, the initial 

value is chosen to be the optimal constant phase delay. The optimization algorithm reduces the 

drag further by 53% from -0.198 to -0.303 (figure 38). 
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Figure 38. Optimization for the drag reduction of a rigid flapping plate: (a) the cost function for 

drag reduction versus the number of iterations; (b) the optimal constant control (– – – –) and the 

optimal time-varying control (——), with dash-dot lines representing the constraints. 

 

Figure 39 shows leading-edge vortex is moved from the backside of the plate to the front side. 

The new location of leading-edge vortex produces a low-pressure region in front of the plate 

which generates a large thrust force in both the upstroke and the downstroke.  

 
Figure 39. The vortex structures of a flapping plate with (a) the initial time constant, (b) optimal 

the time-constant and (c) the optimal time-varying phase delay during the upstroke. 

 

Further analysis of the optimal control indicates that the strategy of adjusting the phase delay 

for thrust performance works to increase the angle of attack magnitude when the plunging speed 

is large to focus on the enhancement of lift-induced thrust, and works to decrease the angle of 

attack magnitude when the plunging speed is small to focus on the reduction of viscous drag. 

Meanwhile the signs for the angle of attack and the plunging velocity are kept opposite to always 

generate positive lift-based thrust. 

When propulsive efficiency is considered, the optimization result shows that the reduction of 

viscous drag takes a more dominant role because of its impact on overall power consumption. 

The mechanism to increase power output generally works against the mechanism to reduce the 

total power consumption, keeping the viscous drag in check becomes the key to finding a 

balance between the two mechanisms for optimization. 

 

2) Optimization of a flapping flexible plate 

 

(a) (b) (c) 
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In this section, flexibility is added to the flapping plate, and the analysis of its aerodynamic 

effect is undertaken via a comparison of the optimal and non-optimal solutions. 

The flexible flapping plate has a combined motion with plunging, pitching and deformation, 

which uses eigenmodes of a cantilevered Euler–Bernoulli beam as basis functions. The control 

for a flexible flapping plate is then defined by 

ϕ = {a0, φ0, … , an, φn} 
where a0, φ0are the amplitude and phase delay of the rigid body pitching motion, and an, φn (n > 

0) are the amplitude and phase delay of each eigenmodes for deformation with n representing the 

levels of flexibility. 

It is shown in table 4 and 5 that the adjoint-based optimization provides solutions for all 

cases to change from drag to thrust (and to larger thrust). The comparison between the rigid plate 

(case 1) and the flexible plates (case 2 and 3) shows significant contribution from the flexibility 

to the thrust improvement. At Reynolds number 300 (Group I), the optimal flexible plate (case 3) 

provides 111% more thrust than the rigid plate (case 1); at lower Reynolds number 100 (Group 

II), the impact is even more dramatic with 1069% more thrust from the rigid plate (case 1) to the 

flexible plate (case 3). For both Reynolds numbers, a higher level of flexibility (case 3, with 2 

eigenmodes) provides more thrust than a lower level of flexibility (case 2, with 1 eigenmode). It 

is worth noting that the thrust brought in by more flexibility comes with some small cost of 

efficiency, since the propulsive efficiency is not part of the cost function at this moment. 

The current study also shows that flexibility helps to reduce the sensitivity of the propulsion 

performance to the Reynolds number. For a rigid plate (n=0), the optimal thrust is reduced by 

86.5% from 0.26 to 0.035 when the Reynolds number changes from 300 to 100; for a flexible 

plate (n=2), the optimal thrust is only reduced by 25.5% from 0.549 to 0.409. It suggests that 

flexibility helps to maintain the aerodynamic performance in complex environment with variable 

Reynolds number (e.g. flow with gust), and flexibility also plays a more significant role in lower 

Reynolds number region such as flapping-wing flight of insects.  

For detailed comparison, figure 40 shows the history of drag forces for the optimal rigid plate 

(case 1), the optimal plate with small deformation (case 2), the optimal plate with large 

deformation (case 3) and the reference rigid plate (case 4, by removing the flexibility directly 

from case 3) for Re=300 (Group I). Among the half-cycle, the one with small deformation (case 

2) reduces the drag by a small amount near t=0 and t=1.5; the one with large deformation (case 3) 

reduces the drag by a large amount near t=0 with a slight increase near t=1; the reference (case 4) 

keeps the same or even better drag reduction at t=0 but cannot maintain the same saving later, 

instead it adds large drag for 1<t <2. 

Figure 41 shows visually the flapping kinematics, deformation and vortex structures for 

better understanding of the control mechanism. Flexibility, especially large deformation, allows 

the plate to have a large angle of attack and hold the leading-edge vortex to the front for the 

benefit of lift-induced thrust, while the overall profile stays small (by deformation) to avoid an 

increase in viscous drag. It is obvious that the reference case 4, which keeps the same pitching 

(i.e. angle of attack) at the leading edge but removes all the deformations, has the same benefit 

from the lift-induced thrust (near t=0) but adds a huge amount of viscous drag later. 

 

Table 4. Optimization results for drag reduction with different flexibility at Re=300: cases 0 has 

the initial control; cases 1, 2 and 3 have the optimal controls with different levels of flexibility; 

case 4  is a reference case, which removes all flexibility terms from case 3 and keeps the rigid 

plunging and pitching motion the same. η is the propulsion efficiency. 
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Group Cases n 
dC
 


 

 0 0 0.138 -0.0373 

 1 0 -0.260 0.184 

I 2 1 -0.376 0.296 

 3 2 -0.549 0.273 

 4 0 0.696 -0.141 

 

Table 5. Optimization results for drag reduction with different flexibility at Re=100. 

 

Group Cases n 
dC
 


 

 0 0 0.165 -0.473 

 1 0 -0.035 0.0194 

II 2 1 -0.177 0.0892 

 3 2 -0.409 0.116 

 
Figure 40. The history of drag forces in one period for case 1 (——), case 2 (– – – –), case 3 (— . 

—) and case 4 (……) of Group I. 
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Figure 41. Comparison of kinematics, deformation and vortex structures of (a) the rigid plate 

(case 1), (b) the plate with small deformation (case 2), (c) the plate with large deformation (case 

3) and (d) the reference (case 4), with Re=300 (Group I), at t=0, 1 and 1.5. 

 

Adjoint-based optimization also improves the propulsive efficiency substantially (table 6). 

The optimal solution shows that plate tries to blend into a streamline shape to reduce the viscous 

drag. Meanwhile holding a large leading-edge vortex is no longer an option with its cost on 

viscous drag. Same as that in drag reduction, flexibility also largely reduces the sensitivity of 

propulsive efficiency to Reynolds number and allows a flapping wing at low Reynolds number to 

enjoy the high aerodynamic performance existing in the higher Reynolds number regime. 

 

Table 6. Optimization results for propulsive efficiency with different flexibility at Re=300. 

 

Group Cases n 
dC
 


 

 0 0 0.138 -0.0373 

 1 0 -0.223 0.247 

III 2 1 -0.307 0.373 

 3 2 -0.347 0.377 

 

3) Optimization of a three-dimensional plate in hovering motion 
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In this section, we extend the study from a two-dimensional plate to a three-dimensional 

plate. We choose the same rigid plate in hovering motion, which has been studied extensively by 

Trizila et al. [44], as our base case. With initial numerical simulations combined with surrogate 

modelling, Trizila et al. [44] achieved the complete map of a three-parameter design space 

including: the amplitude of translational motion x0, the amplitude θα and the phase delay of 

rotational motion φ. Such a space exploration is important for some cases. However, an adjoint-

based optimization could be much more efficient if optimization is the major concern and the 

result is more accurate without involving a surrogate model. 

Table 7 shows respectively the initial control and its optimal value after 4 main iterations. 

The lift coefficient is improved from 0.338 to 0.620 by 83.4 %. A closer comparison shows that 

our optimal values match well with the high-lift region shown in the contour map provided by 

the design space exploration through surrogate modelling in Trizila et al. [44]. 

 

Table 7. Comparison of the initial and the optimal controls and the resulting lift coefficients for a 

rigid hovering plate. 

Control x0 θα φ lC  

Initial 1.5 600 900 0.338 

Optimal 1.0 450 1200 0.620 

 

Figures 42 compares the time history of lift coefficients with the initial and the optimal 

controls. Compared to the initial control, the plate with the optimal control has a larger angle of 

attack at t=0. This generates a stronger leading-edge vortex (figure 43), which causes large 

pressure difference in upper and lower surface of the plate (figure 44) and produces larger lift. At 

t=0.2, in the case with the initial control, the vortex pair generates a momentum on the plate’s 

upper surface (figure 43), therefore it produces downward force (figure 44). On the other hand, 

the plate with the optimal control has an advanced rotation. The momentum induced by the 

vortex pair acts on the plate’s lower surface, thus generating lift instead. These results suggest 

that, in hovering flight, both the plunging/pitching and the wake capture are important for lift 

generation. The timing of the plate interacting with the wake is closely related to the phase delay. 

The vortex structures depicted in figure 45 by an isosurface of Q criterion clearly show much 

stronger downwash from the optimal motion for the increase of lift performance. 

When chord-wise deformation is considered during the optimization, the lift coefficient is 

pushed from 0.62 to 0.88 for another 42% increase. The flexibility is able to push the lift 

coefficient higher by ‘cupping’ more fluid on the lower surface and deforming to larger vertical 

projection profile which lead to an even stronger downwash as well as larger pressure difference 

between the upper and lower surfaces of the plate, both for lift benefit. 
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Figure 42. The time history of the lift coefficients for a rigid hovering plate with the initial 

control (– – – –) and the optimal control (——). 

 
Figure 43. The z-component of vorticity at the middle plane for a rigid hovering plate with (a) 

the initial control and (b) the optimal control at different time moments. 
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Figure 44. The pressure distribution of a rigid hovering plate with (a) the initial control and (b) 

the optimized control on the lower (left) and upper (right) surfaces at different time moments. 

 
Figure 45. The vortex structures of a rigid hovering plate with (a) the initial control and (b) the 

optimal control at different time moments. 
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