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Abstract:  As Part III of this series, this paper focuses on an above-
threshold modal analysis which includes gain saturation effects in the 
surface-emitting chirped circular grating lasers. We derive an exact energy 
relation which states that, in steady state, the net power generated in the 
gain medium is equal to the sum of peripheral leakage power and vertical 
emission power. This relation is particularly useful in checking the accuracy 
of numerical mode solving. Numerical simulations demonstrate the 
dependence of required pump level on the vertical emission power and 
compare the laser threshold and energy conversion efficiency under 
uniform, Gaussian, and annular pump profiles. A larger overlap between the 
pump profile and modal intensity distribution leads to a lower threshold and 
a higher energy conversion efficiency. Finally the dependence of required 
pump level on device sizes offers us new design guidelines of these lasers 
for single-mode, high-efficiency, high-power applications. 
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1. Introduction 

Surface-emitting circular grating lasers are considered a promising next-generation on-chip 
light source for optical communications which may substitute the prevailing VCSELs due to 
their circularly-symmetric, large-emission-aperture, narrow-divergence laser emission. There 
have been intensive research activities since early 1990s. Erdogan and Hall were the first to 
analyze their modal behavior with a scalar coupled-mode theory [1]. Wu et al. were the first 
to experimentally realize such lasers in semiconductors [2]. More recently, organic polymers 
are also used as the gain medium for these lasers due to their low fabrication cost [3-5]. 

The circular gratings in most of the work are designed radially periodic. In 2003 we 
proposed using radially chirped gratings to achieve optimal interaction with the optical fields,  
since the eigenmodes of the wave equation in cylindrical coordinates are Hankel functions [6]. 
As the grating designs follow the phases of Hankel functions, such circular grating lasers 
usually take three configurations shown in Fig. 1(a) circular DFB laser, (b) disk Bragg 
resonator laser, and (c) ring Bragg resonator laser. Including a second-order Fourier 
component, the gratings are able to provide in-plane feedback as well as couple laser emission 
out of the resonator plane. 

 

Fig. 1. Surface-emitting chirped circular grating lasers: (a) circular DFB laser; (b) disk Bragg 
resonator laser; (c) ring Bragg resonator laser. Laser emission is coupled out of the resonator 
plane in vertical direction via the gratings. 

 
In previous parts of this paper series [7, 8], we have solved the modes and compared the 

modal properties, by both analytical and numerical approaches, of the three types of lasers at 
threshold. Gain saturation effects in above-threshold operation were previously studied in 
both linear and circular DFB and DBR lasers [4, 9-12]. This paper presents an above-
threshold analysis for the three types of radially chirped circular grating lasers to investigate 
their energy conversion efficiency, intensity-dependent modal selectivity, and optimal design. 

2. Energy relation 

The basic equations that govern the modal behaviors in such Hankel-phased active circular 
grating structures have been derived in [13]: 

 2d ( )
( ) ( ) ( ) ,

d

i xA x
u x A x v B x e

x

δ= ⋅ − ⋅ ⋅  (1a) 
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( ) ( ) ( ) ,

d
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where 
A(x) and B(x): amplitudes of the in-plane outward and inward propagating cylindrical 

waves; 
x = βρ: normalized radial coordinate with β being the in-plane propagation constant; 
δ = (βdesign–β)/β: frequency detuning factor, representing the relative frequency shift from 

the optimal coupling design; 
u(x) = gA(x) – h1 and v = h1 + ih2; 
h1 = h1r + ih1i: radiation coupling coefficient, representing the effects of vertical emission; 
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h2: feedback coupling coefficient (can always be chosen real); 
gA(x) = g(x) – α: space-dependent net gain coefficient; 
α: nonsaturable internal loss, including absorption and nonradiative scattering losses; 
g(x) = g0(x)/[1 + I(x)/Isat]: intensity-dependent saturated gain profile; 
g0(x): unsaturated gain profile; and 
I(x)/Isat: field intensity distribution in units of saturation intensity. 

All the three types of circular grating lasers share the same boundary conditions [7]: (i) A(0) = 
B(0); (ii) B(xb) = 0; (iii) A(x) and B(x) continuous for 0 < x < xb. Once Eqs. (1a) and (1b) are 

solved with these boundary conditions, the in-plane electric field (1) (2)( ) ( ) ( ) .m mE x A x H B x H= +  

Assuming a linear pump–gain relationship above transparency, the unsaturated gain g0(x) 
follows the profile of pump intensity Ipump(x), and we may define an experimentally 
measurable quantity: pump level Ppump ≡ ∫ Ipump(x) · 2πρ · dρ = P0 ∫ g0(x) · x · dx, where P0 
having a power unit is an experimental parameter determined by pumping scheme (electrical 
or optical) and specific setup configuration. For some simple g0 profiles, Ppump has analytical 
expressions [8], otherwise, numerical integration always remains a resort. 

Similar to the procedure in [9], multiplying Eq. (1a) by A
*
 and Eq. (1b) by B

*
, then adding 

each equation to its complex conjugate, one obtains 
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Subtracting Eq. (2b) from Eq. (2a) yields 
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Integrating Eq. (3) from x = 0 to x = xb and applying A(0) = B(0) and B(xb) = 0 lead to 
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which is the energy conservation theorem for the surface-emitting circular grating lasers. This 
equation is exact and states that, in steady state, the net power generated in the gain medium 
equals the sum of peripheral leakage power and vertical emission power. Due to its exactness, 
this relation is particularly useful in monitoring the accuracy of numerical mode solving. 

It should be noted that the amplitudes A and B are dimensionless, and they can be scaled 
up or down arbitrarily. A judicious choice would be to normalize them such that the resulting 
intensity is normalized to the saturation intensity Isat. Since I(x) = cnε0|E|

2
/2 (c, the speed of 

light; n, transverse effective index; ε0, the vacuum permittivity), if Esat is similarly defined as 
(2Isat/cnε0)

1/2
, then the peripheral leakage power in real dimensions will be 

2 2(1) 2 2

sat sat( ) ( ) 2 ( ) 4 ,b m b b bA x H x E x D A x E Dπ β β⋅ ≈ ⋅  where D is the thickness of the laser 

resonator. A comparison of this expression with the first term on the left-hand side of Eq. (4) 

indicates that all the power terms are in units of the saturation power 2

sat sat 4 .P E D β≡  

3. Numerical method 

When solving the modes at threshold with uniform gain (or pump) distribution across the 
device, gain saturation effects can be ignored and Eqs. (1a) and (1b) have analytical solutions 
[7]. In case of using a nonuniform pump profile and/or taking into account the gain saturation 
effects in above-threshold operation, Eqs. (1a) and (1b) have to be numerically solved: 
starting with an amplitude set [A B] = A(0)[1 1] at the center, these equations are integrated 
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along x to the exterior boundary xb. The absolute value of B(xb) marks a contour map in the 
two-dimensional plane of g0 and δ. Each minimum point in the contour map represents a 
mode with corresponding g0 and δ. Substituting the modal g0, δ, A(x), and B(x) into Eq. (4), 
one immediately finds the mode-solving accuracy by comparing the left-hand and right-hand 
sides of the equation. The second term on the left-hand side of Eq. (4) is the surface emission 
power Pem in units of the saturation power Psat. Inserting the modal g0 into the expression for 
Ppump gives the required pump level. 

During the numerical integration, an expression for the radial intensity distribution I(x) is 

required. The expression for the electric field (1) (2)( ) m mE x AH BH= +  leads straightforwardly to 

 
2 22 (1) (2) (1) (2) (1) (2)

interference terms

( ) ( ) .m m m m m mI x E x AH BH A BH H AB H H
∗ ∗ ∗ ∗= = + + +
�������������

 (5) 

In a gain medium, the motional nature of the electrons prevents them from sensing the fast-

oscillating interference terms in Eq. (5). Therefore, with large-radius approximations of (1)

mH  

and (2)

mH , Kasunic et al. dropped these interference terms and simplified the expression [10]. 

However, the remaining first two terms blow up at x = 0, which results in a dubious 
representation of I(x) near the center. Here we suggest approximating I(x) piecewise: 
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The criterions for choosing the joint point xeq are: first, to ensure the continuity of I(x), xeq has 
to be where the interference terms vanish, i.e., at a zero of the interference terms; second, xeq 
has to precede the start of the fast oscillation of I(x); third, the choice of xeq has to validate the 
approximation for I(x) at x > xeq. Based on the modal profiles, xeq is chosen to be the second 
zero of the interference terms, which is 1.76. 

4. Numerical results and discussions 

The laser structural parameters are assumed to be the same as those in [7] and [8]. In short, in 
grating regions h1 = 0.0072 + 0.0108i and h2 = 0.0601 while in no-grating regions both vanish. 
For comparison purposes, all the three types of lasers share an xb. In addition, for disk Bragg 
resonator laser x0 = xb/2, and for ring Bragg resonator laser xL = xb/2 – π and xR = xb/2 + π. The 
only parameter related to material is the nonsaturable internal loss α, which is assumed to be 
0.2 × 10

–3
 (normalized by β) for typical III–V quantum well lasers. 

4.1. Gain saturation effects on the laser modes 
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Fig. 2. Pump level Ppump of the 5 lowest order modes, under uniform pump profile, of (a) 
circular DFB, (b) disk-, and (c) ring- Bragg resonator lasers with surface emission power Pem = 
0.01, 1, and 10 (in units of saturation power Psat). 
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To demonstrate the gain saturation effects on the laser modes, a typical device size ρb = 17.5 
µm (xb = βρb ≈ 200) is assumed for all the circular DFB, disk-, and ring- Bragg resonator 
lasers. Figure 2 displays pump level Ppump of the 5 lowest order modes, under uniform pump 
profile, of these three types of lasers with surface emission power Pem = 0.01, 1, and 10 (in 
units of saturation power Psat). The features are summarized as follows: (i) At low surface 
emission Pem = 0.01 and 1, disk Bragg resonator laser always possesses the lowest Ppump out of 
the three types, while at high surface emission Pem = 10, Ppump of Mode 1 of disk Bragg 
resonator laser is greatly enhanced and even higher than that of circular DFB and ring Bragg 
resonator lasers. (ii) Disk Bragg resonator laser has smaller discrimination between the modes 
compared with that of circular DFB and ring Bragg resonator lasers, and as a result the 
difference in gain saturation levels can easily change the order of the modes: Mode 2 exhibits 
even lower Ppump than Mode 1 at Pem = 10. This mode transition behavior will be illustrated 
more clearly in the device-size-dependent Ppump curves shown in Fig. 3. 

4.2. Above-threshold behavior: comparison of threshold pump level and energy conversion 
efficiency with different pump profiles 

By varying the boundary condition A(0) in the integration process, we are able to get the 
(Ppump, Pem) pairs which basically form the typical input–output relation for a laser mode. The 
laser threshold Pth is the pump level at the onset of surface laser emission. The energy 
conversion efficiency (or external differential efficiency) ηex is defined as the slope 
dPem/dPpump of the linear fit of the simulated data points up to Pem = 10. To compare the 
effects of different pump profiles, Pth and ηex of Mode 1 of the three types of lasers were 
calculated under uniform, Gaussian, and annular pump profiles. The Gaussian profile is 

assumed to follow 2 2

0 0( ) exp pg x g x w = − 
 with wp = xb/2 = 100. The annular profile is 

assumed to follow 2 2 2 2

0 0 0( ) exp ( ) exp ( )p p p pg x g x x w g x x w   = − − + − +   
 with xp = xb/2 = 

100 and wp = xb/4 = 50. The results are listed in Table 1. 

Table 1. Threshold pump level Pth (in units of P0) and energy conversion efficiency ηex (in units of Psat/P0) of 
circular DFB, disk-, and ring- Bragg resonator lasers under different pump profiles 

Pump profile 
Circular DFB laser Disk Bragg resonator laser Ring Bragg resonator laser 

Pth ηex Pth ηex Pth ηex 

Uniform 9.760 0.7369 6.565 0.4374 13.162 0.9278 

Gaussian 5.967 0.9961 2.373 0.8741 8.570 1.379 

Annular 6.382 0.9742 5.855 0.7358 7.010 1.500 

 
Clearly a low Pth and a high ηex always come together. The lowest Pth and the highest ηex 

are achieved with the Gaussian pump for circular DFB and disk Bragg resonator lasers and 
with the annular pump for ring Bragg resonator laser. Actually Pth and ηex are both related to 
the overlap between pump profile and modal intensity distribution [8]. A larger overlap results 
in more efficient energy conversion in the gain medium which consequently leads to a lower 
Pth and a higher ηex. 

4.3. Revisit of modal selectivity and optimal design 

Figure 3 shows device-size-dependent pump level Ppump and frequency detuning factor δ of 
the 3 lowest order modes, under uniform pump profile, of the three types of lasers. The modes 
are numbered in accord with those in Fig. 2. For both Ppump and δ, dashed lines mark their 
values obtained at threshold and solid lines at Pem = 10. 

Examined from the plots, at high emission level Pem = 10, circular DFB and ring Bragg 
resonator lasers still possess large discrimination between the modes, which ensures them a 
large single-mode range of at least 50–250. Additionally, we identify low-pump ranges for 
their Mode 1 at Pem = 10, which are 100–160 for circular DFB laser and 80–130 for ring 
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Bragg resonator laser. The existence of a low-pump range is a result of competition between 
the pumped area and the required gain level: although larger devices require a larger area to 
be pumped, their longer radial Bragg gratings reduce the needed gain because of stronger 
reflection of the optical fields from the gratings. The low-pump range is an important factor in 
designing high-efficiency, high-power lasers. 

The Ppump for disk Bragg resonator laser exhibits interesting behaviors: (i) at xb = 200, the 
order of Modes 1 and 2 exchanges from at threshold to at high surface emission level due to 
the participation of gain saturation effects; (ii) the single-mode range (for Mode 2) shifts from 
60–140 at threshold to 90–175 at Pem = 10. Therefore the single-mode range for engineering 
should be the overlap of these two sets, which is 90–140. 

On the other hand, all the frequency detuning factors δ are almost unaffected by the 
surface emission level (as seen from the overlap of dashed and solid lines in the lower plots), 
since δ is an intrinsic property of a laser mode. 

50 100 150 200 250
0

10

20

30

40

50

60

Exterior boundary radius x
b

P
u
m

p
 l
e
v
e
l 

P
p

u
m

p (
P

0
)

(a) Circular DFB laser

1

1

2

2

3

3

50 100 150 200 250
60

80

100

120

140

160

180

200

Exterior boundary radius x
b

F
re

q
u
e

n
c
y
 d

e
tu

n
in

g
 f
a
c
to

r δ
 (

1
0

-3
)

1

2

3

50 100 150 200 250
0

10

20

30

40

50

Exterior boundary radius x
b

(b) Disk Bragg resonator laser

1

2

3

1

2

3

50 100 150 200 250
-50

0

50

100

150

Exterior boundary radius x
b

2

3

1

50 100 150 200 250
0

10

20

30

40

50

60

Exterior boundary radius x
b
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Fig. 3. Device-size-dependent pump level Ppump and frequency detuning factor δ of the 3 lowest 
order modes, under uniform pump profile, of (a) circular DFB, (b) disk-, and (c) ring- Bragg 
resonator lasers. xb is the exterior boundary radius for all types of lasers. The inner disk radius 
x0 of disk Bragg resonator laser is set to be xb/2. The inner and outer edges of the annular defect 
of ring Bragg resonator laser are set to be xL = xb/2 – π and xR = xb/2 + π. The modes are labeled 
in accord with those shown in Fig. 2. Dashed lines mark the values obtained at threshold and 
solid lines at Pem = 10. 

 

5. Conclusions 

An above-threshold analysis, including gain saturation effects, on the modal properties of 
surface-emitting chirped-grating circular DFB, disk-, and ring- Bragg resonator lasers has 
been performed. An exact energy relation in such surface-emitting lasers was derived, which 
is interpreted as the energy conservation theorem: in steady state, the net power generated in 
the gain medium is equal to the sum of peripheral leakage power and vertical emission power. 

Numerical simulations demonstrated the dependence of required pump level on the 
vertical emission power for each laser mode. The threshold pump level Pth and energy 
conversion efficiency ηex were compared under three pump profiles − uniform, Gaussian, and 
annular. A larger overlap between the pump profile and modal intensity distribution leads to a 
lower Pth and a higher ηex. 
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Finally, as shown in the evolution of modal pump levels with the device size, disk Bragg 
resonator laser exhibits mode transition behavior which modifies its single-mode range, while 
circular DFB and ring Bragg resonator lasers find each low-pump range. These numerical 
results provide us useful information in designing such lasers for single-mode, high-
efficiency, high-power applications. 
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