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Abstract: We formulate the equations describing pulse propagation
in a one-dimensional optical structure described by the tight binding
approximation, commonly used in solid-state physics to describe elec-
trons levels in a periodic potential. The analysis is carried out in a way
that highlights the correspondence with the analysis of pulse propaga-
tion in a conventional waveguide. Explicit expressions for the pulse in
the waveguide are derived and discussed in the context of the sampling
theorems of finite-energy space and time signals.
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1 Introduction

The application of coupled-mode theory to the problem of propagation in an optical
waveguide is well known [1], and is particularly useful in the description of gratings and
other periodic optical systems where the strength of the perturbation (relative to the
free-space equations) is weak. Not surprisingly, the same formalism has been applied in
solid state physics to the description of electrons in a weak periodic potential [2]. Com-
plementary to this weakly perturbative approach is the tight binding approxmation,
also known as the linear combination of atomic orbitals (LCAO), which describes elec-
trons in a crystalline solid with a strong periodic potential due to the lattice structure
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of localized atoms, characterized by a weak overlap between the atomic wave functions.
By analogy, the optical structures that can be described using the tight binding approx-
imation are those that consist of isolated structural elements (e.g., high-Q resonators
such as defect modes in photonic crystals) weakly coupled to one another; the propagat-
ing eigenmodes of the overall system are then closely related to the eigenmodes of the
individual elements, rather than the free-space eigenmodes as in coupled-mode theory.

We mention two applications of this description. Recently, a new type of waveguide
based on the coupling of optical resonators has been introduced, called the Coupled
Resonator Optical Waveguide (CROW) [3]. A weakly-coupled CROW is characterized
a nearly flat dispersion relationship and potentially very low group velocity in the waveg-
uide, which can be used for efficient second-harmonic generation [4] and, if designed e.g.,
in a photorefractive photonic crystal, for photorefractive holography of optical pulses
leading to the possibility of optical pulse storage [5]. Recent experiments in the mi-
crowave regime have demonstrated the validity of the tight binding approximation in
such a structure [6]. Another application of this framework is in the description of su-
perstructure Bragg gratings (SSGs), also called optical superlattices, which are fiber or
semiconductor gratings with parameters that vary periodically as a function of posi-
tion [7]. Whereas shallow SSGs can be described by the standard coupled-mode theory,
deep SSGs require the complementary approach of the tight-binding approximation [8].

In both these physical realizations of the tight binding approximation, the analysis
has so far been restricted to the propagation of monochromatic waves at the eigenfre-
quencies of the structure. In this paper, we describe the propagation of pulses with a
nonzero spread of wave vectors in a one-dimensional structure described by the tight
binding approximation and comment on certain limits in which a simplified analysis is
justifiable.

2 Eigenmodes in the tight-binding approximation

We assume that the structural elements comprising the periodic waveguide e.g., defect
modes in a photonic crystal or photonic wells in the description of SSGs, are identical and
lie along the z axis separated by a distanceR. The total length of the device is taken to be
L so that the number of elements is N = L/R. As indicated by the nomenclature “linear
combination of atomic orbitals,” the eigenmode of the time-independent Hamiltonian
φk(z) at a particular wave vector k is written as a linear combination of the individual
modes ψl(z) of the elements that comprise the structure [2],

φk(z) =
∑

n

exp(−inkR)
∑

l

bl ψl(z − nR) (1)

where the summation over n runs over the N structural elements and the summation
over l refers to the bound states in each individual element. In a CROW, for instance,
the individual resonator modes are doubly degenerate [4], so that l = ±1, whereas in an
SSG, it is usually sufficient to consider a single l [8]. We will assume that

∑
l |bl|2 = 1.

In the description of a structure of finite length, the wave vector k is restricted
according to the Born-von Karman periodic boundary condition [2]

km = m

(
2π
L

)
(2)

where m is an integer; km then ranges over the Brillouin zones and because φk(z) is of
the Bloch form [2], we may only consider the first Brillouin zone m = 0, 1, . . . , N − 1
to characterize the dispersion relationship in the structure [3]. From Eq. (2), ∆k ≡
km+1 − km = 2π/L so that in the theoretical limit of an infinitely long structure, the
discrete distribution of eigenmodes goes over to a continuous spectrum.
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3 Pulse propagation in the tight-binding approximation

Assume that at time t = 0, the field in a structure of infinite length is given by a
superposition of eigenmodes,

E(z, t = 0) =
∫
dk

2π
ckφk(z) (3)

where φk(z) are the eigenmodes at wave vector k as given by Eq. (1) and ck are certain
‘weights’ to be determined from the boundary condition.

For a structure of finite length, not all k vectors are allowed, according to Eq. (2),
and the integral over k in Eq. (3) should be replaced by a sum over the allowed k.
Alternatively, we can redefine φk(z) for a structure of finite length as

φk(z) =

[
|∆k|

∞∑
m=−∞

δ(k −m∆k)

] ∑
n

exp(−inkR)
∑

l

bl ψl(z − nR) (4)

to preserve the form of Eq. (3). The factor |∆k| inside the square brackets in Eq. (4)
follows from the usual definition of the Riemann-Stieltjes integral [10]: for an infinitely
long structure, as L→ ∞ and ∆k → 0, the field E(z, t = 0) retains the form of Eq. (3)
with φk(z) defined by Eq. (1), i.e., without the impulse train (in square brackets) in
Eq. (4). In other words, we have defined the eigenmodes differently for the case of a
finite length and infinite length so that the form of Eq. (3) is unchanged.

The system is linear and time invariant and therefore the field at time t is given by

E(z, t) =
∫
dk

2π
eiω(k)tckφk(z). (5)

Since the dispersion relationships of the waveguide modes are approximately linear in
the middle of the band gap (the group velocity goes to zero at the band edges) [3, 8],
we can write the dispersion relationship around the central wave vector of the pulse k0

as

ω(k0 +K) = ω(k0) +
dω

dk

∣∣∣∣
k=k0

K + . . . ≈ ω0 + vgK (6)

where vg is the group velocity of the pulse. Then,

E(z, t) = eiω0t

∫
dK

2π
eivgtKck0+K φk0+K(z). (7)

The boundary conditions specify a pulse shape at the z = 0 edge of the waveguide
and centered at the optical frequency ω0,

E(z = 0, t) = eiω0tE(z = 0, t), (8)

so that from the equality of Eq. (7) evaluated at z = 0 and Eq. (8), it follows that

ck0+K =
1

φk0+K(0)

∫
d(|vg |t′)E(z = 0, t′)e−ivgt′K . (9)

Combining Eq. (7) and Eq. (9),

E(z, t) = eiω0t

∫
d(|vg |t′)E(z = 0, t′)

∫
dK

2π
φk0+K(z)
φk0+K(0)

eivg(t−t′)K . (10)
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4 Free space propagation

In free space, which can be thought of as a ‘linear space-invariant system,’ the eigen-
functions are φk(z) = exp(−ikz). Substituting this into Eq. (10), we get

E(z, t) = eiω0t

∫
d(|vg|t′)E(z = 0, t′)

∫
dK

2π
e−i(k0+K)z eivg(t−t′)K

= ei(ω0t−k0z)E

(
z = 0, t− z

vg

)
. (11)

This is the well-known result (similar to Jackson [9, pp. 322–326]) that a pulse propa-
gates unchanged in shape in a weakly-dispersive medium, apart from an overall phase
factor, and that the velocity of propagation is given by the group velocity of the pulse
vg defined from the dispersion relationship as in Eq. (6).

5 Simplifications

For a structure whose eigenmodes are given by Eq. (1) or Eq. (4) with ψ(z) rapidly
decaying in magnitude for distances on the order of R, we can carry out further simpli-
fications to the field expression Eq. (10).

The individual resonator eigenmodes are normalized as ψl(0) = 1 and are highly
localized around z = 0 so that |ψl(nR)| 	 1 for all n 
= 0. We assume that these
eigenmodes are symmetric, so that ψl(−z) = ψl(z). Then,

φk0+K(0) =
∑

n

e−i(k0+K)nR
∑

l

bl ψ(−nR)

= 1 +
∑

l

bl ψl(R) 2 cos[(k0 +K)R] + . . . (12)

ignoring terms on the order of
∑

l bl ψ(2R) or smaller. (The assumption of symmetry
is only for convenience—the terms n = −1 and n = 1 can be considered separately.)
Consequently, we can write

[φk0+K(0)]−1 ≈ 1 −
∑

l

bl ψl(R) 2 cos[(k0 +K)R], (13)

which can be used in Eq. (10).
The leading order contribution to E(z, t) follows from the first term of Eq. (13),

E(z, t) = eiω0t
∑

n

e−ik0nR
∑

l

bl ψl(z − nR)
∫
d(|vg|t′)E(z = 0, t′)

×
∫
dK

2π

[
|∆K|

∑
m

δ(K −m∆K)

]
eiTK (14)

where T ≡ vg(t−nR/vg − t′), and we recognize that k = k0 +K so that ∆k = ∆K and
the index m of the infinite summation can be translated as desired. The second integral
of Eq. (14) is the inverse Fourier transform (evaluated at T ) of an impulse train in the
K domain, which evaluates to an impulse train in the T domain [11], written as the
Fourier transform relationship

|∆K|
∞∑

m=−∞
δ(K −m∆K)

FT�
∞∑

m=−∞
δ(T −m∆T ) (15)
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Fig. 1. (752 kB) Pulse propagation in a CROW structure described by the tight
binding approximation. The envelope of the eigenmode of the structure is shown in
red, and the Gaussian pulse envelope in blue, propagating from left to right, indexed
by an arbitrary time coordinate at the upper-right corner.

where ∆T = 2π/∆K = L. Carrying out the integrals over t′ for each m,

E(z, t) = eiω0t
∑

n

e−ik0nR
∑

l

bl ψl(z − nR)
∑
m

E

(
z = 0, t− nR+mL

vg

)
. (16)

This expression is the tight binding approximation analog of Eq. (11).
For individual resonator modes that are not quite so weakly confined, the contribu-

tion of the first-order corrections to Eq. (16) based on Eq. (13) can be evaluated in the
same way,

∆E(z, t) = −
∑
l′
bl′ψl′(R)eiω0t

{∑
n

e−ik0(n−1)R
∑

l

bl ψl(z − nR) ×

∑
m

E

(
z = 0, t− (n− 1)R+mL

vg

)
+

∑
n

e−ik0(n+1)R ×

∑
l

bl ψl(z − nR)
∑
m

E

(
z = 0, t− (n+ 1)R+mL

vg

) }
. (17)

Fig. 1 shows an annotated frame from an MPEG animation of Gaussian pulse propa-
gation in a structure described by the tight-binding approximation to the leading order,
using the approximations that the structure is of infinite length and that it is sufficient
to consider a single l in Eq. (16). For a structure of finite length with appropriate cho-
sen pulses (as described in Section 6), the results are exactly similar to the case shown
above within the extent of the waveguide.

Although Eq. (7) is a good approximation to the dispersion relationship in a CROW [3,
4], it may be necessary for wideband pulses to consider higher-order terms in Eq. (7).
The resulting Eq. (9) is then obtained from the solution of a Fredholm integral equa-
tion, and Eqs. (10) and (16) will in general involve envelope distortion (as for free space
propagation [1].) Since this paper focuses on the general principles of undistorted pulse
propagation in a CROW, this will be discussed elsewhere.
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6 Frequency, space, and time sampling

As already noted, the allowed k vectors are quantized in a structure of finite length, and
using Eq. (6), the allowed ω = ω0 +Ω values are quantized. To prevent aliasing [11], ithe
temporal interval between two samples 2π/∆Ω must be greater than twice the temporal
extent of the pulse envelope T , where ∆Ω = vg∆K according to Eq. (6)1. Therefore,

2π
(2π/L)vg

= 2Tmax which implies Tmax =
1
2
L

vg
. (18)

In addition to the consequences of the dispersion relationship, the geometrical struc-
ture of the waveguide is also important. The eigenmode φk(z) represents a spatial sam-
pling function for the propagating pulse envelope, especially in the limit that the indi-
vidual strucural eigenmodes ψl(z) are tightly confined (see Fig. 1). Again, to prevent
aliasing, it is necessary that the spectral content in K-space be no greater than Kmax,

2π
R

= 2Kmax which implies Kmax =
1
2

(
2π
R

)
. (19)

But the free-space pulse envelope is invariant in the frame z − vgt, and this maximum
K-space extent translates into a minimum pulse width Tmin,

1
2
vgTmin = R which implies Tmin =

2R
vg
. (20)

(As a guideline, it is useful to recall that the Fourier transform of a rectangular pulse
between ±vgT in the vgt frame is a sinc function with first nulls at ±π/(vgT ) in K-
space [11]). In a structure of finite length described by the tight-binding approximation,
therefore, there exists both a maximum and a minimum allowed pulse duration; the
former arises because of the finite length of the structure, and the latter because of the
sampling train-like eigenmodes of the waveguide.

Eq. (20) limits the bandwidth (where most of the energy of the pulse is concen-
trated) in the Fourier K-space associated with the propagation distance z, and since the
pulse is propagating with group velocity vg, also in the Fourier Ω-space associated with
the temporal coordinate t. The dimension of the space of finite-energy signals (pulse
envelopes) that are identically zero outside the time interval [−T0/2, T0/2] and have
most of their energy concentrated in the bandwidth [−Ω0/2, Ω0/2] is approximately
D = Ω0T0 + 1 [12],

D =
(

2π
R
vg

) (
1
2
L

vg

)
+ 1 = πN + 1, (21)

where N = L/R is the number of individual structural elements in the waveguide. These
pulse envelopes can be represented in the mean-square sense by a superposition of the
prolate spheroidal wave functions within the interval [−T0/2, T0/2].
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1A physical rationalization of this may be helpful: the spectrum of the field envelope in the waveguide
is represented by a discrete set of complex exponentials with frequencies ω0+m∆Ω according to Eq. (2)
and the dispersion relationship, Eq. (6). To successfully characterize the continuous free-space spectral
envelope by this discrete set, we require that within the time interval Tmax, the frequency change
between succesive exponentials is “small,” i.e., Tmax∆Ω < π. The pulse envelope in the waveguide then
consists of replicas of the free-space envelope, analogous to the spectral replicas formed by reconstruction
of time-sampled signals [11].
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