Russia’s Approach to Cyber Warfare

Michael Connell and Sarah Vogler

September 2016
Russia’s Approach to Cyber Warfare

Michael Connell, Sarah Vogler

Center for Naval Analyses
3003 Washington Blvd
Arlington, VA 22201

Russia views cyber very differently than its western counterparts, from the way Russian theorists define cyberwarfare to how the Kremlin employs its cyber capabilities. The paper examines the Russian approach to cyber warfare, addressing both its theoretical and its practical underpinnings.
Executive Summary

Russia views cyber very differently than its western counterparts, from the way Russian theorists define cyberwarfare to how the Kremlin employs its cyber capabilities. The paper examines the Russian approach to cyber warfare, addressing both its theoretical and its practical underpinnings. The following is a summary of its key findings:

• Russian officials are convinced that Moscow is locked in an ongoing, existential struggle with internal and external forces that are seeking to challenge its security in the information realm. The internet, and the free flow of information it engenders, is viewed as both a threat and an opportunity in this regard.

• Russian military theorists generally do not use the terms cyber or cyberwarfare. Instead, they conceptualize cyber operations within the broader framework of information warfare, a holistic concept that includes computer network operations, electronic warfare, psychological operations, and information operations.

• In keeping with traditional Soviet notions of battling constant threats from abroad and within, Moscow perceives the struggle within “information space” to be more or less constant and unending. This suggests that the Kremlin will have a relatively low bar for employing cyber in ways that U.S. decision makers are likely to view as offensive and escalatory in nature.

• Offensive cyber is playing a greater role in conventional Russian military operations. Although the Russian military has been slow to embrace cyber for both structural and doctrinal reasons, the Kremlin has signaled that it intends to bolster the offensive as well as the defensive cyber capabilities of its armed forces. During the contingencies in Georgia and Ukraine, Russia employed cyber as a conventional force enabler.

• Hacktivists and cyber-criminal syndicates have been a central feature of Russian offensive cyber operations, because of the anonymity they afford and the ease with which they can be mobilized. However, the crowd-sourced approach that has typified how the Kremlin has utilized hackers and criminal networks in the past is likely to be replaced by more tailored approaches, with the FSB and other government agencies playing a more central role.
This page intentionally left blank.
Contents

Introduction ... 1
Cyber as a Subcomponent of Information Warfare (IW) ... 2
Organizations and agencies ... 5
Hacktivists and criminals ... 7
Ukraine (2013-present): Cyber Used To Generate Kinetic Effects 14
Bots, Leaks, and Trolls: Cyber's Role in Enabling the Russian Soft Power 17
Conclusion ... 19
This page intentionally left blank.
Introduction

Understanding the behavior of adversaries in the cyber domain can often be challenging. Attribution issues, the technical nature of cyberwarfare, its recent and rapid evolution, its ephemeral effects, and the covert ways in which it is often used tend to obscure the motivations and strategies of the actors involved. The conceptual challenges associated with cyber mean that threats are often analyzed from a purely tactical and defensive perspective. Media reporting and forensic analysis usually focus on the origins and vectors of cyberattacks, the techniques and tools they use, their impact, and how their effects can be defended against or mitigated. Broader strategic questions, such as why the adversary conducts cyberattacks, what they are intended to achieve, how the adversary perceives risk and escalation in cyberspace, and whether the attacks can be deterred, are often overlooked or given only cursory notice.

Because of the relative dearth of analysis in this area, we tend to mirror image when analyzing our adversaries in cyberspace, to an even greater degree than in other warfare domains. We make uninformed assumptions about their motivations, intentions, and risk calculus based on U.S. thinking and conceptualizations of cyber. However, this can be misleading, and in some instances, dangerous. Adversaries—whether state or non-state actors—are likely to view interactions in cyberspace very differently than we do. The ways they conceive of cyber, their centers of gravity, the activities that they view as routine or escalatory, and the strategies they use to achieve their objectives are all likely to vary by considerable degrees. In more succinct terms, a one-size-fits-all approach to dealing with adversaries in cyberspace will not work.

This paper is an attempt to address these issues as they pertain to a particularly potent cyber adversary: Russia. Russia’s cyber capabilities are highly advanced, and Moscow has demonstrated a willingness to employ offensive cyber in situations other than war to affect political and economic outcomes in neighboring states and to deter its adversaries. According to James Clapper, the Director of National Intelligence,
Russia is assuming a more assertive cyber posture based on its willingness to target critical infrastructure systems and conduct espionage operations even when detected and under increased public scrutiny. Russian cyber operations are likely to target US interests to support several strategic objectives: intelligence gathering to support Russian decision-making in the Ukraine and Syrian crises, influence operations to support military and political objectives, and continuing preparation of the cyber environment for future contingencies.¹

From the way Russia defines cyberwarfare to its employment for strategic use, Russia views cyber differently than its western counterparts. As James Wirtz has noted, “Russia, more than any other nascent actor on the cyber stage, seems to have devised a way to integrate cyber warfare into a grand strategy capable of achieving political objectives.”² To counter this strategy, U.S. policymakers and military planners need to understand how Russia integrates cyberwarfare concepts into its broader military and security strategies. This paper addresses this issue from a theoretical as well as a tactical perspective, first by analyzing Russian doctrine and official writings and statements about cyberwarfare and then by examining how Russian cyber forces have operated in real-world scenarios.

Cyber as a Subcomponent of Information Warfare (IW)

The Russians generally do not use the terms cyber (kiber) or cyberwarfare (kibervoyna), except when referring to Western or other foreign writings on the topic. Instead, like the Chinese, they tend to use the word informatization, thereby conceptualizing cyber operations within the broader rubric of information warfare (informatsionnaya voyna). IW, as the term is employed by Russian military theorists, is a holistic concept that includes computer network operations, electronic warfare, psychological operations, and information operations.³ In other words, cyber is

³ For a more detailed examination of cyber’s role in Russian information warfare doctrine, see Keir Giles, “Russia’s ‘New’ Tools for Confronting the West: Continuity and Innovation in
regarded as a mechanism for enabling the state to dominate the information landscape, which is regarded as a warfare domain in its own right. Ideally, it is to be employed as part of a whole of government effort, along with other, more traditional, weapons of information warfare that would be familiar to any student of Russian or Soviet military doctrine, including disinformation operations, PsyOps, electronic warfare, and political subversion.

The ramifications of this conceptual distinction—both for how the Russians use cyber and under what circumstances—are considerable. According to the Military Doctrine of the Russian Federation (2010), one of the features of modern military conflicts is “the prior implementation of measures of information warfare in order to achieve political objectives without the utilization of military force and, subsequently, in the interest of shaping a favourable response from the world community to the utilization of military force.”4 By implication, the tools of IW can—in fact, should—be brought to bear before the onset of military operations in order to achieve the state’s objectives without having to resort to the use of force, or, should force be required, disorienting and demoralizing the adversary and ensuring that the state is able to justify its actions in the eyes of the public. Thus, information warfare, and by extension cyber, becomes a legitimate tool of the state in peacetime as well as wartime.5

General Valery Gerasimov, Chief of the General Staff of the Russian Federation, alluded more generally to the peacetime employment of information operations in his now famous article, “The Value of Science in Prediction”:

In the 21st century we have seen a tendency toward blurring the lines between the states of war and peace. Wars are no longer declared and, having begun, proceed according to an unfamiliar template. The experience of military conflicts — including those connected with the so called coloured revolutions in North Africa and the Middle East — confirm that a perfectly thriving state can, in a matter of months and

even days, be transformed into an arena of fierce armed conflict, become a victim of foreign intervention, and sink into a web of chaos, humanitarian catastrophe, and civil war.\(^6\)

He goes on to state, “The information space opens wide asymmetrical possibilities for reducing the fighting potential of the enemy. In North Africa, we witnessed the use of technologies for influencing state structures and the population with the help of information networks.”\(^7\)

Russian military thinkers on information operations IO and asymmetric military tactics, Col. S.G. Chekinov (Res.) and Lt. Gen. S.A. Bogdanov (Ret.), observed that information could be used to disorganize governance, organize anti-government protests, delude adversaries, influence public opinion, and reduce an opponent’s will to resist.\(^8\) Cyber IO affords the Russian government covert means to achieve these objectives, allowing Russia to maintain a degree of plausible deniability with regard to its participation in disinformation campaigns. Furthermore, Chekinov and Bogdanov noted that a critical component of IO is to begin information operations before the onset of traditional military operations as a means of preparing the potential battle space.\(^9\) Again, cyber IO facilitates this concept. This perspective is consistent with Gerasimov’s observation that “in the ongoing revolution in information technologies, information and psychological warfare will largely lay the groundwork for victory.”\(^10\)

\(^7\) Ibid.

Offensive cyber is thus relegated to a supporting—albeit significant—role in helping the state achieve information dominance in all the stages of conflict. In keeping with traditional Leninist notions of battling constant threats from abroad and within, the struggle within “information space” is more or less constant and unending. It knows no boundaries, physical or temporal. This contrasts sharply with Western—and particularly U.S.—conceptions of cyber, which is viewed as a separate domain, distinct from information warfare and its associated psychological aspects.

Perhaps not surprisingly, given the broad conception of IW in Russian theory, the focus of Russia’s cyber operations also tends to be strategic and long term in nature, rather than operational or tactical. According to Steven Blank,

> while Russian theorists have discussed what they call the information-strike operation against enemy forces, which was evidenced in the 2008 war with Georgia, most actual uses of information weapons in operations have aimed at the domestic “nerves of government” or of society, not combat forces or military command and control. Indeed, the “information-psychological” aspect that covers the use of the press and the media broadly conceived against a target’s information space is a key category among many in the Russian definition of IO and IW.

This strategic emphasis has, in turn, influenced—or been influenced by—how Russia has organized and postured its cyber forces.

Organizations and agencies

The Russian military is a relative latecomer to the cyber arena. For many years, cyber was the exclusive domain of the state’s security services. The Federal Security Service (Federal’naya Sluzhba Bezopasnosti: FSB), for instance, appears to be the Federation’s lead actor for coordinating cyber propaganda and disinformation campaigns. It also maintains and operates SORM, the State’s internal cyber

Thomas, 266.

surveillance system. The Federal Service for Supervision in the Sphere of Telecommunications, Information Technologies and Mass Communications (Roskomnadzor), which is responsible for overseeing the media, including the electronic media, and mass communications, information technology and telecommunications, controls information blacklists and regulates the media. Directorate K of the Ministry of Internal Affairs (Ministerstvo Vnutrennikh Del: MVD) focuses on cyber crime. For a brief period in the 1990s, Russia had a separate information security agency, the Federal Agency for Government Communications and Information (Federal’noe Agentstvo Pravitelstvennoi Svyazi I Informatsii: FAPSI). In 2003, however, FAPSI was disbanded, and its components were absorbed into the FSB, the MVD, the Federal Protective Service of the Russian Federation (FSO RF), and the SVR, Russia’s foreign intelligence service. Together, these agencies have established the parameters of Russian cyber doctrine and been responsible for coordinating most of the state’s internal and external cyber operations.

By contrast, the military’s cyber remit was, until very recently, limited to those areas where cyber overlaps with the field of electronic warfare. However, this changed somewhat in the wake of Russia’s conflict with Georgia in 2008. Although the conflict resulted in a victory for Russia’s forces, it also exposed serious operational and organizational deficiencies, including in the area of information operations. As a result, the Ministry of Defense (MOD) announced—along with other military reforms—that it would establish a branch in the military responsible for conducting information operations, complete with specially trained and equipped troops. According to one source,

these troops would include hackers, journalists, specialists in strategic communications and psychological operations, and, crucially, linguists to overcome Russia’s now perceived language capability deficit. This combination of skills would enable the

15 According to Giles, “…the FSB received the Main Directorate for Radio-Electronic Reconnaissance on Communications Networks (Glavnoye upravlenye radioelektronnoy razvedki sredstv svyazi, GURRSS). The influence of this body in directing policy today could be inferred from the fact that the former chief of FAPSI and of the GURRSS, Vladislav Sherstyuk, holds the information security portfolio on the Security Council and is also the head of the Department of Information Security at Moscow State University.” “‘Information Troops’ -- a Russian Cyber Command?” 2011 3rd International Conference on Cyber Conflict, C. Czosseck, E. Tyugu, T. Wingfield (Eds.) Tallinn, Estonia, 2011.

16 Interview, Andrei Soldatov, May 2016.
Information Troops to engage with target audiences on a broad front, since for information warfare objectives the use of “mass information armies” conducting a direct dialogue with people on the internet is more effective than a “mediated” dialogue between the leaders of states and the peoples of the world.

Little came of this proposal, however. The military had entered an already crowded field, and the FSB, which resented the military’s intrusion onto its turf, publicly opposed the initiative. The idea did not die, however, and, in 2013, the government announced that it would be creating a cyber unit in the military whose responsibilities would include offensive and defensive cyber operations, as well as a cyber research and development agency, called the Foundation for Advanced Military Research. Major-General Yuri Kuznetsov confirmed to local media in January 2014 that the country was seeking to complete the staggered formation of these military cyber units by 2017, but their current status is unknown. According to Moscow-based sources, the military is having trouble recruiting qualified applicants for its cyber forces. Over the long term, however, if the Russian military manages to successfully develop its own organic offensive cyber capabilities, the result could be an increasing use of cyber to support conventional military operations.

Hacktivists and criminals

Cyber hacking groups, or advanced persistent threat (APT) groups, have become a central part of Russia’s cyber IO toolkit. While direct links to the Russian government are difficult to prove conclusively (and the Russian government denies that it sponsors any hacker groups), there are a number of groups whose activities closely align with Kremlin and Russian military objectives. Russia is not unique in this regard: China, Iran, North Korea, and other U.S. cyber adversaries have been known to outsource cyber operations to non-state actors. Where Russia differs from these other adversaries is its success in this regard. To begin with, Russia has been enabled by its ability to draw on a vast, highly skilled, but underemployed community of technical experts. According to David Smith,

18 Interview, Andrei Soldatov, May 2016.
19 Official sources in the MOD reported that the budget for this agency for 2013 amounted to 2.3 billion rubles ($70 million). See http://day.kyiv.ua/ru/article/ekonomika/krym-rossiyskaya-kiberstrategiya-voyny.
20 Interview, Andrei Soldatov, May 2016.
Russia is a typical extractive economy that still enjoys the benefits of the quite good Soviet educational system. Great wealth is concentrated in the hands of a few, while many people with training in math, science and computers look for work. The result is a thriving botnet-for-hire industry.\(^{21}\)

Russian and other East European hackers are also widely regarded as the best in the world, to the extent that they are sometimes hired by other states to conduct cyberattacks on their behalf. For example, Russian hackers were suspected of being behind North Korea’s hack of Sony Pictures.\(^{22}\)

Endemic corruption and a weak rule of law have also provided opportunities for collaboration with the cyber underworld. Laws are enforced arbitrarily, as a result of which cyber syndicates thrive. The services provided by these groups include:

- Organization of distributed denial of service (DDoS) attacks
- Testing malware for antivirus detection
- “Packing” of malware (changing malicious software with the help of special software (packers) so that it is not detected by antivirus software)
- Renting out exploit packs
- Renting out dedicated servers
- VPN (providing anonymous access to web resources, protection of the data exchange)
- Renting out abuse-resistant hosting (hosting that does not respond to complaints about malicious content and, therefore, does not disable the server)
- Renting out botnets
- Evaluation of stolen credit card data and services to validate the data.\(^{23}\)

\(^{22}\) “New Evidence Shows Russian Hackers Have Access to Sony’s Network,” https://taia.global/2015/02/new-evidence-shows-russian-hackers-have-access-to-sonys-network/

Syndicates, such as the now infamous (and defunct) Russian Business Network (RBN), are often tolerated because they provide services that the state needs and income to government cronies.24

The reasons why Russia relies on cyber proxies are twofold. First, it's cost effective. Proxies require little in the way of technical support. In many of the incidents detailed below, the hackers only needed to be given a target list with vectors of attack and then be unleashed. Hackers can also be mobilized relatively quickly, and disbanded when they are no longer needed. Hacktivists—political/nationalist hackers, of which Russia has many—will often work for free, provided that the issue accords with their own world view. Second, hackers are ideal for operating in the grey zone of information warfare because they provide an extra degree of anonymity for the Kremlin, further compounding the attribution issues associated with cyberspace. Even extensive forensic investigations rarely result in a “smoking gun” that can be tied to government computers or associated IP addresses. From a deterrence or compellence perspective, the outcome is ideal for Moscow, because its adversaries expect Russian government involvement, but they usually lack definitive proof to hold the Kremlin to account for its actions. Like classic gangster protection racket schemes, the Kremlin can disavow the actions of its guns-for-hire with a wink, while darkly hinting that more things could “break” unless its adversaries pay up and behave.

Estonia (2007): A Cyber Milestone

In the previous sections, we outlined some of the theoretical and structural underpinnings of how Russia approaches offensive operations in cyberspace. In this section, we adopt a more empirical approach, examining recent examples of how Russia has employed its offensive cyber capabilities in order to derive observations based on patterns of behavior.

The first case study we examine is that of Estonia. The DDoS attacks against Estonia during April and May 2007 constitute the first large-scale coordinated use of cyber by Russia to affect a strategic outcome in a neighboring state. For a period of about a month, Estonia's internet websites were flooded with pings and network-clogging data, forcing most sites to either shut down or sever their international connections.

https://securelist.com/analysis/publications/72782/russian-financial-cybercrime-how-it-works/

(thus rendering much of the country's ability to communicate or share information efficiently with the outside world unusable). The impact on Estonia was significant; the country prided itself on being at the forefront of information technology and, at the time, approximately 60 percent of the country's 1.3 million people used the internet regularly and the government considered itself effectively “paperless.” As Urmas Paet, Estonia's foreign minister at the time put it, “the attacks [were] virtual, psychological, and real.”

Estonian officials attributed the cyberattacks to Russia, believing them to be in retaliation for the decision by the Estonian government to move a bronze statue of a Soviet soldier from a central place in Tallinn to a more remote military cemetery. Tensions over the statue had been building, with Russia decrying the removal of the statue which commemorated the sacrifice of Soviet soldiers in the liberation of Estonia from Nazi Germany as an insult to Estonia's minority ethnic Russian population. Following the removal of the statue on April 27, protests and demonstrations by ethnic Russians in Estonia turned violent and resulted in the arrest of 1,300 individuals and the death of one.

During that same time, the first DDoS attacks began targeting Estonian websites. During the first wave, DDoS attacks were used to overwhelm Estonian servers. The targets were Estonian government sites, including Parliament's webpage, websites of political parties, the country's largest banks, and the country's most prominent news and telecommunications outlets. While Estonians insisted on a Russian hand, the activity appeared to be originating from botnets all over the world, including Egypt, Vietnam, and Peru. Indeed, instructions for conducting the ping attacks were posted online, as well as guidance for how to target specific Estonian websites.

Estonia reached out to the world for help. In early May, internet service providers (ISPs) worked with Estonian authorities to block malicious data and defend Estonia's networks. The attacks began to trail off, but a second, more sophisticated wave of attacks hit the country over May 8-9 (in conjunction with Russia's national holiday

commemorating Soviet victory over Germany in World War II). In the second wave, botnets - hijacked computers around the world - again flooded Estonian internet addresses with erroneous data, forcing them to shut down or disconnect from international connections. Over the course of May 8-9, 58 separate botnet attacks targeted Estonia. At one point, Hansabank, Estonia’s largest bank, was forced to shut down its online operations.29 A third wave of attacks occurred a week later, wherein hackers who infiltrated individual websites defaced the sites and posted their own messages.30 By late May 2007, the attacks had subsided.

Although the attacks on Estonia cannot be positively attributed to Russian state actors, their timing, and the effects they generated, suggested they were part of a larger, coordinated information operations campaign by the Kremlin employing multiple tools of influence. After the riots and cyberattacks began, the Russian Federation Council called for the freezing of diplomatic ties with Estonia and the imposition of economic sanctions. When Russian nationalist youth groups attacked the Estonian embassy in Moscow, police failed to intervene. An unofficial blockade also disrupted trade on the border between the two states.31 The hackers appear to have been strategic in their choice of targets, attacking Estonian economic and political centers of gravity, including banks, ISP providers, telecommunications hubs, media outlets, and government websites. According to Jaak Aaviksoo, the Estonian Minister of Defense, “It is true to say that the aim of these attackers was to destabilize Estonian society, creating anxiety among people that nothing is functioning, the services are not operable, this was clearly psychological terror in a way.”32

Assuming that the Russian state was involved in the cyberattacks—at least to the extent that it encouraged and may have coordinated the hackers’ actions—they indicate that Moscow probably has a relatively low threshold for employing offensive cyber operations. The unrest in Estonia posed no immediate threat to the Russian State. Rather, Russia’s actions in Estonia should be seen in the context of the Federation’s long-term objectives of preserving its influence in its near abroad and safeguarding the interests of Russian minority populations along its borders. Nor was Russia deterred by Estonia’s membership in NATO. Throughout the campaign, Estonia had grappled with whether to invoke Article V of the NATO charter, but was ultimately deterred from doing so, partly because European Commission and NATO technical experts were unable to find a “smoking gun” that would tie the attacks to

31 Medvedev, 21.
the Kremlin, and also because the modalities of invoking the clause to respond to a non-kinetic attack, at least at the time, were undeveloped. The event, however, did begin a debate within NATO about the parameters of the cyber domain and its implications for the alliance.33

The Kremlin may have also been emboldened by the ambiguity its cyber proxies afforded it. During the campaign, the Russian government made statements applauding and encouraging the online hackers, but denied any involvement. After action reports suggest that the hackers were likely well resourced, suggesting state sponsorship, but the Kremlin's involvement could be conclusively proven. The utility of relying on hackers to assault the Estonian government in the information sphere, despite their relatively low capabilities, must have been reinforced by the fact that Russia was widely suspected of being behind the attacks, while it could still plausibly deny its involvement. Hackers thus proved to be a viable option for coercion, without the risk of attribution.

The second case study we examine is that of Georgia during the Russo-Georgia conflict in 2008. Tensions between the two countries had mounted during the preceding years over Georgia’s foreign policy, which had become increasingly pro-western under President Mikheil Saakashvili, and Georgia’s relationship with the separatist republics of South Ossetia and Abkhazia. Georgia’s military intervention in South Ossetia on August 7, ostensibly to prevent Ossetian shelling of Georgian territory, prompted Russia to mount a large-scale land, air, and sea invasion of Georgia on the following day (August 8). As Russian military forces moved into South Ossetia, a slew of DDoS attacks took down Georgia’s information infrastructure, cutting off government communications and defacing government websites. Georgian banks, transportation companies, and private telecommunications providers were also attacked, disrupting services.

33 At the Bucharest Summit in 2008, NATO created a unified Policy on Cyber Defense. Alliance members also established the Cyber Defense Management Authority (CDMA) to "centralize cyber defense operational capabilities across the Alliance." Shortly afterwards, Tallinn became home to the NATO Cooperative Cyber Defense Centre of Excellence (CCD CoE), the Atlantic Alliance’s cyber-security headquarters." Stephen Herzog, "Revisiting the Estonian Cyber Attacks: Digital Threats and Multinational Responses" *Journal of Strategic Security* 4, no. 2 (2011): 54-55.
On the day the war started, Russian hacktivist websites, such as stopgeorgia.ru, provided lists of Georgian sites to attack, along with instructions, downloadable malware, and after-action assessments. This opened up a new avenue as far as anonymity was concerned. Theoretically anyone, anywhere in the world sympathetic to Russia, or against Georgia, could contribute to the attacks. Under the constant information barrage of botnets, Georgia was subjected to a virtual cyber blockade, most of whose perpetrators were ultimately traced to servers in Russia and Turkey that were affiliated with RBN. Not surprisingly, the Russian government denied involvement, with a Russian embassy spokesman stating that it was possible that individuals in Russia or elsewhere had taken it upon themselves to start the attacks. Once again, the involvement of the Russian government could not be proven conclusively, although the timing of the attacks and the forensic evidence provided a strong indication that the Kremlin was orchestrating the attacks.

While the overall impact of the cyberattacks was minimal—Georgia’s IT infrastructure was limited in 2008, and the Georgian government was eventually able to reroute most of its traffic through servers in other countries, including the United States, Estonia, and Poland—it was the first known instance of wide-scale offensive cyber operations being mounted in support of conventional military operations.

The attacks employed by the hacker groups were relatively unsophisticated—mostly brute force DDoS attacks. However, the degree of coordination involved suggests that they were part of a coordinated campaign plan, the planning and preparation for which preceded Russian conventional operations by several weeks. Subsequent forensic investigations revealed that hackers had been probing and occasionally attacking Georgian government servers since at least July 20. In some instances, the attacks were also aligned geographically with Russian kinetic operations. For instance, Russian hackers attacked government websites in the city of Gori in eastern Georgia, along with news websites, just before Russian air attacks on the city.

34 Smith, 9.
36 Ibid.
Ukraine (2013-present): Cyber Used To Generate Kinetic Effects

While the evidence of Russian involvement in the steady barrage of cyberattacks against Ukrainian targets is not definitive, there are strong indicators that the Kremlin has resourced and directed the attacks. Broadly speaking, Russia appears to have used covert cyber activities in coordination with other information tools and military operations to create a general air of confusion and uncertainty regarding the Ukrainian government’s ability to secure its information systems, as well as the integrity of any information being communicated.38 Through this cyber campaign, Russia has been able to quietly and persistently compromise the Ukrainian government and military’s ability to communicate and operate, thereby undermining the legitimacy and authority of Ukrainian political and military institutions. In late 2015, however, Russia signaled its capability and a willingness to expand its use of offensive cyber operations to achieve kinetic effects by damaging Ukrainian critical infrastructure.

Russian hackers have utilized spear phishing, malware, DDoS attacks, telephone denial of service (TDoS) attacks, and other forms of cyber disruption and espionage to conduct a steady drumbeat of cyberattacks targeting Ukraine’s government, military, telecommunications, and private-sector information technology infrastructure. Cyberattacks have been used to interrupt communications, obtain and leak government documents and plans, and deface or take down public and private websites and computer systems. These nuisance cyberattacks have coincided with key events of the conflict, such as the Maidan protests, Ukrainian parliamentary elections, and the movement of Russian forces into the Crimea.39

In late December 2015, however, pro-Russian cyber actors departed from what were basically nuisance attacks and perpetrated what is believed to be the first cyberattack on another country’s power grid. In an attack that has been widely attributed to Russia,40 coordinated and synchronized cyberattacks targeted a

38 Azhar Unwala and Shaheen Gori, “Brandishing the Cybered Bear.”
39 Russia is believed to have conducted low-level information warfare against Ukraine since at least 2009 as part of a broader campaign against NATO and EU countries. “Russian Cyber Espionage Campaign – Sandworm Team,” iSight Partners (2014) via Azhar Unwala and Shaheen Gori, “Brandishing the Cybered Bear: Information War and the Russian-Ukraine Conflict,” Military Cyber Affairs: Volume 1, Issue 1, Article 7 (2015).
Ukrainian power company’s three separate distribution centers in Western Ukraine. Using remote access to control and operate breakers, the attackers took the distribution centers offline causing power outages that affected more than 220,000 Ukrainian residents. The cyber actors then wiped some systems by executing KillDisk malware at the conclusion of the cyberattack.

In reconstructions of the attacks provided by private cyber security firms, the attack has been described as particularly sophisticated: the attackers had spent months conducting reconnaissance in the power company’s networks, had obtained system administrator credentials, and then coordinated and synchronized the operation to take down the distribution centers simultaneously. Another indicator of the attack’s sophistication is that, while the impact was widespread, the overall effect was limited. Cyber experts speculate that the hackers had the ability to have caused more damage, such as causing physical damage to the breakers to permanently take the power stations offline, but chose not to. Instead, the power was only out for 1-6 hours for the regions hit (but the distribution centers were not fully operational many months after the attack). This restraint may have been meant to signal Russia’s capability to attack Ukraine’s physical infrastructure, but without doing irreparable damage.

The attackers may have also employed BlackEnergy, a highly advanced cyber surveillance tool, to infiltrate and map the power center networks prior to the attacks. According to one source, the latest version of BlackEnergy includes a backdoored secure shell (SSH) utility that gives attackers permanent access to infected computers. More recently, Russian hackers have used a highly advanced form of cyber malware—dubbed Ouroboros (a two headed mythological snake)—to map and open backdoors into Ukrainian and other European government systems. According to one report, "Ouroboros has been in development for nearly a decade

42 Ibid.
46 Ibid.
and is too sophisticated to have been programmed by an individual or a non-state organisation."47 The relative sophistication of these attacks suggest that they were directed and controlled by a state or military entity, such as the FSB or GRU (Russia’s military intelligence agency), rather than a co-opted hacker group.

Direct Russian involvement in the attack on Ukraine’s power grid would seem to indicate Russia’s willingness to expand the scope of its cyber operations into the kinetic realm, although it is probably too early to say whether this will be the beginning of a trend or merely an aberration. It could have been done to send a message or a warning to Kiev, as Russia had used energy as a weapon to put political pressure on Ukraine in the past.48 In this sense, the attack should probably be seen as an extension of classic Russian information warfare principles, intended for its psychological impact by undermining the confidence of Ukrainian citizens in the government and emphasizing the ramifications of Kiev’s anti-Russian policies.

47 According to the same report, “The origins of Ouroboros remain unclear, but its programmers appear to have developed it in a GMT+4 timezone – which encompasses Moscow – according to clues left in the code, parts of which also contain fragments of Russian text. It is believed to be an upgrade of the Agent.BTZ attack that penetrated US military systems in 2008.” See Sam Jones, “Cyber Snake Plagues Ukraine Networks,” Financial Times, 7 March 2014. Accessed at https://www.ft.com/content/615c29ba-a614-11e3-8a2a-00144feab7de.

48 It is possible that this attack was done to send a message or a warning. Around the time of the attack, the Ukrainian parliament had been considering a bill to nationalize privately owned power companies in Ukraine. This could have been Russia’s way of messaging against such a move. The attack also could have been in response to a physical attack against Crimea’s power infrastructure. Right before the attack, pro-Ukrainian activists physically attacked power substations feeding power to Crimea, leaving 2 million Crimean residents—and the Russian naval base at Sevastopol—without power. The physical attack may have prompted the cyber attackers to move forward with their plan. Kim Zetter, “Inside the Cunning, Unprecedented Hack of Ukraine’s Power Grid.” Wired (online), March 3, 2016. Available via https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/.
Bots, Leaks, and Trolls: Cyber's Role in Enabling the Russian Soft Power

In addition to the instances we have cited of Russia employing its cyber capabilities to deter, compel, or disorient its adversaries, the Kremlin also uses cyber in a soft power sense—to disseminate pro-Russian propaganda and undermine popular support for adversary governments. Its efforts in this regard fall into three broad categories:

1. The use of state-funded, pro-Russian news media sites, such as Sputnik and RT (formerly Russia Today)
2. Spreading adverse or misleading information on foreign governments and institutions via leaks of documents that often were obtained via hackers, spear phishing, or other forms of cyber espionage
3. Russia’s use of internet “trolls” (i.e., individuals paid to create fake blogs and online profiles to swamp news comment sections with misleading, false, or pro-Russian points of view)

This section will deal with the latter two activities because the use of official news media sites falls into a broader category of information operations.

The primary cyber tools that Russia employs for soft power IO are hacker groups and internet trolls. Hacker groups provide Russia with a covert, non-attributable option for acquiring data and documents that can be used in disinformation campaigns and information operations. They conduct a range of cyber activities, from DDoS attacks and cyber espionage to data/document exfiltration and digital sabotage. Documents exfiltrated by the hacker groups are released to the public either via such platforms as WikiLeaks or official news media sites. The documents often contain embarrassing personal information about foreign political or opposition leaders, expose dubious state policies or business practices, or contain information that discredits a government or institution.

For example, the hacker groups described as APT 28 (also known as Fancy Bear and Sofacy) and APT 29 (also known as Cozy Bear) are believed to be the groups behind the 2016 leaks of documents from the Democratic National Committee (DNC) servers. These groups are believed to be the cyber components of Russia's military intelligence agency (GRU) and state security services (FSB), respectively. In the past, APT 28 has targeted Ministries of Defense all over Europe and is believed to be the
group that targeted the Georgian military during the 2008 Russo-Georgian war. APT 29 has been caught accessing the U.S. White House, State Department, and Joint Chiefs of Staff unclassified websites. In the DNC hack, the two groups appeared to be operating independently. Crowdstrike, which investigated the hack, determined that APT 29 had actually been active in the DNC’s servers for almost a year before the breach was detected. During this time, Crowdstrike believes that the APT 29 was able to monitor the DNC’s communications and email and chat traffic. It was APT 28 that went directly for the DNC’s research on Donald Trump.

The DNC hack has widely been interpreted as a Russian plot to meddle in the 2016 U.S. presidential elections, possibly in an effort to undermine Hillary Clinton’s campaign in favor of her opponent Donald Trump. This would not be the first time Russia has used covert cyber IO to meddle in an election; the hacker group, CyberBerkut, which carries out pro-Russian hacking activities in Ukraine, is believed to be the group behind the 2014 attack on Ukraine’s election infrastructure. The DNC hack would appear to be part of a pattern of Russia targeting democratic elections, perhaps to favor one candidate over the other, but also as a means of undermining democratic institutions and the concept of a free electoral process as a whole. Free elections being a cornerstone of western democracy, the latter intent has troubling implications.

Internet trolls are a more overt, but non-attributable tool for discrediting anti-Russian information on the internet and pushing pro-government points of view. In 2012, WikiLeaks published data and documents supplied by the hacker group, Anonymous, which provided evidence that the Russian government, with Putin’s approval, was directly paying for a team of professional trolls. This practice has its roots in Russian domestic policy. During the early and mid-2000s, the internet provided a platform for Russian political opposition to get its message out. The government, which had an interest in restricting mediums for oppositional speech, attempted to control the opposition’s access and use of the internet. However, it quickly became clear that such efforts would not be successful. The Kremlin appeared to calculate that, if it could not control what political opponents put on the internet, then the government would try to crowd out, or overpower, the opposition’s message with a pro-Kremlin messaging campaign.

50 Ibid.

“Troll farms,” which often employ hundreds of people, were formed to spread pro-Kremlin messaging on the internet. To augment their activities, the government has leveraged pro-Kremlin youth groups, such as Nashi and Young Guard of United Russia. During the 2011 Russian Parliamentary elections, evidence of widespread electoral fraud led to a boom in anti-government and anti-Putin protests. These protests were organized over the internet via Facebook and Twitter and reportedly solidified in the minds of the Kremlin that the internet posed a direct threat to government stability.\(^{52}\) Russia’s use of trolls to influence domestic politics and policy intensified following the election experience in 2011; more recently, the use of trolls to crowd out anti-Russian information has been used on the international stage, particularly in Ukraine and Crimea, but in Europe and the United States as well. Trolls are reportedly paid to comment on anti-Russian news articles, “dislike” anti-regime videos on YouTube, use false online profiles on social media sites such as Facebook to overwhelm the comments of anti-Russian posts, and create and maintain pro-Russian blogs.\(^{53}\) An individual troll often maintains multiple online profiles and blogs.

The information contained in the comments and posts by the trolls ranges from misleading to verifiably fraudulent. Western observers and Russian anti-government activists have noted, however, that the role of the Russian internet troll is not necessarily to persuade its audience to a pro-Russian perspective but rather “to overwhelm social media with a flood of fake content, seeding doubt and paranoia, and destroying the possibility of using the Internet as a democratic space.”\(^{54}\)

Conclusion

Recent cyber operations—such as the DNC hack and the attack on the Ukrainian power grid—illustrate that Russia’s cyber capabilities and the manner in which they are used continue to evolve and adapt. Estonia, Georgia, and Ukraine have served as testing grounds for Russia’s cyber forces, providing opportunities for them to refine their cyberwarfare techniques and procedures. The simple DDoS attacks and DNS hijackings that typified Russian cyber operations in Estonia and Georgia have been

overshadowed by more sophisticated tactics and tools, such as BlackEnergy and Ouroboros.

If the example of Ouroboros is any indication, state-based actors, such as the FSB, also appear to be playing a more direct role in Russian offensive cyber operations than they did in the past. Non-state hackers, criminal syndicates, and other advanced persistent threats will probably remain a constant feature of Russian offensive cyber operations, both for the anonymity they afford and the ease with which they can be mobilized. However, as governments and companies around the world have hardened their networks, the basic techniques used by hacktivists and other non-state actors—for instance, redirecting traffic—are no longer as useful as they were five or ten years ago. The crowd-sourced approach that has typified how the Kremlin has utilized hackers and criminal networks in the past is likely to be replaced by more tailored approaches, with the FSB and other state agencies conducting network reconnaissance in advance and developing malware to attack specific system vulnerabilities.

The pre-positioning cyber forces ahead of the outbreak of conflict in the Georgia and Ukraine cases are indicative in this regard. The cyberattacks perpetrated against those countries were facilitated by spear-phishing campaigns that introduced malware or granted cyber actors remote access to systems sometimes months in advance of the military or diplomatic action—prior to any significant uptick in tensions with Moscow. The network reconnaissance and pre-staging of cyber forces in these cases suggests a degree of advanced planning and target selection that is more aligned with a broader IO campaign plan than the reactive, crowd-sourced approaches employed by hacking groups.

Offensive cyber operations are also likely to figure more prominently in Russian conventional military operations than they did in the past. Although the Russian military has been slow to embrace cyber for both structural and doctrinal reasons, the Kremlin has signaled that it intends to bolster the offensive as well as the defensive cyber capabilities of its armed forces by establishing special military cyber units and a cyber coordination and deconfliction body, sometimes referred to as a Cyber Defense Center in press—subordinate to the General Staff. The conflict in Georgia provided the first practical example where conventional Russian military operations were synchronized with cyber operations.

While Russian cyber tactics appear to be evolving, the theoretical and doctrinal underpinnings of Russia’s approach to cyber warfare have remained more or less

constant. Russian officials are convinced that Moscow is locked in an ongoing, existential struggle with internal and external forces that are seeking to challenge its security in the information realm. Globalization, along with the free flow of information it engenders, is viewed as both a threat and an opportunity in this regard. Russian information warfare doctrine—which encompasses cyber along with other, more traditional tools for shaping the information space—blurs the separation between peacetime and wartime. Cyber operations that in a U.S. context might require Title 10 authorizations and authorities are more likely to be employed by the Russians in a pre-conflict scenario or even peacetime when their capacity to affect a strategic outcome is viewed as more advantageous. This suggests that the Kremlin has a relatively low bar for employing cyber in ways that U.S. decisionmakers are likely to view as offensive and escalatory in nature.
CNA is a not-for-profit research organization that serves the public interest by providing in-depth analysis and result-oriented solutions to help government leaders choose the best course of action in setting policy and managing operations.

Nobody gets closer—to the people, to the data, to the problem.