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Abstract: A reliable diagnostic/prognostic indicator for 

electrochemical systems would allow for the prediction of 

cell failures, a function that would improve battery safety, 

efficiency, and quality assurance.  The technique of 

differential capacity has proven to be a useful tool in the 

pursuit of this type of diagnostic/prognostic device.  The 

plots resulting from the differential capacity technique 

provide a “fingerprint” of a battery system that can be 

tracked throughout its life, and changes in these plots give 

insight into the future behavior of the system.  The results 

of several cell-level galvanostatic experiments – performed 

on several different chemistry types – will be discussed with 

respect to differential capacity.   This type of galvanostatic 

cell data was analyzed in order to develop a differential 

capacity-based model for use in a diagnostic/prognostic 

device. 
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Introduction 

Differential capacity tracks an electrochemical system’s 

capacity increase on charge or decrease on discharge as a 

function of voltage.  Plotting differential capacity versus 

voltage creates a snapshot “fingerprint” of the system that 

can be tracked throughout the system’s life.  These 

fingerprints show how characteristic features of the curve 

change and give information regarding both the underlying 

thermodynamics and kinetics of the system.  Figure 1 gives 

a visual comparison between a standard voltage versus time 

discharge plot and a differential capacity plot generated 

from the same test data.  Monitoring the changes in a 

system’s electrochemical properties through differential 

capacity can help predict failure.  This prognostic capability 

would be useful in preventing safety incidents while also 

ensuring that a cell or battery is removed from service only 

after being used to its fullest extent. 

Background 

Through the Capability Needs Analysis (CNA) process, the 

U.S. Army derives a list of specific Warfighter 

requirements that are not currently being met.  These 

requirements are known as CNA gaps.  Two power- and 

energy-related CNA gaps state that “forces lack ability to 

accurately monitor and manage power demand and supply 

processes” and that “forces lack comprehensive, 

institutional awareness of the impact of energy use on 

operational effectiveness and need to consider efficient use 

of energy as a mission enabler”1.  The development of an 

effective battery diagnostic/prognostic device directly 

addresses both of these gaps. 

A paper investigating the usefulness of the differential 

capacity technique as a fingerprinting tool for 

electrochemical systems was presented at the 44th Power 

Sources Conference2.  This paper discussed the 

establishment of the fingerprinting method and included 

experiments to determine charge/discharge rates (Figure 2) 

and voltage integration periods (Figure 3) to optimize data 

fidelity while maintaining test efficiency.  To date, the 

differential capacity technique has been successfully used 

to study electrochemical systems of varying chemistries, 

sizes, configurations. 

Differential capacity was initially investigated as a quality 

assurance tool.  Generating the differential capacity curves 

of two identical cells will yield nearly identical curves; 

therefore, the technique can be used to indentify 

inconsistencies in a production environment.  The analysis 

of this quality assurance data revealed the possibility for 

using differential capacity as a prognostic tool.  Any 

changes made to the components of an electrochemical 

system (different electrodes, electrolyte, material ratios, 

etc.), as well as any changes in testing conditions (different 

rates, temperatures, abusive conditions, etc.), will cause 

changes in that system’s fingerprint.  This aspect of the 

differential capacity technique has inherent predictive 

capabilities, which could be leveraged in a 

diagnostic/prognostic device. 

Failure Prognosis 

Experimental: An experiment was designed to bring out 

cell failure through high-rate charging.  The goal was to 

monitor changes in the differential capacity curve with each 

cycle of the test and to observe which characteristic 

feature(s) of the curve changes as a result of performance 

degradation.  A 3.4 Ah NMC 18650 cell was subjected to a 

cycle life test with a 2 A constant current charge, a 0.8 A 

constant current discharge, a voltage range of 2.5-4.4 V, 

and a voltage integration period of 10 mV.  The differential 

capacity curves were tracked as the cell was cycled 

(Figures 4-6). 

Results: The cell experienced significant voltage 

fluctuation during cycles 9 and 10 but was able to recover 

for the latter portion of the test, which was stopped at cycle 

17.  A differential capacity curve was created for each 

cycle of the test.  The curve progression is shown in Figure 



 

4.  The blue curves indicate the cycles before the voltage 

fluctuation, the green curves indicate the cycles during 

which the fluctuation occurred, and the red curves indicate 

the cycles after the fluctuation. 

Discussion: Figure 5 shows the charge curves for cycles 2-

8 (before the voltage fluctuation), and Figure 6 shows the 

charge curves for cycles 11-17 (after the voltage 

fluctuation).  The characteristic feature of note for this cell 

is the second charge peak that appears at approximately 3.8 

V.  As the cycle number increases, in addition to the 

expected rightward shift, the second charge peak begins to 

fade.  Immediately after the voltage fluctuation, the peak 

has disappeared entirely.  This experiment shows that, for 

this chemistry, the second charge peak is an indicator of the 

cell’s overall state of health and can therefore be used to 

predict cell failure in a prognostic device. 

Modeling 

Experimental: Once the concept of using the differential 

capacity curve as an indicator for state of health was 

established, a method of quantifying changes in the curve 

had to be developed.  The Gaussian curve was used as the 

basis for the differential capacity model.  The first 

experiment that was modeled featured a representative 

spinel button cell of approximately 10 mAh that was 

subjected to a 3.5-4.75 V cycle at a rate of 1 mA.  A 

Gaussian curve was used to model the experimental data 

manually.  The general equation for a Gaussian function is 

given by .  For this particular 

application, f(x) equals the differential capacity at potential 

x.  Coefficients a, b, and c are the curve-defining 

parameters and were adjusted manually until the best fit 

was achieved.  Table 1 shows the relationship of each 

coefficient to its corresponding peak and details what 

physical values or processes dictate the coefficient values. 

Table 1. Gaussian curve-defining coefficients. 

Coefficient Effect on Curve Function of… 

a Height Theoretical capacity 

b Position 

Theoretical voltage 

(impedance, activation 

energy, polarization) 

c Width Diffusion 

Results and Discussion: The first attempt evaluated the 

accuracy of a two-curve model to simulate the behavior of 

the spinel button cell, as shown in Figure 7.  This method 

captured the main features of the experimental data but 

allowed for significant error in certain areas, namely the 

flat portions of the curve at low and high voltage and the 

area between the two peaks.  To account for this, a third 

Gaussian curve was added to the model, as shown in Figure 

8. 

Figures 9-11 show the differential capacity curves and 

corresponding three-curve Gaussian models at three points 

– cycle 10, 80, and 130 – during the cycle life test of the 

aforementioned spinel button cell.  Visual inspection of the 

experimental data indicates a slight change in several of the 

characteristic features as cycle number increases, especially 

from cycle 80 to cycle 130, but if differential capacity 

curves are to be used in a practical state of health device, 

these feature changes must be quantified.  This can be 

accomplished by monitoring changes in model curve 

coefficients a, b, and c throughout the life of the cell. 

Figures 12 and 13 show the values of coefficients a, b, and 

c for each of the three Gaussian curves in the model at 10-

cycle intervals from cycle 10-130.  The b and c 

coefficients, shown in Figure 12, follow fairly constant 

trends throughout the life of the cell.  The a coefficients, 

however, shown in Figure 13, begin straying from their 

respective trends at cycle 80, and then do so more evidently 

beginning at cycle 110.  Monitoring the changes in the 

coefficients brings out subtle performance degradation in 

the cell that might not be noticed with only visual 

inspection.  With further testing of different chemistries, a 

tolerance can be established for each coefficient, which can 

then be implemented into a diagnostic/prognostic device. 

Figure 14 shows the differential capacity curves and the 

corresponding three-curve Gaussian models (charge only) 

for cycles 2-5, 10, and 15 of a silicon anode pouch cell.  

The success of this model indicates that the three-curve 

Gaussian model is transferrable to other chemistries and 

cell types.  Additionally, this model data shows that, by 

breaking the experimental data down into three base 

Gaussian curves and monitoring how each of these curves 

change as the cell is cycled, the source of the degradation – 

in this case, the low charge peak – can be pinpointed.  With 

a more thorough knowledge of the physical relevance of 

each individual Gaussian curve, the model will allow 

degradation to be pinpointed to a particular component or 

chemical process within the cell.  This capability would be 

advantageous for both the research and testing 

communities, where it could be used to more efficiently 

target recurring issues with new chemistries and 

manufacturer cells. 

Conclusion 

The results of this work show that the differential capacity 

method enhances the ability to predict cell failure and that 

differential capacity curves can be accurately modeled 

using Gaussian curves.  This type of model utilizes a, b, 

and c coefficients to quantify and monitor curve changes, 

which is important if this technique is to be implemented in 

an in-use battery diagnostic/prognostic device.  Future 

work will include the investigation of other types of failure 

modes in order to increase the robustness of the method 

and obtain the necessary data for device implementation. 

The three-curve Gaussian model was able to be transferred 

to a different chemistry and cell type.  In the future, more 



 

chemistries and cell types will be modeled using the three-

curve method to determine whether other types of models 

will need to be explored.  It is also important to understand 

the physical relevance of each of the model curves in order 

to better identify the precise causes of cell failure. 
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Figure 1. Standard potential vs. time discharge curve 

compared with corresponding differential capacity curve for 
a 2.4 Ah NMC 18650 cell. 

 

Figure 2. Differential capacity curves comparing data fidelity 

at varying charge/discharge rates for a 2.4 Ah NMC 18650 
cell. 

 

Figure 3. Differential capacity curves comparing data fidelity 

at varying voltage integration periods for a 2.4 Ah NMC 
18650 cell. 

 

Figure 4. Progression of differential capacity curves during 

cycle life test for a 3.4 Ah NMC 18650 cell. 

 

Figure 5. Charge curves before voltage fluctuation for a 3.4 

Ah NMC 18650 cell. 

 

Figure 6. Charge curves after voltage fluctuation for a 

3.4 Ah NMC 18650 cell. 

 

Figure 7. Differential capacity curve with its two-curve 

Gaussian model for a spinel button cell. 



 

 

Figure 8. Differential capacity curve with its three-curve 

Gaussian model for a spinel button cell. 

 

Figure 9. Differential capacity curve with three-curve 

Gaussian model for a spinel button cell at cycle 10. 

 

Figure 10. Differential capacity curve with three-curve 

Gaussian model for a spinel button cell at cycle 80. 

 

Figure 11. Differential capacity curve with three-curve 

Gaussian model for a spinel button cell at cycle 130. 

 

Figure 12. The “b” and “c” charge coefficients for the three-

curve Gaussian model over the life cycle a spinel button 
cell. The “b” coefficients correspond to the primary axis, and 

the “c” coefficients correspond to the secondary axis. 

 

Figure 13. The “a” charge coefficients for the three-curve 

Gaussian model over the life cycle of a spinel button cell. 

 

Figure 14. Differential capacity charge curve over the life 

cycle of a silicon anode pouch cell. 


