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1. Introduction……………..

Environmental chemical (EC) exposure due to military occupation, travel, industrial, social and general 

living situations is ubiquitous. Industrial and technological progress has significantly increased the 

amount of ECs and human interactions with them. Biological characterization of these chemicals is 

challenging and inefficient, even with available high-throughput technologies. We are developing an in- 

silico method for characterizing relative toxicity called the Chemo-Phenotypic Based Toxicity 

Measurement (CPTM). This method provides the first comprehensive integration of EC biological 

effects, chemical reactivity features, and pharmacokinetic properties. As biological effects are driven by 

EC interactions with biological entities such as proteins, we completed a computational systems biology 

model called Tox-TMFS that predicts EC-protein target signatures and relates them to higher-order 

effects that include protein-protein interactions, signaling pathways, and molecular functions. For proof-

of-concept, we are in the process of simulating ECs using CPTM. Validations of EC-biological effect 

signatures are currently being performed at all levels. Focused assessments are in progress for EC 

associations with vitamin D receptor signaling pathway and colorectal cancer. CPTM was used to 

quantify EC “toxicity score” (Zts), which serves as a holistic metric of potential toxicity by which ECs 

may be ranked relative to each other. Assessment of general toxicity for a panel of 20 ECs is currently 

underway. CPTM with integrated TOX-TMFS and DRUGGENEX-NET is, to our knowledge, the first 

comprehensive systems biology- and chemistry-based platform for efficient high-throughput study of EC 

toxicity. As the EC space grows exponentially with new commercial materials, environmental waste 

products, and pharmaceuticals, CPTM platform is positioned to streamline the comprehensive 

assessment of these chemicals for focused subsequent assays and increased efficiency in toxicology. 
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2. Keywords………………

Toxicity, Environmental Chemicals, TOX-TMFS, CPTM, Cancer Cellular Network Model, Chemical 

Reactivity, Chemical Promiscuity, Pharmacokinetics, Colorectal Cancer, N,N'-disalicylidene-1,2-

diaminopropane, Pyraclostrobin, Paclobutrazol, Vitamin D Receptor, Wnt/Beta Catenin Signaling, 

Transforming growth factor beta. 
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3.  Accomplishments………………. 

 

A. Summary of Accomplishments 

What were the major goals of the project?  

Major Task 1. Screening of Potential EC-Protein Interactions Using the Tox-TMFS Method.  

Subtask 1 included the in-silico screening of ECs against human protein targets using the 

Tox-TMFS method, and this task is 75% complete. Subtask 2 entails the computation of 

intrinsic chemical properties for those chemicals being assessed for protein binding, and 

the incorporation of these properties in calculating the Tox-TMFS-yielded protein 

binding Z-scores, and was completed in January 2016. In Subtask 3, each EC would have 

putative protein targets ranked 1-40 based on that Z-score, with an assessment of the 

promiscuity of each EC, completed in January 2016. The milestone for this Major Task 

was to obtain top 40 protein targets for each of ECs, and this milestone is 80% 

completed. 

Major Task 2. Development of a Cancer Cellular Network Model Using the DrugGenEx-Net 

Method.  

Subtask 1, under this major task involved the linking of EC-protein interactions to 

Protein-protein interactions, molecular functions, and pathways in the cell, constructing 

EC perturbation networks assessed by way of the OMIM Morbid Map database to create 

Chemical-Disease interaction networks, a subtask completed in March 2016. Subtask 2 

entailed a relationship analysis between the cellular networks for ECs as elucidated in 

subtask 1, completed in March 2016. Subtask 3 was a CRC-specific analysis of EC 

Cancer Cellular Network Models, 75% complete. Milestone 1 under this Major task 

involved the development of biological perturbation networks for each EC in the context 

of CRC, which was completed in June 2016. Milestone 2 pinpointed key ECs to be 

assessed biologically for perturbation activity in CRC-associated pathways VDR, TGF-

beta and Wnt/Beta-catenin signaling pathways, completed in June 2016. 
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      Major Task 3. Prediction of EC Toxicity Using the CPTM Model.  

Subtask 1 incorporates the Intrinsic properties of environmental chemicals computed in 

Major Task 1 and requires assessment of additional kinetic properties for the ECs of this 

work, 60% complete. Subtask 2 requires development of the CPTM model and 

computation of general toxicity using kinetic and intrinsic EC parameters, 60% complete. 

The milestone for this major task entails the computation of toxicity scores for all ECs 

assessed, and identification of key ECs for biological testing. 

      Major Task 4. Biological testing of candidate Environmental Chemicals.  

Subtask 1 for biological testing entails CRC-associated target binding studies for a small 

number of ECs, 25% completed. Subtask 2 is to perform Wnt/Beta-catenin activation 

studies using reporter assays and mammalian two hybrid assays for VDR/beta-catenin 

interactions for the previously identified CRC-linked ECs of interest, which is 15% 

complete. Subtask 3 was to be performed cell viability and apoptosis measurements for 

CPTM model validation using cells from relevant tissue sources, 15% completed. The 

milestone for this major task is the complete biological testing of 40 ECs, which is 15% 

complete.  

What was accomplished under these goals?  

Major Task 1. Screening of Potential EC-Protein Interactions Using the Tox-TMFS 

Method.  

We have screened 420 ECs following the development of Tox-TMFS, against 2,335 

protein targets, exceeding the 254 structures anticipated. These 420 ECs were assessed 

for physiochemical descriptors and the Tox-TMFS procedure was completed, yielding top 

40 predicted protein interactions for each of the assessed ECs. 

 

Major Task 2. Development of a Cancer Cellular Network Model Using the DrugGenEx-

Net Method.  
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By way of the DrugGenEx-Net method, protein binders for the characterized ECs were 

combined with known protein interactions to create protein signatures for each EC, and 

each protein was annotated to its Protein-protein interactions, pathways, and molecular 

functions in the cell. These cellular network models were further enriched with oncologic 

disease OMIM profiles to create cancer-specific networks. The ECs N,N'-disalicylidene-

1,2-diaminopropane, paclobutrazol, and pyraclostrobin were selected for biological 

testing of CRC-linked pathway perturbation based on their multiscale activity profiles. 

 

Major Task 3. Prediction of EC Toxicity Using the CPTM Model.  

Integrating biological interactions, physicochemical descriptors, and pharmacokinetic 

properties, a toxicity risk quantification score (Zts) was calculated for each of the TMFS-

assessed ECs under the CPTM model. These predicted toxicity potentials were validated 

using known EC toxic assay results. 

 

Major Task 4. Biological testing of candidate Environmental Chemicals.  

Reporter assays for VDR binding studies are under way for N,N'-disalicylidene-1,2-

diaminopropane and in the preparatory phases for other ECs predicted to bind to VDR. 

Wnt/beta-catenin pathways reporter assay activation studies and VDR/beta-catenin 

distruption by mammalian two hybrid assays have been initiated for the selected ECs 

N,N'-disalicylidene-1,2-diaminopropane, paclobutrazol, and pyraclostrobin. Overall 

toxicity assessments will be further performed for 20 selected ECs of various predicted 

toxic potential. 

What opportunities for training and professional development has the project provided?  

Development of the CPTM procedure provided valuable training opportunities for a fourth year 

pharmacology student seeking to acquire proficiency in the computational assessment of 

biopharmacological and toxicological properties. A bioinformatics research assistant, and a 

prospective medical student has been trained to perform systems toxicology and other in-silico 

assessments under the computation of intrinsic and kinetic properties of ECs by Tox-TMFS, and 
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to manage datasets in building cancer cellular networks for ECs by the DrugGenEx-Net 

technique. Lastly, MSD-MAP, a metabolomic cancer-association assessment platform tangential 

to this toxicological project, was developed in conjunction with a student completing a Masters 

in biomedical sciences seeking exposure to computational biology. 

How were the results disseminated to communities of interest? 

Tangential projects developed using the principles central to Tox-TMFS and CPTM, as described 

in the Statement of Work, included a metabolite-disease association platform entitled MSD-

MAP, a network-based drug repurporsing platform entitled DrugGenEx-Net, and a drug 

repurposing-oriented protein interaction prediction model called RepurposeVS. The procedural 

techniques we developed were utilized in increasing the public understanding of systems biology 

based chemical-phenotypic association assessments by way of a polypharmacology-centered 

review article called “Harnessing Polypharmacology with Computer-Aided Drug Design and 

Systems Biology.” 

The cancer cellular network models built in this work will be disseminated in our online database 

and visualization tool called the Chemical Interactome Cellular Network Interface (CICNI), a 

platform that can be used to build systems-based chemical phenotypic prediction models similar 

to CPTM, with applications in the prevention, causative mechanistic understanding, and 

treatment of disease. 

What do you plan to do during the next reporting period to accomplish the goals? 

The next reporting period will entail a completion of Major Task 1 subtask 1, wherein ECs for which we 

have information on chemical structure will be processed for computation of intrinsic and kinetic 

characteristics, with assessment of protein binding by the Tox-TMFS procedure. This will equally 

accomplish the milestone for Major Task 1, and all characterized chemicals will have full EC-protein 

association networks. Upon this characterization, cancer cellular network models will be annotated for 

these ECs, and incorporated into the assessments for biological testing for mechanistic perturbation of 
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VDR, TGF beta, and Wnt/Beta-catenin signaling pathways. Completion of these chemical parameters 

will lastly allow for the conclusion of our CPTM procedure, and we will have obtained ranked potential 

toxicity prediction scores for the ECs. In this process, ECs of interest will emerge for which we will 

assess cell viability and apoptosis measurements according to subtask 3 in Major Task 4. As was 

described in our accomplishments, biological testing for candidate ECs at the levels of protein binding 

studies using reporter and surface plasmon resonance assays, wnt/beta-catenin pathway activation 

studies, VDR/beta-catenin interaction disruption studies, and CPTM-linked toxicity assays are in the 

preliminary stages, and this full panel of toxicology testing will be carried out in the upcoming months. 

 

In accordance with Major Task 1, we will continue the physicochemical assessment and building protein 

binding signatures for ECs using Tox-TMFS. Using the CPTM model, the general toxicity for these ECs 

will equally be assessed from kinetic and intrinsic properties of these compounds. The primary task from 

this point is to continue our biological testing at the levels of protein binding, cancer-associated pathway 

perturbation assessments, and in vitro assays for measures of general toxicity. These biological 

assessments will be utilized to validate our phenotypic predictions, which we arrive to solely from the 

starting point of chemical structure, and will also provide novel findings of biological perturbation and 

toxicity activity of key ECs, having implications for the ways in which EC exposure toxicity is measured 

and preemptively utilized to make policy and other decisions. 
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B. Detailed Accomplishments 

 

Specific Aim 1. Toxicity Screens  

 

Major Task 1. Screening of Potential EC-Protein Interactions Using the Tox-TMFS Method 

Subtask 1. In-silico screen of ECs against human protein targets using the Tox-TMFS method. 

Subtask 1 was listed to be completed in 1-8 months. This task is 75% complete. 

 

Subtask 2. Computation of TMFS method descriptors as described previously. Generation of Tox-TMFS 

Z-score for each ECs.  

Subtask 2 was listed to be completed in 2-8 months. This task was completed in 4 months, in January 

2016. 

 

Subtask 3. For each ECs rank order the protein target hits as top 1-40 based on the Tox-TMFS Z-score. 

Predict potential EC-protein (ECP) interactions called "Tox" signatures. Analyze the predicted top 40 

ECP associations in terms of chemical promiscuity for each target i.e. chemicals that interact with 

multiple targets with potentially bad effects. 

Subtask 3 was listed to be completed in 3-8 months. This task was completed in 4 months, in January 

2016. 

 

Milestone(s) Achieved. Using these computational biology, and data analysis methods, potential EC-

cancer proteins associations (top 1- 40) will be achieved.   

Major Task 1. Milestone Achieved was listed to be completed in 1-8 months. This milestone is 90% 

complete. 

 

Accomplishments 

Major Task 1. Screening of Potential EC-Protein Interactions Using the Tox-TMFS Method. 
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In following the stated subtask 1, we applied our TMFS method [1] for the prediction of binding 

signatures for the environmental chemicals (ECs) against 2,335 protein targets (Figure 1). In short, ECs 

were docked into target pockets identified by their reference ligand positions using 20 angstrom grids in 

GLIDE [2]. ECs retained after docking were then subjected to Schrodinger’s QikProp [2] module to 

generate the following physicochemical descriptors as required by subtask 2: (1) # H-bond acceptors, (2) 

# H-bond donors, (3) dipole moment, (4) electron affinity, (5) globularity, (6) ionization potential, (7) 

molecular weight, (8) # rotatable bonds, (9) solvent-accessible surface area (SASA), and (10) volume. 

These physicochemical properties were compared to those of the reference ligand using a Tanimoto 

similarity score. EC and shapes were computed using a spherical harmonics expansion approach and 

compared to that of the reference ligand using a Euclidean distance metric. EC shapes were also 

compared to that of the protein target pocket. The process of computing and comparing shapes 

previously reported [3]. Docking scores and shape metrics were normalized to a score range between 0 

and 1 to be implemented with Tanimoto similarity scores into a comprehensive “Z-score” that represents 

the quantitative likelihood of binding for an EC as described in [1]: 

 

Z =wkY (s p,s l )+ [
i=1

1

å wi f (s p,s l )+wi+1 f (s p,s l )]+ Xn(
n=1

j

å s c,s l )+CS(OLIC)     [Equation 1] 

 

In accordance with subtask 3, EC-protein (ECP) interactions called “Tox” signatures were ranked by 

descending Z-score, and the top 40 protein targets for each EC were further narrowed to Z-scores greater 

than the value of 13.5 out of 18 (75%) considered likely to bind to the respective protein target. 

Daidzein, an EC which we investigate as biologically associated with CRC in our analyses of cancer 

cellular network models (Major Task 2) and promiscuity (Major Task 3), was found to have 25 novel 

protein interactions after implementation of the Z-score cutoff of 13.5 (Table 1). 
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Figure 1. Schematic of the Chemo-Phenotypic Toxicity Measurement (CPTM) for the generation of 

toxicity scores (Zts), highlighting Tox-TMFS-derived protein interactions and resulting cellular 

networks. An environmental chemical is given a toxicity score based on the combination of biological, 

chemical, and pharmacokinetic terms. Tox-TMFS is used to predict novel EC-protein target associations 

in addition to experimentally determined signatures. The number of targets, which include signatures 

and their associated protein-protein interactions, pathways, and functions, contribute to an EC’s 

chemical promiscuity score and cellular network perturbation score. The pharmacokinetic (PK) score is 

determined by the total number of potential reactions that an EC can undergo into metabolites as well as 

the predicted percent human oral absorption. The chemical reactivity index is composed of 

physicochemical properties associated with general mechanisms of toxicity. The individual score terms 
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are combined to give a comprehensive toxicity score (Zts) to rank ECs, where higher scores denote 

greater potential toxicity. 

 

 
Table 1. Tox signature of Daidzein, predicted by Tox-TMFS. 

 

Hundreds of ECs have been screened following the development of Tox-TMFS, but Subtask 1 has not 

been fully screened but is nearing completion. At 2,335, the number of protein targets tested however 

has far exceeded the intended 254 structures anticipated. The EC-target signature space predicted by 

Tox-TMFS, which in its methodology and entirety accomplishes the milestone for Major Task 1, is 

large and highly interconnected (Figure 2). A two-tiered validation of EC-target as well as EC-function 

signatures was performed using the Comparative Toxicogenomics Database (CTD) [4], a comprehensive 

resource for experimental EC data.  898 (~14%) EC-target interactions and 14,461 EC-function 

signatures were validated. Table 2 lists the validations for EC-function signatures derived for 

methyltestosterone. While the absolute quantity of validations is less than the total prediction space, this 

is expected as many of these EC associations have yet to be tested experimentally. These results suggest 

that predicted EC-target interactions using Tox-TMFS are accurate and can be used to infer higher-order 

biological associations. 
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Table 2. EC-function signature predicted via protein interactions for the EC methyltestosterone. 

Major Task 2. Development of a Cancer Cellular Network Model Using the DrugGenEx-Net Method. 

 

Subtask 1.  Using DrugGenEx-Net, a novel molecular profiling method, cancer cellular networks such as 

protein-protein interaction (PPI), function, and pathways will be created by linking the predicted 

chemical-protein interaction signatures obtained from major task 1. DrugGenEx-Net method is used to 

construct a disease networks (here cancer) from empirically predicted chemical-target (CP) interactions 

to explore their relationships in human diseases, and mechanistic insights. CP signatures were predicted 

using the Tox-TMFS method. Chemicals were associated with diseases via their predicted targets using 

the OMIM Morbid Map database to create CP-bipartite networks. It is also possible that a chemical is 

connected to a disease because the chemical targets multiple proteins or because a protein is associated 

with multiple diseases, both cases being indistinguishable from the network.      

 

Subtask 1. This task was listed to be completed in 3-8 months. This task was completed in 6 months, in 

March 2016. 

 

Subtask 2. Relationship analyses among top 40 ECP interactions (selected based on Tox-TMFS Z-score) 

and PPI/pathway/function.   

Subtask 2 was listed to be completed in 4-10 months. This task was completed in 6 months, in March 

2016. 

 

Subtask 3. Generate EC-CRC network through predicted ECP-protein target associations for CRC-

related targets and further incorporation of signaling pathways and molecular functions. Subtask 3 was 

listed to be completed in 5-16 months. This task is 75% complete. 

 

Milestone(s) Achieved 1: Potential mechanistic biological network perturbations of cancer (types listed 

in the RFA) and colorectal cancer (CRC) network for each ECs will be identified. 

Milestone Achieved 1 was listed to be completed in 8-16 months. This milestone was completed in 9 

months, in June 2016. 
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Milestone(s) Achieved 2. Small number of ECs that mechanistically contribute to the perturbations of 

VDR, TGF and Wnt/-catenin, signaling pathways will be selected for biological testing described in 

aim 2. 

Milestone Achieved 2 was listed to be completed in 8-16 months. This milestone was completed in 9 

months, in June 2016. 

 

Accomplishments 

Major Task 2. Development of a Cancer Cellular Network Model Using the DrugGenEx-Net Method. 

 

Confident in the accuracy of protein-level predictions, we employed these signatures for assessing the 

biological effects of the EC set. Under subtasks 1 and 2, networks for these biological effects have so far 

been modeled against 12 oncologic diseases. Colorectal cancer (CRC) is a test case for which the 

biological network perturbations for each EC was assessed and for which a small number of prioritized 

ECs were selected for biological testing. 

 

Subtask 1 was accomplished when ECs were related to higher-order biological effects through their 

predicted and annotated targets by way of our DrugGenEx-Net method (Figure 2). The Comparative 

Toxicogenomics Database (CTD) [4] and The Toxin and Toxin Target Database (T3DB) [5] were used 

to obtain experimentally annotated targets for ECs. Protein-protein interactions (PPIs) were obtained for 

the entire protein dataset using the ExPASy STRING database [6]. A confidence score cutoff of 0.95 

was used to extract associations likely to be true positives. Annotation of functions from Gene Ontology 

[7,8] was performed using the Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) Functional Annotation Tool [9,10], while annotation for pathways from KEGG [11], 

REACTOME [12], PharmGKB [13], NetPath [14], BioCarta [15], WikiPathway [16], and Pathway 

Interaction Database [17] was performed using ConsensusPathDB [18]. Enriched pathways and 

functions for individual ECs were selected using P-value < 0.05 and FDR < 0.25. Cytoscape v2.8.3 was 

used to create EC-effect networks [19]. 
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Figure 2. Tox-TMFS and DrugGenEx-Net generated EC network biological space from predicted EC-

protein target interactions. Tox-TMFS was applied to a dataset of 420 environmental chemical (EC) 

structures and 2,335 human protein target crystal structures. (A) EC-protein-pathway tripartite network; 

pathways are further sub-classified into multiple categories per the KEGG classification. (B) EC (yellow 

nodes)-protein target (green nodes)-function (purple nodes) tripartite network. 

 

Known EC-cancer associations were recapitulated by way of developing Cancer EC-biological effect 

networks through cancer-related targets linked to the OMIM database [20]. Table 3 catalogs the ECs 

correctly predicted to be associated with Lung, Prostate, and Colorectal cancers by way of their multi-

level targets. 
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Table 3. Selected validations of ECs perturbing Lung and Prostate Cancer by building Cancer Cellular 

Network Models using DrugGenEx-Net. 

 

CRC is a solid malignancy typically diagnosed in late adulthood (>50 years). EC exposures over many 

years may be attributable to a subset of sporadic CRCs. A CRC EC-biological effect network was 

generated through CRC-related targets (Figure 3a). ECs were associated with CRC if their targets were 

annotated with CRC in the OMIM database. Centrally clustered ECs include butyl benzyl phthalate, 

oxazepam, bifenazate, sulfaquinoxaline and genistein. The uses of these compounds vary and are found 

in distinct environment spaces (i.e. plasticizers, pesticides, etc.). However, their chemical structures are 

similar in that they contain two substituted benzyl groups that are consistently spaced apart (Figure 3b). 

This structure is similar to polychlorinated biphenyls, which are pesticides that correlate with CRC. As 

molecules with structural similarity tend to exhibit similar biological properties, these molecules may be 

associated with CRC through similar mechanisms. Alternatively, molecules such as oleic acid and 

progesterone are less clustered and found peripherally in the network. Such molecules are of distinct 

chemical structure classes (fatty acid and steroidal hormone, respectively; Figure 3c) that tend to bind to 

more specific targets. Collectively, Tox-TMFS predicted ECs of various chemical structures to be 

associated with CRC.  
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Figure 3. Environmental chemicals (ECs) predicted to be involved in colorectal cancer (CRC). (A) ECs 

(yellow nodes) predicted by Tox-TMFS to associate with CRC through disease-related protein targets 

(green nodes). Relevant targets were chosen if they were found to be related to CRC in OMIM, the 

medical literature, through CRC-enriched GO molecular functions (purple nodes), or through relevant 

sub-pathways (red nodes) found under the main KEGG pathway hsa05210:colorectal cancer. (B & C) 

Subset of chemical structures for predicted CRC-associated ECs that clustered centrally (B) or are found 

peripherally (C) in the CRC network. 

 

Of the predicted CRC-associated ECs, literature validation revealed some to be beneficial and others to 

be harmful (note that ECs are defined as chemicals encountered in the environment that are not 

necessarily deleterious). Beneficial associations include phytoestrogens (genistein and daidzein) [21], 

flavonoids (quercetin) [22] and non-steroidal anti-inflammatory drugs (diclofenac) [23]. These 

molecules are commonly known for their anti-inflammatory properties and ability to inhibit multiple 

kinases, which are important for inhibiting cancer growth. Warfarin, an anticoagulant, was also found to 

be beneficial [24]. Alternatively, a CRC-promoting association was found for the laxative 

phenolphthalein [25]. However, there is no consensus yet on this association as epidemiological data is 

limited [26]. 
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The vitamin D receptor (VDR) is a type II nuclear receptor implicated in various downstream cellular 

processes (Figure 4). Binding of the active form of vitamin D3 (calcitriol) activates VDR and exhibits 

pleiotropic beneficial health effects [27], such as anti-inflammation and cancer prevention. Low serum 

vitamin D levels, inhibition or downregulation of VDR have been conversely associated with 

autoimmune diseases such as Crohn’s [28], rheumatoid arthritis [29] and psoriasis [30]. Exposure to 

certain ECs may pathologically dysregulate VDR signaling.  

 
Figure 4. Downstream effects of VDR activation by its cognate ligand calcitriol (activated Vitamin D3). 

Arrows denote directionality of biological response. 

 

Tox-TMFS predicted nordihydroguaiaretic acid (NDGA) and N,N'-disalicylidene-1,2-diaminopropane to 

bind VDR. NDGA is a phenolic compound derived from the Creosote bush used as a natural supplement 

for its anti-oxidant activity. However, medicinal use of NDGA is controversial as NDGA also exhibits 

pro-oxidant activity resulting in hepato- and renal toxicity [31]. NDGA has also recently been identified 

as a novel VDR antagonist [32]. We hypothesize that NDGA-induced VDR antagonism induces toxicity. 

 

N,N'-disalicylidene-1,2-diaminopropane is a salen-type ligand used as a fuel additive in motor oils to 

deactivate metals. Motor oil exposure has been linked to autoimmune diseases such as rheumatoid 
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arthritis [33], pro-inflammatory skin conditions [34], skin cancers [35], and other diseases. Deployed 

military personnel, aerospace workers and automobile mechanics are occupation groups with 

significantly increased exposure to motor oils. Exposure usually occurs via direct contact or through 

inhalation, such as when flying in poorly ventilated aircrafts for extended periods or being in close 

proximity to fire burn pits in active warzones like Afghanistan and Iraq. The increase in the prevalence 

of certain pathologies- lung cancer and malignant melanoma in aerospace workers [36] and rectal cancer 

in automobile manufacturing workers [37] - may be attributed to multiple effects from motor oil-induced 

dysregulation of VDR signaling (Figure 4). To date, there is no established link between motor oil 

exposure and CRC prevalence. Our results suggest a long-term epidemiological study to define this 

association given the extended time course for CRC development. 

 

VDR signaling is highly complex with multifaceted health implications (Figure 4). Perturbation of the 

VDR network through antagonism or decreased VDR protein expression is pathological. Combining 

Tox-TMFS predictions with literature findings highlights the potential of EC exposure to cause a myriad 

of diseases through VDR signaling disruption. This informed our prioritization of three environmental 

chemicals for biological testing as part of subtask 3, emphasizing important CRC pathways including 

VDR, TGFß, and Wnt/ß-catenin signaling pathways.  

 

In selecting candidates for biological testing, we examined all cancer cellular network models for each 

EC characterized by way of Tox-TMFS predicted and previously known protein interactions, and, as 

described above and accomplishing Milestone 1, extrapolated cellular actions associated with those 

interactions at the levels of PPI, pathways, and functions using DrugGenEx-Net. N,N'-disalicylidene-1,2-

diaminopropane, as discussed above, was predicted to bind to VDR, one of the components of the EC 

mechanistic biological network that was annotated as associated with CRC. Figure 5 illustrates the full 

biological action network of N,N'-disalicylidene-1,2-diaminopropane, with activity associated with VDR 

highlighted in pink. VDR perturbation constitutes a significant share of the predicted interactome of this 

EC, but it is not the sole subnetwork associated with predicted targets using the OMIM database. We 

additionally predicted by way of Tox-TMFS that this EC would bind to CRC targets MAOB 

(Monoamine oxidase B) and MMP12 (Matrix Metallopeptidase 12), and perturb a set of CRC-linked 
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pathways, among them P53 and tyrosine metabolism, two pathways which have been strongly implicated 

in CRC disease progression [38] (Table 4). Importantly, as shown in Table 4, N,N'-disalicylidene-1,2-

diaminopropane was additionally linked to TGF-beta, Wnt/Beta-catenin, and the Renin-Angiotensin 

System, through the three CRC-linked protein targets and others which were not directly associated with 

CRC. These pathways are important downstream components associated with VDR (Figure 4), and 

further inform our hypothesis that the motor oil additive N,N'-disalicylidene-1,2-diaminopropane 

induces CRC toxicity by way of interaction with VDR and its offshoot cellular mechanisms. In 

accomplishing milestone 2, N,N'-disalicylidene-1,2-diaminopropane was therefore selected for 

biological testing for VDR binding, Wnt/Beta-Catenin pathway activation studies, and other tests as 

discussed under Major Task 4. 
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Figure 5. Entire Cellular Network Model for N,N'-disalicylidene-1,2-diaminopropane with highlighted 

Vitamin D Receptor (VDR) subnetwork. Green node is the EC, blue nodes are direct protein 

interactions, light pink nodes are PPIs, orange nodes are pathways, and purple nodes are molecular 

functions. Dark pink node is the direct interacting protein Vitamin D Receptor (VDR), with protruding 

edges in red to signify direct perturbation network of VDR. This network excludes disease associations 

from the OMIM database, instead describing all possible disease-associated biological activity perturbed 

from an EC-centric viewpoint. 
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Table 4. CRC-linked direct proteins and pathways associated with biological testing candidate EC N,N'-

disalicylidene-1,2-diaminopropane, with components of interest labeled red. 

 

It is the case for many of our assessed ECs that several or all of the chemical-protein target interactions 

were previously established in the scientific literature. Cancer-linked biological activity annotated to 

those interactions, however, are largely uncharacterized at the present time. This leaves opportunities for 

testing of predicted cancer-linked pathway activity and cancer progression extrapolated by way of our 

cancer cellular network models using the DrugGenEx-Net procedure. As delineated in Table 5, 

Paclobutrazol (PBZ), a plant growth retardant and triazole fungicide, interacts with four CRC-associated 

proteins, including MAOB (Monoamine oxidase B), ABCB1 (ATP-binding cassette sub-family B 

member 1), CXCL10 (C-X-C Motif Chemokine Ligand 10), and MMP1 (Interstitial Collagenase). 

Associated with these and non-CRC target proteins were a large set of CRC pathways, including TGF-

Beta, VDR, and Beta-Catenin signaling pathways. Outlined in Figure 6 are the direct protein targets 

predicted to interact with Paclobutrazol and associated with these key CRC pathways. Omitted are the 

PPIs also linked to these pathways and interacting with the direct protein highlighted in Figure 6 as well 
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as other direct proteins. We hypothesize that PBZ, due to its predicted perturbation of the VDR pathway 

and associated downstream activity, as well as predicted associations with CRC-linked cellular 

components such as P53 and PPAR signaling pathways, will exhibit pathological perturbation on CRC 

disease models. We chose PBZ as a candidate for disruption of VDR/Beta-Catenin interactions. This 

assessment is further discussed under Major Task 4. 

 
Table 5. CRC-linked direct proteins and pathways associated with biological testing candidate EC 

Paclobutrazol, with components of interest labeled red. 
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Figure 6. Predicted direct protein targets of Paclobutrazol involved in TGF-beta Receptor Signaling 

Pathway, and Vitamin D Receptor Pathway.  

 

Pyraclostrobin is an agricultural fungicide which we predicted to have the largest CRC cellular 

perturbation network. Table 6 lists protein targets for this EC which are CRC-associated, as well as the 

CRC-linked pathways represented in its perturbation network. The activity predicted is similar in nature 

to that of PBZ, including predicted interaction with TGF-Beta, VDR, and Beta-Catenin signaling 

pathways, and also including the Wnt signaling pathway. As outlined under Major task 4, 

pyraclostrobin was prioritized for biological testing in Wnt/Beta-Catenin pathway activation studies 

using reporter assays, and for VDR/Bet-catenin interactions which we will test by mammalian two 

hybrid assay. 



30 

 

 

Table 6. CRC-linked direct proteins and pathways associated with biological testing candidate EC 

Pyraclostrobin, with components of interest labeled red. 

 

In the course of our assessments of ECs, we accomplished the task of building cancer cellular network 

models using the DrugGenEx-Net method and making cellular and human level outcome predictions in 

applying these principles to both drugs and metabolites. In our published platform entitled DrugGenEx-

Net, we assessed hundreds of pharmaceutical species, both FDA-approved and experimental drugs, by a 

proteochemometric method analogous to Tox-TMFS, to protein binding signature for each drug. The 

drug action space was then developed by annotation to protein-linked pathways, functions, and PPIs, 
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after which a gene expression-derived disease perturbation space was assessed for likeness to the drug 

space in order to determine therapeutic potential against neurodegenerative disorders and autoimmune 

diseases [39]. Furthermore, we assessed the disease-causing, therapeutic, and biomarker applications of 

metabolites in a platform entitled MSD-MAP (Multi Scale Disease-Metabolite Association) using the 

network principles of the work discussed here. MSD-MAP produces cancer cellular network models for 

endogenous and exogenous metabolites that may be central to the development of a given cancer, by 

extrapolating cellular activity linked to those metabolites from known and TMFS-predicted protein 

binding signatures. The resulting networks are assessed for coincidence with cancer-associated 

biological perturbation networks. This project has been accepted. We also published a review article 

discussing the current possibilities by which polypharmacology of a chemical compound can be modeled 

by computational means, and how this polypharmacology is employed to predict phenotypic outcomes 

such as adverse reactions, diseases, and therapeutic effects by combining principles of systems biology 

and network analysis [40]. In our development of Tox-TMFS, we developed a drug-repurposing variant 

on this proteochemometric model called RepurposeVS [41]. These works were important in building and 

applying the principles utilized in this work for predicting the mechanistic and phenotypic outcomes 

resulting from exposure to a chemical compound, particularly those utilized in Major Tasks 1 and 2. 

 

 

Major Task 3. Prediction of EC Toxicity Using the CPTM Model 

 

Subtask 1. Computation of the Intrinsic and Kinetic Properties of Environmental Chemicals. 

Subtask 1 was listed to be completed in 8-12 months. This task is 60% complete. 

 

Subtask 2. Our novel computational model CPTM will compute a potential toxicity score using the data 

generated from sub aims 1a-1c. Again this process is iterative as described above in Major Task 2. 

Subtask 2 was listed to be completed in 8-16 months. This task is 60% complete. 

 

Milestone(s) Achieved. The CPTM method simulates the interaction of chemicals, proteins and cells in 

physiological processes, and measure ECs toxicity in terms of a “toxicity score” (Zts) for colorectal 
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cancer in general and its pathways. During month 10 we expect to have first set of ECs to do biological 

testing.   

Milestone Achieved was listed to be completed in 8-16 months. This task is 90% complete. 

 

Accomplishments 

Major Task 3. Prediction of EC Toxicity Using the CPTM Model 

 

The Chemo-Phenotypic based Toxicity Measurement (CPTM) method (Figure 1) is a comprehensive 

integration of biological interactions, physicochemical descriptors, and pharmacokinetic (PK) properties, 

calculated in accordance with subtask 1 and all utilized to quantify an EC’s toxicity risk through a 

“toxicity score” (Zts) under subtask 2. ECs with higher Zts values are predicted to have higher overall 

human toxicity relative to ECs with lower Zts values. An EC’s toxicity score is calculated using the 

following equation (2): 

 

Zts(s c ) =wkP(s pct +s act )+w jN(s ppi,s py,s pf )+wiR(s logP,s e,s I,s A,sh,sm,s f ,sw )+woPK(sM ,s ABS )  

 

where the “P” term represents the normalized chemical promiscuity score of a given EC (s c
), along 

with its designated weight (  = 2). The promiscuity score is the sum of two factors: (1)  represents 

predicted chemical-protein interactions using TOX-TMFS, and (2)  represents annotated chemical-

protein interactions, which are obtained from the CTD. The “N” term represents the normalized cellular 

network perturbation score of an EC, which is derived from the total number of higher-order EC-

biological effect associations (Figure 1) at the level of protein-protein interactions (s ppi ), pathways 

(s py ) , and functions (s pf ) , along with its designated weight (  = 1). The "R" term represents the 

normalized score of the EC’s chemical reactive index with (wi
=1). This index is composed of 

physicochemical properties associated with general mechanisms of toxicity according to the toxicology 

literature [42]. The properties included in the chemical reactive index are: log P (s logP
), HOMO-LUMO 

energy band gap (s e
), ionization potential (I), electron affinity (A), chemical hardness (sh

), electronic 

chemical potential (s m
), electrophilic (f-) Fukui index (s f

), and electrophilicity index (sw ). EC 

electron affinity (A) and ionization potentials (I) were obtained using QikProp and used to calculate the 

electrophilicity index (w ), chemical hardness (h ), and chemical potential ( m ): 

 

                                                                   w =
m 2

2h
          (3) 
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where m = -
1

2
(I + A)and m =

1

2
(I - A). Jaguar [Schrodinger Inc. Computational modeling package] was 

used to calculate EC electrophilic Fukui indices and HOMO-LUMO gap energies.  

 

The “PK” term represents the normalized pharmacokinetic score containing the number of potential 

metabolic reactions (sM ) the EC may undergo as well as its percent human oral absorption (s ABS
). Both 

properties are calculated using QikProp. We make the assumption that a toxicant's bioavailability is 

directly correlated with its toxicity, and that toxicants likely undergo metabolism to more reactive 

intermediates that give rise to toxicity. By way of this pharmacokinetic term, we seek to address the fact 

that many environmental toxicants will arrive at the colonic epithelium or other disease-relevant tissue in 

an altered state, i.e. as a metabolite. The metabolic reaction term, as detailed in Figure 7, is prospective 

in predicting the total number of reactions based on chemical structure and circumvents the issues 

arising from animal model genetic backgrounds (i.e. differential cytochrome P450 expression levels). 

While this may lead to some overestimated risks, we believe it is prudent to have this overestimation for 

a few toxicants than to underestimate the risk of the majority of toxicants. 

 

The rigorous mathematical derivation of each CPTM input parameter is laid out in Figure 7, wherein 

colored headings correspond to major components of the CPTM calculation, such as the electrophilicity 

index column corresponding to Equation 3. Daidzein and Genistein, which have high toxicity scores, 

have intrinsic and kinetic qualities that match their diverse bioactivity and resulting toxicity, while 

fenaminosulf, which we predicted to have the lowest general toxicity for an EC, exhibits 

correspondingly mild calculated intrinsic and kinetic qualities. 
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Figure 7. Detailed sample computation of intrinsic and kinetic properties for ECs Daidzein, Genistein, 

and Fenaminosulf. Colored headings correspond to parameters directly incorporated into the CPTM 

general toxicity calculation. 

 

We developed the Chemo-Phenotypic Based Toxicity Measurement (CPTM) to integrate with Tox-

TMFS as a quantitative predictive tool for applied toxicology. CPTM is a metric defining potential 

clinical toxicity for a given EC molecule derived from predicted EC-target signatures via Tox-TMFS. It 

is a quantitation, reflected in terms of a “toxicity score” (Zts), of an EC’s promiscuity of biological 

effects, chemical reactivity, potential bioavailability and potential metabolism (Equation 2). ECs 

exhibiting the highest Zts are predicted to be the most toxic.  

 

The molecules with the top two Zts are daidzein and genistein (Figure 8a; Table 7). Daidzein and 

genistein are isoflavones typified as endocrine disruptors and found in soy-based products. They have 

been shown to regulate the activity of many proteins and are thought to elicit multiple effects. The 

molecules with the lowest two Zts are fenaminosulf, a fungicide, and benoxacor, a pesticide safetener, 

implying that they are relatively safe for human use. To validate CPTM, we queried the Hazardous 

Substance Data Bank (HSDB) for a subset of ECs to obtain relevant toxicological data (see Methods). A 

direct correlation between an EC’s Zts and the total number of observed toxic effects was found (Figure 

8b; Table 8). Zts is therefore a reliable quantitative metric for predicting the extent of EC toxic effects. 

 

Table 7 reveals the top 30 ECs by CPTM-calculated Zts (overall toxicity score), which is derived from 

the 958 ECs assessed by CPTM to accomplish the milestone for Major Task 3. From this assessment as 

well as the network analyses carried out under Major Task 2, we have determined candidates and 

commenced biological testing for the first set of ECs to be tested. This is further discussed in Major 

Task 4.  
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Figure 8. CPTM method arrangement of EC toxicity scores (Zts) and validation. (A) Waterfall plot of 

toxicity scores (Zts) for each environmental chemicals using the CPTM method. (B) Scatter plot of EC 

toxicity score against total number of toxic effects noted in the Hazardous Substance Data Bank 

(HSDB).  
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Table 7. CPTM-derived Top 30 ECs by Zts toxicity score. 

 

As the Zts of genistein, a frequently encountered molecule, is among the highest, this EC was analyzed in 

greater detail. Considering all predicted genistein-target associations, enriched pathways and functions 

include those involved in cancers and cardiovascular illnesses. Pathways include PPAR signaling 

(hsa03320), T cell receptor signaling pathway (hsa04660) and pathways in cancer (hsa05200). Functions 

include negative regulation of cholesterol storage (GO:0010887), lipid storage (GO:0010888) and foam 

cell differentiation (GO:0010745), all of which promote cardiovascular health, as well as regulation of 

apoptosis (GO:0042981) and cell proliferation (GO:0042127), which are cancer-mediating functions. 
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These predicted associations are also supported by experimental evidence [43]. Similar analysis can be 

performed for any other ECs in the dataset.  

 
Table 8. Comparison of CPTM toxicity scores (Zts) with established toxic effects in literature. Known 

EC effects were tabulated from the Hazardous Substance Data Bank (HSDB). The total number of 

unique toxicity effects were compared to the EC’s toxicity score (Zts). Color circles represent relative 

toxicity category, with red being most toxic and green being least toxic. 

 

Specific Aim 2. VDR and β-catenin Pathways in CRC 

 

Major Task 4. Biological testing of candidate Environmental Chemicals.  

Subtask 1. Perform vitamin D receptor binding studies on the small number of ECs (selected from Aim 

1) using reporter and surface plasmon resonance assays.  

Subtask 1 was listed to be completed in 3-24 months. This task is 15% complete. 

 

Subtask 2. Perform Wnt/Beta-Catenin pathway activation studies using the reporter assays, and for some 

ECs which may disrupt VDR/beta-catenin interactions which we could test by mammalian two hybrid 

assay.   

Subtask 2 was listed to be completed in 4-24 months. This task is 15% complete. 

 

Subtask 3. We will perform cell viability and apoptosis measurements on selected ECs. We expect to 

test around 20 of the highest toxicity ECs predicted by the CPTM model in addition to top hits came 

from earlier experiments. Cells: We will use Keratinocytes, Fibroblasts, and Airway epithelial cells. 
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Subtask 3 was listed to be completed in 4-24 months. This task is 15% complete. 

 

Milestone(s) Achieved: Milestone Achieved was listed to be completed in 4-24 months. This task is 

15% complete. 

Accomplishments 

 

Major Task 4. Biological testing of candidate Environmental Chemicals.  

Under subtask 1, reporter assays for VDR binding studies are under way for the selected EC N,N'-

disalicylidene-1,2-diaminopropane. 19 other ECs predicted to bind to VDR/pathway components or 

other CRC target pathway components have been purchased and handled for preparation of in-vitro 

assays. Since this process is iterative, subtask 1 may be completed by testing for binding against other 

proteins for which Tox-TMFS predicted interactions for key ECs, with preference to those relevant to 

CRC. 

In accordance with Subtask 2, Wnt/Beta-Catenin pathway activation studies using reporter assays as 

well as VDR/Beta-catenin disruption by mammalian two hybrid assay are at the preliminary stages for 

the three chemicals, N,N'-disalicylidene-1,2-diaminopropane, Pyraclostrobin, and Paclobutrazol, 

described in Major Task 2. 20 ECs scoring highly in terms of overall toxicity (Zts) have been chosen 

for subtask 3, but cell viability and apoptosis has not commenced. 

 

 

What do you plan to do during the next reporting period to accomplish the goals?  

 

The next reporting period will entail a completion of Major Task 1 subtask 1, wherein ECs for which 

we have information on chemical structure will be processed for computation of intrinsic and kinetic 

characteristics, with assessment of protein binding by the Tox-TMFS procedure. This will equally 

accomplish the milestone for Major Task 1, and all characterized chemicals will have full EC-protein 

association networks. Upon this characterization, cancer cellular network models will be annotated for 

these ECs, and incorporated into the assessments for biological testing for mechanistic perturbation of 

VDR, TGF beta, and Wnt/Beta-catenin signaling pathways. Completion of these chemical parameters 

will lastly allow for the conclusion of our CPTM procedure, and we will have obtained ranked potential 

toxicity prediction scores for the ECs. In this process, ECs of interest will emerge for which we will 

assess cell viability and apoptosis measurements according to subtask 3 in Major Task 4. As was 
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described in our accomplishments, biological testing for candidate ECs at the levels of protein binding 

studies using reporter and surface plasmon resonance assays, wnt/beta-catenin pathway activation 

studies, VDR/beta-catenin interaction disruption studies using mammalian two hybrid assays, and 

CPTM-linked toxicity assays are in the preliminary stages, and this full panel of toxicology testing will 

be carried out in the upcoming months. 

 

In accordance with Major Task 1, we will continue the physicochemical assessment and building 

protein biding signatures for ECs using Tox-TMFS. Using the CPTM model, the general toxicity for 

these ECs will equally be assessed from kinetic and intrinsic properties of these compounds. The 

primary task from this point is to continue our biological testing at the levels of protein binding, cancer-

associated pathway perturbation assessments, and in vitro assays for measures of general toxicity. These 

biological assessments will be utilized to validate our phenotypic predictions, which we arrive to solely 

from the starting point of chemical structure, and will also provide novel findings of biological 

perturbation and toxicity activity of key ECs, having implications for the ways in which EC exposure 

toxicity is measured and preemptively utilized to make policy and other decisions. 

 

 



40 

 

References 

[1] Dakshanamurthy, S., Issa, N. T., Assefnia, S., Seshasayee, A., Peters, O. J., Madhavan, S., ... & 

Byers, S. W. (2012). Predicting new indications for approved drugs using a proteochemometric 

method. Journal of medicinal chemistry, 55(15), 6832-6848. 

[2] Small-Molecule Drug Discovery Suite 2013-3: Glide, version 6.1 and QikProp, version 3.8, 

Schrödinger, LLC, New York, NY, 2013. 

[3] Kahraman, A.; Morris, R.; Laskowski, R.; Thornton, J. Shape Variation in Protein Binding Pockets 

and Their Ligands. J. Mol. Biol. 2007, 368, 283–301. 

[4] Davis AP, Murphy CG, Johnson R, Lay JM, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, 

King BL, Rosenstein MC, Wiegers TC, Mattingly CJ. The Comparative Toxicogenomics Database: 

update 2013. Nucleic Acids Res. 2013 Jan 1;41(D1):D1104-14. 

[5] Wishart, D., et al. T3DB: the toxic exposome database. Nucleic Acids Res. 2015 Jan;43(Database 

issue):D928-34. 

[6] Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, et al. (2013) STRING v9.1: 

protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res D1: 

D808-D815. 

[7] The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat 

Genet 25: 25-29. 

[8] Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, et al. (2009) AmiGO: online access to ontology 

and annotation data. Bioinformatics 25: 288-289. 

[9] Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists 

using DAVID Bioinformatics Resources. Nature Protoc 4: 44-57. 

[10] Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the 

comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1-13. 

[11] Kanehisa M, Goto S (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids 

Res 28: 27-30. 

[12] Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath 

GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L. Reactome: a knowledgebase of biological 

pathways. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D428-32. 

[13] Hewett et al. PharmGKB: the Pharmacogenetics Knowledge Base. Nucleic Acids Res. 2002 Jan 

1;30(1):163-5. 

[14] Kandasamy K et al. NetPath: a public resource of curated signal transduction pathways. Genome 

Biol. 2010 Jan 12;11(1):R3. 

[15] Nishimura D. BioCarta. Biotech Software & Internet Report. July 2004, 2(3): 117-120. 

[16] Pico et al, WikiPathways: pathway editing for the people. PLoS Biol. 2008 Jul 22;6(7):e184. 

[17] Schaefer et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009 Jan;37(Database 

issue):D674-9. 

[18] Kamburov et al. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids 

Res. 2011 Jan;39(Database issue):D712-7. 

[19] Shannon et al. Cytoscape: a software environment for integrated models of biomolecular interaction 

networks. Genome Res. 2003 Nov;13(11):2498-504. 

[20] Hamosh et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes 

and genetic disorders. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D514-7. 



41 

 

[21] Lepri, Sandra Regina, Leonardo Campos Zanelatto, Patrícia Benites Gonçalves da Silva, Daniele 

Sartori, Lucia Regina Ribeiro, and Mario Sergio Mantovani. "The effects of genistein and daidzein on 

cell proliferation kinetics in HT29 colon cancer cells: the expression of CTNNBIP1 (β-catenin), APC 

(adenomatous polyposis coli) and BIRC5 (survivin)." Human cell 27, no. 2 (2014): 78-84. 

[22] McClellan, Jamie L., Jennifer L. Steiner, Reilly T. Enos, and E. Angela Murphy. "Effects of 

quercetin in a mouse model of colitis associated colon cancer." The FASEB Journal 27 (2013): 235-3. 

[23] Gupta, Rajnish A., and Raymond N. DuBois. "Colorectal cancer prevention and treatment by 

inhibition of cyclooxygenase-2." Nature Reviews Cancer 1, no. 1 (2001): 11-21. 

[24] Bobek, Vladimir, and Josef Kovařík. "Antitumor and antimetastatic effect of warfarin and 

heparins." Biomedicine & Pharmacotherapy 58, no. 4 (2004): 213-219. 

[25] Coogan, Patricia F., Lynn Rosenberg, Julie R. Palmer, Brian L. Strom, Ann G. Zauber, Paul D. 

Stolley, and Samuel Shapiro. "Phenolphthalein laxatives and risk of cancer." Journal of the National 

Cancer Institute 92, no. 23 (2000): 1943-1944. 

[26] Report on Carcinogens, Twelfth Edition (2011). 

[27] Lai, Yu-Hsien, and Te-Chao Fang. "The Pleiotropic Effect of Vitamin D." ISRN nephrology 2013 

(2013). 

[28] Froicu M, Cantorna MT. Vitamin D and the vitamin D receptor are critical for control of the innate 

immune response to colonic injury. BMC Immunol. 2007; 8:5. 

[29] Laragione, Teresina, Anish Shah, and Pércio S. Gulko. "The vitamin D receptor regulates 

rheumatoid arthritis synovial fibroblast invasion and morphology."Molecular Medicine 18, no. 1 (2012): 

194. 

[30] Trémezaygues, Lea, and Jörg Reichrath. "Vitamin D analogs in the treatment of psoriasis: Where 

are we standing and where will we be going?." Dermato-endocrinology 3, no. 3 (2011): 180. 

[31] Lambert, Joshua, Robert Dorr, and Barbara Timmermann. "Nordihydroguaiaretic acid: a review of 

its numerous and varied biological activities." Pharmaceutical biology 42, no. 2 (2004): 149-158. 

[32] Sahu, Saura C., Dennis I. Ruggles, and Michael W. O’Donnell. "Prooxidant activity and toxicity of 

nordihydroguaiaretic acid in clone-9 rat hepatocyte cultures." Food and chemical toxicology 44, no. 10 

(2006): 1751-1757. 

[33] Teske, Kelly, Premchendar Nandhikonda, Jonathan W. Bogart, Belaynesh Feleke, Preetpal Sidhu, 

Nina Y. Yuan, Joshua Preston et al. "Identification of VDR Antagonists among Nuclear Receptor 

Ligands Using Virtual Screening." (2014). 

[34] Sverdrup, Berit, Henrik Källberg, Camilla Bengtsson, Ingvar Lundberg, Leonid Padyukov, Lars 

Alfredsson, and Lars Klareskog. "Association between occupational exposure to mineral oil and 

rheumatoid arthritis: results from the Swedish EIRA case–control study." Arthritis research & therapy 7, 

no. 6 (2005): R1296. 

[35] Wolf, Ronni, Moshe Movshowitz, and Sarah Brenner. "Supplemental tests in the evaluation of 

occupational hand dermatitis in soldiers." International journal of dermatology 35, no. 3 (1996): 173-

176. 

[36] Mehlman, MA. “Dangerous and cancer-causing properties of products and chemicals in the oil 

refining and petrochemical industry. VIII. Health effects of motor fuels: carcinogenicity of gasoline--

scientific update.” Environ Res 59, no. 1 (1992), 238-249. 

[37] Zhao, Yingxu, Anusha Krishnadasan, Nola Kennedy, Hal Morgenstern, and Beate Ritz. "Estimated 

effects of solvents and mineral oils on cancer incidence and mortality in a cohort of aerospace workers." 

American journal of industrial medicine 48, no. 4 (2005): 249-258. 



42 

 

[38] Malloy, Elizabeth J., Katie L. Miller, and Ellen A. Eisen. "Rectal cancer and exposure to 

metalworking fluids in the automobile manufacturing industry."Occupational and environmental 

medicine 64, no. 4 (2007): 244-249. 

[39] Issa et al. DrugGenEx-Net: a novel computational platform for systems pharmacology and gene 

expression-based drug repurposing. BMC Bioinformatics. 2016 May 5;17(1):202. 

[40] Wathieu et al. Harnessing Polypharmacology with Computer-Aided Drug Design and Systems 

Biology. Curr Pharm Des. 2016;22(21):3097-108. 

[41] Issa NT, Peters OJ, Byers SW, Dakshanamurthy S. RepurposeVS: A Drug Repurposing-Focused 

Computational Method for Accurate Drug-Target Signature Predictions. Comb Chem High Throughput 

Screen. 2015;18(8):784-94. 

[42] Tsakovska, I., Lessigiarska, I., Netzeva, T., & Worth, A. P. (2008). A mini review of mammalian 

toxicity (Q) SAR models. QSAR & Combinatorial Science, 27(1), 41-48. 

[43] Schrödinger Release 2013-3: Jaguar, version 8.0, Schrödinger, LLC, New York, NY, 2013. 

 

 



43 

 

4. Impact…………………….. 
  

What was the impact on the development of the principal discipline(s) of the project?  

 

ECs include toxins in air, water, food, and soil. Continuous exposure from any of these sources could 

put military personnel at increased risk of cancer. For example “agent orange,” a dioxin derivative (plant 

herbicide) used in Vietnam, causes cancer specifically in the kidney, colon and blood. In this project, by 

way of the Tox-TMFS and DrugGenEx-Net procedures, we reveal molecular targets and pathways 

relevant to these and other cancer types. The CPTM model, by contrast, will reveal uncharacterized 

connections between ECs and cancer types described in this FOA, thus predicting which chemicals may 

be risk factors. The resulting outcomes can be used as a foundation for future research to understand the 

mechanisms of initiation, and progression of cancer resulting from toxin exposure. 

 

Our work offers contributions and has significant implications for the way in which toxicity is assessed 

on a high throughput and automated scale, for chemical species of all classes. While the validated EC-

target space thus far is relatively small, many of the predicted ECs have not yet been studied for CRC. 

This study will lay the ground work to reveal potential risks and mechanisms whereby such chemicals 

cause cancer. Moreover, CRC is a late-onset adult cancer with an important time-course consideration 

for human epidemiological evaluation of ECs. Tox-TMFS provides biologically plausible hypotheses for 

small-molecule ECs to focus toxicology studies for CRC as well as investigate environmental molecules 

such as phytoestrogens to prevent or treat CRC. Our CPTM model offers a new approach for multi-

dimensional toxicological characterization stemming only from the chemical structure of a given EC. In 

particular, it helps to justify the prediction of phenotypic consequences of toxicants, and other chemicals 

using network characteristics and systems biological understanding in an efficient manner, ultimately 

decreasing the need for human capital and financial resources. 

 

Tox-TMFS with the CPTM method is the first platform of its kind in the toxicological sciences rooted in 

chemistry and systems biopharmacology. As the EC space grows exponentially with new commercial 

materials, environmental waste products, and pharmaceuticals, our platform is positioned to streamline 

the comprehensive assessment of these chemicals for focused subsequent assays and increased efficiency 
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in toxicology. Thus, using synergistic effects of chemical and cellular components to bring about toxicity 

and cancer risk is an innovative approach in this field, and will provide insights into mechanisms of 

cancers initiation and contribute to the treatment and prevention paradigm. Our method also has the 

potential to be utilized for diseases apart from oncologic diseases, such as neurodegenerative diseases, 

autoimmune diseases, and others. 

 

What was the impact on other disciplines?  

 

Having a robust computational platform that allows for accurate and rapid toxicity assessments of 

chemicals commonly encountered in the environment benefits public health by increasing the efficiency 

of toxicity studies and guiding healthcare professionals in noticing the gamut of clinical presentations 

arising from exposure. Such a platform would not only help reassess already-known ECs given the 

integration of the currently rich corpus of biomedical data, but would also benefit future industrial 

endeavors as preconceived knowledge of potential toxicity would guide the production of new chemicals 

with safety at the forefront. Tox-TMFS combined with CPTM is a step in this direction. This project has 

additional in the realm of toxicology assessments for therapeutics and mechanistic understanding of 

diseases in that context. Perturbations in the biological signal network either by up regulation or down 

regulation of target proteins will act as indicators of future cancer. Pharmacological interventions with 

existing drugs such as drug repurposing on the characterized perturbation signals could serve to both 

prevent and treat cancer. 

 

What was the impact on society beyond science and technology?  

 

Outside of pure scientific and technological advancements, CPTM a quantitative tool, determining the 

target signatures of ECs by using many reference chemicals with known biology as chemical probes. It 

provides the framework to better understand the potential for cancer risk of ECs with incomplete toxicity 

information, and may ultimately serve as a tool to predict unwanted biological activity, and provide a 

potential prevention as well as chemical design guidelines prior to exposure. The ability to assess the 

impact of militarily relevant environmental carcinogens, for which little toxicity risk data are available, 

for cancer or to foresee such effects during the early stages of chemical development and use, before 
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potential exposure occurs, is an urgent need. The proposed CPTM (chemo-phenotypic based toxicity 

measurement) technology would serve as a toxicity guideline for exposure of service members and their 

families to relevant chemicals. 

 

Our work therefore has the potential for profound impact in precisely gearing regulatory policies 

regarding the limitation of military and civilian exposure to environmental chemicals as a waste or as a 

resource for industrial, chemical, or other application, and on the use of such chemicals as biological 

weapons. In addition, having a more complete framework for how to anticipate and treat the pathological 

conditions resulting from specific chemical exposures can inform decision making at the level of clinical 

care and cultural behaviors exhibited by populations which may influence the level of exposure to a 

given chemical.  
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5. Changes/Problems……………….. 
 

Changes in approach and reasons for change  

 

Nothing to report. 

 

Actual or anticipated problems or delays and actions or plans to resolve them  

 

Problems 

Some of the computational tasks, and biological testing were delayed because of significant delay in 

recruiting suitable computational biologist who has expertise in computational biology modeling, and 

biology.  There is an additional delay in acquiring chemicals and reagents from commercial vendors 

because of availability issues, even some chemicals are not available commercially.  

 

Actions and Plans to Resolve 

Because of post doc. recruitment delay, therefore in this reporting period, additional PI effort were used, 

a research assistant from other project, and research intern were involved in this project. The personnel 

who has appropriate expertise is underway actively to avoid any delay. We are currently coordinating 

with suppliers to ensure that correct chemicals and reagents are prepared for use in our biological testing 

of candidates. The chemicals which are not available will be skipped, and to avoid further delay next 

highest ranked commercially available chemicals are being ordered.    
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6.  Products……………………. 

 

Journal Publications  

 

1. Issa NT, Peters OJ, Byers SW, Dakshanamurthy S. RepurposeVS: A Drug Repurposing-Focused 

Computational Method for Accurate Drug-Target Signature Predictions. Comb Chem High 

Throughput Screen, 2015, 18(8):784-94. [Published]. Acknowledgement of federal support (yes). 

 

2. Wathieu H, Issa NT, Byers SW, Dakshanamurthy S. Harnessing Polypharmacology with 

Computer-Aided Drug Design and Systems Biology. Curr Pharm Des, 2016 Feb 24. 22(21): 

3097-108. [Published]. Acknowledgement of federal support (yes). 

 

3. Issa NT, Kruger J, Wathieu H, Raja R, Byers SW, and Dakshanamurthy S. DrugGenEx-Net: A 

Novel Computational Platform for Systems Pharmacology and Gene Expression-Based Drug 

Repurposing. BMC Bioinformatics, 2016 May 5, 17:202. [Published]. Acknowledgement of 

federal support (yes). 

 

4. Wathieu H, Issa NT, Mohandoss M, Byers SW, Dakshanamurthy S. MSD-MAP: A Network-

based Systems Biology Platform for Predicting Disease-Metabolite Links. Comb Chem High 

Throughput Screen, 2016. [Accepted]. Acknowledgement of federal support (yes). 

 

Website(s) or other Internet site(s) 

 

Nothing to report. 

 

Technologies or Techniques. 

 

In the course of developing our core methodologies for EC biological assessment, called Tox-TMFS, 

RepurposeVS, MSD-MAP, and DrugGenEx-Net, we produced and published two technologies 

consisting of goal-specific implementations of these methodologies. DrugGenEx-Net predicts protein 

binding signatures for FDA-approved drugs and produces extrapolated drug action networks by way of 
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multi scale annotation of those interacting proteins. Similar to our cancer cellular perturbation network 

strategy in this work, DrugGenEx-Net identifies drugs which coincide most significantly with biological 

factors perturbed by neurodegenerative and autoimmune pathologies, thereby presenting opportunities 

for drug repurposing. It has been published along with a tutorial that describes its stepwise 

implementation. MSD-MAP, the Multi Scale Disease-Metabolite Association Platform, produces similar 

cellular action networks for metabolites rather than drugs or ECs, and infers disease causage, biomarker 

potential, or therapeutic potential for those metabolites in the context of three cancers. MSD-MAP 

utilizes public data and therefore reproduction of the technology can be facilitated by consulting with the 

methods described in the publication. In addition, the CPTM method, as described previously, is the first 

computational technique to produce reliable general toxicity predictions based on the intrinsic and 

kinetic properties of a chemical, including those yielded by Tox-TMFS and DrugGenEx-Net. The 

resulting data, and technique procedure will be shared through publications in the journal. 

 

Other Products 

 

Biological components and relationship data generated by our CPTM, cellular perturbation networks 

will be deposited to the Chemical Interactome Cellular Network Interface (CICNI), an online database 

and visualization tool for systems biological networks developed in our laboratory. This is a user-

friendly platform is valuable as a research tool for precision pharmacology and toxicology. It promotes 

the shared goal of reducing costs for achieving a mechanistic understanding and producing hypotheses in 

terms of prevention, diagnosis, and treatment of diseases and other clinically relevant phenotypes with 

an in-silico precision approach. 

 

Utilizing our CPTM method in conjunction with protein interactome prediction and cancer cellular 

network models, we are identifying and testing various ECs as having potential general toxicity and 

disease-specific toxicity. We predicted a common motor oil additive called N,N'-disalicylidene-1,2-

diaminopropane, for example, to have cellular perturbation characteristics strongly coinciding with 

Colorectal Cancer and its known causative mechanisms. The CPTM tool has implications for the 

prevention and mechanistic understanding of key pathologies and how ECs are complicit in them, and 

thus contributes to the public good. 
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7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS……………… 

 

What individuals have worked on the project? 

 

1. 

Name: Sivanesan Dakshanamurthy 

Project Role:  PI 

Nearest person month worked:  5 

 

Contribution to Project:  Dr. Dakshanamurthy has performed computational work in the 

development, execution of CPTM model, simulations, data analysis, and database integration. He also 

overseeing the overall project goals and plan, design, execute Aim 1 and Aim 2 of the project. 

 

Funding Support:  In addition to the funding support from this DoD award, effort from Georgetown 

University-Lombardi Cancer Center Institutional support funds has also been used. 

 

2. 

Name: Stephen W Byers 

Project Role:  Co-PI 

Nearest person month worked:  0.72 

Contribution to Project:  Dr. Byers has involving in the plan, and design, and execute of VDR-

pathway components reporter assays, Aim 2 of the project. 

Funding Support:  This DoD Award 

 

3. 

Name: Henri Wathieu 

Project Role:  Research Assistant 

Nearest person month worked:  3.4 

Contribution to Project:  Mr. Wathieu performed, data simulations, data analysis, data integration 

involving CPTM model, Aim 1of the project. 
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Funding Support:  Effort from Georgetown University-Lombardi Cancer Center Institutional support 

funds has been used. 

 

4. 

Name: Abiola Ojo 

Project Role:  Research Intern 

Nearest person month worked:  1.4 

Contribution to Project:  Mr. Abiola has performed data analysis, data curation data integration 

involving CPTM model, Aim 1 of the project. 

Funding Support:  Effort from SOAR-MHHD Research Internship Program. 

 

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since 

the last reporting period?  

Nothing to Report. 

 

What other organizations were involved as partners? 

Nothing to Report. 
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8. Special Reporting Requirements………………….. 
 

Nothing to Report. 

 

 



52 

 

9. Appendices..............................  
 

 

APPENDIX A 
 
Issa NT, Peters OJ, Byers SW, Dakshanamurthy S. RepurposeVS: A Drug Repurposing-Focused 

Computational Method for Accurate Drug-Target Signature Predictions. Comb Chem High Throughput 

Screen, 2015, 18(8):784-94. [Published]. Acknowledgement of federal support (yes). 
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RepurposeVS: A Drug Repurposing-Focused Computational Method for 
Accurate Drug-Target Signature Predictions 

Naiem T. Issa1, Oakland J. Peters1, Stephen W. Byers1,2 and Sivanesan Dakshanamurthy*,1,2 

1Department of Oncology, Georgetown Lombardi Cancer Center, Washington, D.C. 20057, USA 
2Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical 
Center, Washington, D.C. 20057, USA 

Abstract: We describe here RepurposeVS for the reliable prediction of drug-target signatures using 
X-ray protein crystal structures. RepurposeVS is a virtual screening method that incorporates docking, 
drug-centric and protein-centric 2D/3D fingerprints with a rigorous mathematical normalization 
procedure to account for the variability in units and provide high-resolution contextual information for 
drug-target binding. Validity was confirmed by the following: (1) providing the greatest enrichment of 
known drug binders for multiple protein targets in virtual screening experiments, (2) determining that similarly shaped 
protein target pockets are predicted to bind drugs of similar 3D shapes when RepurposeVS is applied to 2,335 human 
protein targets, and (3) determining true biological associations in vitro for mebendazole (MBZ) across many predicted 
kinase targets for potential cancer repurposing. Since RepurposeVS is a drug repurposing-focused method, benchmarking 
was conducted on a set of 3,671 FDA approved and experimental drugs rather than the Database of Useful Decoys (DUD-
E) so as to streamline downstream repurposing experiments. We further apply RepurposeVS to explore the overall 
potential drug repurposing space for currently approved drugs. RepurposeVS is not computationally intensive and 
increases performance accuracy, thus serving as an efficient and powerful in silico tool to predict drug-target associations 
in drug repurposing. 

Keywords: Cancer, drug, interaction, mebendazole, repositioning, repurposing, virtual screening. 

1. INTRODUCTION 

 Drug repurposing- the process of utilizing drugs 
approved for one indication for another- is an efficient 
method for bolstering the pharmaceutical pipeline [1]. Given 
that approved drugs have known well-tolerated toxicity 
profiles, they can, therefore, be streamlined back into the 
development pipeline directly at phase II. Despite some 
successes, drug repurposing remains a challenge for two 
main reasons: (1) validating druggable therapeutic target(s) 
associated with the disease, and (2) confidently establishing 
the repertoire of protein target interactions for the FDA 
approved drug set. This manuscript will focus on the latter 
aspect. 
 A variety of methods for establishing drug-target 
interactions are employed in both academia and industry. 
High-throughput screening (HTS) strategies are used for 
establishing interactions for large drug libraries against 
protein targets of interest [2]. These approaches, however, 
have multiple obstacles. These include the financial cost per 
assay run, development of appropriate screening assays, 
maintaining biochemical relevance of the target given the 
assay (i.e. target immobilization in 96-well plates may alter 
binding site properties), among others [3]. The amount of 
potential druggable disease-related targets is also 
exponentially increasing [4] along with the number of 
 
 

*Address correspondence to this author at the Department of Oncology, 
Georgetown University, Washington D.C. 20057, USA;  
Tel: ++1-202-687-2347; E-mail: sd233@georgetown.edu. 

synthesizable drugs [5]. Creating the vast possible drug-
target space of true interactions and further narrowing it to 
that of physiologic- and disease-relevance remains a great 
challenge. 
 Computer-aided methods allow for a substantial increase 
in efficiency in establishing drug-target interactions and are 
constantly becoming more accurate as the biophysical
mechanisms behind molecular recognition become better 
understood [6]. Such methods are typically used in virtual 
screenings against a protein target of interest, where large 
drug libraries (>1,000,000 structures) are subjected to an 
algorithm that quantifies the drugs’ “fit” into the binding 
site. The first few hundred or thousand drugs are then 
validated experimentally, and the potential drug-target space 
has been drastically reduced to that with the greatest 
biological plausibility. 
 Many efforts for computationally predicting drug-target 
interactions exist, spanning both chemo-centric [7, 8] and target-
based methodologies [9, 10]. Chemo-centric approaches utilize 
physical and chemical information obtained from ligands. Some 
approaches relate receptors based on the chemical similarity [7] 
as well as shape similarity [8] between ligands. Large public 
databases that aid in extracting ligand-based data for informatics 
also exist [9]. Target-based approaches, on the other hand, rely 
on docking [10-13] or binding site similarity [14]. Docking has 
driven some successful drug repurposing attempts [15-19], but 
scoring functions are generally considered inaccurate in 
calculating free energies of binding due to difficulty in 
predicting bioactive poses and variable contributions of weak 
interactions [20]. Alternatively, binding site comparison 
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methods [21, 22] are implemented under the premise that 
similar binding sites should bind similar molecules. The use of 
binding site similarities has been successful in identifying novel 
targets for known drugs [23, 24] under the assumption that 
drugs interact with proteins containing similar binding sites [25, 
26]. 
 While chemo-centric and target-based methods have their 
own strengths and limitations, few computational methods 
attempt to combine ligand- and protein-based approaches 
[27, 28]. In this work, we present RepurposeVS, a 
comprehensive method for predicting FDA approved and 
experimental drug-protein target interactions through 
computationally efficient virtual screenings. RepurposeVS 
combines high-throughput docking with quantified shape, 
atom pair, and other descriptor similarity information of 
query drugs to reference experimentally derived crystal 
structure complexes. Furthermore, the utilized normalization 
procedure provides biological context of binding and allows 
for cross-protein comparison of drug binding signatures 
instead of protein-specific rank-ordering of drugs. This 
enables a standardized prioritization of predicted drug-target 
signatures for the entire proteome cohort in a study and the 
future incorporation of new signatures when novel protein 
target structures become available. 
 To assess accuracy, RepurposeVS was compared to the 
GLIDE docking algorithm in virtual screening experiments for 
prioritization of known drug binders for multiple 
pharmaceutically relevant protein targets. As RepurposeVS is a 
drug repurposing-driven method, the drug set chosen for 
benchmarking includes 3,671 FDA approved and experimental 
drugs. This drug set is composed of diverse chemical structures 
and chemotypes, as well as streamlines the generation of drug 
repurposing hypotheses for later experimental testing. Although 
benchmarks for virtual screening methods typically utilize the 
Database of Decoys (DUD-E) [29], we are focused on drug 
repurposing and therefore the ability of RepurposeVS to enrich 
for actives from an approved drug set rather than a chemical set 
of closely related analogues that may or may not be clinically 
relevant. RepurposeVS provided the greatest enrichment for 
known active drugs and was then scaled up to predict drug-
target signatures across 2,335 human protein targets. Cursory 
global validation across the entire protein target set was then 
achieved by recapitulating the phenomenon of similarly shaped 
protein pockets binding drugs of similar shape [30, 31]. 
Biological validation was further obtained for the anti-
hookworm drug mebendazole via kinase binding assays, thus 
providing further evidence to its anti-cancer efficacy for 
repurposing. Finally, RepurposeVS was used to explore the 
entire potential drug repurposing space by devising a 
“repurposing potential score”. With its high accuracy and ease 
of implementation, RepurposeVS is an efficient computational 
method for the accurate prediction of drug-protein target 
signatures to drive drug repurposing efforts forward. 

2. MATERIALS AND METHODS 

2.1. Drug and Protein Target Dataset 

 Drugs were obtained from the DrugBank [32], FDA [33] 
and BindingDB [34]. LigPrep [35] was used to prepare and 
minimize drug structures at neutral pH of 7.0. Human protein 
target crystal structures containing a reference drug in the 

binding pocket with X-ray resolution <2.5 angstrom were 
chosen from RCSB (www.rcsb.org). After processing, the 
dataset included 3,671 drugs and 2,335 protein target crystal 
structures. Known active drugs for the benchmark protein 
targets HSP90A (PDB: 4O05), CA4 (PDB: 3FW3), ALDR1 
(PDB: 3RX3), ACE (PDB: 1O86), PPARG (PDB: 3VSO), 
ADRB2 (PDB: 3NYA), VEGFR2 (PDB: 2P2H), ESR1 
(PDB: 3ERD), AR (PDB: 3L3Z), BACE1 (PDB: 3VF3), GR 
(PDB: 4P6X), and HMGCR (PDB: 1HWK) were obtained 
via DrugBank annotations. 

2.2. RepurposeVS Procedure 

 The workflow for RepurposeVS, modeled after the 
“Train Match, Fit, Streamline” (TMFS) protocol [36], is 
outlined in Fig. (1). A 3D comprehensive conformer library 
was generated using ConfGen [37] for each drug. From this 
library, the conformer whose 3D shape was most similar to 
that of the reference ligand bioactive pose was chosen for all 
subsequent steps. GLIDE [38] docking was performed to 
obtain free energies of binding, QikProp [39] was used for 
generating ligand-based 2D descriptors, and 3D shape 
descriptors for drug and protein binding sites were generated 
using spherical harmonics expansion coefficients Java 
software package provided to us by the Thornton group [40]. 
Reference-occupied protein target pocket shapes were 
determined using protomol information from sc-PDB [41]. 
Atom Pair (AP) similarity normalized scores were calculated 
directly using Strike [42]. 
 The RepurposeVS Z-score ranking equation for a query 
drug q against protein target p with reference drug r is as 
follows: 

Z(q, p,r) =ω jY (p,q)+ω kP(r,q)+

[
m=1

1

∑ ωm fm (p,q)+ω 'm f 'm (r,q)]+ Xn (
n=1

N

∑ r,q)+CS(OLIC)
  (1) 

Y  represents the rigorously normalized docking score based 
on the method outlined in Section 2.2.1 below with weight 
ω j = 4. P  represents the normalized AP similarity tanimoto 
coefficient (Tc) of a query drug q to the reference drug r 
along with its designated weight ( ω k = 4). The first 
summation corresponds to the shape similarity metric 
composed of two functions: (1) ωm fm (p,q)�

�
�
�
��� �� , 

where fm  is the shape function corresponding to a similarity 
quantification between pocket shape of the protein target p 
and the query drug q with weighting factorωm = 2, and (2) 
ω 'm f 'm (r,q) , where f 'm  is a shape function corresponding 
to a similarity quantification between reference drug shape r 
and query drug shape q with weighting factor ω 'm = 2. 
Shape similarities are represented as Euclidean distances 
between the spherical harmonics expansion coefficients, as 
described in [43]. The second summation term corresponds 
to the combined similarity of N = 10 query drug-based 
descriptors terms ( Xn ) to reference drug r. Normalized Tc 
scores were calculated for the following descriptors: (1) 
number of H-bond acceptors, (2) number of H-bond donors, 
(3) dipole, (4) electron affinity, (5) globularity, (6) molecular 
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weight, (7) ClogP, (8) number of rotatable bonds, (9) 
solvent-accessible surface area, and (10) volume. 

 The CS(OLIC)  term is a correction term called “optimal 
ligand interaction correction” (OLIC), an algorithm that 
obtains a better estimate of drug-protein interactions on the 
reference binding site by assuming that drugs will have 
similar experimental activity if their interaction involves 
similar binding site residues and makes similar interaction 
patterns to the reference drug. The following equation was 
used to determine binding site energies for reference drug (2) 
and query drugs (3): 

S(OLIC − r)p = ω nEn,p
n=1

NR

∑   (2) 

S(OLIC − q)q,p = ω nEn,q,p
n=1

NQ

∑  (3) 

 The sums are over the number of contact points NR or 
NQ between protein p and its reference drug or query drugs, 
respectively. Contact points for drugs are described as those 
that overlap with established reference drug-protein contacts. 
Drugs that match or cover most of the interactions as that of 
the reference scored higher. Their corresponding energies are 
evaluated and compared with the energy of the reference 
drug. Energy of the test ligands scored higher if it is close or 
higher than the energy of the reference drug. The En,p  
corresponds to energy for the nth contact point for the 

reference drug-protein complex (p,r). The En,q,p  term 
corresponds to energy for the nth contact point for the qth 
query drug and protein p. Weighting factors specific to each 
contact point used and are dependent on the particular drug-
target complex. 
 The correction term CS(OLIC) has been determined as a 
difference between the two sums: 

CS(OLIC) = S(OLIC − r)
p
− S(OLIC − q)q,p   (4) 

 The additive combination of the aforementioned 
normalized terms with their respective weights results in the 
final RepurposeVS comprehensive Z-score (1) to rank drugs 
for a given target. 

2.2.1. Rigorous Normalization Procedure of RepurposeVS 
Terms 

 RepurposeVS contains distinct parameters in (1) that are 
represented in different units, which correspondingly contain 
very different raw numeric ranges. For example, docking 
scores are expressed in kJ/mol where small changes in 
number correspond to large changes in the free energies of 
binding. Shape similarity terms are quantified by Euclidean 
distances and, therefore, function on an independent range of 
values that are incompatible with other terms in the equation. 
Consequently, to better allow RepurposeVS parameters to be 
compared and weighted intelligently, raw values for the 
docking score and shape similarity terms Y, fm , and f 'm  

 
Fig. (1). Workflow of RepurposeVS algorithm. 

����
����	
����

������
����
���	���

�����������	�
�������	�
�	�
�������

�� �!�
��
"�����#�

��$%&�
'��	
��	��

�����
����	
����

��$%&�
����
���	���

���#��(	��
��)���*�

�	�	������

��������
����	�

�	�
�������

����+���	��
��*��
��,
��	(�
���

�	�
��������

-��(������
-���

��(������*�

.���	�+�	����
�'����	� ����+�	����
�'����	�

/��(���0�����

1� ���������
�����
��������

�
��	�

2+�
��	�3��"����
4!56�&7�

Pers
on

al 
us

e o
nly

 

 
Not 

for
 di

str
ibu

tio
n



RepurposeVS Combinatorial Chemistry & High Throughput Screening, 2015, Vol. 18, No. 8    787 

were normalized onto the N(x) : R→ (0,1) unit range using a 
sigmoid function to preserve order and provide symmetry. 
The normalization function is defined as follows: 

Nα (x) = 1− |1− Sα (x) |   (5) 

where x is the raw parameter, S(x) is a sigmoid function, and 
α  is a tunable scalar coefficient chosen to maximize the 
information-preserving variance in the image of N(x)  (5). 
Since the range varied significantly between parameters, the 
coefficient α  varied as well. 

 For the sigmoid function, the hyperbolic tangent function 
is chosen because it is well-behaved and computationally 
tractable, yielding (6). Since some RepurposeVS parameters 
required subtly different normalization properties. Hence, (6) 
was re-expressed for easier modification in special 
normalization cases. Expressing (6) in terms of the simpler 
logistic function L, shown in (7), yields the equivalent 
function in (8): 

Nα (x) = 1− | tanh(
αx

2
) |   (6) 

Lα (x) = 1

1+ e−αx   (7) 

Nα (x) = 1− 2 *  | 1

2
− Lα (x) |   (8) 

 To check the information preserving quality of this 
normalization, we formed histograms of both the un-
normalized, or raw (Fig. 2A), and normalized population 
distributions (Fig. 2B) for the shape similarity parameter 
using α=0.1. A scatter plot of the un-normalized shape 
parameter versus the normalized shape parameter was also 
formed (Fig. 2C). Fig. (2A) shows that in this case 
normalization results in a good fit for a symmetric and 
centered (at 0.5) Gaussian distribution implying that the 
normalized data will be statistically well behaved. By 
comparing the un-normalized to normalized distributions, we 
can see that the input distribution was not significantly 

 
Fig. (2). Normalization of RepurposeVS parameters. (A) Histogram of raw (non-normalized) scores for post-docking shape similarity 
Euclidean distance calculations of 2,207 unique drug-protein target pairs. The Y-axis shows counts of data points versus X-axis Euclidean 
distances using a bin-width of 0.5. (B) Histogram of normalized scores for the same 2,207 shape similarity calculations shown in (A). 
Normalization equation is shown in Eq. (14). The normalization preserves the Gaussian shape of the distribution, and centers the new 
distribution on the 0.5 mid-point of the 0-1 unit range. (C) Scatterplot showing the relationship between non-normalized shape similarity 
Euclidean distances (X-axis) and the resultant normalized values (Y-axis), for the data points shown in (A) and (B). The approximately linear 
relationship shown implies that the normalization does little to distort the population, although some bending is visible at the high-end (shape 
Euclidean distance values above 15). 

1400 1400
A B

1200

1000

800

1200

1000

800s s800

600

400

800

600

400

C
ou

nt
s

C
ou

nt
s

400

200

0 5 10 15 20 25
0

400

200

0

1.0

0.9
C

0                       5                       10                     15                     20                     25 0.1        0.2          0.3          0.4          0.5         0.6           0.7         0.8          0.9

Shape Euclidean Distance Shape Euclidean Distance

0.8

0.7

0.6

0.5d 
Va

lu
es

0.5

0.4

0.3

0.2N
or

m
al

iz
e

Shape Euclidean Distance

0.1

0.0
0                5                    10                  15                  20                  25

Pers
on

al 
us

e o
nly

 

 
Not 

for
 di

str
ibu

tio
n



788    Combinatorial Chemistry & High Throughput Screening, 2015, Vol. 18, No. 8 Issa et al. 

distorted by our normalization function N(x) . Fig. (2C) 
shows an approximately linear relationship between the 
majority of raw and normalized data point pairs, implying 
that the coefficient was a good choice for capturing the 
dynamic range of most of the dataset. The procedure was 
repeated for docking scores Y using α=0.25 (data not shown). 
This normalization procedure allows for RepurposeVS to 
better predict viable drug-protein signatures in an absolute 
manner, where relativistic knowledge of other drugs in an 
experimental cohort is not necessary to quantify and 
establish binding signatures. Thus, resulting Z-scores can be 
pooled across all protein target systems for global objective 
prioritization of drug-target predictions. 

2.3. Drug Shape Deviation Score 

 To determine shape similarity for drugs shared between 
unique protein target pairs, the “Drug Shape Deviation 
Score” ( F ) metric was created. For analysis, target pairs 
must have at least three drugs predicted in common (i.e. 
within top 40 ranking for each protein target via Z-score). A 
“permutation of differences” (9)-(12) approach was applied 
to arrive at a score within the 0-1 unit range that reflects the 
average shape deviation of the predicted common drugs for a 
protein target pair. The process is as follows: 

V = {v1,v2,...,vn}   (9) 

where, for a given protein target pair, V  is the set of 
common drugs, 

F = { fk = | ak1
− ak2

| | ak = [vi ,vj ]∈C2 (V )}   (10) 

| F | = ( n
2

) = (n −1)n

n
  (11) 

F = fk

| k |k=1

|F|∑   (12) 

ak  is the Euclidean distance between a pair of common 
drugs, C2 (V )  is the set of all combinations of two elements 
from V  without replacement to generate the number of 
difference values, F  is the set of differences between the 
Euclidean distances via all possible permutations, | F |  is the 
number of elements within set F , and F  is the average 
across all Euclidean distance values. 

2.4. Kinase Binding Assay 

 Kinase assays were performed using Kinomescan, by 
Discoverx, CA, USA and Caliper LabChip 3000 by Caliper 
Life sciences, USA as described previously [36]. The 
determination of MBZ thermodynamic binding affinities 
(Kd) to kinase targets predicted by RepurposeVS was 
performed by using active site-directed competition binding 
[44]. Kinase-tagged T7 phage strains were grown in parallel 
in 24-well blocks in an E. coli host derived from the BL21 
strain. E. coli bacteria were grown to log-phase and infected 
with T7 phage from a frozen stock (multiplicity of infection 
= 0.4) and incubated with shaking at 32°C until lysis (90-150 

minutes). The lysates were centrifuged (6,000 x g) and 
filtered (0.2 μm sieves) to remove cell debris. The remaining 
kinases were produced in HEK-293 cells and subsequently 
tagged with DNA for qPCR detection. Streptavidin-coated 
magnetic beads were treated with control (biotinylated) for 
30 minutes at room temperature to generate affinity resins 
for kinase assays. The liganded beads were blocked with 
excess biotin and washed with blocking buffer (SeaBlock 
(Pierce), 1% BSA, 0.05 % Tween 20, 1 mM DTT) to remove 
unbound ligand and to reduce non-specific phage binding. 
Binding reactions were assembled by combining kinases, 
control liganded affinity beads, and mebendazole in 1x 
binding buffer (20 % SeaBlock, 0.17x PBS, 0.05 % Tween 
20, 6 mM DTT). Mebendazole was prepared as 40x stocks in 
100% DMSO and directly diluted into the assay. All 
reactions were performed in polypropylene 384-well plates 
in a final volume of 0.04 ml. The assay plates were incubated 
at room temperature with shaking for 1 hour and the affinity 
beads were washed with wash buffer (1x PBS, 0.05 % 
Tween 20). The beads were then re-suspended in elution 
buffer (1x PBS, 0.05 % Tween 20, 0.5 μM non-biotinylated 
affinity ligand) and incubated at room temperature with 
shaking for 30 minutes. The kinase concentration in the 
eluates was measured by qPCR. Drugs that bind the kinase 
active site and directly prevent kinase binding to the 
immobilized ligand will reduce the amount of kinase 
captured, whereas drugs that do not bind the kinase have no 
effect on the amount of kinase captured. The amount of 
kinase captured in test versus control samples were measured 
by using a quantitative, precise and ultra-sensitive qPCR 
method that detects the associated DNA label. Using (13), 
the primary screen binding interactions are reported as '% 
Ctrl' (Percent kinase remaining activity), where lower 
numbers indicate stronger hits. 
Percent Control (%Ctrl) = 

Mebendazole signal - Positive control signal

DMSO Negative control signal - Positive control signal
 x 100

  (13) 

In a similar manner, binding constants (Kd) for mebendazole-
kinase interactions are calculated by measuring the amount 
of kinase captured as a function of the mebendazole 
concentration in a dose response manner. An 11-point 3-fold 
serial dilution of each test compound was prepared in 100% 
DMSO at 100x final test concentration and subsequently 
diluted to 1x in the assay (final DMSO concentration = 1%). 
Most Kds were determined using a starting concentration = 
30,000 nM. If the initial Kd determined was < 0.5 nM (the 
lowest concentration tested), the measurement was repeated 
with a serial dilution starting at a lower starting 
concentration. Binding constants (Kd) were calculated with a 
standard dose-response curve (drug dose (x-axis) - qPCR 
signal (y-axis)) using the Hill equation in (14) with the Hill 
Slope set to -1. 

Response (Y) = Background + 
Signal(max) - Background

1 + (
kd

Drug Dose (X)
) Hill Slope

  (14) 

2.5. Repurposing Potential 

 Original drug class indications, obtained from DrugBank 
[32], were given a “Repurposing Potential Score” (T) based 
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on the number of drugs studied for a given approved 
indication class and the number of unique RepurposeVS-
predicted disease classes for that indication class. (15) 
represents the repurposing potential score (T) for a given 
disease class i : 

T = di

dneo

+ ki

kneo

  (15) 

where di  and dneo  correspond the number of drugs approved 
for disease classes "i" and neoplasms, respectively, and ki  
and kneo  correspond to the number of predicted new disease 
classes excluding the original for disease classes "i" and 
neoplasms. All disease classes are normalized to the 
neoplastic disease class since it contained both the greatest 
number of drugs with unique indications and predicted new 
diseases classes. The Online Mendelian Inheritance in Man 
(OMIM) [45] and the Comparative Toxicogenomics 
Database (CTD) [46] were used to annotate disease classes 
for predicted drug-protein target interactions. 

3. REPURPOSEVS PERFORMS SUPERIORLY TO 
GLIDE DOCKING IN PRIORITIZING KNOWN 
BINDERS FOR PROTEIN TARGETS IN VIRTUAL 
SCREENING 

 Virtual screenings were performed on a set of 12 
pharmaceutically relevant protein targets to assess the 

accuracy of RepurposeVS. RepurposeVS performed 
superiorly to GLIDE, a docking algorithm found to be 
accurate in high-throughput virtual screenings [47], in 
enriching for known drug binders to a protein target over a 
set of 3,671 drugs (Fig. 3A, B). Using a paired, one-tailed 
student’s t-test, RepurposeVS performed statistically 
significantly better than GLIDE (P<0.05). Receiver 
operating curves demonstrate that RepurposeVS increased 
accuracy the most for solvent-exposed binding pockets, such 
as VEGFR2 kinase domain and β2-adrenergic G protein-
coupled receptor, whereas minimal increase occurred for 
buried pockets such as the estrogen and androgen nuclear 
receptors (Fig. S1). This differential may be attributed to 
greater flexibility in binding pose in exposed sites, which are 
specifically reflected by the docking score and pocket shape 
terms. Altering the weights ω k  and ωm  for docking score 
and pocket shape, respectively, had no appreciable effect on 
performance (Fig. 3A). This suggests that the other 
parameters in compensate for the imprecision derived from 
the nature of exposed pockets and that RepurposeVS is a 
robust method applicable to diverse protein targets. 

4. GLOBAL VALIDATION OF REPURPOSEVS 
USING SHAPE SIMILARITY 

 RepurposeVS was applied to a set of 2,335 human 
protein target crystal structures and globally validated using 
the concept of similarly shaped drugs binding to protein 

 
Fig. (3). Areas under the curve (AUCs) for virtual screening of approved active drugs across 12 protein targets. (A) Outcomes of GLIDE 
docking and RepurposeVS in virtual screening experiments enriching for true active drugs for the noted protein targets. The remaining 
conditions reflect adjusted weights for the docking parameter (ωj) and protein shape parameter (ωm) in RepurposeVS (Eq. 1). (B) Average 
AUC across all 12 targets for each method. 
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target sites of similar shape. Shape complementarity is a 
critical aspect of biomolecular recognition, though it may not 
explain all possible binding modes. Nonetheless, it has 
generally been noted that drugs that interact with protein 
binding sites of similar shapes tend to exhibit shape 
similarity to each other. We first determined that the notion 
of similarly shaped drugs bind to similar protein pockets is 
upheld using the reference co-crystallized molecules for the 
protein target set (Fig. 4). Similarity between protein target 
pockets was quantified using two metrics: (1) Euclidean 
distance of the space-filling protomol structure (Fig. 4A), 
and (2) root-mean-square deviation (RMSD) of binding site 
residues 6Å from the geometric center of the bound molecule 
(Fig. 4B). The former metric characterizes the binding site 
occupancy volume whereas the latter metric is a topological 
term reflective of the binding site Cα backbone. RMSD 
values were calculated using Maestro [48]. There exists a 
direct correlation between drug-drug shape Euclidean 
distances and protein-protein binding site shape Euclidean 
distances (Fig. 4A) and backbone RMSDs (Fig. 4B). This 
implies that for true biochemical associations, determined 
via crystal structures, similarly shaped molecules bind 
protein pockets of similar shape and topology. Using the 

“Drug Shape Deviation Score”, F  (12), a similar trend was 
observed for drugs predicted by RepurposeVS (top 40 by Z-
score) to bind the same protein targets (Fig. 4). Thus, 

RepurposeVS is a valid method for determining drug-target 
associations across a large and diverse protein target set via 
the pharmacological metric of similarly shaped drugs 
binding similarly shaped protein pockets. 

5. IN VITRO BIOLOGICAL VALIDATION OF 
REPURPOSEVS USING MEBENDAZOLE FOR 
CANCER DRUG REPURPOSING 

 To biologically confirm RepurposeVS predictions in 
vitro, we tested the binding of protein kinase target hits to 
mebendazole (MBZ) for cancer drug repurposing. MBZ was 
originally approved for its potent nanomolar inhibition of 
hookworm tubulin. It is thought that its cross-over effect on 
mammalian tubulin, though with 1000x less potency, is 
responsible for its anti-cancer efficacy in vitro [49]. Using 
kinase binding assays, nano- and micromolar inhibition of 
several predicted kinase targets of MBZ was confirmed 
(Table 1). MBZ appears to inhibit kinases found within 
two.main branches of the kinome phylogenetic tree, with 
nanomolar potency clustering on one branch and micromolar 
potency on the other (Fig. 5). However, intra-branch 
variability in potency is also obvserved. It is likely that the 
semi-promiscuous nature of MBZ (Fig. 5) towards kinases is 
a result of a small fragment that allows it to interact with the 
benzimidazole moiety acting as head group anchor 
connecting loop residues between the c-lobe and n-lobe. 

 
Fig. (4). Trends in drug shape as a function of binding site shape and structural differences between protein target pairs. Line plots depicting 
shape Euclidean distances between co-crystallized reference molecules and normalized “Drug Shape Deviation Scores” ( F ) against (A) 
binding pocket shape differences quantified by Euclidean distances and (B) backbone root-mean-squared deviation (RMSD) in angstroms. 
The data was binned into 1-unit groups with their means represented in the plot. Smaller Euclidean distances or RMSDs imply greater 
similarity. 
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MBZ is also dually able to form water-mediated contacts or 
directly interact with ATP site cavity-forming residues in the 
absence of water molecules. Our predicted kinase hits and 
the activity data of MBZ indicate that its anti-cancer 
properties may be due to a synergistic inhibition of tubulin as 
well as kinase activity. Interestingly, for lung cancer, 
combined inhibition of microtubules and DYRK1B, a MBZ 
target (Table 1), is a more potent therapeutic strategy than 
microtubule inhibitors alone [50]. In this instance, a single 
drug such as MBZ, which has both properties, would be 
advantageous. RepurposeVS, thus, is able to reliably predict 
targets for MBZ that contribute to its repurposing for 
cancers. 

6. DRUG REPURPOSING POTENTIAL 

 RepurposeVS was used to provide a cursory assessment 
the potential repurposing space for FDA approved drugs 
based on their drug classes (Fig. 6). We devised a 
repurposing potential score (T) in (15) for this purpose. Anti-
neoplastic agents are shown to have the greatest repurposing 
potential with regards to the number of drugs and the 
diversity of newly predicted disease categories, with a total 
of 47 drugs and 8 disease categories. The nutritional-
metabolic and neoplasm disease classes are also predicted to 
have the greatest number of drugs with the greatest number 
of unique original indications repurposed to them with 143 

drugs/29 indications and 123 drugs/22 indications, 
respectively. 
 The overrepresentation of anti-neoplastic drugs is 
expected as tumor development is due to perturbations in a 
variety of cell processes that are likely shared with other 
diseases. Dysregulated kinase signaling, for example, is a 
ubiquitous pathogenic disease mechanism given the role of 
kinases in signal transduction. Thus, kinase inhibitors would 
be expected to potentially be useful in other diseases. In 
addition, some cancer drugs exhibit polypharmacology that 
simultaneously alter multiple cell processes. Alternatively, 
anti-infection agents exhibit relatively low repurposing 
potential (Fig. 6). This emphasizes the selectivity of these 
agents towards non-human targets for efficacy and desired 
therapeutic indices [51]. Some of these drugs, however, 
exhibit modest repurposing potential. These include anti-
bacterial agents, possibly attributed to structural similarity 
between bacterial motifs and human proteins [52]. 
Antipsychotic agents and other psychiatry-approved drugs 
also are predicted to have modest repurposing potential. 
These drugs typically exhibit polypharmacology through 
GPCR-mediated interactions [53], and some are being 
repurposed for cancer therapy [54]. The outcomes of the 
potential drug repurposing space are in pharmacological and 
clinical agreement with the known properties of the 
mentioned drugs, further confirming the ability of 

 
Fig. (5). Validated mebendazole (MBZ) kinase targets predicted from RepurposeVS. Kinases for which binding affinities were determined 
are shown on the kinome phylogenetic tree. 
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RepurposeVS to empirically predict drug-target signatures 
for higher-order pharmacologic assessment. 
Table 1. Binding affinities of MBZ for predicted kinase hits.
 

Kinase Target Percent Control  
at 10µM 

Binding Affinity  
(Kd) in nM 

ABL1(E255K)-phosphorylated 2.2 N/D 

ABL1(T315I)-phosphorylated 3.2 N/D 

ABL1-nonphosphorylated 2 N/D 

ABL1-phosphorylated 0.9 120 

CDK7 11 390 

CSNK1D 36 N/D 

DYRK1A 34 N/D 

DYRK1B 5.6 340 

GSK3B 35 N/D 

JAK3 29 N/D 

JNK1 14 N/D 

JNK2 9.6 1090 

JNK3 3 410 

KIT (D816V) 7.4 (33) 750 

MET 32 N/D 

P38-alpha 17 1660 

PDGFR-A 7.8 820 

PDGFR-B 3.2 660 

PIK3CG 18 N/D 

SRC 34 N/D 

ULK2 30 N/D 

VEGFR-2 30 3600 

CONCLUSION 

 RepurposeVS is a combined drug-centric and protein-
centric computational method for formulating drug-target 
signature predictions in drug repurposing. Validity was 
confirmed through benchmark virtual screenings using 12 
protein targets of pharmaceutical interest to better enrich for 
their respective known approved drugs over GLIDE docking. 
RepurposeVS was also validated by recapitulating that drugs of 
similar shapes were predicted to bind similarly shaped protein 
pockets when defining pocket shapes through drug occupancy, 
and also by confirming predicted kinase hits of mebendazole via 
kinase binding assays. Finally, RepurposeVS was used to 
quantify “repurposing potential scores” for drugs categorized by 
disease indication and showed that anti-infection compounds 
had the least repurposing potential whereas anti-neoplastic 
drugs had the greatest. One limitation, however, is that diverse 
binding modes and protein flexibility are not accounted for. 
However, RepurposeVS aims only to reestablish the 
experimental binding states obtained from crystallography so as 
to decrease false positive and false negative outcomes in virtual 
screenings. Overall, we believe RepurposeVS to be an efficient 
computational method to aid drug repurposing endeavors. 

ABBREVIATIONS 

AP = Atom-pair 
FDA = Food and Drug Administration 
HTS = High-throughput screening 
MBZ = Mebendazole 
Tc = Tanimoto coefficient 
VEGFR2 = Vascular endothelial growth factor receptor 

 

Fig. (6). Histogram of predicted repurposing potential of approved drugs/indications to new disease classes. The “Repurposing Potential 
Score” is calculated using (15) (see Materials and Methods). 
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Abstract: The ascent of polypharmacology in drug development has many implications for disease therapy, most 
notably in the efforts of drug discovery, drug repositioning, precision medicine and combination therapy. The sin-
gle-target approach to drug development has encountered difficulties in predicting drugs that are both clinically ef-
ficacious and avoid toxicity. By contrast, polypharmacology offers the possibility of a controlled distribution of ef-
fects on a biological system. This review addresses possibilities and bottlenecks in the efficient computational ap-
plication of polypharmacology. The two major areas we address are the discovery and prediction of multiple pro-
tein targets using the tools of computer-aided drug design, and the use of these protein targets in predicting thera-
peutic potential in the context of biological networks. The successful application of polypharmacology to systems 
biology and pharmacology has the potential to markedly accelerate the pace of development of novel therapies for multiple diseases, and 
has implications for the intellectual property landscape, likely requiring targeted changes in patent law. 
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1. INTRODUCTION 

 Many approved drugs, though originally intended for specific 
mechanisms of action, often exhibit multi-target profiles that likely 
contribute to their efficacies [1]. Describing the extent of this poly-
pharmacology is desirable for the high-resolution mechanistic 
knowledge of how an active compound might perturb specific dis-
eases [2]. The promise of polypharmacology is to achieve an ex-
pansive understanding of the molecular mechanisms and response 
phenotypes for a given drug candidate, in order to select disease-
modulated biological factors such as proteins (on-targets) while 
avoiding those that cause toxicity (off-targets). Such a paradigm of 
simultaneous breadth and precision necessitates the large-scale 
consolidation of data relating drug effects and disease effects on 
complex physiological networks. Moreover, it is of paramount im-
portance to develop computational platforms that utilize these net-
works to prioritize drug candidates exhibiting polypharmacology 
with the most therapeutic and least toxic potential. 

 It is generally recognized that a “reductionist” approach, which 
seeks to develop drugs affecting a single disease-related molecular 
entity, neglects the multi-genic and multi-pathway nature of many 
disease mechanisms. Single-target drug development has yielded 
some key successes, but many “specific” drugs are now known to 
be considerably less selective than previously thought [3]. The ap-
parent inevitability of polypharmacology may be the result of pro-
tein modification in an evolutionary past marked by high chemical 
diversity, wherein it offered an adaptive survival advantage [4]. 
Reductionist approaches coincided with the concern that more pro-
miscuous drugs would inevitably cause unpredictable side effects 
[5]. The recent emergence of powerful new technologies and hubs 
of data with which to characterize drug and disease signatures alike 
allows for increased understanding and cataloging of multi-target 
activities [6]. It is apparent that despite remaining concerns associ-
ated with promiscuity, embracing polypharmacology is becoming 
an important part of contemporary drug discovery [7]. 
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 Many qualities of therapeutic agents exhibiting polypharmacol-
ogy make them rather attractive compared to drugs bind to single 
protein. It has been posited through network models that multi-
targeted agents, which often bind at low affinities, can be more 
efficient in partially inhibiting a small number of proteins, causing 
the distributed attenuation or amplification of a biological network 
[8, 9]. Paradoxically, this low-affinity multi-protein activity can 
cause fewer side effects compared to those resulting from a fully 
inhibited single protein and its affected downstream components 
[8]. Another important advantage of multi-targeted approach is the 
increased propensity to delay or prevent drug resistance, especially 
in the case of malignancies in which mutator phenotypes result in 
rapid adaptation and the emergence of drug resistant clones [7]. The 
rational design of a polypharmacological agent may seek to target 
multiple essential functions to overcome known or predicted com-
pensatory signaling pathways employed by a disease, lessening the 
probability that disease mechanisms will circumvent drug actions 
[10]. Polypharmacology may therefore allow for a level of control 
previously sought in reductionist endeavors, which suffered from a 
narrow toolkit by comparison. 

 The conceptual framework of polypharmacology is considered 
in some emerging drug therapy realms but not others. Here, we 
comment on those of drug repositioning and precision medicine. 
Drug repositioning, or the identification and use of current drugs for 
new medical indications, has gained a great deal of attention as a 
way to circumvent the limitations posed by de novo drug design 
[11, 12]. Successful computational prediction of alternative drug 
targets requires an understanding of the most essential disease 
mechanisms, and measures of how existing drugs may be appropri-
ated to those mechanisms. Describing and exploiting the polyphar-
macology of approved drugs will play an important role in discov-
ering opportunities for repositioning. In addition, modeling the 
overlap of biological system, disease perturbation, and drug action 
networks is a key element of systems biology-based in silico drug 
development. While disease perturbation and drug perturbation 
spaces are varying parameters de facto, biological system and dis-
ease perturbation spaces are too often considered as static frame-
works. Progressing from this static model to a more nuanced under-
standing of patient and disease heterogeneity is the goal of preci-
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sion medicine [13], and computational methods in the context of 
polypharmacology will likely pave the way for such an exquisitely 
tuned approach to therapy. 

 In this review, we provide an overview of recent efforts that 
have been made to navigate two major bottlenecks in the productive 
employment of polypharmacology. The first bottleneck is the for-
mulation of ligand-protein interactions, for which we consider some 
currently available computer-aided drug design methods. These 
broadly include structure-based approaches, chemoinformatics and 
protein-based methods, QSAR and proteo-chemometric approaches, 
and text mining strategies such as natural language processing. The 
second bottleneck has been the extension of ligand-protein interac-
tions to a biological network-based understanding of drug action, 
and the application of that understanding by computational means 
to predict drug response phenotypes and therapeutic efficacy in 
treating diseases. We also consider the ways in which the principles 
of polypharmacology are being used to model the synergistic ef-
fects of combination therapies against a given disease. Lastly, we 
reflect on the current limitations and future prospects for the com-
putational harnessing of polypharmacology and the implications for 
the intellectual property landscape. 

2. POLYPHARMACOLOGY AND COMPUTER-AIDED 

DRUG DESIGN 

 Annotating the “one drug - many target” space with high confi-
dence is a challenging task for the drug development community. 
While high-throughput biological screening has been helpful in 
identifying drug-disease interactions [14], costs are prohibitive for 
many investigative groups, and assays may not necessarily reflect 
true biophysical processes or provide enough structural and/or 
mechanistic insight to move rapidly to Investigational New Drug 
(IND) Applications. Computer-aided drug design (CADD) has had 
a profound impact on efficiently assessing hundreds of drug-protein 
possibilities and engaging a broad research community. In this re-
view, we first discuss CADD methods (Fig. 1) that have been of 
great utility for establishing drug-protein interactions, and some 
notable efforts that have exploited such methods in a polypharma-
cology framework.  

2.1. Structure-based Approaches  

 Over the past decade, structure-based approaches have resulted 
in the successful prediction of a wide variety of ligand-protein as-
sociations. These approaches rely on the availability of three-
dimensional (3D) structural data of proteins. Protein structures may 
be experimentally derived and deposited in the Protein Data Bank 
[15], or predicted through homology modeling [16]. Millions of 
ligand structures can be found through publicly available databases 
such as Zinc [17], DrugBank [18], and PubChem [19]. In structure-
based approaches, the goal is to leverage information contained 
within 3D structures for formulating ligand-protein associations. 

 Docking is a structure-based method to virtually screen large 
compound libraries and obtain a rank-ordered list of molecules 
based on their binding potential to a protein of interest [20]. Many 
algorithms differ in how a molecule is fit within the binding pocket 
or secondary binding site [21], but the common underlying premise 
is that molecules that are able to achieve more negative free ener-
gies of binding are assumed more likely to bind. Docking is a popu-
lar choice due to its computational efficiency in screening large 
molecule libraries. As the number of potentially synthesizable 
molecules is growing exponentially, there has been increased inter-
est in massively parallelizing docking [22] or an accelerating proc-
ess using hardware such as GPUs [23].  

 The use of docking has led to several notable successes in drug 
discovery and repurposing. For instance, using docking, the antip-
sychotic haloperidol has been repurposed as a highly selective HIV-
1 and HIV-2 protease inhibitor [24], and the anti-leukemia 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Computer-Aided Drug Design Strategies. Computer-Aided Drug 
Design (CADD) tools described in this review can be functionally catego-
rized into structure-based approaches, ligand-based approaches & chemical 
informatics, and text mining approaches. Structure-based approaches utilize 
protein-based information, sometimes in conjunction with ligand informa-
tion. Ligand-based approaches are predicated on common ligand character-
istics that predict putative proteins, and informatics are often required to link 
those characteristics for drug-proteins interaction predictions. Text mining 
approaches seek to extract known or predicted drug-proteins information 
from the text. 

 

ABL Proto-Oncogene 1, Non-Receptor Tyrosine Kinase (ABL1) 
inhibitor nilotinib was found to inhibit Mitogen-Activated Protein 
Kinase 14 (MAPK14) [25]. Mendez-Lucio et al. recently character-
ized the anti-inflammatory drug olsalazine as a DNA methyltrans-
ferase inhibitor, indicating its possible repurposing for epigenetic 
modifications [26]. In the realm of oncologic diseases, the anti-
psychotic drug fluspirilene was found to disrupt the interaction of 
MDM2 Proto-Oncogene, E3 Ubiquitin Protein Ligase (MDM2) 
with Tumor Protein P53 (TP53) [27]. Chen et al. also utilized dock-
ing to find that the active ingredient of the Chinese traditional 
medicine Danshen, Transhinone IIA, bind to retinoid acid receptor 
alpha (RARA) in acute promyelocytic leukemia [28]. Docking has 
also begun to emerge in a polypharmacology framework, and was 
used to identify the tricyclic anti-depressant protriptyline as potent 
multi-target inhibitor of the Alzheimer’s disease-associated proteins 
acetylcholinesterase (ACHE), beta-secretase (BACE1), and amy-
loid-beta aggregation [29]. More recently, Banerjee et al. screened 
newly designed ligands, to identify dual inhibitors against FabG4 
and HtdX that could constitute promising agents against drug resis-
tant Mtb strains or latent stage tuberculosis [30]. 

 While conventional docking has aided in the identification of 
multiple protein targets for many approved drugs, it has drawbacks 
[31-33]. These mainly relate to a lack of protein structure flexibility 
and modeling of solvation effects. As proteins can adopt many con-
formational states, the use of a single conformation in a docking 
study may not be sufficient to account for all possible ligand che-
motypes and binding states in vivo. One remedy is to employ con-
formational ensembles in docking, allowing for enriched virtual 
screening outcomes [34]. An example of this is in the investigation 
of undecaprenyl diphosphate synthase enzyme (UPPS), a bacterial 
protein essential for cell wall biosynthesis [35]. Experimental crys-
tal structures of UPPS show that it is able to adopt three distinct 
conformations depending on substrate or ligand characteristics. 
Docking was performed for a set of 112 known active and inactive 
compounds on each conformation, and two of the three conforma-
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tions (open and ajar states) were found to provide the best perform-
ance with respect to ranking active compounds over inactive com-
pounds. In this case the use of these conformations for subsequent 
screening of large compound databases resulted in the discovery of 
UPPS inhibitors with promising antibiotic activity [36]. In such 
cases where crystal structure diversity is available for a protein of 
interest, use of a conformational ensemble leads to better virtual 
screening outcomes in docking. However, for proteins with low 
crystal structure diversity or no identified structure, computational 
molecular simulations can be used to explore the conformational 
space of proteins using an initial crystal structure or homology 
model. 

 As noted above, multi-targeted drugs often have lower affinity 
to multiple proteins [8], and such wide-reaching but weaker interac-
tions may be instrumental to clinical efficacy. Inadequate simula-
tion of physiological conditions in structure-based methods leads to 
false negatives, particularly for weaker ligand-protein interactions 
[8]. These deficiencies are particularly important for polpharmacol-
ogy. To address this concern, molecular dynamic (MD) simulations 
allow for studying protein flexibility in implicit or explicit aqueous 
(i.e. cytoplasmic) and lipid (i.e. plasma membrane) environments 
[37]. Long time-scale simulations allow for the identification of 
diverse conformations that a protein may adopt, even rare confor-
mational states that are transient. High- and low-populated confor-
mations obtained from MD simulations can be used to represent an 
ensemble for virtual screenings. Sinko et al. identified a rare con-
formational state of UPPS through long MD simulations that al-
lowed for the identification of a class of inhibitors different from 
other those for other conformations [38]. 

 MD simulations have also been extensively used for studying 
protein allostery. This is exemplified by G protein-coupled recep-
tors (GPCRs), where allosteric modulators are able to bias signaling 
toward G protein or beta-arrestin signaling pathways [39]. Pharma-
ceutical-induced signaling bias of GPCRs has shown clinical poten-
tial, as in the case of angiotensin II type 1 receptor (AGTR1) in 
cardiovascular disease where ligand TRV120027 competitively 
antagonizes G protein signaling but stimulates the recruitment of 
beta-arrestin to increase cardiomyocyte contractility and reduce 
mean arterial pressure [40]. Dror and colleagues employed MD 
simulations to mechanistically explore the association of allosteric 
modulating ligands to the M2 muscarinic acetylcholine receptor 
(CHRM2) [41]. This knowledge will pave the way for future struc-
ture-based virtual screening of GPCR allosteric modulators and 
potentially identify drug repurposing opportunities. 

 Structure-based approaches encompassing docking and molecu-
lar dynamics are critical in establishing ligand-protein associations 
in polypharmacology. With the development of more accurate ato-
mistic models and high-performance computing, as well as the 
crystal structure or homologous template characterization of large 
numbers of proteins, these methods will achieve greater accuracy in 
their predictions and can be implemented on a large scale. Consid-
eration of allosteric mechanisms also will unlock many new drug-
repurposing avenues. 

2.2. Chemoinformatics and Protein-based Methods 

 Chemical informatics approaches have been popular for large-
scale computationally efficient screening to identify new ligand-
protein associations. These methods focus on compound-specific 
properties, which may be structural, topological, chemical, physical 
or biological attributes (i.e. induced gene expression or proteomic 
changes). Many software packages, both open source and proprie-
tary, that calculate structural and physiochemical properties such as 
substructure fragments, atomic connectivity indices, electronegativ-
ity, solvent-accessible surface area, electron affinity, solubility, 
among hundreds of others are available. These include Dragon [44], 
QikProp [45], and others. It is typically assumed that molecules 
with similar properties tend to interact with similar proteins [46]. In 

addition, methods based on ligand to ligand and ligand-binding 
pocket shape similarity are also useful given the importance of 
shape complementarity in biological associations [47].  

Use of chemical informatics and 3D shape similarity metrics have 
been successful in identifying alternative targets for existing drugs. 
The cardiovascular drug S-bepridil was found to have potential 
anti-cancer properties through interaction with MDM2, a negative 
regulator of TP53, using a similarity method that combines both 
three-dimensional shape and chemical properties [48]. Vasudevan 
et al. utilized shape screening to find chlorprothixene and promaz-
ine as antagonists of the H1 histamine receptor (HRH1) [49]. The 
similarity ensemble approach (SEA) [50] is another chemical simi-
larity-based method that has been successful in predicting drug 
polypharmacology. SEA identified the opioid drug methadone as an 
antagonist of the muscarinic M3 receptor (CHRM3), ementine as an 
adrenergic alpha2 antagonist, and loperamide as an NK2 (TACR2) 
antagonist. SEA has also been used to identify drug-protein interac-
tions that lead to adverse drug reactions (ADRs) [51], as discussed 
later, as well as phosphodiesterase-4 (PDE4) to be a novel target of 
the approved angiotensin converting enzyme (ACE) inhibitor mo-
exipril [52]. 

 Drug-induced biological effects have also been leveraged to 
discover new interactions. Protein targets are identified using a 
“guilt by association” approach [54] where drugs that exhibit a 
biological profile similar to that of a drug or active compound with 
known targets are inferred to also interact with those targets. Gene 
expression analysis and transcriptomics have been particularly fruit-
ful here for finding similar targets for structurally diverse ligands 
[55]. The Connectivity Map (cMap) [56] is a publicly accessible 
database of drug-induced gene expression changes across multiple 
cell lines from which similarity analyses are conducted. Li et al. 
used cMap to identify 148 targets for 20 polyphenols, showing 
polypharmacological mechanisms that extend beyond anti-oxidant 
activity [57]. Babcock et al. discovered novel hERG (KCNH2) 
binding properties for fendiline, cloperastine, ethopropazine, and 
sulconazole through cMap [58]. Other investigations of gene ex-
pression profiles have found potential repurposing of quinacrine, an 
anti-protozoal, for myeloid leukemia by modulating RNA polym-
erase I to affect ribosomal biogenesis [59]. Other biological mani-
festations, such as side effect similarity [60] or biological network 
perturbation characteristics [61-63], have also been employed as 
parameters for deducing drug-protein associations. In one study, 
chemical, side effect, and therapeutic similarities were combined to 
derive drug-protein interaction predictions, and as a result seven 
alternative targets for seven approved drugs were found [53]. 

 Pharmacophore modeling is another informatics method for 
identifying ligand-protein interaction signatures from chemical 
features. A pharmacophore is an abstract representation of molecu-
lar features important for drug binding in three-dimensional space. 
These features include hydrogen bond acceptor and donor groups, 
hydrophobic areas, aromatic centers, and others, and their optimal 
positioning for bio-molecular recognition. Pharmacophore models 
can be derived in multiple ways: (1) from crystalized protein com-
plexes, (2) a set of known active molecules, and (3) apoprotein 
structures. When using ligand-protein complex structures, pharma-
cophores can be obtained by assessing which molecular features are 
most important for that particular binding mode. They can for in-
stance be determined through energy optimization, as is done with 
the e-Pharmacophore module in the Schrodinger software suite [64] 
or GALAHAD provided by Tripos [65]. In the absence of a protein 
structure, pharmacophore models can be generated from an active 
molecule based on shared chemical features and their alignments 
e.g. using GASP [66]. When ligand information is absent but a 
protein structure is available, pharmacophores can be generated by 
inferring complementary functional interactions from important 
residues within a proposed binding pocket. This is considered a 
receptor- or structure-based pharmacophore and software created 
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for this purpose include FLAP [67], and SNOOKER [68]. Pharma-
cophore models are then used in virtual screening to identify active 
compounds that are able to recapitulate important functional contact 
points. Additional use of exclusion spheres that mark the atomic 
radii of binding site residues can further filter out molecules that are 
too big or that may form steric interactions with a protein, thus 
acting as a sort of molecular sieve. Pharmacophore screening has 
resulted in many novel drug-protein associations for potential re-
purposing. Ai et al. discovered the negative modulating activity of 
nitazoxanide, an anti-protozoal agent, on both mGluR1 (GRM1) 
and mGluR5 (GRM5) receptors [69]. Levit et al. identified the 
FDA approved drugs glimepiride and salsalate, a second-generation 
sulfonylurea used for the treatment of type 2 diabetes mellitus, as 
an agonist of the human bitter taste receptor type 2 member 14 
(TAS2R14) [70]. Krautscheid et al. used pharmacophore modeling 
to establish the unexpected associations of haloperidol, eprazinone, 
and fenbrutazate with neurokinin receptors [71]. Rolofylline, an 
adenosine A1 antagonist, was also found to be a micromolar inhibi-
tor of cGMP-specific phosphodiesterase type 5 (PDE5) [72]. 

 Like pharmacophore screening, electrostatics-based virtual 
screening methods have also revealed novel biological associations. 
As the molecular electrostatic potential (MESP) distribution is criti-
cal in binding and high-resolution molecular recognition [73, 74], it 
is assumed that protein bind molecules exhibiting similar ESP dis-
tributions or atomic partial charges [75]. Armstrong et al. devel-
oped a similarity-based ligand screening method called Electro-
Shape that combines partial charge information at atom-occupied 
coordinates with three-dimensional shape [76]. Shape and electro-
static similarity was also used by Muchmore et al. to identify a 
novel antagonist of melanin-concentrating hormone receptor 1 [77]. 
The commercial software EON (www.eyesopen.com/eon) is also 
available for coupled shape- and electrostatics-based molecular 
similarity screening and has been successfully used to find many 
ligand-protein- such as those of 5-(4-piperidyl)-3-isoxzaolol as a 
potent fibrinolysis inhibitor [78].  

 Protein-based methods are also used to identify ligand-protein 
associations, where ligands are assumed to bind protein of similar 
properties [79]. In particular, binding site shape has been exploited 
in drug repurposing. De Franchi et al. used the SiteAlign [80] algo-
rithm to discover staurosporine as a potent inhibitor of synapsin I, 
which regulates neurotransmitter release, due to its pocket shape 
similarity to Pim-1 kinase [81]. Kinnings et al. employed the Se-
quence-Order Independent Profile-Profile Alignment (SOIPPA) 
algorithm [82] and found entacapone, an anti-Parkinson drug that 
bind to catechol-O-methyltransferase (COMT), to inhibit enoyl-acyl 
carrier protein reductase (ENR), a therapeutic target for Mycobacte-
rium tuberculosis [83]. SOIPPA was also utilized by Durrant et al. 
to predict targets for an inhibitor of Trypanosoma brucei RNA edit-
ing ligase 1 based on binding site shape even though the proteins 
did not show global similarity in sequence or structure [84]. In ad-
dition, protein-based electrostatic properties can be used for suc-
cessful predictions. Voet et al. exploited the concept of electrostatic 
complementarity between ligand and protein [85, 86]. They devel-
oped an algorithm called Elekit for identifying small molecule in-
hibitors of protein-protein interactions based on the electrostatic 
potential distribution at the protein-protein interface [87].  

 In mapping the polypharmacology of a given ligand, it is cru-
cial to note that binding site similarities may be more important 
than global structural or sequence similarities of potential protein 
[42]. Candidate ligands are often tested against a large panel of 
related proteins, to determine the relative selectivity of two active 
compounds that act as inhibitors of a given protein subclass. This 
strategy considers the mechanistic description of compound prom-
iscuity as an opportunity to fine-tune the prediction of clinical effi-
cacy. Möller-Acuña et al. recently investigated the observed poly-
pharmacological action of the drug SB-206553 on the structurally 
and functionally dissimilar 5-HT2 and 7 nACh receptors [43]. 

Using docking and molecular dynamics methodologies in concert, 
they found that each receptor had a binding site with hydrophobic 
pockets of chemically and structurally similar residues that could 
explain common affinity by SB-206553 [43]. Interestingly, SB-
206553 acts as an inverse agonist of 5-HT2Rs and as a positive 
allosteric modulator of 7 nAChR, and this dual activity may ac-
count for its anxiolytic and anti-addictive properties [43]. 

 The chemoinformatics and protein-based approaches described 
here are commonly used with other modalities to enrich virtual 
screening as each approach has its own strengths. For example, a 
combination of pharmacophore models, homology modeling and 
docking led to the identification of novel inhibitors of Topoi-
somerase II-alpha (TOP2A) from the NCI2000 drug database [88]. 
Dobi et al. performed a cascade screening where a 2D similarity 
search was performed after pharmacophore matching to find potent 
antagonists of the 5-HT6 receptor (HTR6) implicated in neurologic 
disorders [89]. Markt and co-workers utilized a virtual screening 
workflow that integrated pharmacophore modeling with 3D shape 
and electrostatic similarity screening to establish novel PPAR 
ligands for cardiovascular diseases [90].  

2.3. QSAR and Proteo-chemometric Approaches 

 Quantitative Structure-Activity Relationship (QSAR) methods 
employ regression modeling and machine learning to classify com-
pound activity against single protein classes and identify chemical 
and structural parameters that are associated with binding [91]. 
These molecular descriptors may be different from one model to 
another, depending on the test set used. Models derived from a 
bioactivity data series with respect to a protein are then used to 
predict binding affinities of new compounds to that protein. Many 
chemical-centric QSAR models have been developed over the last 
decade and have been successful in identifying novel drug candi-
dates for well-established proteins [92]. Examples include indole 
aryl sulfones against the HIV-1 reverse transcriptase non-nucleo-
side binding site [93] and capsazepine as an anti-inflammatory 
through blocking tumor necrosis factor alpha (TNF) [94]. 

 Although success has been achieved using QSARs, the applica-
bility domain (AD) is generally limited to that single protein or 
chemical congener series [95]. For instance, a QSAR model created 
for a Class I GPCR may not be applicable to a different GPCR class 
or even a GPCR from within the same class. This is primarily due 
to the training set used, binding mode, and experimental conditions 
used to obtain binding affinity values. Furthermore, QSAR models 
may not be accurate for the same protein containing different single 
nucleotide polymorphisms (SNPs) that alter protein structure and 
binding properties. To address these problems, proteochemometric 
and multi-target QSAR approaches have been developed.  

 Proteochemometric (PCM) models integrate protein -based 
descriptors, such as amino acid sequence, with chemical-centric 
descriptors [96]. In contrast to classical QSAR approaches, which 
are oriented to one protein, PCM models are derived from a set of 
many proteins and ligands simultaneously and attempt to consider 
the entire ligand-protein interaction space to help overcome “activ-
ity cliffs” [97, 98], situations where similar drugs do not result in 
similar activities [99]. This is particularly useful for discovering 
drugs that interact with proteins harboring a particular mutational 
status [81]. PCM modeling has been successfully used for G pro-
tein-coupled receptors (GPCRs) [101], HIV-1 protease [102], 
kinases [103], penicillin-binding proteins of infectious agents [104], 
along with many others. Our group established novel proteo-
chemometric methods called TMFS and RepurposeVS [105]. 
TMFS and RepurposeVS differ from other PCM models in that 
they leverage information from single drug-protein crystal structure 
complexes to find drugs that are able to recapitulate those proper-
ties. This is especially useful for exploiting differential binding 
modes within a single protein, such as agonist and antagonist con-
formations. For example, the estrogen nuclear receptor (ESR1) has 
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been co-crystallized with agonists such as diethylstilbestrol as well 
as antagonists such as 4-OH tamoxifen. Leveraging those individual 
structures permits TMFS to find approved drugs that could either 
activate or inhibit estrogen receptor signaling. TMFS has allowed 
us to identify clinically important drug repurposing opportunities. 
One is the repurposing of mebendazole, an anti-hookworm tubulin 
inhibitor, as an anti-angiogenic agent through inhibition of vascular 
endothelial growth factor receptor 2 (VEGFR2) kinase domain. 
Another is the repurposing of the anti-inflammatory cyclooxy-
genase-2 (COX-2) inhibitor celecoxib and its analog dimethyl-
celecoxib (DMC) as inhibitors of cadherin-11 (CDH11), a cell ad-
hesion molecule implicated in poor-prognosis malignancies and 
rheumatoid arthritis. 

 In addition to traditional QSAR and PCM methods, multi-target 
QSAR (mt-QSAR) models have been developed to calculate the 
probability of compound activity on multiple protein targets, such 
as kinases [106], GPCRs [107], bacterial strains [108], or even a 
combination of different target types [109]. Machine learning 
methods such as artificial neural networks (ANN), Markov models, 
support vector machines machines (SVMs), linear discriminant 
analysis, and others are integrated to discover important biological 
and chemical properties and can be used to model a particular set of 
proteins. Liu et al. utilized mt-QSAR to identify co-inhibitors of 
HIV and HCV viruses [110]. Garcia et al. discovered glycogen 
synthase kinase 3 beta (GSK3B) inhibitors that could treat Alz-
heimer’s disease as well as parasitic infections [111]. Speck-
Planche et al. were able to use mt-QSAR for the simultaneous pre-
diction of anti-infective compounds along with their toxicological 
profiles [112]. Mt-QSAR is not limited to proteins, but can also be 
applied to larger systems such as cell lines and bacterial species. 
For example, Speck-Planche et al. built a mt-QSAR model for ten 
colon cancer cell lines to identify anti-colon cancer agents [108]. 
Similarly, Prado-Prado et al. built the first unified mt-QSAR model 
of using artificial neural networks that predicts compound activity 
against different parasite infections using 500 drugs tested against 
16 parasite species found in the literature [113]. 

2.4. Natural Language Processing 

 The computational methods described above far provide effi-
cient screening for predicted biological targets. Analyses to support 
CADD, however, often rely on access to “Big Data” that are al-
ready available. 

 In practice, the accessibility of existing information is a major 
limitation to data analysis in bioinformatics. Databases such as 
those described in this review have been developed to facilitate this 
hurdle, but much of the desired data are accessible only as a refer-
ence, and not as a repository. Empirically determined biological 
activities, in particular, are strewn over a growing mass of scientific 
literature. Such information, presented in “natural language” form, 
is bound by free text and is unstructured, carrying semantic varia-
tion and ambiguity. Despite the immediacy of such a valuable re-
source, the volume of research publications alone is such that man-
ual human curation of information from these sources, in a manner 
that is comprehensive and up-to-date, is not feasible [114]. 

 Natural Language Processing (NLP) is a method of information 
extraction (IE) within text mining that addresses the problem of 
accessibility by extracting structured and meaningful information 
from natural human language by computational means. In the con-
text of CADD and polypharmacology, the central challenge of NLP 
is to accurately identify biologically or chemically relevant compo-
nents from text and determine their semantic associations. 

 To extract ligand-protein associations from a text of heteroge-
neous syntax and semantic features, NLP typically divides the text 
into word boundaries, called tokens [115]. After identifying these 
tokens and their parts of speech, parsing tasks use syntactic compo-
nents to validate token sequences and thus extract relationships 
between entities of a desired type [116]. Rule-based and statistical 

parsing are the two overarching approaches to building an NLP 
system [116]. A rule-based approach implements hand crafted rules 
of grammar, whereas a statistical approach utilizes probabilities to 
train machine-learning algorithms based on previously annotated 
scientific literature (corpora), ultimately to determine the most 
likely parse of a sentence or phrase [116]. A statistical system can 
also be built conjointly with a rule-based system. 

 NLP technologies vary in complexity and approach. Many of 
the existing efforts to improve NLP modeling consist of addressing 
a single subtask of NLP. Named Entity Recognition (NER), for 
instance, is required for any IE endeavor. In biology, however, the 
inconsistency of nomenclature means that identifying relevant enti-
ties in a standardized way is an especially arduous task [117]. The 
Critical Assessment of Information Extraction system in Biology 
(BioCreAtIvE) community-wide competition is a recent and ongo-
ing effort that has brought about both annotated training corpora 
and NER tools for literature mentions and relationships of genes, 
drugs, and other entities [118]. One such outcome of BioCreAtIvE 
is CHEMDNER, a new corpus that can be used for training chemi-
cal entity taggers in NLP models, was created to support the build-
ing of statistical models that can identify and classify entity men-
tions [119]. The corpus entails 3, 000 manually annotated (“Gold 
Standard”) PubMed abstracts, 17, 000 automatically annotated 
(“Silver Standard”) abstracts, and more [119]. 

 Building upon early attempts [120], some current databases 
already employ NLP to link components relevant to systems biol-
ogy, usually along with other manual or computational extraction 
methods. STITCH is a repository of protein-chemical and chemical-
chemical interactions that derives its information from experimental 
and manually curated data sources, in addition to extraction from 
the literature using NLP and other text mining strategies [121]. 
STRING is a related database focusing on direct and indirect pro-
tein-protein interactions (PPIs), and incorporates statistical entity 
co-occurrence analyses on large quantities of full text articles, as 
well as rule-based NLP tasks such as part-of-speech tagging, se-
mantic tagging, and formula-based grammar [122, 123]. SIDER 
contains adverse drug reactions (ADRs) associated with a given 
drug based on FDA package inserts, along with frequency informa-
tion for each ADR [124]. An NER strategy was developed to ex-
tract mentions of relevant components from the package inserts, 
using STITCH and STRING databases for drugs and proteins, and 
the UMLS Metathesaurus and MedDRA for ADRs and diseases 
[124]. The Stanford Dependencies [125] NLP tool served the de-
velopment of SIDER by parsing sentences that denote a disease 
indication for a given drug [124]. In this context, NLP can be par-
ticularly useful in, for example, separating ADRs from drug effects 
that are contingent on pre-existing conditions, and other tasks that 
require a high degree of context-dependent semantic parsing. 

 NLP may also be used directly in a drug development effort 
predicated on polypharmacology. Yu and colleagues recently re-
vealed the polypharmacology of mifepristone (RU486), a synthetic 
steroid that has clinically established anticancer properties and 
could be effective as a cancer metastasis chemopreventive [126]. In 
addition to running multiple assays relating, among other parame-
ters, the promising cell adhesion and migration effects of mifepris-
tone, the authors identified 513 genes affected by the drug using 
NLP, and then carried out functional interpretation of these proteins 
using pathway and GO analyses [126]. This NLP endeavor required 
gene mention tagging of full text articles using the open source 
biological entity NER tool ABNER [127], followed by extraction of 
multiple genes that were combined into a single term, and gene 
name normalization [126]. Finally, a hypergeometric distribution 
was applied to narrow down genes that co-occurred with mifepris-
tone with sufficient statistical significance [126]. Zeng et al. pro-
vide a helpful survey of NLP techniques utilized in bioinformatics 
[127]. Presently NLP is mainly employed in the curation of data-
bases. Later in this review, we consider the practical applications of 
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such a growing catalog of biological associations in the context of 
polypharmacology and drug repositioning. 

3. POLYPHARMACOLOGY AND NETWORKS 

 Attempts to identify and exploit biological targets have often 
failed to consider the fluctuating nature and downstream effects of 
targeted components at multiple stages of biological action, from 
molecular mechanisms to observed phenotypic response [6]. Lack-
ing a fuller understanding of action of drugs, in many cases, the 
unanticipated side effects, drug resistance, lack of therapeutic effi-
cacy, and other mishaps that are all-too-often encountered in drug 
development [7].  

 Networks carry the potential to support a topological rendition 
of all atomic/molecular, macromolecular, cellular, tissue, organ, 
and organismal biological features, as well as the many dynamic 
relationships that exist between them [6]. Upon bridging native 
biological networks, one can investigate how such networks are 
perturbed by diseases and modulated by pharmacological agents, 
and thus the discussion of polypharmacology necessarily arises 
(Fig. 2). In this higher-resolution context, polypharmacology can be 
extended to signify multiple immediate targets and their down-
stream biological components. This level of precision also requires 
a sense of the qualitative and, ideally, the quantitative relationships 
between these components. To develop the most powerful tools for 
predicting therapeutic efficacy of an and its greater response pheno-
type based on polypharmacology, a network approach therefore 
seems essential. 

3.1. Predicting Drug Response Phenotypes with Polypharma-

cology 

 As previously addressed, the inherent promiscuity surrounding 
drugs that exhibit polypharmacology is of some concern to the drug 
development community. Specific proteins are known to be thera-
peutically useful, but just how drugs cause toxicity or side effects 
has been somewhat unclear in the past, along with the extent to 
which it is helpful to invoke a simplistic causal connection between 

single target and single observed effects [9]. Nevertheless, distin-
guishing between on- and off-targets, and identifying and character-
izing the off-target effects, has been a major undertaking in poly-
pharmacology. Much of it has been accomplished by statistically 
linking off-target drug actions and drug response phenotypes. 

 Torcetrapid, a Cholesteryl Ester Transfer Protein (CETP) in-
hibitor, had promising characteristics for the treatment of cardio-
vascular diseases (CVD), but resulted in deadly off-target hyperten-
sive effects and was withdrawn in phase III clinical trials [128]. Xie 
et al., without any ADR-related data, predicted off-targets of CETP 
inhibitors using structure-based methods. The off-targets were 
found to be members of lipid metabolism and signaling pathway 
networks that modulate processes linked to the known adverse ef-
fects [129]. Chang et al. also attempted to explain the adverse ef-
fects of torcetrapid, instead by building an in silico reduced kidney 
metabolic model, manifesting itself as a network from which pre-
dictions about gene activity in the kidney could be derived [130]. 
Upon predicting putative torcetrapid off-targets, they found that 
many of them perturbed the renal function model and had formerly 
been shown to impact renal function in patients with corresponding 
gene deficiencies [130]. Such studies signaled the potential role that 
a systems biology and polypharmacology approach could have in 
drawing a link between the modulation of specific genes, or sets of 
genes, and the development of certain phenotype responses. This 
direction could more easily address drug toxicity a priori, and there-
fore streamline the process of drug development. 

 Various systems biology approaches offer the power to predict 
drug effect profiles, dependent only on knowledge of protein -level 
mechanisms. Some key efforts have taken extensive network ap-
proaches to identify ADRs that were disproportionally found in 
drugs predicted and known to bind to a given protein, resulting in 
drug-protein-ADR networks [131, 132]. Kuhn et al. noted that con-
ducting an overrepresentation analysis in this way could easily re-
sult in false positives, because drugs tend to bind to sets of pharma-
cologically similar proteins, while only one of those may be the 
driving force behind a side effect [133]. Focused on narrowing 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Using Polypharmacology in Network Analysis. CADD Tools allow for the polypharmacological characterization of multi-target drugs, resulting in 
a panel of drug-protein interactions for each drug. These interactions may be mapped to associated or enriched multi-scale biological factors to a network of 
drug action space. Curated interactions may also be integrated with drug side effect data to make predictions about target-side effect associations, which may 
in turn contribute to the drug action space network. Disease-related omics data or known mechanistic data can be analyzed to derive putative therapeutic bio-
logical factors, and multi-scale network mapping allows for the creation of a disease perturbation space. Using network analysis, the coincidence of the disease 
perturbation and drug action spaces may reveal potential de novo or repositioned indications, combination therapies, and side effect predictions. 
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down these causal relationships, they confirmed in a mouse model 
that a selective drug could often counteract the side effect induced 
by a previously administered drug, if it had an opposite effect on 
the primary protein [133]. Furthermore, they successfully mapped 
known gene-phenotype pairs from knockout mice studies to their 
own predicted target-side effect pairs [133]. They thus developed a 
drug-protein-ADR network, and predicted that 732 of 1428 studied 
side effects were largely caused by, individual proteins [133]. 

 A few studies have attempted to integrate quantitative charac-
teristics of ligand-protein interactions to predict phenotypic re-
sponses, corresponding to a more comprehensive network topology 
that affords value to edges connecting the nodal biological compo-
nents. Simon et al. used docking to predict targets for 1226 FDA-
approved drugs among 149 protein candidates, and correlated by 
canonical correlation analysis (CCA) the calculated binding free 
energies for each protein with the presence or absence of 177 
known drug effect categories for a given drug [134]. The primary 
advantage of using in silico binding fingerprints rather than experi-
mentally verified derived binary binding annotations is that it al-
lows for the incorporation of potentially important weak interac-
tions, as well as nonspecific binding of the compound to a receptor, 
and therefore provides a more comprehensive topological network 
space from which to mechanistically resolve drug promiscuity and 
derive phenotype associations. 

 Duran-Frigola et al. did not limit their side effect network char-
acterization to mapping proteins [135]. Rather, they examined 
chemical and network biological characteristics and statistically 
deduced, for each drug, which factors best revealed the molecular 
bases for a side effect [135]. 6% of examined drug-ADR associa-
tions were best explained by the chemistry of the compounds, sug-
gestive of nonspecific drug actions [135]. While this method devi-
ates from a strictly polypharmacology-based interpretation of drug 
action, it does afford value to integrate quantitative chemical pa-
rameters accounting for nonspecific binding events that may not yet 
be modeled in silico using biological networks, but nevertheless 
influence drug response. Using such integrated strategies may in-
crease predictive power, especially considering the success in link-
ing specific chemical fragments to drug side effects [136]. Re-
cently, Pérez-Nueno integrated their physiochemical property-based 
tool for the prediction of polypharmacology [137] with known side 
effect data and carried out a correlation and discrimination proce-
dure [138]. This integrative tool, called GESSE, ultimately predicts 
side effects from the 3D structure and chemical properties of a 
drug, and elucidates the polypharmacology of that drug at multiple 
levels of biological action, such as pathways and cellular functions 
[138]. Such integrative methods will be essential to achieving 
maximal mitigation of shortcomings in the process of drug devel-
opment. 

3.2. Matching Disease and Drug Spaces for Therapeutic Poten-
tial 

 Upon acquiring a full picture of drug action, being able to im-
plement it computationally to address a therapeutic need is the sec-
ond critical bottleneck of polypharmacology. This challenge has 
been addressed by multiple integrative strategies, all of which have 
sought to determine the space of disease-regulated cellular compo-
nents through “omics” technologies and subsequent analyses, or 
other approaches. Following this, disease-related components may 
somehow be prioritized for drug identification, often based on prior 
knowledge or statistically predicted importance. Herein lies a key 
obstacle; an ideal polypharmacological agent should be directed at 
only those proteins that need to be perturbed for clinical efficacy, 
and should not modify other factors. Furthermore, such an agent 
would target the combination of necessary molecules that results in 
the least toxicity. After all, on- and off-targets both carry the capac-
ity for potential undesired effects when perturbed, but only on-
targets are deemed to have therapeutic benefit. A great challenge in 

this undertaking, however, has been to distinguish between simply 
disease-modulated proteins and those that, when affected by a drug 
candidate, translate to a superior patient outcome. 

 Occasionally, groups seeking to apply polypharmacology to 
address a medical indication have prioritized the disease perturba-
tion space based on previous work that determined biological net-
work subsets to be critically important to the course of a disease 
[10, 139, 140]. Zhao et al. used networks to elucidate the poly-
pharmacology of the medicinal herb derivative Astragaloside IV 
(AGS-IV) in an effort to explain its known therapeutic effects on 
cardiovascular diseases [141]. Interestingly, AGS-IV was found to 
exhibit far weaker action against key proteins compared to other 
CVD drugs, but had comparable effectiveness at the cellular level 
[141]. This indicated multiple weak interactions [141]. AGS-IV 
was first tested by in silico inverse docking within the signaling 
pathways known to be implicated in the actions of other drugs ap-
proved for CVDs, and 39 potential proteins were established, with 
three validated in vitro [141]. Notably, 69% of 39 putative AGS-IV 
had been previously associated with other CVD drugs in the litera-
ture [141]. Upon constructing PPI (Protein-Protein Interactions), 
drug-protein, and protein-pathway association networks for those 
proteins, they found that AGS-IV likely acts by modulating proteins 
involved in crosstalk between calcium, MAPK, and VEGF signal-
ing, among others [141]. This approach demonstrates the usefulness 
of identifying proteins by testing protein candidates that are mem-
bers of pathways modulated by other drugs for the same indication. 
This has pragmatic implications in providing both an efficient 
means of distinguishing between the actions of drugs for the same 
disease indication, and for repurposing a drug by testing its align-
ment to the most important pathways for the new indication. 

 There have been various other large-scale efforts to build clini-
cally relevant disease perturbation networks based on the poly-
pharmacology of drugs known to be effective against the disease in 
question. Seeking to derive and apply drug-protein interactions, 
Cheng et al. found that network-based inference, which uses com-
plex network theory and topological similarity of drug-protein-
disease networks, out-performed strategies hinging on protein and 
drug similarity parameters [62]. They discovered new polypharma-
cological features of some dipeptidyl peptidase-4 (DPP4) inhibitors 
and ER ligands, defining on- and off-targets by presence or lack, 
respectively, of known association with diseases in the network 
[62]. Arooj et al. recently developed a computational method to 
identify the off-targets of human chymase inhibitors with molecular 
docking [142]. Then, they employed structural and functional simi-
larity to elucidate the roles of each off-target in biological pathways 
as well as their disease and phenotypic associations [142]. 

 Xie et al. built a drug-abuse chemogenomics knowledgebase 
(DA-KB) to compile the known molecular interaction networks 
involved in drug abuse, particularly those encompassing GPCRs 
[143]. This network approach extended to mapping signaling path-
ways corresponding to DA-related proteins, as well as the distribu-
tion of GPCRs in human tissues and linking this information to side 
effects caused by abused drugs [143]. They further sought to char-
acterize within this network the polypharmacology of DA-related 
protein ligands and illicit substances, and other medicines that tar-
get the central nervous system [143]. Using this polypharmacologi-
cal network in concert with pharmacophore modeling, it was dem-
onstrated that some cannabinoid ligands can interact simultaneously 
with cannabinoid receptor type 1 (CNR1), mu-opioid (OPRM1), 
and dopamine receptor D1 (DRD1) targets, allowing for the possi-
bility of drug repurposing to mitigate cocaine craving [143]. A re-
lated study introduced a domain-specific chemogenomics knowl-
edgebase called AlzPlatform, geared for Alzheimer’s Disease [144]. 
These integrative efforts combine the curation of extensive disease-
related biological networks from the literature, the linking of bran-
ches of this disease space to phenotypic outcomes, and a multi-
faceted effort to predict new disease-related biological molecules 
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for both novel and FDA-approved drugs [144]. In a recent study, 
Jansson et al.. explored the potential for polypharmacology to ad-
dress the highly adaptable nature of cancer, positing that addressing 
multiple cancer-modulated mechanisms may thwart resistance to 
conventional targeted therapies that often results from clonal selec-
tion [145]. They identified and characterized multiple drug-protein 
interactions of di-2-pyridylketone thiosemicarbazones, which they 
determined effectively confront the “triad of death” of cancer, 
which encompasses tumor growth, drug resistance, and metastasis 
[145]. Thus, by molecularly characterizing a few key factors of 
disease dysregulation that are the most clinically problematic, re-
searchers may begin to prioritize drugs by their polypharmacology 
that addresses these key factors simultaneously. Applying a multi-
scale network analysis to this framework may prove fruitful. 

 While building a disease perturbation network around biologi-
cal components modulated by drugs that exhibit therapeutic action 
can effectively prioritize network subsets that are therapeutically 
relevant, it falls short of maximizing the potential of a network 
approach on two counts. First, this approach is not possible in dis-
eases for which effective drug therapies do not exist, such as spe-
cific subtypes of cancer. Second, it fails to consider the likelihood 
that other protein targets exist which might, result in greater thera-
peutic effect and less toxicity. While multi-scale network analysis 
may help to predict alternative targets based on factors such as con-
nectivity relative to established targets and literature-derived essen-
tial disease components as described above [143-145], the scope of 
this approach at the genomic level is not maximized. Fortuitously, 
in recent years the bioinformatics field has benefited from omics 
technologies that greatly facilitate the quantification of cellular 
variables on a large scale, allowing researchers to better build net-
works, and link changes in the levels or states of these variables to 
clinical endpoints or disease conditions using patient data [6, 9]. 
Analysis of omics data, in itself and paired with experimental vali-
dation, has allowed for the derivation of many important single 
therapeutic targets for various diseases. Omics data stands as a use-
ful measure of the relative activities of known molecules, and link-
ing this activity to clinical parameters, or comparing the expression 
of different tissues such as by differential gene expression on a 
large scale, may elucidate a panel of proteins that should be priori-
tized in parallel with an in silico polypharmacology-based drug 
development strategy. 

 BioProfiling.de is a web portal that supports several analytical 
tools for high-throughput cell biology [146]. Among these are 
DRUGSURV [147] and PPISURV [148], tools that apply network-
based statistical analyses to deduce the effect of a drug or its direct 
or indirect proteins on overall patient survival in cancers, thus al-
lowing for drug-repurposing opportunities. DRUGSURV calculates 
those genes from various clinical microarray expression datasets 
whose up- or down-regulation is significantly associated with pa-
tient survival outcomes in cancer [147]. For experimental and ap-
proved drugs, a “drug signature” network was developed that con-
sisted of both direct and indirect protein  [147]. By calculating the 
significance of coincidence between the protein and survival-linked 
gene spaces, DRUGSURV attempts to address both anticancer po-
tential and drug efficiency in clinical trials [147]. PPISURV is a 
related tool, centered on the observation that the expression of a 
well-known cancer-linked gene is often not correlated with survival 
outcome [148]. The functions of TP53, for example, are mostly 
controlled at a post-translational level, and its gene expression does 
not correlate with survival in many survival types [148]. However, 
a statistically significant portion of its interaction partners, are posi-
tively correlated with survival in a broad spectrum of cancers [148]. 
This kind of phenomenon reveals the need for multi-scale biologi-
cal networks in future polypharmacology-based endeavors seeking 
to relate drug and disease signatures. 

 There remains much progress to be made in both the prioritiza-
tion of on-targets and the extent of multi-scale network mapping of 

both on- and off-targets. In a fashion similar to the correlation-
based linkage of off-targets to drug response phenotypes, it is pos-
sible that linking on-targets to clinical outcomes holds promise as 
omics technologies progress. These measures are crucial to maxi-
mizing the power of a network approach. Meanwhile, the extension 
of network topology for both disease perturbation and drug action 
on biological networks must be developed, in conjunction with 
more advanced connectivity metrics. 

3.3. Polypharmacology and Combination Therapies 

 Multi-target drug development shares the objective of combina-
tion therapy to simultaneously target multiple, sometimes redun-
dant, mechanisms of disease action for an effective and durable 
drug response. Anighoro and colleagues, in a recent review, outline 
the primary advantages of using multi-target drugs over combina-
tion or standalone therapies [5]. They note that any combination 
therapy should ideally be comprised of two or more drugs with 
nonoverlapping mechanisms of therapeutic action, resistance, and 
toxicity [5]. Combination therapies have two potential key advan-
tages over monotherapy, synergistic action and typically lower 
individual drug dosages, qualities that they have led to some key 
successes [149]. Presently there is a lack of in silico solutions for 
predicting synergistic drug action. The Dialogue for Reverse Engi-
neering Assessments and Methods (DREAM) consortium recently 
initiated an open challenge to develop in-silico solutions [150]. 
Subsequently, of the 32 methods assessed for efficacy relative to 
established experimental combination screening data, four per-
formed better than chance [150]. While this effort certainly illumi-
nated many of the key characteristics of drug synergy that should be 
prioritized in building an in silico prediction model of synergistic 
effect, there remains much to be explored. 

 Vitali et al.. developed a tool that ranks drug pairs by a mul-
ticomponent synergistic score for combination therapies using topo-
logical features of PPI networks, and evaluated the efficacy of this 
tool with a gene expression-based disease network for Type 2 Dia-
betes Mellitus [151]. Tang et al.. presented anticancer combination 
metrics that incorporate treatment efficacy screening data and pre-
dicted drug-protein binding affinities [152]. 

 In a recent integrative approach, Sun et al. combined targeting 
networks and transcriptomic profiles to rank chemotherapeutic 
agent pairs by potential synergy against three types of cancer [153]. 
To build a comprehensive targeting network for each drug pair, 
they collected known drug-protein pairs and mapped them to bio-
logical factors at the levels of PPIs, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways, and Gene Ontology (GO) bio-
logical processes, defining designated cancer networks (CNs) as the 
disease space [153]. From 14 potential features of the molecular 
mechanisms of existing synergistic combinations, many of which 
were newly designed, only the features that were significantly dif-
ferent between known synergistic drug pairs and unlabeled combi-
nations were utilized to predict synergistic potential [153]. Calcu-
lated features indicative of synergistic potential made use of con-
nectivity characteristics of the pathway networks, as well as some 
molecular and pharmacological drug parameters [153]. Drug com-
binations were ranked according to these features, in addition to 
information from correlations between the gene expression profiles 
of cell lines perturbed by the drugs in question [153]. Such an ex-
haustive systems-based approach yielded significant improvements 
in predicting known combinational activity compared to previous 
platforms, including those proposed for the DREAM consortium 
[153]. Building strong combinatorial metrics will require network-
based approaches that combine synergistic prediction, prioritization 
of on-targets to maximize therapeutic potential, and the target-based 
systematic prediction of drug response phenotypes to minimize 
toxicity. 
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4. CURRENT LIMITATIONS 

 The general principles of polypharmacology are far from under-
stood, and the computational methods utilized to apply these prin-
ciples to predict drug response phenotypes and therapeutic efficacy 
are in their infancy. Nevertheless, computer-aided methods for 
establishing drug-protein interactions have significantly improved 
over the past decade. Cumulatively, structure-based methods, 
chemical informatics, machine learning, and natural language proc-
essing have resulted in the identification of alternate targets for 
many known drugs. We are currently undergoing the development 
of increasingly precise and accurate tools from which drug-protein 
interactions can be derived and multi-scale networks can be built. 
Together with a rapid expansion of databases storing and providing 
this information. 

 Nevertheless, a significant challenge remains to fully catalogue 
polypharmacology, because of the lack of complete protein struc-
tural and of putative and experimental data. The availability of such 
data will facilitate the development of computational models at-
tempting to make clinical outcome predictions. These may relate to 
drug response phenotypes by way of off-target drug action, or the 
calibrated effects of on-targets and avoidance of off-targets by 
polypharmacological agents. Beyond data availability, there is a 
sizable gap between the power of computational prediction and 
experimental validation, one that should be addressed by greater 
multi-scale network mapping of biological processes with quantita-
tive modeling of all pertinent interactions. Improvements are un-
questionably needed in the methods used to select proteins and 
drugs most therapeutically and clinically useful for a given disease. 
Ultimately, this would require an integration of both pharmacoki-
netic and pharmacodynamic facets of drug action to adequately 
prioritize drugs for a given indication. The lack of factors such as 
time-dependent ADME parameters, for instance, is a drawback to 
network analyses as they are currently being built. 

5. FUTURE PROSPECTS 

 The rise of cloud-based computing and the resulting ability of 
individuals, small research groups and startups to carry out "high 
performance computing" and big data analytics at manageable costs 
is set to level the playing field and dramatically stimulate innova-
tion in many fields [154]. In the drug discovery, polypharmacology 
and personalized medicine arena we are on the brink of an era in 
which high fidelity molecular profiling can be linked to individual-
ized drug treatment regimens. To facilitate this approach, the ad-
vances in computation, drug screening and drug repurposing need 
to be better linked to electronic health records in a manner that 
protects patient privacy. Discussions among third party payers (In-
surance Industry), drug producers (Pharmaceutical Industry) and 
intellectual property experts should be aligned to focus on modify-
ing patent law to more clearly reflect the new reality that most in-
novation in these areas is a result of input from many partners 
[155]. We need to move away from the "prisoners dilemma" ap-
proach to invention and recognize that cooperation and sharing 
benefits the group as a whole. 
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Abstract

Background: The targeting of disease-related proteins is important for drug discovery, and yet target-based
discovery has not been fruitful. Contextualizing overall biological processes is critical to formulating successful drug-
disease hypotheses. Network pharmacology helps to overcome target-based bottlenecks through systems biology
analytics, such as protein-protein interaction (PPI) networks and pathway regulation.

Results: We present a systems polypharmacology platform entitled DrugGenEx-Net (DGE-NET). DGE-NET predicts
empirical drug-target (DT) interactions, integrates interaction pairs into a multi-tiered network analysis, and
ultimately predicts disease-specific drug polypharmacology through systems-based gene expression analysis.
Incorporation of established biological network annotations for protein target-disease, −signaling pathway,
−molecular function, and protein-protein interactions enhances predicted DT effects on disease pathophysiology.
Over 50 drug-disease and 100 drug-pathway predictions are validated. For example, the predicted systems
pharmacology of the cholesterol-lowering agent ezetimibe corroborates its potential carcinogenicity.
When disease-specific gene expression analysis is integrated, DGE-NET prioritizes known therapeutics/experimental
drugs as well as their contra-indications. Proof-of-concept is established for immune-related rheumatoid arthritis
and inflammatory bowel disease, as well as neuro-degenerative Alzheimer’s and Parkinson’s diseases.

Conclusions: DGE-NET is a novel computational method that predicting drug therapeutic and counter-therapeutic
indications by uniquely integrating systems pharmacology with gene expression analysis. DGE-NET correctly
predicts various drug-disease indications by linking the biological activity of drugs and diseases at multiple tiers of
biological action, and is therefore a useful approach to identifying drug candidates for re-purposing.

Keywords: DrugGenEx-NET, TMFS, Polypharmacology, Gene expression analysis, Rheumatoid arthritis, Inflammatory
bowel disease, Parkinson’s disease, Alzheimer’s disease

Background
Modern drug discovery endeavors are only rarely trans-
lated into acceptable clinical success rates [1]. Pre-
clinical drug discovery initiatives have been gene-centric
with a focus on finding drugs for targets of interest with
high binding affinity and selectivity [2]. It is increasingly

accepted, however, that disease states exhibit biological
complexity, and that the gene-centric view neglects
physiologic context by isolating the target in an artificial
environment [3]. Furthermore, drugs arising from de
novo design are likely to have many unknown targets
given the limited scope of biochemical assays, thus lead-
ing to both clinical toxicity and unanticipated novel dis-
ease indications [4]. Systems pharmacology, the
integration of systems biology with network pharmacol-
ogy, is a mechanism-centric solution that considers the
global physiological environment of disease states and
allows for the discovery of drugs or combinations of
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drugs that may simultaneously target multiple nodes of
the disease-associated network [5]. Initiatives utilizing
network analysis have led to successful drug discovery
efforts [6–11].
As most FDA-approved drugs are considered safe and

simultaneously exhibit multi-target effects, drug repurpos-
ing is an optimal strategy for harnessing the strength of
polypharmacology [12]. Current methods do not utilize
high-throughput approaches to empirically determine
drug-target associations and subsequently contextualize
them using systems biology. Here, we have created a novel
computational systems pharmacology platform, entitled
DGE-NET, that: (1) accurately predicts drug-protein target
interactions, (2) assesses drug effects through systems ana-
lysis of cumulative predicted targets for each drug, and (3)
formulates drug-disease associations through gene expres-
sion analysis and polypharmacology.
DGE-NET was first applied to a set of 3,671 FDA ap-

proved and experimental drugs across 2,335 human protein
target crystal structures for potential drug repurposing.
Drugs were then associated with biological effects, which
include molecular functions, signaling pathways, protein-
protein interactions (PPIs) and diseases, through associ-
ation with their predicted targets. Drug-biological effect
predictions were validated at multiple tiers using findings
in the literature and experimentally determined associations
from annotated databases. Over 50 drug-disease and 100
drug-pathway associations were validated. DGE-NET also
provided further evidence for unexpected toxicities, such as
the potential carcinogenic properties of the cholesterol ab-
sorption blocker ezetimibe. Drug-target and drug-biological
effect signatures were also statistically associated with clin-
ical disease-relevant protein targets, PPIs, pathways, and
functions obtained from differential gene expression ana-
lysis. DGE-NET incorporated a novel drug prioritization
scheme that ranks drugs matched to a disease based on its
polypharmacology at each tier of biological action.
For proof-of-concept, DGE-NET was applied to

human-derived gene expression datasets obtained for
rheumatoid arthritis (RA), inflammatory bowel disease
(IBD), Alzheimer’s disease (AD), and Parkinson’s disease
(PD). DGE-NET was validated by prioritizing approved
drugs and biologics as well as those currently being ex-
amined repurposing, and also revealed drugs contra-
indicated in those conditions, such as tetracyclines in
IBD. DGE-NET is first computational platform we know
of that predicts novel protein binding signatures of
FDA-approved drugs and subsequently matches drug ac-
tion at multiple levels of biological activity to gene
expression-based characterization of disease perturb-
ation. It stands as an effort to address the pressing need
for models that account for the complexity of multi-
tiered interactions for better simulations of disease states
and predictive therapeutics. In summary, DGE-NET is a

novel computational method for gene expression- and
systems polypharmacology-driven drug repurposing.

Methods
Collection of FDA-approved drugs, experimental mole-
cules, and protein target curation
Spatial Data Files (SDF) of drugs and experimental mol-
ecules containing spatial atom connectivity information
were obtained from DrugBank [13], the NCGC Pharma-
ceutical Collection [14], FDA (www.FDA.gov), and Bin-
dingDB [15]. Energy-minimized 3D structures were
prepared using Schrodinger’s LigPrep [16] algorithm at
pH 7.0. Human protein crystal structures were obtained
from RCSB (www.rcsb.org). Only X-ray structures with
<2.5 angstrom resolution and a reference co-crystallized
ligand were chosen. Protein structures were further
processed to remove non-biologically relevant chains
(i.e. those that do interact with the ligand), metal ions,
and all heteroatoms (i.e. non-cofactors, solvent mole-
cules). Structures were then prepared using ProteinPrep
in Schrodinger to relax the structures and optimize
hydrogen bonds at pH 7.0. After processing, the dataset
included 3,671 drugs and 2,335 protein target crystal
structures.

Predicting Drug-Target (DT) signatures
DGE-NET utilizes a modified version of our “Train,
Match, Fit and Streamline” (TMFS) method [17] for
generating reliable binding signature predictions. Briefly,
TMFS is a proteochemometric method that predicts the
binding potential of a protein-ligand complex by inte-
grating docking, three-dimensional shape, and ligand
physicochemical descriptors (Fig. 1). GLIDE [18] was
used to dock molecules into protein pockets identified
by the reference ligand, and QikProp [19] was used to
generate the following ligand-specific physicochemical
descriptors: (1) solvent-accessible surface area, (2) vol-
ume, (3) dipole, (4) # H-bond acceptors, (5) # H-bond
donors, (6) globularity, (7) ionization potential, and (8)
electron affinity. Strike [20] was used to generate Tani-
moto similarity coefficients to quantify the similarity of
ligand physicochemical descriptors to that of the bio-
active reference molecules found in the protein complex
crystal structures. Ligand and pocket 3D shapes were
quantified using a spherical harmonics expansion ap-
proach [21] and ligand-reference molecule/ligand-pro-
tein pocket shape similarities were quantified using a
Euclidean distance metric. After docking scores, shape
similarity, Euclidian distance scores, and ligand-based
descriptor similarity scores were derived by the tools de-
scribed above, a common scheme was used to normalize
these scores, wherein each is transformed into a 0–1
range, 1 being the most favorable score present. These
metrics were combined into a comprehensive Z-score
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that was used to rank ligands such that the top-ranking
molecules are considered most likely to bind. The Z-
score for a unique ligand (l) –protein (p) co-crystallized
with reference ligand r is as follows:

Z l; r; pð Þ ¼ wkY l; pð Þ
þ

XM
m¼1

wmf m l; pð Þ þ w
0
mf

0
m l; rð Þ

h i

þ
XN
n¼1

Xn l; rð Þ þ CS OLICð Þ½ � ð1Þ

Y is the normalized docking score with weight wk = 4.
The first summation term is the normalized shape simi-
larity score for ligand-to-protein pocket fm(l, p) and lig-
and-to-reference f'm(l, r) with weights wm = 1 and w'

m = 2,
and the second summation term corresponds to the
sum of the Tanimoto similarity coefficients between the
ligand and reference for physicochemical descriptors.
Aforementioned weights for docking, protein shape

similarity, and ligand shape similarity, respectively, were
found to maximize the accuracy of TMFS in predicting
top protein targets from publically available experimen-
tal data. Lastly, CS(OLIC) is a correction term based on
the similarity of contact points created between the lig-
and and reference to the protein target. It was assumed
that drugs have similar experimental activity if their
interaction involves similar binding site residues and
interaction patterns to that of the reference. The top
40-scoring drugs were considered as “hits” for a given
protein target for subsequent network analysis. The top
40 drugs were chosen as they represent the top 1 % of
all the drugs in our dataset, a fraction that is typically
employed in virtual screening protocols [17].

Relating drug-target predictions to diseases, pathways,
functions, and protein-protein interactions
Predicted drug-target associations were associated with
diseases, signaling pathways and molecular functions for
network analysis (Fig. 1). Protein targets were cross-
referenced using the unique PDB entry with UniProt

Fig. 1 Workflow for predicting drug-target signatures and relating network pharmacology
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[22]. Because many crystal structures may correspond to
the same protein, collapsing them using UniProt reduces
the total number of protein target nodes. A list of genes
associated with the protein were obtained from each
UniProt entry and mapped to Online Mendelian Inherit-
ance in Man (OMIM) Morbidity Map [23] gene-disease
associations, a procedure modeled after Yildirim et al.
[24]. Drugs are connected to a disease via mapping of
their target genes to their associated disease. Thus, a
drug is connected to a disease if its predicted targets
have disease genes associated with the disorder. In the
DT-disease network, all disorders associated with a pre-
dicted protein target will be associated with the drug.
Disease-associated targets were also annotated with

KEGG pathway [25, 26] and Gene Ontology (GO) mo-
lecular function [27, 28] information using the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) Functional Annotation Tool (FAT) [29, 30]. FAT
was also used to annotate pathways and functions for a
given drug via its predicted direct and indirect targets
through protein-protein interactions using FDR <0.25.
Protein-protein interactions (PPIs) were extracted from
the ExPASy STRING database [31] using a confidence
score cutoff of 0.95. Any PPI pairs where one of the part-
ners did not exist in our protein target dataset were ex-
cluded. A gene list comprised of a drug’s predict direct
targets as well as those targets’ interacting partners was
subjected to DAVID annotation. For example, if Drug A
was predicted to interact with Target A and Target B, and
Target A also interacted with Protein C while Target B
interacted with Protein D and Protein E, then the gene
list for Drug A would consist of the following: Target A,
Target B, Protein C, Protein D, and Protein E.

Annotating disease and pathway categories
The disease categories from Medical Subject Headings
(MeSH) were used for annotation of disease names cor-
responding to OMIM disorder entries. Approximately
93 % of the diseases were mapped to a disease category.
The Comparative Toxicogenomics Database (CTD) [32]
was used to map 75 % of the diseases; the remaining dis-
eases were manually curated, with 71 % of these provid-
ing a partial or close match. Diseases that mapped to
multiple disease categories were manually evaluated to
determine a primary disease category. This was done by
determining what the primary clinically treated category
is for a disease. For example, the disease systemic lupus
erythematosus is primarily an autoimmune disorder but
can be considered as “skin and connective tissue” if the
disease process involves the facial malar rash. Diseases
in which a primary category could not be determined
were categorized as multiple. Pathways were manually
organized into categories based on metabolic/cellular
processes and diseases as annotated by KEGG.

Incorporation of disease gene expression data with
systems pharmacology
A schematic of DGE-NET is illustrated in Fig. 2. Differen-
tial gene expression analysis on Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) microarray data was
performed for RA (GSE55235 and GSE55457), IBD
(GSE52746 and GSE11223), AD (GSE29378), and PD
(GSE7621). Differentially expressed genes between normal
and diseased patient biopsies with adjusted P values < 0.05
(using GEO2R [33]) were obtained. GEO2R is a R-based
publicly accessible web tool for analyzing GEO-deposited
gene expression data (http://www.ncbi.nlm.nih.gov/geo/

Fig. 2 Schematic of DGE-NET used to associate drugs with diseases. Differential gene expression analysis of diseased versus non-diseased states is
used to establish a disease-related gene set. DAVID and STRING analysis of this gene set provides disease-related pathways, functions,
and protein-protein-interactions
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geo2r/). The differential gene list was subjected to
functional systems biology annotation as noted above.
For disease sets, multiple testing correction yielded
few genes having significantly differential expression.
Nominal P-values < 0.05 were therefore used to allow
for robust overrepresentation analyses. For the IBD
set (normal colonic tissue control versus active IBD
without anti-TNF therapy), the top 1,500 up-regulated
and top 1,500 down-regulated genes were taken to
create a list of 3,000 genes – the maximum number
that DAVID accepts. All other datasets resulted in
differential gene lists of fewer than 3,000 genes.
Using drug-target signatures from TMFS and the DGIdb

[34], a comprehensive resource of experimentally deter-
mined drug-target associations curated from multiple large
publically available databases, drugs were associated with
diseases using the hypergeometric test (Fig. 3a) in R [35] at
each of the following biological levels: direct protein tar-
gets, cell signaling pathways, molecular functions and PPIs.
Drugs with P < 0.05 had their P-values log-transformed
and normalized to the value of the most significantly-
associated drug, resulting in values on the 0–1 unit range
as illustrated in Fig. 3b. All non-significant P-values were
automatically normalized to a value of 0. Normalization
minimizes discrepancies found in the P-value ranges be-
tween different biological effect categories.
For each drug i, normalized values corresponding to

each biological effect tier were used to calculate a drug-
disease association Z-score used for ranking:

Zi ¼ aAþ bBþ cC þ dD ð2Þ

where A, B, C, and D correspond to the normalized values
for drug-direct target, −pathway, −function, and –PPI as-
sociations, respectively. In illustrative Fig. 3c, A, B, C, and
D correspond to zgene, zpathway, zfunction, and zPPI, re-
spectively. Associated weights a, b, c, and d were set to the
values of 2, 1, 0.5, and 0.25, respectively, as to prioritize
direct binding of disease-regulated gene products with
each subsequent level of activity receiving lower weights
(Fig. 3c). This configuration was determined to best
prioritize experimentally validated drugs for the given in-
dication, and allowed for drugs highly associated with dis-
ease mechanisms at pathway, function, and indirect
proteins levels to be recognized as candidates even when
gene-level significance of association was poor. PPIs were
given the least weight as many interactions tend to occur
simultaneously within the diseased cell and prioritizing
relevant interactions is difficult due to the simultaneous
expression of thousands of proteins. Drugs are ranked in
descending order by Z-score (Fig. 3d). High Z-scores indi-
cate a drug’s potential to most significantly and simultan-
eously target the greatest amount of direct proteins,
pathways, functions and PPIs associated with the disease.

Fig. 3 Hypergeometric test schematic for drug-disease association at
each level of biological activity. Each drug is associated with a given
disease at each level of biological action by the hypergeometric test.
a Given a gene, pathway, function, or indirect protein ‘universe’, the
hypergeometric test allows one to determine the probability that
coincident drawings between two samples drawn from that universe
is due to random chance. Therefore, the statistical significance of
having hits (common items) between drug-associated biological
factors and disease-associated factors is derived. b Computation of
hypergeometric p-values and subsequent normalization for
integration into cumulative score. c Computation of drug-disease
association Z-score. d Ranking scheme by drug-disease association
Z-score in descending order. That is, Zi exhibits the highest system-
wide statistical association (highest-magnitude Z-score), followed by
Zi + 1, Zi + 2, Zi + 3, and so forth
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Fig. 4 Formation of drug-target (DT) disease networks. A random sample of drugs with predicted protein targets known to be associated with a
disease in OMIM were selected to illustrate the process of associating drugs with diseases. a Drugs (orange circle nodes) are connected using a
charcoal dashed edge to predicted protein targets (square nodes); the protein targets are connected using a solid tan edge to a disease if the
protein has disease genes associated with the disease. Pink nodes represent proteins associated with multiple diseases, while green nodes
represent proteins associated with a single. These interactions were used to form a drug-target disease network. b The drugs (orange circle
nodes) are connected to a disease if a predicted drug-target has disease genes associated with the disease

Fig. 5 Predicted drug-target (DT) disease network. The DT disease bipartite network is generated using the top 1-ranked DT predictions and
disorder-disease gene associations from OMIM. Drug nodes (circles) are connected to disease nodes (squares) if a drug is predicted to target a
protein that has disease genes associated with the disease. Disease nodes are colored according to their MeSH disease category; color
classification given in legend. The size of node is proportional to the number of degrees (connections)
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Thus, drugs with the highest Z-scores are prioritized for
repurposing due to their systems-wide effects.

Results & discussions
Prediction of empirical drug-disease associations
DGE-NET predicted drug associations to diseases with
known etiologies by way of direct gene aberrations, as
annotated in OMIM (Fig. 4). The DT-disease network
contains 562 drugs (only those appearing as the top 1-
ranked for their respective protein target) and 296 dis-
eases, with the largest component containing 498 drugs
(Fig. 5; Additional file 1: Table S1). The neoplasm and
“nutritional and metabolic” disease classes are found
centrally, reflecting the large number of drugs already
approved for them and a notable potential for repurposing.

Given their topology in the network, associated drugs have
potential polypharmacology to other disease classes. More
specialized diseases tend to occupy peripheral areas of the
DT-disease network, exhibiting a smaller degree of node
connectivity and suggesting increasingly unique pathogenic
factors. Such diseases include digestive, urogenital, “hemic
and lymphatic”, and respiratory disorders. By contrast, the
DT-cancer network exhibits high connectivity, with the
average degree of drug nodes being 1.7 and 57 of 159 hav-
ing a degree higher than 1 (Fig. 6). 26 drugs are predicted
to target colorectal cancer, several of which are also pre-
dicted to target breast cancer. This is reflected in clinical
practice, where several drugs are utilized across multiple
cancers. The biologically sensible topology of the network
provides further validation: biologically-related cancers are

Fig. 6 Predicted drug-cancer network from top-scoring DT interactions
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clustered together through their predicted drugs. For in-
stance, the bottom right cluster contains the endocrine
gland tumors medullary thyroid carcinoma, multiple endo-
crine neoplasia (MEN), and pheochromocytoma, whereas
the unique endothelial-originating hemangioma is found
isolated in the top right.
Drug-disease predictions were validated via data found

in the primary literature (Additional file 2: Table S2).
Out of 526 predicted drug-disease associations, 51 were
validated. Full coverage is not attainable, as many drug-
disease associations have not yet been examined. Nonethe-
less, some predicted drug-disease combinations have been
well studied, such as lisinopril for diabetes-associated
microvascular complications [36]. Other associations in-
clude the anti-hookworm mebendazole for hepatocellular
carcinoma and the antibiotic ceftriaxone for bladder
cancer. Thus, for diseases with strong single-gene known
associations, DGE-NET is able to reliably predict clinically
relevant drug-disease associations by forming accurate
drug-target associations. These data collectively demon-
strate the ability of DGE-NET to establish known and
novel drug-disease associations.

Expansion of the drug-target prediction space to systems
pharmacology
Many diseases exhibit complexity in implicating multiple
perturbations rather than single deciding gene associations,

and this necessitates a complex systems pharmacology per-
spective for clinical treatment. Drugs were therefore associ-
ated with pathways using KEGG annotations of their
predicted targets. Mazindol (DB00368) and sulfadiazine
(DB00359) had the least number of predicted pathways
(Fig. 7). Mazindol is a tricyclic anorexigenic known to affect
the noradrenergic, dopaminergic and serotonergic path-
ways (KEGG Drug D00367). Sulfadiazine is a sulfonamide
used to treat bacterial infections by specifically inhibiting
the folate biosynthesis pathway (KEGG Drug D00587).
DGE-NET was able to recapitulate their specificity for
those pathways. Alternatively, kinase inhibitors and nu-
cleoside analogs such as nelarabine (DB01280) disrupt
multiple pathways (Fig. 7). The KEGG Drug corpus was
also used to validate 103 drug-pathway associations
across 59 drugs (Table 1). Thus, DGE-NET is able to
reliably associate drugs with biological pathways im-
portant in disease processes.
DGE-NET also related predicted DT signatures to mo-

lecular functions (Fig. 7). Deferasirox, an iron chelator,
was predicted to affect the greatest number of molecular
functions. According to the Institute for Safe Practices,
deferasirox was the second most suspected drug in re-
ported patient deaths [37]. This may be due to its poten-
tial to disrupt many molecular functions as predicted by
DGE-NET. Anti-neoplastic drugs were also predicted to
alter a large number of functions (Fig. 8). This reflects

Fig. 7 Waterfall plot for the predicted number of KEGG pathways affected by each drug
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their polypharmacology as a class of drugs, as they are
designed to affect cell signaling and growth through
multiple mechanisms. As a result, these drugs also ex-
hibit high toxicity. Such analysis of molecular function
can have the advantage of identifying broad- or
specific-acting drugs for enriched clinical efficacy or
minimized toxicity.
The incorporation of protein-protein interactions

(PPIs) further increased the robustness of DGE-NET,

Table 1 Validations of predicted drug-pathway associations via
the KEGG Drug database

Drug KEGG
Drug ID

KEGG Pathway

Acetohexamide D00219 Type II diabetes mellitus

Aripiprazole D01164 Gap junction

Bezafibrate D01366 Adipocytokine signaling pathway

Bicalutamide D00961 Pathways in cancer, Prostate cancer

Candesartan D00626 Vascular smooth muscle contraction

Carvedilol D00255 Vascular smooth muscle contraction

Celecoxib D00567 VEGF signaling pathway

Cilostazol D01896 Insulin signaling pathway

Clozapine D00283 Gap junction

Conivaptan D01236 Vascular smooth muscle contraction

Danazol D00289 Oocyet meiosis, Progesterone-mediated
oocyte maturation, Pathways in cancer

Dasatinib D03658 MAPK signaling pathway, ErbB signaling
pathway, Cytokine-cytokine receptor
interaction, VEGF signaling pathway,
Pathways in cancer, Chronic myeloid
leukemia

Diflunisal D00130 VEGF signaling pathway

Domperidone D01745 Gap junction

Droperidol D00308 Gap junction

Drospirenone D03917 Aldosterone-regulated sodium transport

Dydrogesterone D01217 Oocyte meiosis, Progesterone-mediated
oocyte meiosis

Eltrombopag D03978 Cytokine-cytokine receptor interaction,
Jak-STAT signaling pathway

Epoprostenol D00106 Vascular smooth muscle contraction

Eprosartan D04040 Vascular smooth muscle contraction

Erlotinib D07907 MAPK signaling pathway, ErbB signaling
pathway, Cytokine-cytokine receptor
interaction, Pathways in cancer, Pancreatic
cancer, Non-small cell lung cancer

Fenofibrate D00565 Adipocytokine signaling pathway

Floxuridine D04197 Pyrimidine metabolism

Flupenthixol D01044 Gap

Flurbiprofen D00330 VEGF signaling pathway

Flutamide D00586 Pathways in cancer, Prostate cancer

Gemcitabine D02368 Purine metabolism, Pyrimidine metabolism

Gliclazide D01599 Type II diabetes mellitus

Glipizide D00335 Type II diabetes mellitus

Haloperidol D00136 Gap junction

Imatinib D01441 MAPK signaling pathway, Cytokine-cytokine
receptor interaction, Hematopoietic cell
lineage, Pathways in cancer, Chronic
myeloid leukemia

Indacaterol D09318 Endocytosis

Indomethacin D00141 VEGF signaling pathway

Ketoprofen D00132 VEGF signaling pathway

Table 1 Validations of predicted drug-pathway associations via
the KEGG Drug database (Continued)

Lapatinib D04024 MAPK signaling pathway, ErbB signaling
pathway, Cytokine-cytokine receptor
pathway, Pathways in cancer

Levonorgestrel D00950 Oocyte meiosis, Progesterone-mediated
oocyte maturation

Losartan D08146 Vascular smooth muscle contraction

Methysergide D02357 Gap junction

Milrinone D00417 Progesterone-mediated oocyte maturation

Mitiglinide D01854 Type II diabetes mellitus

Naproxen D00118 VEGF signaling pathway

Nilutamide D00965 Pathways in cancer, Prostate cancer

Norethindrone D00182 Oocyte meiosis, Progesterone-mediated
oocyte maturation

Olmesartan D01204 Vascular smooth muscle contraction

Oxaprozin D00463 VEGF signaling pathway

Piroxicam D00127 VEGF signaling pathway

Progesterone D00066 Oocyte meiosis, Progesterone-mediated
oocyte maturation

Propericiazine D01485 Gap junction

Regadenoson D05711 Vascular smooth muscle contraction

Risperidone D00426 Vascular smooth muscle contraction, Gap
junction

Salsalate D00428 VEGF signaling pathway

Silodosin D01965 Vascular smooth muscle contraction

Sorafenib D08524 MAPK signaling pathway, ErbB signaling
pathway, Cytokine-cytokine receptor
interaction, Chemokine signaling pathway,
mTOR signaling pathway, VEGF signaling
pathway, Natural killer cell mediated
cytotoxicity, Pathways in cancer, Renal cell
carcinoma

Sulindac D00120 VEGF signaling pathway

Sunitinib D06402 MAPK signaling pathway, Cytokine-cytokine
receptor interaction, VEGF signaling
pathway, Pathways in cancer

Telmisartan D00627 Vascular smooth muscle contraction

Testosterone D00075 Pathways in cancer, Prostate cancer

Vandetanib D06407 MAPK signaling pathway, ErbB signaling
pathway, Cytokine-cytokine receptor
interaction, VEGF signaling pathway,
Pathways in cancer
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providing insight into unexpected biological similarities
among drugs. For example, fluoxymesterone (DB01185)
and amscarine (DB00276) are chemically and structurally
unrelated. However, our method predicted that they
would bind androgen receptor and B-Raf, respectively,
both of which interact with MAPK1. It is through the
PPI with MAPK1 that these drugs link to pathways in
cancer (KEGG hsa:05200). Other drug-PPI validations
are listed in Table 2 [38–48]. To highlight the import-
ance of PPIs in attaining a mechanistic understanding
of drug effects, we specifically assessed the predicted
effects of ezetimibe (Fig. 9; Additional file 3: Table S3).
Ezetimibe (DB00983) is a cholesterol-lowering drug

used for improving cardiovascular health and has also
been associated with increased incidence of cancer
[49, 50]. PPIs derived from predicted targets for ezetimibe
are highly clustered, indicating that the affected biological
space is tightly coordinated through those targets and
greatly perturbed by the actions of ezetimibe (Fig. 9).
These clustered interacting targets are mainly involved in
cell growth, differentiation and signal transduction. Func-
tional annotation using both direct and indirect ezetimibe
targets implicates pathways and functions involved in car-
cinogenesis (Additional file 3: Table S3). Thus, the present
DGE-NET prediction of ezetimibe’s pro-tumorigenic ef-
fects warrants further investigation.

Fig. 8 Waterfall plot for the predicted number of GO molecular functions affected by each drug. Inset highlights four anti-neoplastic drugs
predicted to disrupt the greatest number of functions from the anti-neoplastic drug class

Table 2 Validations of predicted drug-PPI interactions

Drug Name Protein #1 (direct binding partner) Protein #2 (PPI) Reference

Bicalutamide ABL1 CASP9 Danquah et al. Pharm Res. 26(9):2081–92. (2009) [38]

ABL1 CCNA2 Katayama et al. Int J Oncol. 36(3):553–62. (2010) [39]

ABL1 MAPK11 Malinowska et al. Endocr Relat Cancer. 16:155–169. (2009) [40]

Cladribine ADA DCK Sasvári-Székely et al. Biochem Pharmacol. 56(9):1175–1179. (1998) [41]

Chlordiazepoxide AKT1 NR3C1 Curtin et al. Brain Behav, Immun. 23(4): 535–547. (2009) [42]

Progeterone AR F2 Oger et al. Arterioscler Thromb Vasc Biol. 23:1671–1676. (2003) [43]

Cyproterone AR CASP3 Eckle et al. Toxicol Pathol. 32:9–15. (2004) [44]

AR NR3C1 Honer et al. Mol Pharmacol. 63(5):1012–1020. (2003) [45]

Telmisasrtan BCL2 IL2 Syrbe et al. Hypertens Res. 30(6):521–527. (2007) [46]

Sorafenib BRAF PRKCQ Jane et al. J Pharmacol Exp Ther. 319(3):1070–1080. (2006) [47]

Methotrexate DHFR CDK2 Maddika et al. J Cell Sci. 121:979–988. (2008) [48]
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Incorporation of autoimmune disease-related gene
expression data for polypharmacology-driven drug
repurposing
Autoimmune diseases are systemic or local pro-
inflammatory pathologies with multiple etiologies. Current
therapeutics such as corticosteroids, methotrexate and
anti-TNF biologics focus on regulating inflammation, and
immunosuppression. In addition to acting non-specifically
these medications do not address the full extent of effector
tissue pathobiology. A treatment approach rooted in poly-
pharmacology may be more efficacious and offers the po-
tential for limiting side effects. For proof-of-concept, we
apply DGE-NET as a gene expression-based polypharma-
cology prediction method (Fig. 2) for rheumatoid arthritis
and inflammatory bowel disease.
Rheumatoid arthritis (RA) is a painful multi-joint de-

structive disease. Joint synovium, usually 1–2 cells thick,
becomes inflamed and reaches multicellular thickness
due to infiltration of immune effector cells and activation

and subsequent proliferation of fibroblast-like synovio-
cytes (FLS). Cellular molecular cross-talk, infiltration and
proliferation lead to pannus formation, which acts analo-
gously to an invasive tumor and causes joint destruction.
As FLS cells are critical mediators of RA, we applied our
method using differentially expressed genes when compar-
ing activated FLS cells from RA patients and quiescent
FLS cells from non-RA patients (GSE55235 and
GSE55457). A consensus drug list was constructed by
combining the top 100 (~ Top 10 % of total drug data-
base) predicted drugs for each study and extracting those
that are present in one or both lists, ranked by mean asso-
ciation Z-score (Additional file 4: Table S4). Shown in
Table 3 are those drugs from the consensus drug list that
are currently used for RA, or have been found to be po-
tentially useful in the clinic [51–54, 97–103]. Drugs cur-
rently used in the clinic were recapitulated in our list,
such as anti-TNF biologics adalimumab and etaner-
cept, as well as the NSAID sulindac. Non-approved

Fig. 9 Ezetimibe protein-protein interaction (PPI) network. Direct targets (green nodes) predicted for ezetimibe from TMFS were used to establish
interactions between direct targets as well as indirect targets (light purple nodes) using the ExPASy STRING database with a confidence score
cutoff greater than 0.95
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drugs currently being studied for RA also appeared.
These include kinase inhibitors such as alvocidib [51]
and sunitinib [52], the topoisomerase inhibitor kareni-
tecin [53], and the chloroquine-related compound
amodiaquine [54]. Predicted RA indication for these
drugs, which are generally anti-cancer agents, illus-
trates an important mechanistic underpinning of RA
with respect to FLS cells in that activated FLS mimic
cancer cell progression [55]. Regardless of the activat-
ing stimulus (e.g. TNF-α), our polypharmacological
method focuses on downstream gene expression, sig-
naling, and functional effects in activated FLS cells.
This highlights the cancer-like mechanisms of patho-
genesis and prioritizes those drugs that are able to
simultaneously disrupt the greatest number of those
mechanisms. In addition, because antibodies have
single-target effects, we were surprised by their pre-
dicted indications for RA. However, if that target has
many pathology-related pleiotropic downstream ef-
fects, such as TNF-α, then such drugs would be pri-
oritized due to the pathway and function terms in
our equation. Thus, DGE-NET is capable of making
important polypharmacological associations beyond
immediate gene targets.
DGE-NET also predicted drugs for inflammatory

bowel disease (IBD), also a multi-etiological immune-
related collection of disorders. Differential gene expres-
sion analysis was performed by, comparing normal and
inflamed bowel tissues (GSE52746 and GSE11223). Like

the RA dataset, a consensus list of the Top 100
drugs obtained from each IBD study was constructed
(Additional file 5: Table S5), and therapeutic valida-
tions from this list are recapitulated in Table 3 [56–60,
104–110]. Our method predicted the known IBD drug
sulfasalazine, serving as an important litmus. Other pre-
dicted drugs that are promising in experimental settings
and from diverse chemical classes include the anti-
psychotic thioproperazine [56], the anti-diabetic thiazlidi-
nedione rosiglitazone [57], the leukotriene receptor antag-
onist tetomilast [58], and thalidomide [59]. Interestingly,
DGE-NET predicted the angiotensin receptor blocker
(ARB) irbesartan as potential therapy. A recent prelimin-
ary study implicates the role of angiotensin receptors in
intestinal fibrosis in Crohn’s disease [60], a type of IBD,
but greater investigation is needed.
In addition to recapitulating known drug associations,

we predicted the drugs topotecan and mebendazole for
repurposing to rheumatoid arthritis. Topotecan is a
DNA topoisomerase 1 (Top1) inhibitor used for NSCLC
cancer and has been given both orally and intravenously.
Topoisomerases have been implicated in rheumatoid
arthritis etiology [61], and the established Top1 inhibitor
camptothecin (CPT) has been shown to be effective in a
murine collagen-induced RA model [62]. Koo et al. de-
veloped a novel nanocarrier for CPT called CPT-SSM-
VIP, which denotes micelles to overcome solubility is-
sues and vasoactive intestinal peptide (VIP) for active
targeting. As CPT provides evidence for Top1 inhibition

Table 3 Validations of predicted drug indications for RA and IBD from consensus drug lists, ordered by drug list ranking

Rheumatoid Arthritis (RA) Reference for Validation Inflammatory Bowel
Disease (IBD)

Reference for Validation

Alvocidib Sekine et al. J Immunol. 180(3):1954–1961
(2008) [51]

Sulfasalazine Klotz et al. N Engl J Med. 303(26):1499–1502
(1980) [105]

Karenitecin Liu et al. Med Res Rev. 35(4):753-89 (2015) [53] Olsalazine Baumgart et al. Lancet. 369(9573):1641–1657
(2007) [106]

Sulindac Brogden et al. Drugs. 16(2):97–114 (1978) [97] Tetomilast Keshavarzian et al. Expert Opin Investig Drugs.
16(9):1489–1506 (2007) [107]

Sunitinib Fuyura et al. Mod Rheumatol. 24(3):487–491
(2013) [52]

Inosine Mabley et al. Am J Physiol Gastrointest Liver
Physiol. 284(1):G138-G144 (2003) [108]

INCB28050 Taylor et al. Ann Rheum Dis. 73:A31
(2014) [99]

Thioproperazine Lechin et al. J Clin Gastroenterol. 4(5):445–450
(1982) [56]

Amodiaquine Kersley et al. Lancet. 2(7108):886–888
(1959) [54]

Etoricoxib El Miedany et al. Am J Gastroenterol.
101(2):311–317 (2006) [109]

Raltitrexed van der Heijden et al. Scand J Rheumatol.
43(1):9–16 (2014) [100]

Balsalazide Carter et al. Gut. 53(Suppl 5):V1-V16 (2004) [110]

BIRB 796 Page et al. Arthritis Rheum. 62(11):3221–3231
(2010) [101]

Thalidomide Gerich et al. Ailment Pharmacol Ther.
41(5):429–437 (2015) [59]

Adalimumab Weinblatt et al. Arthritis Rheum. 48(1):35–45
(2003) [102]

Rosiglitazone Ramakers et al. J Clin Immunol. 27(3):275–283
(2007) [57]

Etanercept Moreland et al. Ann Intern Med. 130(6):478–486
(1999) [103]

Irbesartan Ray et al. Gut. 62(S1):A525-A525 (2013) [60]

Minocycline O’Dell et al. Arthritis Rheum. 40(5):842–848
(1997) [104]

Chloroquine Nagar et al. Int Immunopharmacol. 21(2):328–335
(2014) [111]
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in RA, we also pursued topotecan. Although it can be
inferred that topotecan could be an effective anti-
arthritic via topoisomerase, many other unreported tar-
gets were predicted for topotecan that could mediate po-
tential efficacy. These include multiple tyrosine-protein
kinases (BTK, CSK, LCK, TTK, ITK, LYN), non-tyrosine
kinases (AURK1, PIK3CG), as well as cyclin A2. Meben-
dazole is an anti-hookworm tubulin inhibitor with anti-
cancer potential through mammalian crossover tubulin
[63] and kinase inhibition [64]. We previously predicted
many novel protein kinase targets for mebendazole [17].
Kinase inhibition is a sought after therapeutic strategy
for rheumatoid arthritis, especially as non-biologic treat-
ment alternatives and for methotrexate-resistant cases
[65–67]. Inhibitors of spleen tyrosine kinase (Syk) and
Janus kinases (Jaks) have shown short-term efficacy, but
other kinases inhibitors with good long-term effect pro-
files may also exist. Other kinases implicated in RA
pathogenesis include aurora kinases [68] and cyclin-
dependent kinases (CDKs) [69]. Mebendazole may serve
as a good non-biologic disease-modifying antirheumatic
drug (DMARD) given its historic use, low toxicity pro-
file, and its effect on multiple kinases.
In another proof-of-concept, we applied DGE-NET to

two neurodegenerative disorders, Alzheimer’s disease
(AD) and Parkinson’s disease (PD). Table 4 summarizes

those drugs predicted to be in the top 50 for AD and PD
by DGE-NET that are currently validated for standard
or potential therapeutic use [70–86]. The complete top
50 predicted drugs for these diseases and their valida-
tions are found in Additional file 6: Table S6. Others
listed are currently undergoing pre-clinical or clinical in-
vestigation. Of note is that memantine, an approved
drug for AD, appears beyond the top 50 but within the
top 500. This drug exhibits less polypharmacology but is
still effective given the importance of its direct targets
and pathways for AD disease processes (i.e. NMDA re-
ceptor antagonism reducing glutamate excitotoxicity of
neurons [87]). Thus, it can be hypothesized thatdrugs
found higher up in the rank list may be more effective
than the current clinical standards of care as those drugs
theoretically alter a greater proportion of disease-associated
protein targets and biological effects simultaneously.
Sunitinib has been identified as a lead candidate having

the potential to mitigate the development of oxidant in-
jury to endothelial cells associated with AD [79]. Sunitinib
could affect the vascular activation mechanisms of patho-
genesis in AD by reducing the expression of amyloid beta,
thrombin, tumor necrosis factor alpha, interleukin-1
beta, interleukin-6, and matrix metalloproteinase 9, and
other factors associated with neurodegenerative disorders
[79, 88, 89]. This anti-angiogenic property has been

Table 4 Validations of top 50 predicted drug indications for AD and PD, ordered by ranking

Alzheimer’s Disease (AD) Reference for Validation Parkinson’s Disease (PD) Reference for Validation

Rasagiline Weinreb et al. Neurotherapeutics.
(6)1:163–74. (2009) [70]

Dextroamphetamine Parkes et al. J Neurol Neurosurg Psychiatry.
38(3):232–7 (1975) [83]

Interferons Grimaldi et al. J Neuroinflammation.
11:30 (2014) [71]

Orphenadrine Bersani et al. Clin Neuropharmacol.
13(6):500–6 (1990) [84]

Calcium Woods et al. Adv Exp Med Biol.
740:1193–217 (2012) [72]

Quinacrine Tariq et al. Brain Res Bull. 54(1):77–82
(2001) [85]

Dovitinib Li et al. Medical Hypotheses.
(80)4:341–44. (2013) [73]

Atomoxetine Weintraub et al. Neurology. 75(5):448–55
(2010) [86]

Somatropin Recombinant Ling et al. Growth Horm IGF Res.
(17)4:336–41 (2007) [74]

Aripiprazole De Deyn et al. Expert Opin. Pharmacother.
(14)4:459–74 (2013) [75]

Clozapine Tariot et al. Clin Geriatr Med.
(17)2:359–76 (2001) [76]

Quercetin Ansari et al. J Nutr Biochem.
20(4):269–75 (2009) [77]

Flavopiridol Pallàs et al. Med Hypotheses.
64(1):120–3 (2005) [78]

Sunitinib Grammas et al. J Alzheimers Dis.
40(3):619–30 (2014) [79]

Risperidone Katz et al. Int J Geriatr Psychiatry.
(60)2:107–15 (2007) [80]

Genistein Valles et al. Brain Res. 1312:138–44
(2010) [81]

Dasatinib Dhawan et al. J Neuroinflammation.
9:117 (2012) [82]
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previously shown to be a major component of the anti-
cancer acitivity of sunitinib [90]. Figure 10 illustrates the
polypharmacology of sunitinib, at each level of biological
activity, predicted by DGE-NET to coincide with signifi-
cantly AD-associated factors. Single-agent or combination
therapies that exploit multiple aspects of disease process
are assumed to be efficacious, requiring lower dosages than
current therapies and reducing the likelihood of resistance.
In addition to therapeutic drug repurposing candi-

dates, DGE-NET reported drugs that are known to be
contra-indicated for their respective diseases. Minocy-
cline and tretinoin, both of which are used to treat acne,
may have IBD toxicity. Minocycline is a tetracycline
antimicrobial with a potential association with IBD
(Additional file 5: Table S5) [91]. Tretinoin is a topical
retinoid that is structurally related to isotretinoin, an oral
medication used for more severe acne. While tretinoin itself
is safe, isotretinoin has been implicated in causing IBD
(Additional file 5: Table S5) [92], though this finding is con-
troversial. It could be extrapolated that if tretinoin was
given orally and at higher doses that IBD may be a conse-
quence. Others include methysergide, a prophylactic drug
that is contra-indicated for RA and other collagen diseases
(Additional file 4: Table S4) [93], indomethacin, a non-

selective non-steroidal anti-inflammatory drug known to
exacerbate IBD (Additional file 5: Table S5) [94, 95], quetia-
pine, an atypical antipsychotic associated with increased
cognitive decline in AD (Additional file 6: Table S6) [96],
and methamphetamine, which has been linked with an in-
creased risk of PD (Additional file 6: Table S6), [97]. The
appearance of these drugs is likely due to DGE-NET not
discriminating between agonistic and antagonistic effects of
drugs but rather forming non-directional drug-target-effect
associations. Counter-therapeutic drug actions are therefore
incorporated, so long as they correspond with disease-
associated biological activity.

Conclusions
DGE-NET is able to predict drug-target interactions and
contextualize their biological effects at the levels of
protein-protein interactions, biological pathways, and
molecular functions. It further integrates gene expres-
sion signatures for identification of systems-based dis-
ease-relevant targets and prioritization of drugs that
exhibit a desired polypharmacology. DGE-NET reca-
pitulated known therapeutic and contraindicated
drugs for rheumatoid arthritis and inflammatory
bowel disease and led to the identification of mebendazole

Fig. 10 Predicted sunitinib drug action network on AD. Direct protein targets predicted by DGE-NET for sunitinib that are also significantly
AD-modulated are in large orange and blue circles. Blue circles are genes overexpressed in AD with statistical significance, while orange
circles are protein partners of those genes. Pink circles are KEGG pathways, and purple circles are GO cellular functions, enriched at p-value < .01
in the up-regulated genes of AD. The top 10 significantly enriched cellular functions and pathways are detailed in large ovals
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as drug repurposing candidate for rheumatoid arthritis. Its
ability to do so can also be extended to other small mole-
cules with the potential to act as endogenous drugs to
alter physiology, such as metabolites. We are currently
pursuing the application of DGE-NET to cancer-
associated metabolites to potentially explain the mecha-
nisms behind metabolite-disease phenotypic associations.
DGE-NET ultimately assists in the formulation of drug-
disease hypotheses poised for clinical success.
Differential gene expression analysis is one way of asses-

sing disease pathogenesis to find therapeutic targets.
DGE-NET is the first computational tool that associates
drugs with diseases through multiple tiers of systems biol-
ogy obtained via gene expression analysis. This not only
aids in finding effective drugs but helps bypass issues that
arise from traditional gene sequencing approaches such as
un-actionable mutations in single nucleotide polymor-
phisms, which is currently an important limitation in on-
cology. Importantly, DGE-NET in its current form does
not differentiate agonist or antagonist effects of drugs.
The next iteration will include this improvement so that
DGE-NET can better discriminate between therapeutic
agents and drugs that are contraindicated.

Availability of data and materials
Because DGE-NET is applied to publicly available data, the
authors have provided a tutorial which describes the step-
wise implementation of DGE-NET, in Additional file 7.

Additional files

Additional file 1: Table S1. Predicted drug-target-disease associations
using OMIM. For each human protein target crystal structure, the top
40-ranked drugs were associated with a disease through their predicted
target. (XLSX 464 kb)

Additional file 2: Table S2. Validations of predicted drug-disease
associations from the literature. (XLS 38 kb)

Additional file 3: Table S3. Predicted systems pharmacology of
ezetimibe. Targets predicted to directly associate with ezetimibe and
their interacting protein partners (confidence score cutoff greater than
0.95) were used to infer pathways and molecular functions (FDR < 0.25)
that could be perturbed by ezetimibe. (XLS 42 kb)

Additional file 4: Table S4. Consensus drug rank list for Rheumatoid
Arthritis. (XLS 47 kb)

Additional file 5: Table S5. Consensus drug rank list for Inflammatory
Bowel Disease. (XLS 51 kb)

Additional file 6: Table S6. Top 50 predicted drugs and validations for
Alzheimer’s Disease and Parkinson’s Disease. (XLS 39 kb)

Additional file 7: Tutorial outlining the manual implementation of the
DrugGenEx-NET methodology. (DOCX 14 kb)
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Abstract 
Metabolites constitute phenotypic end products of gene expression, and are key players in biological networks. For 

this reason, the field of metabolomics has been useful in predicting, explaining, and affecting the mechanisms of 

disease phenotypes. MSD-MAP (Multi Scale Disease-Metabolite Association Platform) is a powerful computational 

tool for hypothesizing new links between diseases and metabolites, and characterizing the functional basis of those 

links in a systems biology context. Upon integrating both predicted and known metabolite-protein associations, MSD-

MAP takes a two-pronged approach to associating metabolites to a disease, relying on network-based characterization 

of disease perturbation at multiple levels of biological activity as well as statistical matching of metabolite- and 

disease-associated biological profiles. MSD-MAP successfully recapitulated cross-disease links of cancer-associated 

metabolites, and predicted key metabolites associated with colorectal, esophageal, and prostate cancers after the 

integration of patient-based gene expression analysis. For example, the catecholamine dopamine was correctly 

predicted to be strongly associated with colorectal cancer based on statistical coincidence with its disease perturbation 

network. 

 

Introduction 
Metabolic dysregulation is a hallmark of many diseases, especially cancers [1]. Alteration of metabolic reaction 

pathway end-products or intermediates beyond homeostatic levels may be indicative or pathognomonic of disease. 

These metabolites are contextually viewed as potential biomarkers for diagnosis or even therapeutic targets (i.e. 

pharmacologically targeting enzymes responsible for the direct increase or decrease of a particular metabolite ascribed 

to a disease process). 

 

Metabolomic profiling of diseases is a relatively well-established approach, but has been mostly restricted to a 

framework of canonical metabolic pathways. The small size and ubiquitous nature of metabolites, however, renders 

them the potential to bind non-canonical targets that fall outside of tradition metabolic regulatory network and elicit 

pathogenic effects. Therefore, we conduct analyses using both experimentally-verified profiles of metabolites from 

the Human Metabolome Database (HMDB) [2], as well as profiles derived from our own proteochemometric method 

RepurposeVS [3]. 

 

MSD-MAP (Multi Scale Disease-Metabolite Association Platform) uses predicted and experimentally verified 

metabolite-protein interactions to place metabolites in a multi scale systems biology disease network in two ways: (1) 

direct association by way of protein interactions to pathway, function and disease associations, in a procedure modeled 

after Yildrim et al [4], and (2) statistical calculation of physiological coincidence to multiple cancers, by way of multi 

scale mapping of biological components from patient-derived gene expression data. The latter method is modeled 

after our drug repurposing platform, DrugGenEx-NET [5]. 

 

Studies attempting to identify metabolic profiles for a given disease typically characterize the metabolomic 

composition of various biofluids, and in some cases the diseased tissue itself [6]. Because MSD-MAP is applied to 

transcriptomic profiles of primary tumors in cancer, resulting biological networks are thought to be highly reflective 

of disease perturbation. The platform is not limited to predicting metabolites that may prove useful as disease 

biomarkers or that elucidate disease perturbation. In addition to incorporating metabolite-disease associations, the 

platform necessarily produces associations that have the potential to occur but, for various reasons (such as low 

concentration of metabolite, not achieving binding capacity due to short half-life, or cellular 

compartmentalization/localization of metabolites and protein targets), may not actually arise in conventional 

metabolic profiling efforts. MSD-MAP can thus predict metabolites that have potential for therapeutic intervention 

against a given disease or to serve as a biomarker of disease progression, based on the intersection between disease 

perturbation and metabolite action in a way that is analogous to pharmacological action. Therapeutic metabolites may 

encapsulate any metabolites cataloged by HMDB and incorporated into our database. 

 

MSD-MAP was applied to cancer-associated metabolites to provide a novel network analysis of predicted cancer 

metabolite-target associations and find other diseases that may share those associations. To our knowledge, the 

prediction of metabolite-target signatures using only protein crystal structures and metabolite chemical structures has 

not been performed before. Having observed and reported here high fidelity in the ability of RepurposeVS to reproduce 

known protein interaction profiles of several metabolites, we believe that incorporating this tool allows us to exploit 

a broader pathophysiological space, which is a key advantage of this approach. MSD-MAP is an entirely computer-

based platform, thus allowing it to become a feasible tool for initial exploratory studies. We demonstrate the predictive 

power of MSD-MAP in establishing metabolite-disease associations using previously established links from the 



literature. These validations support MSD-MAP as a tool to identify (1) potential biomarkers pointing to a particular 

diagnosis or therapy, (2) metabolites that may themselves be useful as therapeutic agents, (3) metabolites that may 

contribute to disease perturbation and (4) metabolic characterization allowing for the elucidation of biochemical 

disease mechanisms. 

 

Methods 
Collection of Cancer Metabolites and Protein Target Curation to Predict Metabolite-Protein Interactions 

Metabolites associated with cancers were obtained from HMDB as spatial data files (SDFs) containing atom and bond 

connectivity information [2]. Energy-minimized 3D structures were then prepared from those SDF files using 

Schrodinger’s LigPrep17 algorithm at neutral pH of 7.0. Human protein crystal structures were obtained from RCSB 

(www.rcsb.org). Only X-ray structures with <2.5 angstrom resolution and a reference co-crystallized ligand were 

chosen. Protein structures were further processed using an in-house collection of BASH and PERL scripts that directly 

manipulated the crystal structure PDB files to remove non-biologically relevant chains (i.e. those that do not interact 

with the ligand), metal ions, and all heteroatoms (i.e. non-cofactors, solvent molecules), as well as to add hydrogens 

optimally using the Schrodinger ProteinPrep application. After processing, the dataset included 56 metabolites and 

2,335 protein target crystal structures. 

 

Predicting Metabolite-Protein Interactions 

The RepurposeVS approach [3], which is an enhancement of the original TMFS approach developed by our group 

[7], was used to predict metabolite-protein signatures. In short, RepurposeVS is a proteochemometric method that 

integrates docking, shape, and ligand physicochemical descriptors for generating reliable binding signature 

predictions. The comprehensive ‘Z-score’ represents the quantitative likelihood of binding for ranking purposes (Eq. 

1): 

        (1) 

In determining which metabolite-protein signatures were considered for the subsequent network analyses, a Z-score 

threshold of 13.5 out of a maximum score of 15.0 (75%) was set. Using a threshold of 75% selected for true-positive 

metabolites with Z-scores near those of drug-target signatures validated in previous studies [3,7]. Furthermore, as 

metabolites differ substantially from drugs and drug-like molecules in physicochemical properties and may occupy 

binding pockets differently, setting the Z-score threshold at 75% such also allows for a relaxation of the criteria to 

retain metabolite-target interactions.  

 

Construction of Metabolite-Protein-Disease/Pathway/Function Networks 

Protein targets were cross-referenced using the unique PDB entry with UniProt [8].  A list of disease genes associated 

with the protein were obtained from each UniProt entry and mapped to the Online Mendelian Inheritance in Man 

(OMIM) Morbidity Map [9] disease gene-disease associations, a procedure modeled after Yildirim et al. [4]. 

Metabolites are connected to a disease by mapping their target genes to their associated disease. Thus, a metabolite is 

connected to a disease if its predicted target has disease genes associated with the disorder. In the DT-disease network, 

all disorders associated with a predicted protein target will be associated with the metabolite. Figure 1a depicts this 

approach. 

 

Disease-associated targets were also annotated with pathway and cellular function information using the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID) Functional Annotation Tool (FAT) [10]. FAT and 

DAVID Functional Clustering were also used to annotate functions from the Gene Ontology (GO) [11]. Results were 

manually curated and functions with a false discovery rate (FDR) <0.25 were selected from each cluster.  Metabolites 

are connected to a pathway or function if they have a predicted target associated with them. 

 

Curation of Experimentally Determined Metabolite-Protein Interactions 

All known metabolite-target interactions were derived from HMDB [2]. This resulted in a database of containing 

22,126 metabolites annotated with interacting proteins whose genes were measured in the gene expression data utilized 

in this study, out of 41,993 total metabolites currently characterized by HMDB. Of the 22,126 metabolites annotated, 

20,595 were labeled as endogenous, and 1,531 exogenous. 

 

Annotating Biological Effects of Metabolites 



Metabolites were associated with biological pathways and cellular functions through their experimentally verified 

(known) and RepurposeVS-predicted direct protein interactions if such an annotation existed. Experimentally known 

metabolite-protein target associations were obtained from annotations in the HMDB. Two curated databases, those of 

known and predicted metabolite-protein interactions, were separately annotated. Annotations were retrieved via 

DAVID Functional Annotation Tool [2] and ConsensusPathDB [12]. These collectively allowed for a comprehensive 

and up-to-date annotation dataset using publicly available tools. Pathways were derived from BioCarta [13], 

Edinburgh Human Metabolic Network [14], HumanCyc [15], INOH [16], KEGG [17], PharmGKB [18], NCI Pathway 

Interaction Database [19], Reactome [20], SMPDB [21], and WikiPathways [22]. Functions were obtained from the 

Gene Ontology [11]. 

 

Obtaining Cancer-associated Gene Expression Using Differential Analysis 

Human cancer RNA-seq gene expression data from the The Cancer Genome Atlas (TCGA) [23] were obtained from 

the UCSC Cancer Genome Browser [24]. These cancers include Colorectal Cancer (CRC), Esophageal Cancer (EC), 

and Prostate Cancer (PC). Cancer-associated genes were obtained using differential gene expression analysis (GEA) 

performed in R [25], where all cancer-derived samples were compared to all normal samples of the same tissue. Genes 

up-regulated and down-regulated in cancer with t-test Q-value < 0.05 (corresponding to Benjamini-Hochberg 

corrected P-values), and fold change > 1.0 and < -1.0, respectively, were considered differentially associated. Up-

regulated and down-regulated gene lists were subsequently considered separately. 

 

Annotating Biological Effects of Cancer-Associated Genes 

Protein-protein interactions (PPIs) for differentially expressed genes were obtained from the STRING database using 

a high confidence score cutoff of >0.7 [26]. Similar to the metabolite-protein interaction database, PPIs were filtered 

into a sub-dataset including only protein partners having probes in the TCGA RNAseq dataset in question. DAVID 

Functional Annotation and ConsensusPathDB were also used to perform overrepresentation analyses on up- or down-

regulated disease-associated gene lists using P-value < 0.05 for discovery purposes. 

 

Matching Disease Perturbation and Metabolite Action on Multiple Scales 

MSD-MAP prioritizes metabolites associated with a given disease based on statistically significant coincidence across 

the biological effect tiers of direct protein interactors, PPIs (indirect protein targets), pathways, and functions. Figure 

1b illustrates this methodology. The hypergeometric test in R was used to statistically associate metabolites in this 

fashion (Figure 2). With respect to each biological level, metabolites associated with P-value < 0.05 had P-values log-

transformed and normalized in relation to the value of the most significantly-associated metabolite, creating 

transformed values in the 0-1 unit range. All non-significant P-values were automatically assigned a value of 0.  

For each metabolite i and for a given disease corresponding to either up-regulated or down-regulated biological 

perturbation, normalized values for each biological effect tier were integrated to calculate an association Z-score used 

for ranking (Eq. 2): 

 
where Protein, Pathway, Function, and PPI correspond to the normalized significance score of that metabolite to the 

respective biological tier. Each of these normalized significance scores quantify the statistical coincidence of 

associated biological activity and metabolite with respect to the biological tier in question. The Protein variable was 

given the greatest weight to emphasize the metabolite-protein interaction as the biological tier of primary utility. 

In analyses derived from known metabolite-protein associations, metabolites were ranked in descending order by Z-

score. High Z-scores indicate a metabolite’s statistical potential to be simultaneously associated with the greatest 

amount of direct proteins, pathways, functions and PPIs associated with the given disease condition. Because novel 

protein interactions were predicted for only 56 metabolites, these metabolites were not ranked, but instead evaluated 

relative to a given disease based on stand-alone Z-scores and significance at each level of biological action. 

 

Results and Discussion 
Application of MSD-MAP to Cancer-Associated Metabolites: Predicting Protein Associations and Cross-Disease 

Links 

MSD-MAP was used to predict protein targets for cancer-associated metabolites (Table S1), of which 15 metabolite-

target signatures were validated using HMDB MetaboCards (Table 1). The low number of validations relative to the 

number of predictions can be attributed to the vast experimentally unexplored space of metabolite association with 

non-metabolism-associated targets. Metabolites were predicted to associate with a diverse set of diseases spanning 

multiple categories. The metabolite orotidylic acid, for instance, forms a distinct hub and is associated with many 

Zi = 2(Protein)+PPI +Pathway+Function+PPI



diseases through their predicted targets (Figure 3). This implies that such metabolites are not uniquely associated with 

cancers, but a variety of other diseases as well. Orotidylic acid (OMP) is a pyrimidine nucleotide intermediate in 

uridine monophosphate (UMP) biosynthesis. As a nucleotide structural analogue to adenosine monophosphate (AMP) 

and guanosine monophosphate (GMP), OMP has the potential to bind to similar targets. Indeed, MSD-MAP predicted 

that OMP would bind many G-protein, kinase and ATPase targets (Table S1). 

 

Given the diverse target set, OMP was also predicted to be involved in a variety of diseases. Buildup of OMP and 

orotic acid due to enzymatic deficiency, amino acid imbalance or consumption can lead to orotic aciduria and clinical 

symptoms such as megaloblastic anemia and mental retardation. In particular, a deficiency or mutation in the enzyme 

UMP Synthase, which catalyzes the conversion of OMP to UMP, has been associated with orotic aciduria [53]. This 

result is reflected in the predicted association between OMP and orotic aciduria by MSD-MAP, as shown in Figure 

3. Interestingly, OMP was also predicted to be involved in Charcot-Marie-Tooth (CMT) disease and Arts Syndrome. 

CMT disease is a hereditary motor and sensory neuropathy with multiple clinical categories based on mutation types, 

and Arts syndrome is a rare and severe neurological and immune system disorder. One associated mutation in both 

disorders is in the PRPS1 gene causing loss of function of the enzyme phosphoribosylpyrophosphate synthetase-1 

(PRPS-1) [27]. Recently, orotic aciduria has been described for the first time in patients with PRPS1 mutations [27]. 

Elevated levels of orotic acid could potentially allow it bind many unidentified targets across different cell types to 

give these poly-symptomatic disorders. This data confirms the predicted associations of OMP with CMT and Arts 

syndrome by MSD-MAP. Another example is the association of OMP with spastic paraplegia. Arginase deficiency, 

which increases orotic acid excretion [28], leads to spastic paraplegia in early childhood [29]. Figure 3 reflects these 

validated OMP-related diseases, all of which have been shown to correspond with increased amounts of orotic acid. 

MSD-MAP was thus able to predict the phenotypic effects of orotodylic acid and can potentially be used to establish 

other known and unknown metabolite-target-disease associations. 

 

Application of MSD-MAP to Prediction of Disease-associated Metabolites using Differential Gene Expression and 

Systems Biology Network Analysis 

 

1. Colorectal Cancer 

Colorectal cancer (CRC) has diverse environmental and genetic risk factors. Its origins and progression have 

implicated mechanisms involving chromosomal instability, microsatellite instability, microRNA activity, abnormal 

DNA methylation, inflammation, and others [30]. Various studies have used metabolomic profiling to arrive at 

important physiological or pathophysiological states of CRCs that could pave the way for improved early detection 

and diagnosis [31-33]. MSD-MAP also identifies many metabolites altered in CRC in addition to their known 

physiological mechanisms. Table 2 contains selected metabolites predicted to be associated with CRC, and validated 

by the literature, as well as the statistical significance of coincidence at each level of biological importance. 

 

1a. CRC-metabolite associations derived from known metabolite-protein interactions 

In normal metabolism, the amino acid tyrosine is a precursor to dopamine, and in CRC conditions, serum dopamine 

levels are low and tyrosine levels high [34,35], indicating a deviation from the normal metabolic process. Dopamine 

has been implicated in protection against experimental carcinogenesis in rats, and its agonists exhibit gastroprotective 

effects [36]. Previous findings also suggest that decreased expression of dopamine receptors, when brought about by 

polymorphisms in corresponding genes, is linked to depletion of dopamine receptors and is associated with increased 

risk of sporadic CRC [37]. MSD-MAP also found dopamine to be strongly associated with factors reduced in CRC 

including various dopamine receptors and related pathways and functions (Figure 4). Correspondingly, MSD-MAP 

predicted tyrosine to be associated with upregulated activity. 

 

Cysteamine, the simplest aminothiol found in the body, is a degradation product of the amino acid cysteine. 

Cysteamine and cysteine were both found at higher levels in CRC compared to normal patient serum [34]. Taurine, in 

turn, can be derived from both cysteine and cysteamine, and was also found to be highly concentrated in CRC patient 

serum compared to normal [34]. MSD-MAP predicted significant association of taurine with upregulated CRC 

modulation at every level of biological activity. The abnormal metabolism of cysteine in CRC also appears to be 

biochemically linked to the downregulation of tyrosine metabolism discussed above. For instance, taurine was 

significantly associated with downregulated biological pathways enriched in CRC gene expression, including tyrosine 

metabolism (KEGG hsa:00350). More notably, cysteamine has the effect of decreasing norepinephrine levels in colon 

wall tissues [38]. These data concur with the finding of MSD-MAP that norepinephrine is significantly associated 

with downregulated CRC biology, as was the case with dopamine and other catecholamines. Tetrahydrobiopterin, a 



cofactor central to synthesis of catecholamines, was also found to be significantly associated at multiple levels with 

components upregulated in CRC. Thus, MSD-MAP was able to recapitulate the important roles of cysteine-tyrosine 

metabolic disruption in the pathophysiology of CRC, and supports the status of related metabolites as potential CRC 

biomarkers.  

 

Historically, a key risk factor for development of CRC is obesity as well as a high fat and low fiber diet [39]. There is 

increasing evidence that the elevated fecal concentration of bile acids associated with such a diet may be responsible 

for this link. Secondary bile acids in particular may constitute endogenous metabolites that promote the development 

of malignant tumors [40]. Deoxycholic acid (DCA), a secondary bile acid, has been repeatedly identified as a promoter 

of CRC proliferation, invasion, and migration, possibly by way of activating the Wnt/β-Catenin Signaling Pathway 

and causing DNA damage [41-43]. DCA has also been established as a potential CRC biomarker relative to primary 

bile acids [44]. MSD-MAP successfully predicted DCA to be strongly associated with biological factors upregulated 

in CRC at every level, implicating abnormal expression of various bile acid transporters interacting with DCA at the 

protein and indirect protein (PPI) levels. Such transporters are central to the precise control of bile acid levels in the 

body [45]. 

 

In our CRC study, ursodeoxycholic acid (UDCA) was significantly associated with upregulated disease activity at the 

levels of protein, function, and PPIs. This secondary bile acid is structurally related to DCA and has a similar annotated 

metabolic profile in MSD-MAP. In contrast to DCA, however, UDCA has been proposed as a chemopreventive agent 

for CRC and regulates corresponding signaling pathways differently [46-49]. 

 

Halofuginone, an exogenous anti-coccidial quinoazolinone derivative, inhibits the synthesis of alpha-1 type I collagen 

(COL1A1), a component of the extracellular matrix the expression of which MSD-MAP found to be highly 

upregulated in CRC. Our model predicted halofuginone to be significantly associated with upregulated CRC activity 

at every scale mapped. Notably, at the pathway and function levels, respectively, halofuginone was predicted to act 

on CRC-perturbed 3 integrin cell surface interactions (NCI PID: integrin3pathway) and regulation of cell adhesion 

(GO:0030155), by inhibiting gelatinase A (MMP-2). Given the association between higher MMP-2 levels and tumor 

invasion in CRCs [50], this activity could explain the observed anti-cancer activity of halofuginone in several CRC 

cell lines [51]. 

 

1b. CRC-metabolite associations derived from predicted metabolite-protein interactions 

In our analysis of 56 cancer-linked metabolites for which we predicted protein interactions and subsequently annotated 

metabolite action at multiple scales, MSD-MAP predicted that 11-dehydrocorticosterone (11-DHC), a mineral 

corticosteroid that is an inactive 11-keto derivative of glucocorticoids, is significantly associated with physiology 

downregulated in CRC at every level of biological perturbation. The expression of 11β-hydroxysteroid dehydrogenase 

types 1 and 2, enzymes that regulate the activation of glucocorticoids, is modulated in CRCs such that active 

glucocorticoids were produced from their inactive 11-keto derivatives [52], corresponding to decreased levels of 11-

DHC. These data agree with the predicted link of inactive 11-DHC to downregulated components, and previous work 

that has shown that immunomodulatory glucocorticoids including the active stress hormone cortisol are produced by 

both CRCs in both primary tumor and cell line samples [53]. Interestingly, MSD-MAP predicted novel interactions 

of 11-DHC with proteins downregulated in CRC, including androgen receptor (AR), progesterone receptor (PGR), 

estrogen receptor (ESR1), mineralocorticoid receptor (NR3C2), glucocorticoid receptor (NR3C1), and Aldo-Keto 

Reductase Family 1 Member C2 (AKR1C2). All are implicated in steroid hormone biosynthesis. Together, these 

findings substantiate the hypothesis that synthesis of glucocorticoids constitutes a mechanism for tumor immune 

escape in CRCs, and that depletion of 11-DHC may prove to be a useful biomarker for CRCs. 

 

2. Esophageal Cancer 

Metabolomic profiling of esophageal cancer (EC) has revealed that glycolysis followed by lactic acid fermentation is 

the preferred method for energy production in metabolic disease perturbation of this disease, [54,55]. Central pathways 

include changes in amino acid metabolism, biosynthesis and degradation, ketone bodies synthesis and degradation, 

tricarboxylic acid (TCA) cycle, and fatty acid metabolism [54]. Select literature-validated EC-metabolite associations 

and statistical significance at each level of analysis are listed in Table 3. 

 

EC-metabolite associations derived from known metabolite-protein interactions 

 



Aberrations in choline metabolism have been observed in esophageal cancer and are perhaps central to its energy 

demands [54]. Our study recapitulates the involvement of creatine and phospho-creatine , both key intermediates in 

energy metabolism, in downregulated EC biological activity by way of their association with the arginine and proline 

metabolism pathway (KEGG hsa:00330) wherein these metabolites play crucial roles. Additionally, L-glutamine, an 

amino acid found in lower-than-normal levels in EC mucosae [54], was significantly linked to EC and had various 

network associations with alanine, aspartate and glutamate metabolism (KEGG hsa:00250), metabolites that are also 

linked to proteins downregulated in EC. 

 

Hyaluronic acid (HA), the most abundant glycosaminoglycan in the body, has been associated with poor prognosis in 

some cancers [56], and observed at elevated levels in the serum of patients with esophageal squamous cell carcinoma 

[57] compared to normal patients. In our model, HA is significantly associated with upregulated EC proteins, 

pathways, functions, and PPIs. Associated proteins at the protein and PPI levels largely involve HA biosynthesis and 

related metabolic processes, which are themselves implicated in EC-modulated cellular functions essential to 

malignancy, such as cell adhesion (GO:0007155), regulation of cell growth (GO:0001558), and angiogenesis 

(GO:0001525). Thus, MSD-MAP recapitulates the high EC serum levels of hyaluronic acid by association with up-

regulated components of disease perturbation. 

 

3. Prostate Cancer 

Prostate cancer (PC) is unusual in that it exhibits little dependence on glycolysis for energy, instead relying heavily 

on fatty acid metabolism, probably due to the resulting availability of acetyl-coenzyme A and increased activity of the 

TCA cycle [58]. Refer to Table 4 for selected literature validations of PC-associated metabolites with significance of 

association and multiple scales of biological activity. 

 

3a. PC-metabolite associations derived from known metabolite-protein interactions 

MSD-MAP predicted testosterone to be strongly associated with PC at each biological level. Testosterone has 

previously been associated with prostate cancer in various ways and is generally found in higher levels in the serum 

of prostate cancer patients [59,60]. Central to this association is the interaction with the heavily upregulated 

Cytochrome P450 2J2 (CYP2J2), which, among other functions, is important for the metabolism of arachidonic acid. 

This, in addition to the linoleic acid metabolism (KEGG hsa:00591) and icosanoid metabolic process (GO:0006690), 

implicate testosterone levels to be reflective of PC perturbation involving eicosanoid biosynthesis and fatty acid 

metabolism [61]. Furthermore, significantly reduced levels of arachidonic acid occur in malignant prostatic tissue 

[62]. Remarkably MSD-MAP also associates arachidonic acid (and other fatty acids linoleic acid, palmitic acid, and 

others) to PC with significance across all mapped levels.   

 

L-glutamic acid levels are increased in cancerous prostatectomy tissues, and our MSD-MAP analysis found GABA 

synthesis to be central to the predicted network association between L-glutamic acid and PC. In PC, gamma-

aminobutyric acid (GABA) has been previously reported to increase cellular proliferation via the ionotropic GABAa 

receptor (GABAar) and to promote cellular invasiveness via the metabotropic GABAb receptor [59]. GABA itself 

was found to be significantly associated with upregulated PC physiology at each level of analysis. In a related 

exogenous association, dihydroergotoxine, which binds the GABAar chloride ion-channel, was also strongly 

associated with components downregulated in PC by action on PC-downregulated pathway GABA receptor activation 

(Reactome pathway REACT_25199),  which can decrease cellular proliferation in PC [63]. 

 

Folate, Vitamin B12 and Homocysteine are known to be involved in the aberrant methylation of DNA and of tumor 

suppressor genes, and have implications in prostate cancer development [64]. S-adenosylhomocystiene (SAH), an 

amino acid derivative that has been detected at higher than normal levels in PC tissue [65], is involved in the 

methylation process and gives rise to homocysteine. Our study also predicted SAH to be strongly associated with PC-

upregulated biological perturbation at the levels of pathways, functions, and PPI, emphasizing the roles of factors such 

as DNA methylation (Reactome pathway REACT_268237), and histone modifications (WikiPathway WP2369). 

Consequently, MSD-MAP predicts the usefulness of SAH as a potential biomarker in PC. 

 

3b. PC-metabolite associations derived from predicted metabolite-protein interactions 

MSD-MAP was able to independently predict that linoleic acid is associated with PC-downregulated biology by way 

of novel predicted interactions with four down-regulated proteins: cAMP-specific 3',5'-cyclic phosphodiesterase 4A 

(PDE4A), cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5A), retinoic acid receptor beta (RARB), and retinoic 

acid receptor gamma (RARG). Loss of retinoic acid receptors has been associated with tumorigenicity in PCs [66], 



and these interactions may provide important insights into the pathophysiology of prostate cancer in relation to its 

dependence on fatty acid metabolism. Androstenedione, a precursor of testosterone, was also predicted by novel 

interactions to be strongly associated at each level with PC-downregulated activity [67] including the proteins NR3C1 

and Aldo-keto reductase family 1 member C2 (AKR1C2), as well as closely related pathways such as arachidonic 

acid metabolism (KEGG hsa:00590), signaling by retinoic acid (Reactome pathway REACT_267785), and synthesis 

of prostaglandins (PG) and thromboxanes (TX) (Reactome pathway REACT_150149). Relying only on metabolic 

action networks extrapolated from proteochemometrically predicted metabolite-protein interactions, MSD-MAP was 

therefore able to link familiar PC-associated metabolites to PC-derived mechanisms. 

 

4. Associating 2-methoxyestradiol with all cancers using predicted metabolite-protein interactions 

When analyzing differential gene expression comparing tumor and normal tissue, those genes involved in mechanisms 

basic to cancer, rather than important to a subtype or other categorical comparison, are the most highly emphasized in 

the results. The implications of this are evident in our application of MSD-MAP to three different cancers, as a few 

chief metabolites exhibit significant association with all three cancers. For example, using metabolite-protein 

interactions predicted by proteochemometric means, which were then mapped to a multi scale metabolite action space 

as previously described, we found that 2-methoxyestradiol (2-ME), an endogenous metabolite of estradiol, is 

significantly (P < .05) associated with down-regulated biological activity for CRC, EC, and PC, at all levels: proteins, 

pathways, functions, and PPIs. 2-ME has repeatedly been identified as a drug candidate for multiple cancers [68], 

exhibiting both antiangiogenic and antiproliferative properties [69,70]. In the case of three cancers examined in the 

present study, the predicted activity of 2-ME on the protein cAMP-specific 3',5'-cyclic phosphodiesterase 4D 

(PDE4D) and on the cAMP signaling pathway (KEGG hsa:04024) is central to the metabolite-disease association. 

This is corroborated with findings that 2-ME activates phosphodiesterases [71], which is often enough to inhibit 

growth or activate apoptosis in many cancer cell types, thus offering a possible mechanism of action for this pan-

cancer therapeutic indication [72]. 

 

Conclusions 
The study of metabolomics has yielded many insights into diverse disease mechanisms and metabolites that are useful 

as biological markers for diagnosis or indication of specified disease progression. MSD-MAP revealed novel 

metabolite-target-disease signatures that mechanistically explain some metabolite-disease phenotypic associations, 

and successfully matched multi scale physiological networks extrapolated from predicted and known proteomic 

profiles of metabolites to disease networks derived from differential gene expression. Applying MSD-MAP to 

colorectal, esophageal, and prostate cancers, we demonstrated that the metabolite-disease links postulated by statistical 

matching of metabolite and disease networks can identify disease biomarkers suggested by conventional metabolic 

profiling, implicate new mechanisms in our understanding of disease pathogenesis and pathophysiology, and detect 

metabolites that have therapeutic potential against these diseases. MSD-MAP validates the role of gene expression-

based profiling followed by systems biology analysis as a tool for elucidating the mechanisms behind metabolic 

dysregulation of diverse pathologies. Our results also indicate that previously undescribed profiles of metabolites that 

lie outside of recognized biochemical pathway membership can correspond to the transcriptomic behavior of these 

cancers, and may in themselves be central to the biological perturbation of such diseases. MSD-MAP is applied to 

characterizations of disease stemming from differential gene expression analysis, and these analyses are not restricted 

to comparing cancer and normal tissues. Therefore, MSD-MAP could be practically applied to the study of metabolites 

specific to disease subtypes, metabolic markers of disease progression, or metabolites linked to clinical parameters 

such as menopausal status. In addition, new insights may be gained by restricting our CRC analysis to bacterial 

metabolites, which are known to influence the etiology of the disease [73]. 
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Figure Legends 

 



Figure 1. Schematic of two-pronged method for disease-metabolite association in MSD-MAP. In part (A), 

interacting proteins for a given metabolite, as predicted by RepurposeVS, are used to annotate pathways, functions, 

and diseases using the databases indicated. In part (B), patient gene expression (RNAseq) profiles are used to perform 

differential gene expression, comparing primary tumors of a given cancer to corresponding normal tissue samples. 

The final Protein List resulting from this analysis contains either down- or up-regulated genes. Overrepresentation 

analysis is performed to enrich the Protein List and obtain associated pathways and functions. Proteins interacting 

with differential proteins by protein-protein interactions are associated with CRC indirectly. Predicted or known 

interacting proteins for a given metabolite are matched to these biological factors and subsequently tested for statistical 

significance of coincidence by hypergeometric test. Colored lines represent “hits,” while circular nodes represent 

equivalency. 

 

Figure 2. Hypergeometric test for significance of disease-metabolite association at each level of biological 

activity. 

 

Figure 3. Predicted metabolite-disease network. Metabolites (orange nodes) were connected with diseases (blue 

nodes) through their predicted protein target. Inset shows higher resolution of hub comprised of orotidylic acid and 

UDP-N-acetylmuraminate. A buildup of orotidylic acid is linked to orotic aciduria [46]. Orotic aciduria, in turn, 

coincides with PRPS-1 loss-of-function mutations that are characteristic of Charcot-Marie-Tooth Disease and Arts 

Syndrome [27], and with Arginase deficiency leading to Spastic Paraplegia in early childhood [28, 29]. 

 

Figure 4. Multi scale network association between Dopamine and colorectal cancer biological activity. Known 

protein interactions for the neurotransmitter dopamine are considered a “hit” (green lines) when they are significantly 

downwardly expressed in colorectal cancer (CRC) primary tumors compared to normal colon. These are termed Direct 

Proteins (leftmost column). Indirect Proteins also interact with dopamine (blue lines), but were not significantly 

downregulated in CRC. They are linked via protein-protein interactions (dotted lines) with CRC-regulated proteins, 

including the Direct Proteins and others which do not interact with dopamine. Coinciding between CRC-

downregulated pathways and dopamine-linked (red lines) pathways are 138 individual pathways (represented by the 

red vertical rectangles), seven of which are highlighted to reveal connectivity. 220 CRC-downregulated cellular 



functions are also associated with dopamine (orange vertical rectangles connected via orange lines), of which seven 

are highlighted in the rightmost column. 
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Table_S1.xls. List of MSD_MAP-predicted binding signatures between cancer metabolites and target proteins. 

 

 

Table 1. Validations of predicted metabolite protein targets. 

 

Metabolite Name HMDB ID Protein 

Uniprot 

 

Protein Name 

Androstenedione HMDB0005

3 

P10275 Androgen Receptor 

Androstenedione HMDB0005

3 

P42330 Aldo-keto reductase family 1 member C3 

Androstenedione HMDB0005

3 

P10275 Androgen Receptor 

Androstenedione HMDB0005

3 

P51857 3-oxo-5-beta-steroid 4-dehydrogenase 

Cholesterol HMDB0006

7 

P35398 Nuclear receptor ROR-alpha 

Citric acid HMDB0009

4 

P12931 Proto-oncogene tyrosine-protein kinase Src 

Orotidylic acid HMDB0021

8 

P11172 Uridine 5'-monophosphate synthase 

Tetrahydrodeoxycorticostero

ne 

HMDB0087

9 

P52895 Aldo-keto reductase family 1 member C2 

Tetrahydrodeoxycorticostero

ne 

HMDB0087

9 

Q04828 Aldo-keto reductase family 1 member C1 

Tetrahydrodeoxycorticostero

ne 

HMDB0087

9 

P42330 Aldo-keto reductase family 1 member C3 

Tetrahydrodeoxycorticostero

ne 

HMDB0087

9 

P52895 Aldo-keto reductase family 1 member C2 

Alpha-Linolenic acid HMDB0138

8 

P14555 Phospholipase A2, membrane associated 

11-Dehydrocorticosterone HMDB0402

9 

P51857 3-oxo-5-beta-steroid 4-dehydrogenase 

11-Dehydrocorticosterone HMDB0402

9 

P28845 Corticosteroid 11-beta-dehydrogenase 

isozyme 1 

11-Dehydrocorticosterone HMDB0402

9 

P51857 3-oxo-5-beta-steroid 4-dehydrogenase 

 

 

 

 

 

 

 

 

 



 

Table 2. Validated metabolites significantly associated with colorectal cancer (CRC) gene expression-derived multi 

scale biological activity. 

 

Metabolite 

Name 

HMDB 

ID 

Associa

ted with 

Up-

regulat

ed or 

Down-

regulat

ed CRC 

Activity

? 

Hypergeom

etric P-

value for 

Protein 

Level 

Hypergeom

etric P-

value for 

Pathway 

Level 

Hypergeom

etric P-

value for 

Function 

Level 

Hypergeom

etric P-

value for 

PPI Level 

Refere

nce 

2-

hydroxybutyrat

e 

HMDB00

008 

Down 1.000 < .001 < .001 < .001 [74] 

2-

Hydroxybutyri

c acid 

HMDB00

008 

Down 1.000 < .001 < .001 < .001 [74] 

Deoxyuridine HMDB00

012 

Down 1.000 < .001 < .001 0.002 [34] 

Butyric acid HMDB00

039 

Down 0.110 0.039 < .001 < .001 [75] 

Acetic acid HMDB00

042 

Down 0.190 0.002 < .001 < .001 [75] 

Beta-Alanine HMDB00

056 

Up 0.059 0.047 < .001 < .001 [34] 

Cholesterol HMDB00

067 

Down 0.274 < .001 < .001 < .001 [75] 

Dopamine HMDB00

073 

Down 0.004 < .001 < .001 < .001 [34] 

Citric acid HMDB00

094 

Down 0.202 0.001 < .001 < .001 [34] 

Homovanillic 

acid 

HMDB00

118 

Down 1.000 < .001 < .001 0.019 [34] 

D-Glucose HMDB00

122 

Down 0.024 0.077 < .001 < .001 [76] 

L-Glycine HMDB00

123 

Down 0.058 < .001 < .001 < .001 [76] 

Glycine HMDB00

123 

Down 0.058 < .001 < .001 < .001 [76] 

D-Glucuronic 

acid 

HMDB00

127 

Down < .001 < .001 < .001 < .001 [34] 

Glycerol HMDB00

131 

Down 0.005 < .001 < .001 < .001 [34] 

Glyceric acid HMDB00

139 

Up 1.000 0.017 < .001 < .001 [34] 

L-Glutamic 

acid 

HMDB00

148 

Up 0.001 0.062 < .001 < .001 [34] 

L-Tyrosine HMDB00

158 

Up 0.059 < .001 < .001 < .001 [34] 

L-

Phenylalanine 

HMDB00

159 

Up 0.065 0.010 < .001 0.004 [76] 



D-Mannose HMDB00

169 

Down 0.174 < .001 < .001 < .001 [76] 

L-Histidine HMDB00

177 

Down 0.380 < .001 < .001 0.002 [34] 

Aspartic acid HMDB00

191 

Up 0.361 0.032 < .001 < .001 [64] 

L-Aspartic acid HMDB00

191 

Up 0.361 0.032 < .001 < .001 [64] 

Ornithine HMDB00

214 

Down 0.324 0.012 < .001 0.030 [34] 

Palmitic acid HMDB00

220 

Down 0.047 < .001 < .001 < .001 [76] 

Pyruvic acid HMDB00

243 

Down 0.064 < .001 < .001 < .001 [34] 

Taurine HMDB00

251 

Up 0.019 0.004 0.041 0.001 [34] 

Urea HMDB00

294 

Down 0.366 0.014 < .001 0.006 [35] 

Uridine HMDB00

296 

Down 0.281 0.009 < .001 0.013 [71] 

L-Cysteine HMDB00

574 

Down 0.283 0.029 < .001 < .001 [75] 

Dodecanoic 

acid 

HMDB00

638 

Down 0.181 0.008 < .001 0.010 [34] 

L-Glutamine HMDB00

641 

Up 0.130 0.013 < .001 < .001 [34] 

L-Methionine HMDB00

696 

Down 0.195 0.029 < .001 0.050 [34] 

Stearic acid HMDB00

827 

Down 0.041 < .001 < .001 < .001 [76] 

Arachidonic 

acid 

HMDB01

043 

Down 0.042 < .001 < .001 < .001 [76] 

Putrescine HMDB01

414 

Down 0.096 0.024 < .001 < .001 [34] 

Phosphate HMDB01

429 

Down 0.068 < .001 < .001 < .001 [76] 

Paraxanthine HMDB01

860 

Down 0.041 < .001 < .001 < .001 [34] 

Aspirin HMDB01

879 

Down 0.142 < .001 < .001 0.013 [34] 

Oleamide HMDB02

117 

Down 0.077 < .001 < .001 0.006 [35] 

Marganic acid HMDB02

259 

Down 0.024 < .001 < .001 < .001 [76] 

Heptadecanoic 

acid 

HMDB02

259 

Down 0.024 < .001 < .001 < .001 [76] 

1-

Monooleoylgly

cerol 

HMDB11

567 

Down 0.120 0.005 < .001 0.006 [76] 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Validated metabolites significantly associated with esophageal cancer (EC) gene expression-derived multi 

scale biological activity. 

 

Metabolite 

Name 

HMDB 

ID 

Associa

ted 

with 

Up-

regulat

ed or 

Down-

regulat

ed EC 

Activit

y? 

Hypergeom

etric P-

value for 

Protein 

Level 

Hypergeom

etric P-

value for 

Pathway 

Level 

Hypergeom

etric P-

value for 

Function 

Level 

Hypergeom

etric P-

value for 

PPI Level 

Refere

nce 

4-

Hydroxyphenylp

yruvic acid 

HMDB00

707 

Up 0.273 0.006 < .001 0.010 [54] 

Acetic acid HMDB00

042 

Up 0.058 0.001 < .001 < .001 [54] 

Acetoacetic acid HMDB00

060 

Down 0.198 < .001 < .001 0.001 [54] 

Adenosine 

monophosphate 

HMDB00

045 

Down 0.010 0.037 < .001 < .001 [54] 

Choline HMDB00

097 

Down 0.126 < .001 < .001 0.017 [54] 

Creatine HMDB00

064 

Down 0.002 0.001 < .001 0.043 [54] 

Ethanol HMDB00

108 

Down 0.007 < .001 < .001 < .001 [54] 

Formic acid HMDB00

142 

Down 0.007 0.006 < .001 < .001 [54] 

Gamma-

Aminobutyric 

acid 

HMDB00

112 

Up 0.216 < .001 < .001 0.061 [54] 

D-Glucose HMDB00

122 

Up 0.168 0.004 < .001 0.003 [54] 

L-Glutamic acid HMDB00

148 

Down 0.102 < .001 < .001 < .001 [54] 

4-

Hydroxybutyric 

acid 

HMDB00

710 

Down 0.048 0.009 0.015 1.000 [54] 



L-Glutamine HMDB00

641 

Up 0.024 0.002 < .001 0.003 [54] 

L-Aspartic acid HMDB00

191 

Down 0.359 < .001 < .001 < .001 [54] 

L-Tyrosine HMDB00

158 

Up 1.000 0.038 < .001 0.003 [54] 

NAD HMDB00

902 

Down 0.045 < .001 < .001 < .001 [54] 

L-Phenylalanine HMDB00

159 

Down 1.000 < .001 < .001 0.010 [54] 

Uracil HMDB00

300 

Up 0.075 < .001 < .001 0.001 [54] 

Malonic acid HMDB00

691 

Down 1.000 0.004 < .001 0.024 [77] 

Fumaric acid HMDB00

134 

Down 1.000 0.025 < .001 0.009 [77] 

l-Serine HMDB00

187 

Up 0.214 0.034 < .001 0.015 [77] 

L-Aspartate HMDB00

191 

Down 0.359 < .001 < .001 < .001 [54] 

Pyruvic acid HMDB00

243 

Down < .001 < .001 < .001 < .001 [77] 

Inosine HMDB00

195 

Up 0.151 < .001 < .001 0.003 [77] 

Uridine HMDB00

296 

Up 0.003 < .001 < .001 < .001 [77] 

Cytidine HMDB00

089 

Up 0.103 < .001 < .001 < .001 [77] 

A-glucose HMDB03

345 

Up 0.339 < .001 < .001 < .001 [77] 

B-

hydroxybutyrate 

HMDB00

060 

Down 0.198 < .001 < .001 0.001 [54] 

L-Margaric acid HMDB00

827 

Down 0.047 < .001 < .001 < .001 [77] 

Myristic acid HMDB00

806 

Down 0.037 0.001 < .001 < .001 [77] 

Linoleic acid HMDB00

673 

Down 0.024 0.009 < .001 < .001 [77] 

 

 

 

 

Table 4. Validated metabolites significantly associated with prostate cancer (PC) gene expression-derived multi scale 

biological activity. 

 

Metabolite 

Name 

HMDB 

ID 

Associa

ted 

with 

Up-

regulat

ed or 

Down-

regulat

ed PC 

Hypergeom

etric P-

value for 

Protein 

Level 

Hypergeom

etric P-

value for 

Pathway 

Level 

Hypergeom

etric P-

value for 

Function 

Level 

Hypergeom

etric P-

value for 

PPI Level 

Refere

nce 



Activit

y? 

Glycine HMDB00

123 

Down 0.185 < .001 < .001 < .001 [65] 

L-Glutamic acid HMDB00

148 

Up 0.038 < .001 < .001 < .001 [65] 

S-

Adenosylhomoc

ysteine 

HMDB00

939 

Down 0.010 0.047 < .001 0.087 [65] 

Phosphate HMDB01

429 

Down 0.076 < .001 < .001 < .001 [65] 

Choline HMDB00

097 

Down 0.063 < .001 < .001 < .001 [65] 

Glycerol HMDB00

131 

Down 0.014 < .001 < .001 < .001 [65] 

Adenosine HMDB00

050 

Down 0.281 0.001 < .001 < .001 [65] 

ADP HMDB01

341 

Down 0.048 < .001 < .001 < .001 [65] 

Citric acid HMDB00

094 

Up 0.367 < .001 0.001 < .001 [65] 

N-Acetyl-L-

alanine 

HMDB00

766 

Down 0.299 0.003 < .001 0.017 [78] 

N-

Acetylglutamic 

acid 

HMDB01

138 

Down 0.299 0.003 < .001 0.017 [78] 

Deoxyuridine 

triphosphate 

HMDB01

191 

Down 1.000 < .001 < .001 < .001 [78] 

5-

Methylcytosine 

HMDB02

894 

Up 1.000 < .001 < .001 0.019 [79] 

Selenomethionin

e 

HMDB03

966 

Down 0.350 < .001 < .001 0.014 [80] 

Bradykinin HMDB04

246 

Down 0.050 < .001 < .001 0.032 [78] 
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