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1. Introduction
The primary motivation for the current study comes from our recent work1 on wave
propagation in microcracked media under prestress; our interest in this report is to
gain an understanding of why compressive stresses of σyy = −90 MPa develop
between stationary (non-propagating) fractures in a medium under a remote ten-
sile prestress of σyy = 50 MPa (cf. Fig. 11(a) in Sahane et al.1 reproduced in part
here in Fig. 1). Because of the stress concentrations at the crack tips, the maximum
tensile stress σyy = 490 MPa is an order of magnitude higher than the applied
tensile far-field prestress, but closely arranged parallel fractures areas of compres-
sive stress (dark blue) can develop that are significant in magnitude relative to the
applied tensile prestress.

Fig. 1 An Abaqus2 simulation1 showing that a fractured medium under a tensile far-field pre-
stress of 50 MPa can generate compressive stresses (dark blue coloration) between fractures
in close proximity

The problem of wave propagation in a prestressed medium was originally studied
by Biot3,4 and later applied to problems in geophysics related to self-gravitation
of the spherical earth,5 subsurface detonations,6 the propagation of Rayleigh7 and
Scholte8 waves, and borehole diagnostics.9 Applications that involve prestressed
media range from “compliant” materials, (e.g., vascular materials,10 dielectric poly-
mers11 and magnetorheologic elastomers12), to relatively “brittle” materials, (e.g., con-
crete,13 ceramics,14 and glass15).
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The complexity of the prestress mechanics problem increases dramatically when
one considers the influence of microcracks on wave propagation and other proper-
ties, such as electrical properties; such problems can be addressed using the class of
homogenization methods known as generalized self-consistent methods (GSCMs).16–19

GSCMs permit derivation of the anisotropic effective moduli for the medium in
cases where the cracks are relatively dilute, i.e., are non-interacting and stationary.
The problem in which discrete cracks interact with each other, but are stationary,
was addressed by Sahane et al.,1 and the solution of the more general case where
the microcracks both interact and propagate across spatial scales requires the use of
concurrent multiscale methods.20∗

To answer the question posed earlier, in this report, we study the mechanics of the 2
overlapping parallel crack problem under remote tension, and show that this prob-
lem is mechanically equivalent to the problem of a single crack parallel to a rigid
boundary (shear-stress free symmetry plane) under remote tension (see Fig. 2(c)).

In Section 2, we present the method of integral transforms21 to solve the problem
of a crack parallel to a rigid boundary under remote tension. In Section 3, we apply
the methods developed by Erdogan and Gupta22,23 and develop a system of singu-
lar integral equations of the first kind (with a Cauchy-type singularity), which is
numerically solved using Gauss-Chebyshev integration. Fortunately, stress inten-
sity factors (SIFs) for this problem are derived using the Schwartz-Neumann alter-
nating technique24 (or method of successive approximations) by Chang and Ma25

who provide a table of SIFs which they compare with the earlier work of Yoko-
bori et al.26 and Kamei and Yokobori.27 The SIFs we derive in Section 4 of this
report are in excellent agreement with the earlier works that use different meth-
ods for their derivation.25–27 In Section 5, we derive expressions for the normal
stress σyy(x, y) and shear stress σxy(x, y) fields in the region between the crack
and the rigid boundary (symmetry plane) and demonstrate that this region is in-
deed in a state of compression, as our prior finite element [FE] simulations indicate
in Fig. 1, despite the remotely applied tensile prestress. We also demonstrate that
both the SIFs and stress fields derived via numerical solution of the singular integral
equations, compare well with those determined using the commercially available
Abaqus/Standard2 FE code. Section 6 focuses on estimating the relative error in

∗The commercial multiscale FE code, MultiMech, http://multimechanics.com/ was developed
in part under US Army Research Laboratory contract No. W911NF-07-D- 0001.

2
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our numerically derived solutions by specializing them to the closed-form analyt-
ical solutions found in Zehnder;28 our numerical solutions are found to be within
machine precision of the closed-form analytical solutions. In Section 7 we use this
result to estimate the relative error between the normal and shear stress distribu-
tions using the numerical solution of the singular integral equations and Abaqus FE
results. Section 8 outlines the Abaqus FE model geometry and boundary conditions
used to solve the boundary value problem; the crack is modeled in Abaqus using
the eXtended Finite Element Method (XFEM), which is used to predict FE-based
SIFs, which are compared with those determined using our numerical solutions.
Conclusions follow in Section 9.

2. Governing Equations
This section outlines the solution method for the crack boundary value problem
illustrated in Fig. 2(c), where the crack interval (−a,+a), without loss of generality,
can been normalized to (−1,+1). This solution can be obtained by superposition
of the solution to the problem of a uniformly pressurized crack shown in Fig. 3(b),
with the solution to the problem of a semi-infinite medium, without a crack, but
uniformly loaded at infinity σyy = σ−∞ = P0 shown in Fig. 3(c).

𝑥

𝑦

𝜎𝑦𝑦 = 𝜎−∞

𝜎𝑦𝑦 = 𝜎∞

𝑥

𝜎𝑦𝑦 = 𝜎−∞

𝑦

−1 +1

ℎ

𝜎𝑥𝑦 𝑥, ℎ = 0

v 𝑥, ℎ = 0

(a) (b) (c)

−a +a

Fig. 2 A fractured medium subjected to a remote tensile load; (a) Abaqus2 simulation,1 and the
equivalence of the (b) 2 overlapping parallel crack problem with the (c) single crack parallel
to a rigid boundary (shear-stress free symmetry plane) problem

3
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𝑥

𝜎𝑦𝑦 = 𝜎−∞

𝑦

−1 +1

ℎ

𝜎𝑥𝑦 𝑥, ℎ = 0

v 𝑥, ℎ = 0

(a) (b) (c)

=
𝑥

𝜎𝑦𝑦 = 𝜎−∞

𝑦

ℎ

𝜎𝑥𝑦 𝑥, ℎ = 0

v 𝑥, ℎ = 0

+
𝑥

𝑦

ℎ

𝜎𝑥𝑦 𝑥, ℎ = 0

v 𝑥, ℎ = 0

𝑃0
𝜃0𝜃0

Fig. 3 (a) The solution to the problem depicted in Fig. 2(c) is obtained by superposition of
(b) the solution to the problem of a uniformly pressurized crack Fig. 3(b), and (c) the solution
to the problem of a semi-infinite medium, without a crack, but uniformly loaded at infinity
σyy = σ−∞ = P0 Fig. 3(c)

Inasmuch as the solution to the problem depicted in Fig. 3(c) is trivially uniform
(i.e., σyy = σ−∞ = P0 everywhere, since the fixed boundary is shear stress free),
this section will focus on the solution to the problem shown in Fig. 3(b) by special-
izing the methods and nomenclature outlined in Erdogan and Gupta22 for flaws in
multilayered media. For a uniformly pressurized crack σyy(x, 0) = P0 on |x| < 1,
the appropriate boundary conditions on the crack line y = 0, are

σyy(x, 0) = −P0(x) = P0 ; |x| < 1 ,

σxy(x, 0) = 0 ; −∞ ≤ x ≤ ∞ ,

v(x, 0) = 0 ; |x| > 1 ,

(1)

and all components of stress and displacement vanish as
√
x2 + y2 → −∞ (Fig. 3(b)).

It is further assumed that the medium is in a state of plane strain and because of ge-
ometric and load symmetry the displacements can be written as half-range Fourier
transforms of undetermined functions Φ and Ψ, that is,

ui(x, y) =
2

π

∫ ∞
0

Φi(ξ, y) sin(ξx) dξ,

(2)

vi(x, y) =
2

π

∫ ∞
0

Ψi(ξ, y) cos(ξx) dξ ,

4
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and here, i = −1 or 1, where the subscript i = −1 refers to fields in the infinite
region below the crack line y = 0, and the subscript i = 1 to fields in the region
between the crack line y = 0 and the rigid boundary y = h illustrated in Fig. 3(b).
On taking the appropriate partial derivatives of ui(x, y) and vi(x, y) in Eq. 2 and
substituting them into the 2-dimensional plane strain, Cauchy-Navier equations for
an isotropic elastic medium, viz.,

(λi + 2µi)
∂2ui(x, y)

∂x2
+ µi

∂2ui(x, y)

∂y2
+ (λi + µi)

∂2vi(x, y)

∂x∂y
= 0 ,

(3)

µi
∂2vi(x, y)

∂x2
+ (λi + 2µi)

∂2vi(x, y)

∂y2
+ (λi + µi)

∂2ui(x, y)

∂x∂y
= 0 ,

and employing Fourier’s sine formula,

f(x) = Fs{Fs(f(x) : x→ ξ); ξ → x} 0 < x <∞ , (4)

(e.g., Eq. 1.1.5 of Titchmarsh29) where Fs denotes the half-range sine transform,

Fs(ξ) = Fs(f(x) : x→ ξ) =

√
2

π

∫ ∞
0

f(x) sin(ξx) dx , (5)

(e.g., Eq. 1.2.3 of Titchmarsh29) we arrive at the following 2 ordinary (coupled)
differential equations in Φ and Ψ:

−Ki1 ξ
2 Φi(ξ, y) + Ki2 Φ′′i (ξ, y) − ξΨ′i(ξ, y) = 0 ,

−Ki2 ξ
2 Ψi(ξ, y) + Ki1 Ψ′′i (ξ, y) + ξ Φ′i(ξ, y) = 0 .

(6)

Here Ki1 = λi+2µi
λi+µi

= 2− 2νi, and Ki2 = µi
λi+µi

= 1− 2νi, where λi and µi are the
Lamé and shear moduli, νi is Poisson’s ratio, and the primes, ′, denote derivatives
with respect to y. On solving Eq. 6 for Φi(ξ, y) we arrive at the following fourth-
order ordinary differential equation:

Φ′′′′i (ξ, y) − 2 ξ2 Φ′′i (ξ, y) + Φi(ξ, y) = 0 , (7)

with general solution,

Φi(ξ, y) = (Ai1 + Ai2)e
−ξy + (Ai3 + Ai4)e

ξy . (8)

5
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On substituting Eq. 8, and its second derivative into Eq. 61, and integrating Ψ′i(ξ, y)

over all y results in the general solution for Ψi(ξ, y),

Ψi(ξ, y) = (Ai1 + (
κi
ξ

+ y)Ai2)e
−ξy + (−Ai3 + (

κi
ξ
− y)Ai4)e

ξy , (9)

where κi = 3 − 4νi. In these equations, the Aij = Aij(ξ), i = −1 or 1, and j =

1, ..., 4 are to be determined from the boundary and continuity conditions for the
specific problem. On substituting Eq. 8 and Eq. 9 into Eq. 2 we arrive at the general
expressions for the displacements, given without derivation in Erdogan and Gupta,22

ui(x, y) =
2

π

∫ ∞
0

{(Ai1 + Ai2)e
−ξy + (Ai3 + Ai4)e

ξy} sin(ξx) dξ,

(10)

vi(x, y) =
2

π

∫ ∞
0

{(Ai1 + (
κi
ξ

+ y)Ai2)e
−ξy − (Ai3 − (

κi
ξ
− y)Ai4)e

ξy} cos(ξx) dξ .

The normal σiyy(x, y) and shear σixy(x, y) stresses follow immediately by taking
the appropriate derivatives of Eq. 10 and substitution into Hooke’s law written in
Cartesian coordinates,

σiyy(x, y) = (λi + 2µi)
∂vi(x, y)

∂y
+ λi

∂ui(x, y)

∂x
,

(11)

σixy(x, y) = µi(
∂ui(x, y)

∂y
+
∂vi(x, y)

∂x
) ,

which results in

σiyy(x, y)

2µi
=

2

π

∫ ∞
0

{−[ξ(Ai1 + Ai2y) + 2(1− νi)Ai2]e−ξy

+[−ξ(Ai3 + Ai4y) + 2(1− νi)Ai4]eξy} cos(ξx) dξ,

σixy(x, y)

2µi
=

2

π

∫ ∞
0

{−[ξ(Ai1 + Ai2y) + (1− 2νi)Ai2]e
−ξy

+[ξ(Ai3 + Ai4y)− (1− 2νi)Ai4]e
ξy} sin(ξx) dξ .

(12)

6
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3. Boundary and Continuity Conditions
The geometry for this problem can be envisioned as consisting of 2 simply con-
nected regions: one region consists of an isotropic elastic strip of width h, where
0 ≤ y ≤ h and −∞ < x < ∞, that is bonded to another region that consists of a
semi-infinite isotropic elastic plane, where −∞ < y ≤ 0 and −∞ < x < ∞. The
bond connecting the first region to the second region occurs along y = 0, and all x,
except for |x| < 1 (see Fig. 3(b)). Eight constants are required to solve this prob-
lem, 4 for the strip and 4 for the semi-infinite plane. Two constants, A−11 andA−12
are identically zero for the displacements to be bounded as y → −∞. This leaves 6
constants to be determined from the following 6 conditions:

1) σ1
xy(x, h) = 0 ; y = h ,

2) v1(x, h) = 0 ; y = h ,

3) σ1
yy(x, 0)− σ−1yy (x, 0) = 0 ; y = 0 ,

4) σ1
xy(x, 0)− σ−1xy (x, 0) = 0 ; y = 0 ,

5) ∂(u1−u−1)
∂x

= f1 δ(x − t) ; y = 0 ,

6) ∂(v1− v−1)
∂x

= f2 δ(x − t) ; y = 0 .

(13)

Equations 131 and 132 are the stress boundary conditions on the upper strip rigid
boundary depicted in Fig. 3(b). Equations 133 and 134 are the stress continuity
conditions on the crack line. Equations 135 and 136 represent the symmetrically
disposed unit dislocations at y = 0, x = t. In the present problem, therefore, a 6× 6

system is inverted, which provides expressions forA11, A12, A13, A14, A−13, A−14

as functions of f1, f2, and ξ. The system of equations are derived by substitution
of Eq. 10 and Eq. 12 into Eq. 13, the result of which appears in matrix-vector form
as

A~x = ~b , (14)

7
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where

A =



e−hξ e−hξ
(
h+ κ

ξ

)
−ehξ ehξ

(
κ
ξ
− h
)

0 0

−e−hξξ e−hξ(2ν − hξ − 1) ehξξ ehξ(2ν + hξ − 1) 0 0

−ξ −2(1− ν) −ξ 2(1− ν) ξ −2(1− ν)

−ξ 2ν − 1 ξ 2ν − 1 −ξ 1− 2ν

ξ 0 ξ 0 −ξ 0

−ξ −κ ξ −κ −ξ κ


,(15)

and we have dropped the subscript i in this equation since the elastic material above
and below the crack line is assumed, for this problem, to be identical (i.e., ν =

ν1 = ν−1, and κ = 3 − 4 ν), while

~x =



A11

A12

A13

A14

A−13

A−14


, ~b =



0

0

0

0

f1 cos(ξt)

f2 sin(ξt)


. (16)

The expressions for the ~x = Aij(ξ) are obtained by finding the inverse of ma-
trix Eq. 15, ~x = A−1~b, viz.,

~x =



cos(tξ)f1
2ξ

+ (1−2ν) sin(tξ)f2
2(−1+k+2ν)ξ

cos(tξ)f1
−4+4ν

+ sin(tξ)f2
2−2k−4ν

e−2hξ(−1+ν+hξ) cos(tξ)f1
2(−1+ν)ξ + e−2hξ(1−2ν−2hξ) sin(tξ)f2

2(−1+k+2ν)ξ

e−2hξ cos(tξ)f1
2(2−2ν) + e−2hξ sin(tξ)f2

2(−1+k+2ν)(
−1+ e−2hξ(−1+ν+hξ)

−1+ν

)
cos(tξ)f1

2ξ
+

e−2hξ(1+e2hξ(1−2ν)−2ν−2hξ) sin(tξ)f2

2(−1+k+2ν)ξ

(−1+e−2hξ) cos(tξ)f1

4−4ν +
(1+e−2hξ) sin(tξ)f2

2(−1+k+2ν)



. (17)
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A compact expression for the representation of the Aij(ξ) in Eq. 17 is

Aij(ξ) = F 1
ij (ξ) f1 cos(ξt) + F 2

ij(ξ) f2 sin(ξt) ,

(i = −1, 1, j = 1, ..., 4) ,

(18)

where the F i
ij are functions of the elastic properties and ξ. On substituting Eq. 18

into Eq. 12 gives the 2 stress components σyy andσxy due to the 2 unit dislocations
f1 and f2 given by Equations 135 and 136 in the upper strip as

σyy(x, y, t) = h11(x, y, t) f1 + h12(x, y, t) f2 ,

σxy(x, y, t) = h21(x, y, t) f1 + h22(x, y, t) f2 .

(19)

Equation 19 represents the Green’s functions for the current problem and the hij
are singular integrals involving the F i

ij . Assuming now that the unit dislocations, f1
and f2, are functions of t and represent the unknown distributions of dislocations
on the crack, the integral expressions of Eq. 19 for the determination of f1(t) and
f2(t) become

lim
y→0

∫ 1

0

h11(x, y, t) f1(t) + h12(x, y, t) f2(t) dt = σyy(x),

(20)

lim
y→0

∫ 1

0

h21(x, y, t) f1(t) + h22(x, y, t) f2(t) dt = σxy(x) ,

0 ≤x < 1 ,

or

4 (ν − 1)

2µ
σyy(x, 0) =

1

π

∫ 1

−1
f1(t) dt

∫ ∞
0

−2hξ cos((t− x)ξ)e−2hξ dξ

+
1

π

∫ 1

−1
f2(t) dt

∫ ∞
0

−(1 + 2hξ) sin((t− x)ξ)e−2hξ dξ

− lim
y→0

1

π

∫ 1

−1
f2(t) dt

∫ ∞
0

sin((t− x)ξ)e−yξ dξ ,

(21)

9
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and

4 (ν − 1)

2µ
σxy(x, 0) = − 1

π

∫ 1

−1
f2(t) dt

∫ ∞
0

−2hξ cos((t− x)ξ)e−2hξdξ

− 1

π

∫ 1

−1
f1(t) dt

∫ ∞
0

(1− 2hξ) sin((t− x)ξ)e−2hξdξ

+ lim
y→0

1

π

∫ 1

−1
f1(t) dt

∫ ∞
0

sin((t− x)ξ)e−yξdξ .

(22)

Integration of the sine and cosine transforms in the iterated integrals in Eq. 21
and Eq. 22 results in

1

π

∫ 1

−1

f1(t)

t− x
dt +

1

π

∫ 1

−1
k11(x, t) f1(t) + k12(x, t) f2(t)dt = 0 ,

1

π

∫ 1

−1

f2(t)

t− x
dt +

1

π

∫ 1

−1
k21(x, t) f1(t) + k22(x, t) f2(t)dt =

−(κ+ 1)P0

2µ
, (23)

− 1 < x < 1 .

In the derivation of Eq. 23 we have assumed that the applied normal stress σyy(x, 0)

on the crack is constant and the applied shear stress σxy(x, 0) on the crack is zero.
In addition, the unknown dislocation densities f1, f2 in Eq. 23 are written as the
tangential derivatives of the relative crack displacements, as

f1(x) =
∂[u1(x) − u−1(x)]

∂x
, f2(x) =

∂[v1(x) − v−1(x)]

∂x
,

σxy(x, 0) = 0 , σyy(x, 0) = −P0
(1 + κ)

2µ
, (24)

−1 < x < 1 .

10
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The kernel functions in Eq. 23 are symmetric kij = kji and are derived herein for
the specific problem illustrated in Fig. 3(b) as

k11(x, t) =
(4h2 − (t− x)2) (t− x)

(4h2 + (t− x)2)2
,

k12(x, t) = k21(x, t) =
2h (4h2 − (t− x)2)

(4h2 + (t− x)2)2
, (25)

k22(x, t) =
(12h2 + (t− x)2) (t− x)

(4h2 + (t− x)2)2
.

The unknown dislocation densities f1(t) and f2(t) are numerically determined by
reducing the singular integrals in Eq. 23 to an infinite system of linear algebraic
equations using the orthogonality properties of the Chebyshev polynomials.23 It is
common practice to write the dislocation densities in terms of an infinite series,
truncated at the k = N th term, of Chebyshev polynomials of the first kind,∗

f1(t) =
1√

1− t2

∞∑
k=1

Ak T2k(t) ,

(26)

f2(t) =
1√

1− t2

∞∑
k=1

Bk T2k−1(t) .

On substituting Eq. 26 into Eq. 23, and using the orthogonality conditions of the
Chebyshev polynomials, one can derive a set of functional equations involving the
unknown constants Ak and Bk (cf. Eq. (7.97) of Erdogan et al.23). The functional
equations can be solved using a weighted residual method to arrive at the following

∗The more general Jacobi polynomials P (α,β)
k are used in solutions to problems where f(t) =

g(t)(1−t)α(t+1)α in Eq. 23 and g(t) =
∑∞
k=0BkP

(α,β)
k ; since the solution of Eq. 23 has integrable

singularities at the end points, then α = β = −1/2, and the Jacobi polynomials coincide with the
Chebyshev polynomials of the first kind used in Eq. 26 (cf. discussion on pages 380–381 of Erdogan
et al.23).

11
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system equations:

π

2
Ak +

N∑
n=1

(aknAn + bknBn) = F1k ,

π

2
Bk +

N∑
n=1

(cknAn + dknBn) = F2k ,

F1k = 0 , (k = 1, ...N) ,

F21 = −π
2
P0

κ+ 1

2µ
, F2k = 0 , (k = 2, ...N) ,

(27)

where the definitions of constants akn, bkn, ckn, and dkn can be found in Appendix A.

4. Stress Intensity Factors
In this section, SIFs are computed and compared with the prior results of Chang and
Ma25 who tabulate their results that are based on the Schwarz-Neumann alternat-
ing technique,24 along with those of Yokobori et al.,26 and Kamei and Yokobori27

(Table 1). Using the formalism developed in this report, the mode I, k1, and mode
II, k2, SIFs can be written in a straightforward manner, cf. page 394 of Erdogan et
al.,23 as

k1 = − 2µ

1 + κ

∞∑
k=1

Bk , and k2 = − 2µ

1 + κ

∞∑
k=1

Ak (28)

where the infinite series is normally truncated to a finite number of terms, N , say
k = N = 9, and the Ak and Bk are given in Eq. A-7. One immediately observes
from Table 1 that the SIFs obtained by the prior authors using different solution
methodologies agree quite well with our own results∗ for the case N = 9, cf. Ap-
pendix B that illustrates SIF convergence for N = 3, 6, 9 and various values of
a/h. In general, as a/h → 0, that is, as the crack distance from the rigid boundary
increases, the mode II stress intensity factor approaches zero, k2 → 0, and the mode

∗We use the Erdogan et al.23 convention for the shear stress so that our FII values are opposite in
sign to that used by the other authors, but consistent with those computed using Abaqus in section 8.
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I stress intensity factor approaches unity, k1 → 1∗. Since the SIFs derived by ear-
lier authors for the 2 overlapping parallel crack problem under remote tension are
nearly the same as our problem of a single crack parallel to a rigid boundary under
remote tension Table 1, these 2 problems are, therefore, mechanically equivalent.

The equation used to derive the initial angle of crack growth (see Table 1) subjected
to mixed-mode loading is written as a function of k1 and k2, and given by Eq. 1 on
page 236 of Erdogan31 as

k1 sin θ0 + k2(3 cos θ0 − 1) = 0 . (29)

For cracks that are distant from the rigid boundary, the initial angle of crack growth
(cleavage angle) approaches zero, θ0 → 0, the crack propagation is self-similar;
cracks that approach the rigid boundary propagate at ever increasing angles (see
Fig. 4) relative to the crack line, and away from the rigid boundary (see Fig. 3(b)).

Table 1 Normalized SIFs for 2 parallel cracks in an infinite plane under remote tension,
where KI = FIσ

√
πa, KII = FIIσ

√
πa, and k1 = FI ; k2 = FII are determined using Eq. 28

a/h FI
26,27 FI

25 FI
a FII

25 FII
a θ0

b

0.01 ... ... 0.99996 ... –1.8747×10−7 0
0.1 ... ... 0.9963 ... –0.00018 0.02
0.2 0.985526 0.9858 0.9857 0.0014 –0.0014 0.16
0.4 0.950826 0.9505 0.9505 0.0094 –0.0094 1.13
0.6 0.908926 0.9092 0.9086 0.0246 –0.0246 3.09
0.8 0.872726 0.8722 0.8706 0.0431 –0.0429 5.61
1.0 0.831927 0.8431 0.8403 0.0611 –0.0607 8.18

1.25 0.803727 0.8166 0.8131 0.0803 –0.0793 10.94
1.66 ... ... 0.7860 ... –0.1011 14.21
2.0 0.756927 0.7734 0.7737 0.1166 –0.1128 15.95
5.0 ... ... 0.7445 ... –0.1567 22.02

10.0 ... ... 0.7385 ... –0.1792 24.74

a FI and FII values are from Table B-1, N = 9.
b θ0 values are derived using FI and FII values in this Table 1.

∗Some authors use the convention KI → σ
√
πa as a/h → ∞ but we use the normalized

constant k1 → σ
√
a as a/h→∞, cf. footnote 2 of Erdogan.30
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FI FII

2 4 6 8 10

a

h

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

θ0

0

5

10

15

20

25

Fig. 4 FI , FII , and cleavage angles θ0 vs. a/h from Table 1 for a crack parallel to a rigid
boundary under symmetric loading
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5. Normal and Shear Stresses
In this section, we determine the normal σyy(x, h1) and shear stress σxy(x, h1) at
y = h1, where 0 ≤ h1 ≤ h and compare our results with those obtained using the
Abaqus commercial FE code where the crack is modeled using the XFEM.

On substituting the Aij(ξ) from Eq. 17 into Eq. 12 we arrive at the iterated integrals
for the normal σyy(x, h1) and shear stress σxy(x, h1):

−(κ+ 1)

2µ
σyy(x, h1) =

1

π

∫ 1

−1
f1(t) dt

∫ ∞
0

e−(2h+h1)ξ
(
−e2hξh1 + e2h1ξ(−2h+ h1)

)
ξ cos((t− x)ξ) dξ

+
1

π

∫ 1

−1
f2(t) dt

∫ ∞
0

e−(2h+h1)ξ
(
−e2hξ(1 + h1ξ)− e2h1ξ(1 + 2hξ − h1ξ)

)
sin(ξ(t− x)) dξ

−(κ+ 1)

2µ
σxy(x, h1) =

1

π

∫ 1

−1
f1(t) dt

∫ ∞
0
−e−(2h+h1)ξ

(
e2hξ(−1 + h1ξ) + e2h1ξ(1− 2hξ + h1ξ)

)
sin((t− x)ξ)dξ

+
1

π

∫ 1

−1
f2(t) dt

∫ ∞
0
−e−(2h+h1)ξ

(
e2hξh1 + e2h1ξ(−2h+ h1)

)
ξ cos((t− x)ξ)dξ .

(30)
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On integrating the sine and cosine transforms in Eq. 30 we arrive at the following
equations for the normal stress σyy(x, h1):

−(κ+ 1)

2µ
σyy(x, h1) =

1

π

∫ 1

−1
f1(t) {

h1 (−h21 + (t− x)2)

(h21 + (t− x)2)
2

+
h1 ((−2h+ h1)

2 − (t− x)2)

((−2h+ h1)2 + (t− x)2)2
+

2h (−(−2h+ h1)
2 + (t− x)2)

((−2h+ h1)2 + (t− x)2)2
}dt

− 1

π

∫ 1

−1
f2(t){

2h21

(h21 + (t− x)2)
2 +

1

h21 + (t− x)2

+
2(−2h+ h1)

2

((−2h+ h1)2 + (t− x)2)2
+

1

(−2h+ h1)2 + (t− x)2
}(t− x)dt ,

(31)

and shear stress σxy(x, h1) in terms of polynomials in x and t,

−(κ+ 1)

2µ
σxy(x, h1) =

1

π

∫ 1

−1
f1(t) {

−2h21

(h21 + (t− x)2)
2 +

1

h21 + (t− x)2

+
2(−2h+ h1)

2

((−2h+ h1)2 + (t− x)2)2
− 1

(−2h+ h1)2 + (t− x)2
}(t− x)dt

+
1

π

∫ 1

−1
f2(t){−

h1 ((−2h+ h1)
2 − (t− x)2)

((−2h+ h1)2 + (t− x)2)2

+
2h (−(−2h+ h1)

2 + (t− x)2)

((−2h+ h1)2 + (t− x)2)2
+
h1(h1 + t− x)(h1 − t+ x)

(h21 + (t− x)2)
2 }dt .

(32)

On substituting the dislocation densities given by Eq. 26 into Eq. 31 and Eq. 32
together with the Ak, and Bk determined by the methods described in Appendix A,
and employing Gauss-Chebyshev numerical integration using Eq. A-3, we arrive at
the normal∗ σyy(x, h1) and shear stress σxy(x, h1) distributions for 0 ≤ h1 ≤ h

along line 0 ≤ x ≤ 5, where they are compared with the Abaqus commercial

∗Recall that the normal stress distribution depicted in Fig. 3(a) consists of superposing Eq. 31
with a unit remote stress at infinity σyy = σ−∞ = 1.
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FE solutions (Figs. 5 and 6). Also, the normal stress approaches the far-field unit
applied tensile stress in Fig. 5 and far-field null shear stress in Fig. 6.

In Section 6, we verify the accuracy of the Gauss-Chebyshev solutions depicted
in Figs. 5 and 6 by showing they are within machine precision of analytical solutions
for the problem of a crack in an infinite plane subjected to remote tension. This
result allows us to accurately estimate the error between our solutions and those
obtained using Abaqus. Finally, we show in Fig. 7 that for all parallel cracks that
are in close proximity to each other, (i.e., at normalized distances a/h > 0.95), the
stress between the parallel cracks is compressive (stress is negative in compression),
and the compressive stress increases linearly in magnitude with normalized distance
a/h (Fig. 7).

1 2 3 4 5
x

-0.5

0.5

1.0

1.5

2.0

2.5

σyy
Abaqus Eq. 31

Fig. 5 Normal stress σyy(x, h1) solution for the boundary value problem depicted in Fig. 3(a):
Abaqus simulation compared with Eq. 31 for h = 0.6 and h1 = 0.2; with A1, ...AN , B1, ..., BN
constants, k = N = 6 in Eq. 26
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1 2 3 4 5
x

-0.4

-0.3

-0.2

-0.1

0.1

0.2

σxy
Abaqus Eq. 32

Fig. 6 Shear stress σxy(x, h1) solution for the boundary value problem depicted in Fig. 3(a):
Abaqus simulation compared with Eq. 32 for h = 0.6 and h1 = 0.2; with A1, ...AN , B1, ..., BN
constants, k = N = 6 in Eq. 26

10 20 30 40 50
a/h

-1.0

-0.5

0.0

0.5

1.0
σyy(x,h)

Maximum stress

Fig. 7 Maximum stress σyy(x, h) along rigid boundary line y = h vs. a/h; far-field tensile
stress is σyy(x,−∞) = 1 with tension positive, compression negative. At a/h ≈ 0.95 the stress
changes from tension to compression and then increases linearly with a/h.
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6. Verification of Our Derived Solutions
In this section, we verify the accuracy of our derived solutions and the Gauss-
Chebyshev numerical integration methodology against a closed-form solution for
the normal and shear stress distributions in an infinite plate containing a crack sub-
jected to a remote tensile stress σyy(x,∞) = σ∞ = 1. The normalized analytical
solution for the stress fields is given in Zehnder,28

σyy(x, y)

σ∞
= <

(
z√

z2 − 1

)
+ y=

(
1√

z2 − 1
− z2

(z2 − 1)3/2

)
, (33)

and
σxy(x, y)

σ∞
= y<

(
1√

z2 − 1
− z2

(z2 − 1)3/2

)
, (34)

where z = x + i y, and < denotes the real part, and = the imaginary part of the
quantity in parentheses. These solutions are plotted in Figs. 8 and 9. The accuracy of
our derived normal stress, Eq. 31, and shear stress, Eq. 32, solutions is determined
by specializing the solutions to the case when the crack is distant from the rigid
boundary (e.g., at y = h = 1000), but the stress distribution is evaluated close to
the crack line y = 0, (i.e., at a distance y = h1 = 0.1). We compute the relative
error32 between our Gauss-Chebyshev numerical solution and the exact analytical
solution28 for the case of a crack in an infinite plane subjected to a remote tensile
stress. If Σ(x, h1) represents the exact value of the stress given by Eq. 33 or Eq. 34
and Σ̃(x, h1) represents the approximate value of the corresponding stress using
Gauss-Chebyshev numerical integration, then the relative error is given as

relerr = 1 − Σ̃(x, h1)/Σ(x, h1) . (35)

Illustrations of Log10(|relerr|), where |relerr| denotes the absolute value of relerr, for
the normal and shear stress distributions appear in Figs. 10 and 11 with oscillatory
solution accuracy ranging from 10 to 20 significant digits using n = 100 terms
and averaging about 15 significant digits using n = 300 terms in the numerical
integration Eq. A-3. The relative error is defined only if Σ(x, h1) 6= 0, since if
Σ(x, h1) = 0 the error becomes unbounded; a loss in precision is indicated by
the arrow in Fig. 11 (for n = 300) at an x-position where the shear stress passes
through a zero point on the ordinate in Fig. 9. The relative error for the shear stress
is rescaled and plotted for the n = 300 case in Fig. 12. It is clear that the relative
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error between our derived normal stress, Eq. 31, and shear stress, Eq. 32, solutions
and the exact analytical solutions is at machine precision using double precision
arithmetic in Mathematica33 with approximately 15 significant digits in the solution,
cf. pg. 253, Table 7.1 of Oberkampf and Roy.34

1 2 3 4 5
x

0.5

1.0

1.5

2.0

2.5

3.0
σyy

Eq. 33

Fig. 8 Exact normal stress σyy(x, y) distribution at y = 0.1 (Eq. 33) in an infinite plate con-
taining a crack subjected to a remote stress at y = ±∞
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1 2 3 4 5
x

-0.2

0.2

0.4

0.6

0.8

1.0

σxy
Eq. 34

Fig. 9 Exact shear stress σxy(x, y) distribution at y = 0.1 (Eq. 34) in an infinite plate contain-
ing a crack subjected to a remote stress at y = ±∞

0.5 1.0 1.5 2.0
x

-18

-16

-14

-12

Log10(relerr)
n = 100 n = 300

Fig. 10 Numerical accuracy of the normal stress determined with Gauss-Chebyshev numerical
integration relative to the exact solution shown in Fig. 8 over the space interval 0 ≤ x ≤
2; over this interval, the numerical solution accuracy ranges from 12 to 18 significant digits
for n = 100 terms and averages 15 significant digits for n = 300 terms in Eq. A-3; with
A1, ...AN , B1, ..., BN constants, k = N = 9 in Eq. 26
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0.5 1.0 1.5 2.0
x

-18

-16

-14

-12

-10

Log10(relerr)
n = 100 n = 300

Fig. 11 Numerical accuracy of the shear stress determined with Gauss-Chebyshev numerical
integration relative to the exact solution shown in Fig. 9 over the space interval 0 ≤ x ≤
2; over this interval, the numerical solution accuracy ranges from 10 to 20 significant digits
for n = 100 terms and averages 15 significant digits for n = 300 terms in Eq. A-3; with
A1, ...AN , B1, ..., BN constants, k = N = 9 in Eq. 26

0.5 1.0 1.5 2.0
x

-15.0

-14.8

-14.6

-14.4

-14.2

-14.0

-13.8
Log10(relerr)

n = 300

Fig. 12 Rescaled numerical accuracy of the shear stress for n = 300 terms shown in Fig. 11
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7. Relative Error in the Abaqus Simulations
Earlier in Section 6, we demonstrated that our numerical solutions are at machine
precision using double precision arithmetic in Mathematica.33 In this section we
will evaluate the accuracy of the normal and shear stress simulations illustrated
in Figs. 5 and 6 that were determined using the Abaqus FE code. This can ac-
complished by evaluating Eq. 31 and Eq. 32 at the same (x, y = 0.2) coordinate
locations as those used in the Abaqus simulations, and calculating the relative error
using Eq. 35.

Figure 13 shows the relative error in the Abaqus simulation over the interval 0 ≤
x ≤ 5 where the numerical solution accuracy approaches 6 significant digits for n =

300 terms in Eq. A-3; with A1, ...AN , B1, ..., BN constants, k = N = 6 in Eq. 26.
The relative error is greatest over the interval 0 ≤ x ≤ 0.5 and becomes undefined
near x = 0.6 where the normal stress solution σyy(0.6, 0.2) → 0 (Eq. 31), and
therefore the relative error at this location is undefined. Figure 14 shows the relative
error in the Abaqus simulation over the interval 0 ≤ x ≤ 5 where the numerical
solution accuracy approaches 6 significant digits for n = 300 terms in Eq. A-3;
with A1, ...AN , B1, ..., BN constants, k = N = 6 in Eq. 26. The relative error
is at a minimum over the interval 0 ≤ x ≤ 2 and becomes undefined near x =

2.65 where the shear stress solution σxy(2.65, 0.2) → 0 (Eq. 32), and therefore the
relative error at this location is undefined. Figures 13 and 14 demonstrate that the
XFEM implementation in Abaqus can be used to accurately predict the classical
static stress fields in a linear elastic medium with a crack.
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x

-6

-4

-2

2

Log10(relerr)
Abaqus relative error in σyy

Fig. 13 Relative error of the normal stress determined with Abaqus (refined mesh model of
Section 8) vs. Gauss-Chebyshev numerical integration shown in Fig. 5 over the space interval
0 ≤ x ≤ 5. The arrow indicates where then normal stress has a zero-crossing Σ(x, h1) =
σyy(x, 0.2)→ 0 in Fig. 5 and increases the error according to Eq. 35.

1 2 3 4 5
x

-6

-4

-2

2

Log10(relerr)
Abaqus relative error in σxy

Fig. 14 Relative error of the shear stress determined with Abaqus (refined mesh model of
Section 8) vs. Gauss-Chebyshev numerical integration shown in Fig. 6 over the space inter-
val 0 ≤ x ≤ 5. The arrows indicate where the shear stress has a zero-crossing Σ(x, h1) =
σxy(x, 0.2)→ 0 in Fig. 6 and increases the error according to Eq. 35.
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8. Abaqus Finite Element Modeling
The computational FE modeling is done with Abaqus/Standard using the XFEM
capability. The XFEM enriches elements with added degrees of freedom that al-
low for the modeling of discontinuities, specifically the discontinuous displacement
field across the crack surfaces and the asymptotic crack-tip stress field. SIFs can be
calculated from contour integration (J-integrals) around the crack tip. While the
XFEM does not require the crack surface or tip be congruent with the mesh, be-
cause of how the contour paths for the J-integral are computed, a regular mesh that
is relatively aligned (e.g., parallel) to the crack reduces error and is desirable.35,36

The numerical solution to the singular integral equations assumes plane strain con-
ditions, but the XFEM, which incorporates asymptotic fields in Abaqus, is only im-
plemented in 3-dimensional (3-D) analyses for stationary cracks. Therefore, bound-
ary conditions have to be applied to the 3-D FE geometry to simulate plane strain
conditions. The geometry and boundary conditions are shown in Fig. 15. The ge-
ometry uses half-symmetry at x = 0 with the x-displacement fixed and the crack
parallel to the x-axis. The y-displacements are fixed on the top surface and a tensile
distributed load is applied to the bottom surface, similar to Fig. 3(c). To approxi-
mate plane strain conditions, the z-direction thickness is small compared the lateral
dimensions (L = 5, W = 10, T = 1) and the displacements in the z-direction
are fixed on both z-direction faces to restrict the thickness from changing because
of the Poisson effect. The mesh is biased in the x- and y-directions so that it is uni-
form and refined at the crack tip, with the bias allowing larger elements at the edges
of the model furthest from the crack tip. It will be shown that while acceptable re-
sults for the SIFs can be calculated using a relatively coarse mesh, convergence of
the stress state requires a more heavily refined mesh because of the singular nature
of the stresses near the crack tip. The models using the coarse mesh have approx-
imately 100,000 elements with an element size around the crack tip of 0.025 and
a maximum size of 0.125. The refined mesh model used for the stress compari-
son has approximately 3.9 million elements with the element size varying between
0.015 and 0.05.
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Fig. 15 Schematic of the Abaqus FE model

Abaqus computes the SIFs for a requested number of contours. The SIFs are typi-
cally inaccurate for the contours nearest to the crack tip and often oscillates around
the correct value.35,36 For the purposes of this work, the SIFs are calculated for 10
contours, with the values from the 2 contours nearest to the crack tip being omitted
due to their inaccuracy, and the remaining 8 contours being averaged for the re-
ported SIF value. For the coarse mesh, the SIF values for a/h = 1.0, 1.25, 1.66 are
shown in Table 2. The refined mesh is used to calculate the SIFs for a/h = 1.66 us-
ing the same averaging procedure, and Table 3 shows the average values compared
with both the coarse mesh and the values determined using Eq. 28. Since the coarse
mesh produced comparable results to the solution using Eq. 28, the normalized SIFs
for a/h = 1.0, 1.25 are not calculated for the refined mesh. The mesh refinement
does have an effect on the stress field near the crack. The coarse mesh does not
produce smooth stress results for comparison to the numerical Gauss-Chebyshev
solution, so the stress solution for the refined mesh is used.
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Table 2 Normalized SIFs from Abaqus contour integration

a/h

1.0 1.25 1.66

Contour FI FII FI FII FI FII

1 1.0454 –0.0208 1.0590 –0.1294 1.1397 –0.2048
2 0.9535 –0.1047 0.9253 –0.1338 0.9247 –0.0816
3 0.8689 –0.0545 0.8316 –0.0919 0.7887 –0.1149
4 0.8801 –0.0742 0.8660 –0.0737 0.8180 –0.1023
5 0.8971 –0.0506 0.8643 –0.0737 0.8141 –0.1036
6 0.8886 –0.0666 0.8604 –0.0786 0.8006 –0.1106
7 0.8672 –0.0588 0.8361 –0.0850 0.8062 –0.1082
8 0.8886 –0.0566 0.8553 –0.0845 0.7983 –0.1126
9 0.8790 –0.0609 0.8497 –0.0761 0.7961 –0.1126

10 0.8762 –0.0576 0.8440 –0.0824 0.7955 –0.0990

Avg (3–10) 0.8807 –0.0600 0.8510 –0.0798 0.8022 –0.1078

Table 3 Comparison of the effect of Abaqus mesh refinement for a/h = 1.66. The average
values for FI and FII compared with the Eq. 28 values.

Coarse Mesh Refined Mesh Numerical values Eq. 28a

FI FII FI FII FI FII

0.8022 –0.1078 0.8100 –0.1098 0.7860 –0.1011

a Numerical values are from Table B-1, N = 9.
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9. Conclusions
In this report, the method of integral transforms21 and methods developed by Er-
dogan and Gupta22,23 were used to solve the problem of a crack parallel to a rigid
boundary under remote tension. We derived a system of singular integral equations
of the first kind, specific to the problem at hand, which we numerically solved
using Gauss-Chebyshev integration. SIFs were calculated for this problem which
were in excellent agreement with those derived by others using different solution
methods.25–27

Expressions for the normal stress σyy(x, y) and shear stress σxy(x, y) fields were
derived for the region between the crack and the rigid boundary (shear-stress free
symmetry plane). We demonstrated that this region is indeed in a state of compres-
sion, as our prior FE simulations indicated1 and despite the remotely applied tensile
prestress. Full-field elastostatic stress solutions to stationary crack problems involv-
ing boundaries, such as those derived in this report, are somewhat rare to find in the
literature, although such solutions are necessary for verification of FE code simula-
tions involving cracks; most papers of this nature involve calculation and tabulation
of only the SIFs.

We specialized our results in Eq. 31 and Eq. 32 to the problem of a crack in an
infinite plate under remote tension and showed that the relative error in our numer-
ically derived solutions are within machine precision of the closed-form analytical
solutions found in Zehnder.28 We also demonstrated that both the SIFs and stress
fields derived via numerical solution of the singular integral equations, compared
well with those determined using the commercially available Abaqus2 FE code.
Using these results, we estimated the relative error between the normal and shear
stress distributions using our numerical solution of the singular integral equations
and Abaqus FE results; it was found that with a relatively refined FE mesh, Abaqus
provided accurate estimates of the normal σyy(x, y) and shear stress σxy(x, y) fields
in the vicinity of a stationary crack modeled using the XFEM. Still requiring verifi-
cation with the XFEM in Abaqus are problems involving elastodynamic fields that
impinge upon stationary or dynamically propagating cracks.
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Appendix A. Coefficient Definitions for Equation 27
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In this appendix, we provide the additional equations needed to numerically evalu-
ate the constants Ak and Bk from Eq. 27. On substituting these constants into the
definite integrals in Eq. 10 and Eq. 12, the stresses and displacements anywhere
in the domain can be determined (cf. Section 5 where we calculate the normal
stresses σyy(x, y), and shear stresses σxy(x, y) in the finite strip between the crack
line y = 0 and rigid boundary y = h and compare our results with computational
finite element results using Abaqus).

The definitions of constants akn, bkn, ckn, and dkn that appear in Eq. 27 can be found
on page 394 of Erdogan et al.1 are given as

akn =

∫ 1

−1
U2k−1(x)H11

n (x)
√

1− x2 dx ,

bkn =

∫ 1

−1
U2k−1(x)H12

n (x)
√

1− x2 dx ,

(A-1)

ckn =

∫ 1

−1
U2k−2(x)H21

n (x)
√

1− x2 dx ,

dkn =

∫ 1

−1
U2k−2(x)H22

n (x)
√

1− x2 dx ,

where U2k−1(x) and U2k−2(x) are Chebyshev polynomials of the second kind, and

1Erdogan F, Gupta GD, Cook TS. Numerical solution of singular integral equations. In: Sih GC,
editor. Mechanics of Fracture I: Methods of Analysis and Solutions of Crack Problems; Netherlands
(Leyden): Noordhoff International Publishing; 1973. p. 368–425.
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polynomial functions H ij
n (x) are defined on page 393 of Erdogan et al.1 as

H11
n (x) =

1

π

∫ 1

−1
k11(x, t)T2n(t)

(
1− t2

)− 1
2 dt ,

H12
n (x) =

1

π

∫ 1

−1
k12(x, t)T2n−1(t)

(
1− t2

)− 1
2 dt ,

(A-2)

H21
n (x) =

1

π

∫ 1

−1
k21(x, t)T2n(t)

(
1− t2

)− 1
2 dt ,

H22
n (x) =

1

π

∫ 1

−1
k22(x, t)T2n−1(t)

(
1− t2

)− 1
2 dt ,

where T2n(x) and T2n−1(x) are Chebyshev polynomials of the first kind, and the
kernel functions kij(x, t) in Eq. A-2 are given in Eq. 25. In practice, polynomial
functionsH ij

n (x) in Eq. A-2 are determined in Mathematica2 using Gauss-Chebyshev
numerical integration with n = 300 terms,3 viz.,∫ 1

−1

f(x, t)√
1− t2

dt ≈
n∑
i=1

wif(x, ti) , (A-3)

with weights, wi = π
n

and abscissas, ti = cos( (2i−1)π
(2n)

) obtained from the zeros of
the orthogonal Chebyshev polynomials of the first kind (cf. Eq. 25.4.38 on page
889 of Abramovitz and Stegun4).

The polynomial functions H ij
n (x) determined with Eq. A-3 are then substituted

into Eq. A-1 for determining constants akn, bkn, ckn, and dkn used in system Eq. 27.
Gauss-Chebyshev numerical integration with n = 300 terms, is again employed

2 Mathematica edition Ver. 10.0. Champaign (IL): Wolfram Research; 2013.
3Numerical integration using n = 300 terms brings the numerical solution accuracy to 15 sig-

nificant digits which is at machine precision, cf. Fig. 10.
4Abramowitz M, Stegun I. Handbook of mathematical functions. 9th ed. New York (NY):

Dover Publications; 1970.
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using Mathematica2 to solve Eq. A-1 with approximation,∫ 1

−1
f(x, t)

√
1− t2 dt ≈

n∑
i=1

wif(x, ti) , (A-4)

with weights, wi = π
n+1

sin2( iπ
n+1

) and abscissas, ti = cos( iπ
n+1

) obtained from the
zeros of the orthogonal Chebyshev polynomials of the second kind (cf. Eq. 25.4.40
on page 889 of Abramovitz and Stegun (1970)4).

As an example, for N = 3 system Eq. 27 appears in matrix-vector form as,

a~x = ~b , (A-5)

where,

a =



π
2

+ a11 a12 a13 b11 b12 b13

a21
π
2

+ a22 a23 b21 b22 b23

a31 a32
π
2

+ a33 b31 b32 b33

c11 c12 c13
π
2

+ d11 d12 d13

c21 c22 c23 d21
π
2

+ d22 d23

c31 c32 c33 d31 d32
π
2

+ d33


(A-6)

~x =



A1

A2

A3

B1

B2

B3


, ~b =



0

0

0

−π
2
P0

κ+1
2µ

0

0


. (A-7)
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The vector ~x or the constants A1, A2, A3, B1, B2, B3 for N = 3 are obtained by
finding the inverse of non-symmetric constant matrix a given by Eq. A-6, and post-
multiplying this by ~b defined by F1k and F2k in Eq. 27, i.e., ~x = a−1~b. Given the
A1, A2, A3, B1, B2, B3 enables determination of approximate values for the disloca-
tion densities in Eq. 26, which together with Aij(ξ) in Eq. 18 enables determination
of the displacement and stresses throughout the medium. In addition, the calculation
of stress intensity factors (SIFs) is rather straightforward and discussed in Section 4.
Table B-1 in Appendix B illustrates SIF convergence for N = 3, 6, 9.
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Appendix B. Stress Intensity Factor Convergence
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Table B-1 Normalized SIFs for 2 parallel cracks in an infinite plane under remote tension,
where KI = FIσ

√
πa, KII = FIIσ

√
πa, and k1 = FI ; k2 = FII are determined using Eq. 28

a/h FI (N = 3) FI (N = 6) FI (N = 9) FII (N = 3) FII (N = 6) FII (N = 9)

0.01 0.99996 0.99996 0.99996 –1.8747×10−7 –1.8747×10−7 –1.8747×10−7

0.1 0.9963 0.9963 0.9963 –0.00018 –0.00018 –0.00018
0.2 0.9857 0.9857 0.9857 –0.0014 –0.0014 –0.0014
0.4 0.9505 0.9505 0.9505 –0.0094 –0.0094 –0.0094
0.6 0.9086 0.9086 0.9086 –0.0246 –0.0246 –0.0246
0.8 0.8706 0.8707 0.8707 –0.0429 –0.0429 –0.0429
1.0 0.8403 0.8404 0.8404 –0.0607 –0.0607 –0.0607

1.25 0.8130 0.8131 0.8131 –0.0793 –0.0793 –0.0793
1.66 0.7864 0.7860 0.7860 –0.1008 –0.1011 –0.1011
2.0 0.7754 0.7737 0.7737 –0.1122 –0.1128 –0.1128
5.0 0.7504 0.7441 0.7445 –0.1649 –0.1566 –0.1567

10.0 0.6941 0.7441 0.7385 –0.1992 –0.1785 –0.1792
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