

 ARL-TN-0796 ● SEP 2016

 US Army Research Laboratory

Development and Application of a Wireless,
Networked Raspberry Pi-Controlled Head-
Mounted Tactile Display (HMTD)

by David Chhan, Joel T Kalb, and Kimberly Myles

Approved for public release; distribution is unlimited.

ii

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-0796 ● SEP 2016

 US Army Research Laboratory

Development and Application of a Wireless,
Networked Raspberry Pi-Controlled Head-
Mounted Tactile Display (HMTD)

by David Chhan, Joel T Kalb, and Kimberly Myles
Human Research and Engineering Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2016
2. REPORT TYPE

Technical Note
3. DATES COVERED (From - To)

October 2014–July 2016
4. TITLE AND SUBTITLE

Development and Application of a Wireless, Networked Raspberry Pi-
Controlled Head-Mounted Tactile Display (HMTD)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

David Chhan, Joel T Kalb, and Kimberly Myles
5d. PROJECT NUMBER

H70
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
Human Research and Engineering Directorate
ATTN: RDRL- HRF-C
Aberdeen Proving Ground, MD 21005-5425

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-0796

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

As the head-mounted tactile display’s (HMTD’s) efficacy in augmenting Warfighter performance was studied and transitioned
from lab-based to field experimentation, the need for a portable and robust system emerged. Previously, a Windows-based
netbook computer was used as a tactor controller but its size, weight, and power consumption limited its use as a wearable,
outdoor device. Raspberry Pi (RPi), part of the “wearable computer” trend, became an ideal replacement. The RPi’s size and
weight support HMTD portability; the ad hoc wireless-networking mode allows a network of them to move freely while
communicating with one another without a centralized infrastructure. This is critical to field studies where team tactile
communication, on the move or in a highly dynamic setting, is a priority. This report details the development of RPi as a
tactor controller and fills informational gaps during development of the RPi-controlled HMTD. It lists procedural steps in
setting up the RPi and dealing with its functions and operations—a guiding manual for the RPi’s use as a low-cost controller
to power prototypes for field studies. While this report applies specifically to the RPi’s development as a tactor controller, we
believe the procedures are of general interest and applicable for mobile experimentations.
15. SUBJECT TERMS

Raspberry Pi, wireless ad hoc networking, head-mounted tactile display, tactile communication, HMTD

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

45

19a. NAME OF RESPONSIBLE PERSON

David Chhan
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-5985
 Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures v

List of Tables v

1. Introduction 1

2. The RPi 1

2.1 Raspberry Pi Model B+ Specifications 1

2.2 Raspbian Operating System 2

2.3 Setting up the RPi 3

2.4 Network–Internet Connection 3

2.4.1 Terminal Mode 4

2.4.2 GUI Desktop Mode 5

2.5 Useful Commands 6

3. Development of RPi as a Tactor Controller 7

3.1 Hardware 7

3.1.1 EAI C-2 Tactor 8

3.1.2 Class-D Audio Amplifier, Its Wiring, and RPi GPIO Pins Layout 9

3.1.3 Lipo Rechargeable Battery 11

3.2 Software 12

3.2.1 How to Make Waveforms and Generate a WAV File 12

3.2.2 How to Read Keyboard Input 12

3.2.3 How to Use RPi GPIO for Tactor Selection and Activation 12

3.2.4 How to Wirelessly Connect 2 or More RPi’s via Ad Hoc
Network 13

4. Application of the Wireless, Networked RPi HMTD 16

5. Summary 16

6. References 17

Approved for public release; distribution is unlimited.
iv

Appendix A. C Code to Generate Morse-Code Modulated Carrier Tones in
WAV Format 19

Appendix B. C Code to Read Keyboard Input 25

Appendix C. C Code to Access and Enable GPIO Pins Written by Gert van
Loo and Dom (elinux.org/RPi_GPIO_Code _Samples#pigpio) 27

Appendix D. C Code to Implement a Server Mode (from
BinaryTides.com) 29

Appendix E. C Code to Implement a Client Mode (from
BinaryTides.com) 33

List of Symbols, Abbreviations, and Acronyms 36

Distribution List 37

Approved for public release; distribution is unlimited.
v

List of Figures

Fig. 1 Components of the RPi Model B+ ... 2

Fig. 2 Raspbian configuration menu .. 3

Fig. 3 A working prototype of the wireless RPi tactor controller 7

Fig. 4 EAI C2 tactor .. 9

Fig. 5 Class-D audio amplifier ... 9

Fig. 6 A schematic of how the audio amp is wired ... 10

Fig. 7 RPi B+ GPIO pins layout ... 10

Fig. 8 Lithium ion polymer battery .. 11

Fig. 9 PowerBoost 1000C (right) and with USB port detached (left) 11

Fig. 10 TCP client–server flowchart illustrating network-protocol sequences,
concluding after the client closes the socket (used with permission
from Dartmouth College) ... 14

List of Tables

Table 1 RPi Model B+ specifications ... 2

Table 2 Hardware for building a wireless tactile controller using an RPi 8

Table 3 EAI C-2 tactor’s specifications.. 8

Approved for public release; distribution is unlimited.
vi

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
1

1. Introduction

The development of a wireless, networked tactor controller using a Raspberry Pi
(RPi) was motivated by the need to deploy a head-mounted tactile display (HMTD)
in field studies. These studies evaluated the efficacy of the display in augmenting
Warfighter performance. The previous version of the HMTD used a
Windows-based netbook computer that was suitable only for lab-based
experiments.1 Its limitations for the field were not only its 3-lb weight and 4-h
battery life but, more severely, the heat it generated within the confinement of a
backpack. Limited wireless range was also an issue. As our experiments
transitioned from lab to field, a more mobile and robust system was needed. When
evaluating a Warfighter’s ability to perceive directional information via the HMTD
while running and jogging, a lightweight, portable, low-power, heat- and shock-
resistant, rugged prototype tactor controller was required to support our data-
collection effort. Future field studies will involve Warfighters engaged in intense
activities and maneuvers like crawling and jumping on an obstacle course while
wearing the system. These activities could potentially damage the hard drive and
screen display of a netbook; therefore, the replacement of the netbook computer
with a credit-card-sized Raspberry Pi Model B+ (made available July 2014) was
required. Since future applications will also include the support of small-team and
squad communications, we implemented a peer-to-peer, ad hoc mode that permits
multiple RPi’s to be wirelessly connected. This application will be critical to the
development of a bidirectional HMTD to support up to squad-level
communications field tests. This technical note serves as a guiding manual for those
who wish to use RPi as a low-cost controller to power portable electronic
prototypes. While this manual applies specifically to the development of RPi as a
tactor controller, we believe the procedures are of general interest and applicable
for mobile experimentations with audio and video signals.

2. The RPi

2.1 Raspberry Pi Model B+ Specifications

We used an RPi Model B+ to replace a netbook computer as a wireless tactor
controller. Figure 1 is a picture of the RPi Model B+.

Approved for public release; distribution is unlimited.
2

Fig. 1 Components of the RPi Model B+ 2

Table 1 lists the specifications of the RPi Model B+.

Table 1 RPi Model B+ specifications

Processor system on chip (SoC) BCM2835 SoC
Central processing unit (CPU) 700 MHz single-core ARM1176JZF-S
Memory (SDRAM) 512 MB
Storage Micro storage device (SD), 4 GB or 8 GB
Expansion header 40
General Purpose Input/Output (GPIO) 26
USB 2.0 ports 4
Video input 15-pin MIPI camera interface (CSI) connector
Video output HDMI port
Audio output 3.5-mm jack
Network 10/100 M bit/s Ethernet port
Liquid crystal display (LCD) interface port
(DSI)

1

Power 650 mA, 3 W
Size 85 × 56 ×17 mm
Weight 45 g

2.2 Raspbian Operating System

The “officially recommended” operating system (OS) for RPi is a Linux-based
Raspbian OS. The OS was developed and optimized for RPi hardware, though there

4 USB ports

Ethernet
LAN port

GPIO pins

Audio jack

HDMI port

Power

Micro SD slot

1 cm

Approved for public release; distribution is unlimited.
3

are other third-party operating systems (Ubuntu, Windows, etc.) available for the
RPi. For convenience and general acceptance, we used the recommended Raspbian
OS. The OS is stored and installed on a micro-SD card. One can purchase a micro-
SD card with a preinstalled Raspbian OS. For self-installation, visit
http://raspberrypi.org/downloads and follow the instructions on the page. The
website provides good resources on how to install Raspbian OS and other third-
party OSs.

2.3 Setting up the RPi

Assuming the Raspbian OS is already installed on the micro-SD card, the RPi can
be set up for running with a display monitor (connected through HDMI port) and a
keyboard (connected through USB port). Once a display and a keyboard are
connected, power the RPi. A terminal-like window appears. If login is required, the
default username is pi and password is raspberry. (The password can be
changed in the configuration.) Run the configuration tool using the following
command. A menu-type window (Fig. 2) will appear. Use the arrow keys to
navigate and return key to select-menu options.

pi@raspberrypi ~ $ sudo raspi-config %Open
configuration tool setting

pi@raspberrypi ~ $ is the command prompt; sudo raspi-config is
the command; %Open configuration tool setting is the description
of the command. That format will be used throughout this technical note.

Fig. 2 Raspbian configuration menu

2.4 Network–Internet Connection

Once the RPi is set up and running, the next step is to connect it to the Internet.
Here, we describe a general way of how it is done using a Dynamic Host
Configuration Protocol (DHCP). In a later section, we will go into details of how
to use an ad hoc or peer-to-peer mode to form a cluster of networked RPi’s that

Approved for public release; distribution is unlimited.
4

allows us to communicate between multiple Pi’s without the need for a centralized
network such as a router. The DHCP is the common service available on the
network equipment (i.e., the router) that hands out unique IP addresses to all
computers that want to join the network. The network connection can be made
through a wired (Ethernet local area network [LAN]) or wireless (Wi-Fi USB
adapter) setup. For wired setup (Ethernet cable needed), connect the RPi to the
router through the Ethernet LAN port. Wi-Fi setup can be completed in the terminal
mode through a modification of the network interfaces or in the graphical user
interface’s (GUI’s) desktop mode through Wi-Fi Config application. A Wi-Fi USB
adapter is needed. For the Wi-Fi adapter, the RealTek RT5370 chipset is
recommended because we found it was the only one that worked and had consistent
network connectivity. Use the lsusb command to see a list of connected USB
devices and details.

2.4.1 Terminal Mode

In the terminal, type the following command to edit the interfaces file and edit the
file as follows:

pi@raspberrypi ~ $ sudo nano /etc/network/interfaces
 %open and edit the interfaces file
>
auto wlan0
iface wlan0 inet dhcp
wpa-ssid “SSID” %your router ESSID
wpa-psk “password” %your router password

Press Ctrl+x to exit the nano text editor and enter y to save the document.
Also edit wpa_supplicant.conf file as the following:

pi@raspberrypi ~ $ sudo nano
/etc/wpa_supplicant/wpa_supplicant.conf
>
ctrl_interface=DIR=/var/run/wpa_supplicant
GROUP=netdev
update_config=1
network={
 ssid=”SSID”
 psk=”password”
 proto=RSN
 pairwise=CCMP
}
Press Ctrl+x to exit the editor and enter y to save the document. Restart the
RPi with a command ‘sudo reboot’. After the reboot, the RPi should be
connected to the Wi-Fi network.

Approved for public release; distribution is unlimited.
5

2.4.2 GUI Desktop Mode
Make sure the /etc/network/interfaces file includes the following line:

wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf.

In the terminal, type the following command to open the GUI desktop mode:

pi@raspberrypi ~ $ startx %start a GUI desktop mode

Once the terminal switches to GUI desktop mode, open the “Wi-Fi Config”
application. A “wpa_gui” window will appear. You should be able to see the
Service Set Identifier (SSID) of your router. Use “scan” to see a list of available
Wi-Fi networks. Select the one you want to connect to and enter the password.

Once set up and connected, the RPi’s IP address and network Extended Service Set
Identifier (ESSID) can be checked using the following commands:

pi@raspberrypi ~ $ ifconfig %display the
network configuration
pi@raspberrypi ~ $ iwconfig %display
information about the access point
pi@raspberrypi ~ $ ip addr show eth0 %eth0 is the
Ethernet port.
> inet 192.168.1.20/24 brd 192.168.1.255 scope global
eth0
pi@raspberrypi ~ $ ip addr show wlan0 %wlan0 is the
Wi-Fi adapter.
> inet 192.168.1.15/24 brd 192.168.1.255 scope global
wlan0

The digits between inet and the / character are the RPi’s IP address. If the IP
address does not show up, RPi is not connected to the network. Once connected to
the Internet, we can update the system with the following commands3:

pi@raspberrypi ~ $ sudo apt-get update %check what
packages have been updated.
pi@raspberrypi ~ $ sudo apt-get upgrade %upgrade and
install new up-to-date packages.

The RPi can also be accessed headless (no monitor, screen, or keyboard connected
to the RPi) using a laptop computer with SSH (secure shell), assuming SSH is
enabled in the Raspberry Pi Software Configuration Tool (raspi-config) and given
that the RPi’s IP address is known. Access to the RPi using SSH can be achieved
through either wired or Wi-Fi as described previously with the Internet connection.
For Windows computer, use PuTTY (free online download) as an SSH client to

Approved for public release; distribution is unlimited.
6

connect to the RPi. Provide a host name or IP address and log in as “pi” with a
password (the default password is “raspberry” if it is not changed). For Mac OS
computers, use a Terminal or X11 (free online download). Type ssh pi@[ip
address] and enter the password to connect. If having a problem connecting to
the RPi, make sure your computer is connected to the same Wi-Fi network as the
RPi. If the RPi is assigned a static IP address, make sure to configure your
computer’s IP address to be in the range of the same private network class as the
RPi; that is, if the RPi’s IP address is 192.168.2.1 with the subnet mask of
255.255.255.0, your computer’s IP address should match the first 3 numbers with
the unique 4th as 192.168.2.5 with the same subnet mask. This can be done by
manually entering the numbers under the Transmission Control Protocol (TCP)/IP
tab in the network configuration advanced setting.

2.5 Useful Commands

Since the RPi uses a Linux-kernel-based OS, commands used in its terminal are
basically Linux commands. Here are some useful commands4:
ls % list the content in current directory
lsusb % list attached USB devices
cd % change current directory to a specified
one
pwd % print (display) working directory
mkdir % make a new directory
rmdir % remove a specified directory
nano example.txt % open example.txt using nano, the Linux

text editor
cat example.txt % list the content of the file
example.txt
startx % open the graphic user interface (GUI)
rm % remove a specified file
cp % copy a file and place it in a specified

location
mv % move a file to a specified location
chmod % change permission of a file
df / -h % display disk space
ping [ip address] % check if communication can be made with
 another host
ifconfig % display the network configuration
iwconfig % display information about the access
 point and signal quality
iwlist wlan0 scan % print a list of the currently available
 wireless networks
sudo su % become the root user
sudo reboot % reboot
sudo shutdown –h now % power off your Pi before pulling out
the power plug
exit % logout

Approved for public release; distribution is unlimited.
7

3. Development of RPi as a Tactor Controller

In our specific application of an HMTD, the RPi is used to control an array of
Engineering Acoustics, Inc. (EAI) C-2 tactors through a number of Class D audio
amplifiers. To drive the tactors, a generated tactile-signal waveform stored in the
micro-SD card is played through the audio port of the RPi using a system function
called “aplay”. Tactors are selectively enabled for activation using RPi GPIO pins.
Figure 3 shows a working prototype of our wireless RPi tactor controller with some
of its hardware components. In the following sections, we discuss a step-by-step
“how to” for each hardware and software component required to successfully
activate the tactors.

Fig. 3 A working prototype of the wireless RPi tactor controller

3.1 Hardware

A list of hardware items needed to build a wireless tactile controller is listed in
Table 2.

Wireless USB adapter

Audio amplifier

PowerBooster

Lipo battery 1cm

Approved for public release; distribution is unlimited.
8

Table 2 Hardware for building a wireless tactile controller using an RPi

Hardware Quantity
Tactors 4
RPi Model B+ 1
4-GB micro-SD card 1

Class D audio amplifier 2 (left and right channels can be used
separately to power 2 tactors)

Rechargeable lipoa battery 1
PowerBoost 5V boost 1
Micro USB to USB adapter 1

3.5-mm audio connector 1 (not needed if connected wires are
soldered onto the audio port directly)

RealTek RT5370 Wi-Fi USB adapter 1
Wire-wrapping wires . . .
Wire-wrap hand tool . . .
Soldering kit . . .
alipo: lithium-ion polymer.

3.1.1 EAI C-2 Tactor

Similar to a vibrator in a cellphone, the EAI C-2 tactor (shown in Fig. 4) is a
miniature vibrotactile transducer that has been optimized to create a strong
localized sensation on the body. It is designed with a primary resonance in the
200–300-Hz range that coincides with peak sensitivity of the Pacinian corpuscles,
the skin’s mechanoreceptors that sense vibration. Table 3 lists the specifications of
the C-2 tactor from EAI.

Table 3 EAI C-2 tactor’s specifications5

Physical dimension 1.2-inch diameter × 0.3 inch high
Weight 17 g
Exposed material Anodized aluminum polyurethane
Electrical wiring Flexible, insulated #24 AWG
Skin contactor 0.3-inch diameter, preloaded on skin
Electrical characteristics 7.0 Ω nominal
Insulation resistance 50 MΩ minimum at 25Vdc, leads to housing
Response time 33 ms max
Transducer linearity +/– 1 dB from sensory threshold to 0.04-inch peak displacement

Recommended drive Sine-wave tone bursts 250 Hz at 0.25A rms nominal, 0.5 A rms
max for short durations

Recommended driver Bipolar, linear or switching amplifier, 1 W max, 0.5 W typical

Approved for public release; distribution is unlimited.
9

Fig. 4 EAI C2 tactor5

3.1.2 Class-D Audio Amplifier, Its Wiring, and RPi GPIO Pins Layout

Figure 5 shows the TS2012 Class-D stereo amplifier, which is capable of delivering
2 × 2.8 W channels into 4-ohm impedance speakers. It is available at online
electronic retailers (such as Adafruit) for less than $10. Inside the miniature chip is
a Class-D controller, able to run from 2.7 V-5.5 V DC. Since the amplifier is
Class D, it is highly efficient (89% efficient when driving an 8Ω speaker at
1.5 W)—perfect for portable and battery-powered projects. It has built-in thermal
and over-current protection.

Fig. 5 Class-D audio amplifier6

The inputs of the amplifier go through 1.0 µF capacitors, so they are fully
“differential”. In our case, we simply tied the Right and Left to ground (see Fig. 6).
The outputs are “bridge tied”, meaning they connect directly to the outputs, not to
ground. They cannot be connected to another amplifier and must drive the speakers
directly. The enable pins SDL and SDR are enabled by either 3.3 V or 5 V so they
can be controlled by either the 3.3 V RPi or the 5 V Arduino. (Arduino is another
common and popular microcontroller.) Figure 6 also shows input and output wiring
of the amplifier. At the inputs of the amplifier, both VDD and GND can be
connected to either the battery or the RPi. Enable pins SDR and SDL are connected
to the RPi GPIO pins. The RPi GPIO layout is shown in Fig. 7. GPIO pins allow
RPi to interact with the physical world; thus, we used them as a switch to control

Approved for public release; distribution is unlimited.
10

and enable the tactor through amplifier enabled pins. The R+ and L+ are connected
to the audio output of the RPi (3.5-mm audio connector). At the output end, 2
tactors are connected to the left and right channels.

Fig. 6 A schematic of how the audio amp is wired

Function RPi B+ J8 Pin Function

3.3v 1 2 5v
GPIO2 3 4 5v
GPIO3 5 6 Ground
GPIO4 7 8 GPIO14

Ground 9 10 GPIO15
GPIO17 11 12 GPIO18
GPIO27 13 14 Ground
GPIO22 15 16 GPIO23

3.3v 17 18 GPIO24
GPIO10 19 20 Ground
GPIO9 21 22 GPIO25

GPIO11 23 24 GPIO8
Ground 25 26 GPIO7
ID_SD 27 28 ID_SC
GPIO5 29 30 Ground
GPIO6 31 32 GPIO12

GPIO13 33 34 Ground
GPIO19 35 36 GPIO16
GPIO26 37 38 GPIO20
Ground 39 40 GPIO21

Fig. 7 RPi B+ GPIO pins layout

Approved for public release; distribution is unlimited.
11

3.1.3 Lipo Rechargeable Battery

We used a lipo rechargeable battery, Model LP785060 (Fig. 8), to power both the
RPi and audio amplifiers. The battery is thin, light, and powerful. The output ranges
from 4.2 V when completely charged to 3.7 V. It has a capacity of 2500 mAh for a
total of about 10 Wh. It also is available at online electronic retailers, for less than
$15.

Fig. 8 Lithium ion polymer battery7

Since the RPi is powered by a 5 V micro-USB supply, we used a PowerBoost
1000C rechargeable 5 V lipo USB Boost to step up the 3.7 V lipo battery to 5 V. It
is available online for less than $20. The lipo battery can be connected to the
PowerBoost directly while the connection from the PowerBoost to the RPi needs a
USB-to-Micro USB adapter. In the left picture of Fig. 9 is the PowerBoost with a
detached USB port (soldering is needed to mount the USB port to the PowerBoost).

Fig. 9 PowerBoost 1000C (right) and with USB port detached (left)8

Approved for public release; distribution is unlimited.
12

3.2 Software

The code was written in C programming language using the nano text editor. There
are a number of subroutines that were used to run the tactile display. These include
subroutines for generating waveforms and a Waveform Audio (WAV) file, reading
keyboard entry, enabling/selecting RPi GPIO pins, and sending characters among
multiple RPi units using the TCP/IP wireless–ad hoc network. Details of the
programming codes are attached in Appendixes A through E. In the following
subsections is an overview of the functionality of each subroutine.

3.2.1 How to Make Waveforms and Generate a WAV File

WAV files are a standardized format for acoustic signals. The format used in this
project are mono, 16-bit samples with a sampling rate of 48 kHz. These can be
recorded from a microphone or generated using computer calculations. The
structure of a WAV file begins with a header chunk containing the file information
(e.g., file type and size) followed by a format chunk containing information such as
number of channels and sampling rate; this, in turn, is followed by a data chunk
containing the memory allocation for the total number of samples. The data stored
in this chunk are either mono or stereo with the left and right channels interleaved.
The finished file is written to the SD card for storage using the block-write binary
C command. The file can then be played out of the RPi audio stereo port using the
shell command “aplay (WAV ffile)”. The example code (Appendix A) shows how
a WAV file using Morse code was generated from the dot–dash script. This requires
a precalculation of the total number of samples needed in order to allocate memory.
The SD card can hold a large number of prerecorded WAV files that can be
accessed by either a basic–intermediate shell (also known as BASH) script or a C
program.

3.2.2 How to Read Keyboard Input

We have an array of tactors and a number of different WAV files to play, which
required a mechanism to control them using an input interface. For proof of concept
and prototyping demonstration, we chose a simple keyboard entry as our input
interface. An example C code to detect keyboard press and read keyboard input is
shown in Appendix B.9

3.2.3 How to Use RPi GPIO for Tactor Selection and Activation

General-purpose input/output can be programmed to select and connect to the
peripheral interfaces (in our case, the connected interface is the tactor). An example
C code of how to access and manipulate GPIO registers is shown in Appendix C.

Approved for public release; distribution is unlimited.
13

3.2.4 How to Wirelessly Connect 2 or More RPi’s via Ad Hoc Network

In an effort to transition our research from the lab to the field (i.e., outdoor
environment), we extended the capability of the RPi using a wireless connection.
In addition, in an outdoor environment where a router or access point is not
available, we needed to implement RPi in a wireless–ad hoc mode. The advantage
of an ad hoc network is that it is quick and easy to set up. An ad hoc mode or peer-
to-peer network does not require a centralized infrastructure like an access-point-
or router-type network. Computers on an ad hoc network can form their own
network and communicate among themselves. One disadvantage of such
implementation is that the computers need to be within range of their wireless
adapters. Our RPi unit, with the Wi-Fi adapter RT5370, has a range of about 100 ft
within direct line of sight. If needed, our RPi units can be programmed to switch
connection to the centralized Wi-Fi when an access point is available to get better
and wider coverage.

3.2.4.1 Wireless Ad Hoc Mode Setup

In an ad hoc-mode network, each individual RPi unit is assigned its own static IP
address, whereas in a centralized access-point network each RPi is assigned an IP
address from the router through DHCP (described in Subsection 2.4). We set up a
static IP address and an SSID in a shell script10 shown below. In this example, SSID
is pi_ala_mode and the static IP address is 192.168.2.1.

echo `pwd`
echo `ifconfig wlan0 down`
echo wlan0 down
echo `iwconfig wlan0 channel 1 essid pi_ala_mode mode
ad-hoc`
echo setting essid
echo `ifconfig wlan0 up`
echo wlan0 up
echo `ifconfig wlan0 192.168.2.2 netmask
255.255.255.0`
echo setting ip and netmask

Different RPi units must have different IP addresses with the same SSID; otherwise,
they will not be capable of communicating with each other.

3.2.4.2 Network Communication

We used a TCP/IP client–server protocol over wireless ad hoc mode for network
communication. Two Wi-Fi capable RPi units are needed for this example. One
serves as a client unit sending out commands and the other is a server unit waiting
and listening to receive commands. Check to make sure the SSID and IP address

Approved for public release; distribution is unlimited.
14

are set up correctly on both units. Use commands iwconfig and ip addr
show wlan0 to display the SSID and IP address. Try pinging with the command
ping [ip address] to see if the packets are transmitted and received without
any losses. If pinging is successful, you may proceed to execute server–client
programs for wireless networking. The sequences for the server and client
implementation under TCP/IP network protocol are illustrated in Fig. 10.

Fig. 10 TCP client–server flowchart illustrating network-protocol sequences, concluding
after the client closes the socket (used with permission from Dartmouth College)11

Approved for public release; distribution is unlimited.
15

The steps involved in establishing a TCP socket on the server side are as follows:

• Create a socket with the socket() function;

• Bind the socket to an address using the bind() function;

• Listen for connections with the listen() function;

• Accept a connection with the accept() function system call. This call
typically blocks until a client connects with the server.

• Send and receive data by means of send() and receive().

• Close the connection by means of the close() function.

The steps for establishing a TCP socket on the client side are as follows:

• Create a socket using the socket() function;

• Connect the socket to the address of the server using the connect() function;

• Send and receive data by means of the read() and write() functions.

• Close the connection by means of the close() function.

As show in Fig. 10, the server must run first to initiate the socket and binding
procedure with its specified port number. This allows the server to start listening
for the client connection and communication. After the server executes its server
program, the client can start its client program. At this time, the socket and binding
handshake between the 2 takes place and connection is initiated. Once connected,
the client can send binary characters (such as the examples in Appendixes D and
E12). There is example code written in C for running server (server.c) and client
(client.c) mode, respectively. The programs need compilation with commands gcc
server.c –o server or gcc client.c –o client. To run, type
./server on one RPi unit and ./client on the other.

The TCP/IP network protocol is not restricted to one-to-one communication; it can
be easily extended to multiple connections. For example, one client can connect
and talk to a selective server or multiple servers at the same time as long as their IP
addresses are distinctively assigned and known. To implement a seamless
bidirectional communication between multiple units using TCP/IP, a switching
capability between server (listening) and client (talking) would have to be
integrated.

Approved for public release; distribution is unlimited.
16

4. Application of the Wireless, Networked RPi HMTD

The development of the wireless, networked RPi HMTD system described in this
technical note enables us to study head-mounted tactile displays as an alternative
communication modality to maintain a high level of situation awareness while
unburdening cognitive load. We have completed 2 studies using Wi-Fi RPi HMTD:
1) comparison of computer-simulated city navigation via tactile stimulation and
visual guide, and 2) evaluation of the effects of head-tactile stimulation on shooting
performance. In the first study, the goal was to use tactile stimulation on the head
as a navigational tool to replace a visual guided display in a simulated environment.
We calculated the angle and distance between the avatar and the target, then
communicated that information to the RPi HMTD system via Wi-Fi network. The
RPi HMTD responded and stimulated a tactor on the head in the direction of the
target. The second study evaluated the effects of the head-tactile display on
shooting performance. The head tactor was stimulated just a few seconds after the
target popped up and before the shooter fired his weapon. We were able to use one
RPi to pick up the firing range’s target-up signal and wirelessly send the signal to
stimulate a tactor on another RPi-controlled HMTD worn by the shooter.

5. Summary

In this technical note, the development and application of a wireless and portable
Raspberry Pi-controlled HMTD were discussed. A how-to guide for each hardware
and software component needed to implement the HMTD was also provided.
Though the system is a working prototype, it is a capable tool that enables various
research studies in using the skin as a novel sensory modality for communication.
The RPi can do more than controlling tactors and can be extended to include a
number of peripheral interfaces such as audio recording and playback with a USB
headset (recommended: Plantronics Audio 478 USB Stereo Headset), video camera
recording and screen display, and Global Positioning System. Such features will
allow a more versatile wearable technology.

Approved for public release; distribution is unlimited.
17

6. References

1. Kalb JT, Amrein BE, Myles K. Instrumentation and tactor considerations
for a head-mounted tactile display. Aberdeen Proving Ground (MD): Army
Research Laboratory (US); 2008 Sep. Report No.: ARL-MR-705.

2. Raspberry Pi Model B 512MB RAM. [accessed 2016 Jul 7].
https://adafruit.com /products /1914.

3. Sjogelid S. Raspberry Pi for secret agents. Birmingham (UK): Packt
Publishing; 2013.

4. Unix Useful Commands. [accessed 2016 Jul 7].
http://www.tutorialspoint.com/unix/unix-useful-commands.htm.

5. C-2 Tactor. [accessed 2016 Jul 7]. http://bdml.stanford.edu.

6. Stereo 2.1W Class D Audio Amplifier–TPA2012. [accessed 2016 Jul 7].
http://www.adafruit.com/products/1552.

7. Lithium Ion Polymer Battery–3.7v 2500mAh. [accessed Jul 7].
https://www.adafruit.com/products/328.

8. PowerBoost 1000 Charger–Rechargeable 5V Lipo USB Boost @ 1A.
[accessed 2016 Jul 7]. https://www.adafruit.com/products/2465.

9. Ubuntu Forums. Detect arrow keys using termios.h. [accessed 2016 Sep
23]. https://ubuntuforums.org/showthread.php?t=2276177.

10. Stack Exchange. Raspberry Pi ad-hoc networking. [accessed 2016 Jul 7].
http://stackoverflow.com/questions/15423325/raspberry-pi-ad-hoc-
networking.

11. CS 60 computer networks, socket programming. Hanover (NH): Dartmouth
College, Department of Computer Science. [accessed 2016 July 7].
http://cs.dartmouth.edu/~campbell/cs60/socketprogramming.html.

12. Binary Tides. Server and client example with C sockets on Linux. [accessed
2016 Jul 7]. http://www.binarytides.com/server-client-example-c-sockets-
linux/.

Approved for public release; distribution is unlimited.
18

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
19

Appendix A. C Code to Generate Morse-Code Modulated Carrier
Tones in WAV Format

 This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.
20

/* compile with gcc makwav9.c -o makwav9 -lm */
/* the lm flag will link the math library */
#include <stdio.h>
#include <libusb-1.0/libusb.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <inttypes.h>

void dot(void);
void dash(void);
void space(void);
void setup_tactors(void);
void shutdown_tactors(void);
void send_cmd(char *d, int n);
void set_gain(char gain); // 0: 0x00 1: 0x40 2: 0x80 3: 0xc0, gain 0..3
uses most significant two bits
void set_tactors(char tbm); // tbm: tactor bit map 1: 0x1 2:0x2 3:0x4 4:0x8
5:0x10 6:0x20 7:0x40 8:0x80

/* define global variables before function main, local variables
 are defined within main function */
struct wavfile_header {
 char ChunkID[4];
 int ChunkSize;
 char Format[4];
 char Subchunk1ID[4];
 int Subchunk1Size;
 short AudioFormat;
 short NumChannels;
 int SampleRate;
 int ByteRate;
 short BlockAlign;
 short BitsPerSample;
 char Subchunk2ID[4];
 int Subchunk2Size;
};
int i,j,i1,i2,i3,i4,i5,amp;
int sample_rate;
double ph,ph1,frequency,c,s,c1,s1,c2,s2,c3,s3,t;
short *waveform;
char str1[80],str2[80]; //allocate space to hold combined strings in system
call
libusb_device *dev;
struct libusb_device_handle *devh = NULL;
int configuration = 1;
int interface = 1;
int r,rr,rw,n,num_written,num_read;
char chk;
char e[63];

int main(int argc, char *argv[]){
 if (argc !=3) {
 printf("\nUsage: %s 1/3_oct_band_no pulse_type \n",argv[0]);
 printf("for example: %s 15 6.\n",argv[0]);
 printf("for example: %s 24 5.\n",argv[0]);

Approved for public release; distribution is unlimited.
21

 }
 setup_tactors();
 set_gain(0xc0);
 set_tactors(0x1);
 FILE *fp; /* declare pointer to type FILE */
 int band_no = atoi(argv[1]);
 int pulse_no = atoi(argv[2]);
 frequency=exp(log(10)*band_no/10); //round to nearest 0.1 Hz
 printf("frequency = %f .\n",frequency);
 char *filename;
 printf("pulse_no = %d.\n",pulse_no);
 strcpy(str1,"temp_");
 if (pulse_no==1)
 strcat(str1,"CQ.wav");
 else if (pulse_no==2)
 strcat(str1,"HI.wav");
 else if (pulse_no==3)
 strcat(str1,"SOS.wav");
 else if (pulse_no==4)
 strcat(str1,"ESEEE.wav");
 else if (pulse_no==5)
 strcat(str1,"short.wav");
 else if (pulse_no==6)
 strcat(str1,"long.wav");
 printf("str1 = %s, sizeof(str1) = %d.\n",str1,sizeof(str1));
 filename = str1; // filename = argv[3]; /* sound.wav */
 sample_rate = 22050;
 amp = 32000;
 float dot_on_time = 0.12; /*0.06 0.24 = 5wpm */
 float dash_on_time = 3 * dot_on_time;
 float rise_fall_time = 0.1 * dot_on_time;
 float dot_sustain_time = dot_on_time - 2 * rise_fall_time;
 float dash_sustain_time = dash_on_time -2 * rise_fall_time;
 float off_time = dot_on_time;
 float dot_time = dot_on_time + off_time;
 float dash_time = dash_on_time + off_time;
 float off_time2 = 2 * off_time; /* adds to off_time to give 3 *
off_time between characters */
 int i6,i7,jj,kk;

 i1=floor(0.0+rise_fall_time * sample_rate);
 i2=floor(0.0+dot_sustain_time * sample_rate);
 i3=floor(0.0+dash_sustain_time * sample_rate);
 i4=floor(0.0+off_time * sample_rate);
 i5=floor(0.0 + off_time2 * sample_rate);
 i6=floor(0.0 + dot_time * sample_rate);
 i7=floor(0.0 + dash_time * sample_rate);

 ph = 2 * M_PI * frequency / sample_rate; c1=cos(ph); s1=sin(ph);
 ph1 = M_PI / (2 * i1); c3=cos(ph1); s3=sin(ph1);
 j=0;

 int num_samples;
// printf("Please select the value you want\n");
// scanf("%d", &number);
// number=argv[2];
 if(pulse_no==1) {

Approved for public release; distribution is unlimited.
22

 num_samples = 3*i6+5*i7+1*i5; // CQ
 waveform = (short *) malloc(num_samples * sizeof(short));
 dash(); dot(); dash(); dot(); space(); dash(); dash(); dot(); dash();
 } else if (pulse_no==2) {
 num_samples = 6*i6+0*i7+1*i5; // HI
 waveform = (short *) malloc(num_samples * sizeof(short));
 dot(); dot(); dot(); dot(); space(); dot(); dot();
 } else if (pulse_no==3) {
 num_samples = 6*i6+3*i7; // SOS
 waveform = (short *) malloc(num_samples * sizeof(short));
 dot(); dot(); dot(); dash(); dash(); dash(); dot(); dot(); dot();
 } if(pulse_no==4) {
 num_samples = 7*i6+0*i7+5*i5; // ESEEE
 waveform = (short *) malloc(num_samples * sizeof(short));
 dot(); space(); dot(); dot(); dot(); space(); dot(); space(); space();
dot(); space(); dot();
 } else if (pulse_no==5) {
 num_samples = 3*i6+0*i7; // Short Tap Tap Tap
 waveform = (short *) malloc(num_samples * sizeof(short));
 dot(); dot(); dot();
 } else if (pulse_no==6) {
 num_samples = 0*i6+3*i7+2*i5; // Long Tap Tap Tap
 waveform = (short *) malloc(num_samples * sizeof(short));
 dash(); space(); dash(); space(); dash();
 }

 short num_channels = 1; /* 1: mono, 2: stereo */
 short bits_per_sample = 16; /* make a mono 16-bit WAV file */
 int data_bytes = num_samples * num_channels * bits_per_sample / 8; /* bytes
of data */
 int chunk_size = 36 + data_bytes; /* size of rest of chunk following this
number */
 /* also size of entire file - 8 bytes
*/
 struct wavfile_header header;
 strncpy(header.ChunkID,"RIFF",4); /* at 0 */
 header.ChunkSize = chunk_size; /* at 4 */
 strncpy(header.Format,"WAVE",4); /* at 8 */
 strncpy(header.Subchunk1ID,"fmt ",4);/* at 12 */
 header.Subchunk1Size = 16; /* at 16, rest of subchunk follows
this number */
 header.AudioFormat = 1; /* at 20, PCM mode, linear
quantization */
 header.NumChannels = num_channels; /* at 22 */
 header.SampleRate = sample_rate; /* at 24 */
 header.ByteRate = sample_rate * num_channels * bits_per_sample / 8; /* at
28 */
 header.BlockAlign = num_channels * bits_per_sample / 8; /* at 32 */
 header.BitsPerSample = bits_per_sample; /* at 34 */
 strncpy(header.Subchunk2ID,"data",4); /* at 36 */
 header.Subchunk2Size = data_bytes; /* at 40, number bytes in data, size
of read */
 /* of the subchunk following this
number */
 /* at 44 start of sound data
(left,right order stereo) */

Approved for public release; distribution is unlimited.
23

 /* create instance of the FILE structure and returns a pointer to that
structure */
 fp = fopen(filename,"wb"); /* opens file in binary mode for writing to new
or over old file */
 fwrite(&header,sizeof(header),1,fp); /* writes block of data from memory to
binary-mode file */
 fwrite(waveform,sizeof(short),num_samples,fp); /* writes waveform array as
a single "element" */
 fclose(fp); /* close file, flush buffer */
 free(waveform);
 strcpy(str2,"aplay ");
 strcat(str2,filename);
 printf("str = %s, sizeof(str2) = %d.\n",str2,sizeof(str2));
 system(str2);
 shutdown_tactors();
 return 0;
}

void dot(void) {
 c=1; s=0;
 c2=1; s2=0;
 for(i=0;i<i1;i++,j++) { /* dot rise */
 waveform[j]=amp*s*s2*s2;
 t=c*c1-s*s1;
 s=c*s1+s*c1;
 c=t;
 t=c2*c3-s2*s3;
 s2=c2*s3+s2*c3;
 c2=t;
 }
 for(i=0;i<i2;i++,j++) { /* dot sustain */
 waveform[j]=amp*s;
 t=c*c1-s*s1;
 s=c*s1+s*c1;
 c=t;
 }
 c2=1; s2=0;
 for(i=0;i<i1;i++,j++) { /* dot fall */
 waveform[j]=amp*s*c2*c2;
 t=c*c1-s*s1;
 s=c*s1+s*c1;
 c=t;
 t=c2*c3-s2*s3;
 s2=c2*s3+s2*c3;
 c2=t;
 }
 for(i=0;i<i4;i++,j++) { /* off after dot */
 waveform[j]=0;
 }
}

void dash(void) {
 c=1; s=0;
 c2=1; s2=0;
 for(i=0;i<i1;i++,j++) { /* dot rise */
 waveform[j]=amp*s*s2*s2;
 t=c*c1-s*s1;

Approved for public release; distribution is unlimited.
24

 s=c*s1+s*c1;
 c=t;
 t=c2*c3-s2*s3;
 s2=c2*s3+s2*c3;
 c2=t;
 }
 for(i=0;i<i3;i++,j++) { /* dot sustain */
 waveform[j]=amp*s;
 t=c*c1-s*s1;
 s=c*s1+s*c1;
 c=t;
 }
 c2=1; s2=0;
 for(i=0;i<i1;i++,j++) { /* dot fall */
 waveform[j]=amp*s*c2*c2;
 t=c*c1-s*s1;
 s=c*s1+s*c1;
 c=t;
 t=c2*c3-s2*s3;
 s2=c2*s3+s2*c3;
 c2=t;
 }
 for(i=0;i<i4;i++,j++) { /* off after dot */
 waveform[j]=0;
 }
}

void space(void) {
 for(i=0;i<i5;i++,j++) { /* off after character */
 waveform[j]=0;
 }
}

Approved for public release; distribution is unlimited.
25

Appendix B. C Code to Read Keyboard Input

 This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.
26

#include <termios.h>
#include <unistd.h>
#include <stdio.h>

Int getch(int ms);
Int main(void){
Int x;
Do {
If ((x = getch(500))){
If (48<=x && x<=57)
X=x-48;
Else if (65<=x && x<=90)
X=x-55;
Else if (97<=x && x<=122)
X=x-87;
Else
X=0;
Print(“Got it: ‘%d’, ‘%c’\n”,x,x);
} else {
Printf(“Not yet!\n”);
}
While (x != ‘q’);
Return 0;
}

Int getch(int ms) {
 Int ret;
 Struct termio oldt, newt;
 Struct pollfd pfds[1];

Tcgetattr(STDIN_FILENO,&oldt);
Newt=oldt;
Newt.c_lflag &=~(ICANON | ECHO);
Tcsetattr(STDIN_FILENO, TCSANOW, &newt);
Pfds[0].fd=STDIN_FILENO;
Pfds[0].events=POLLIN;
Poll(pfds,1,ms);
If (pfds[0].revents&POLLIN){
 Char ch;
 Read(STDIN_FILENO,&ch,1);
 Ret=ch;
} else {
Ret=0;
}
tcsetattr(STDIN_FILENO,TCSANOW,&oldt);
return ret;
}

Approved for public release; distribution is unlimited.
27

Appendix C. C Code to Access and Enable GPIO Pins Written by Gert van Loo
and Dom (elinux.org/RPi_GPIO_Code _Samples#pigpio)

 This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.
28

#define BCM2708_PERI_BASE 0x20000000
#define GPIO_BASE (BCM2708_PERI_BASE + 0x200000) /* GPIO
controller */

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <unistd.h>

#define PAGE_SIZE (4*1024)
#define BLOCK_SIZE (4*1024)

int mem_fd;
void *gpio_map;

// I/O access
volatile unsigned *gpio;

// GPIO setup macros. Always use INP_GPIO(x) before using OUT_GPIO(x) or
SET_GPIO_ALT(x,y)
#define INP_GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)*3))
#define OUT_GPIO(g) *(gpio+((g)/10)) |= (1<<(((g)%10)*3))
#define SET_GPIO_ALT(g,a) *(gpio+(((g)/10))) |=
(((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))

#define GPIO_SET *(gpio+7) // sets bits which are 1 ignores bits which are
0
#define GPIO_CLR *(gpio+10) // clears bits which are 1 ignores bits which are
0

#define GET_GPIO(g) (*(gpio+13)&(1<<g)) // 0 if LOW, (1<<g) if HIGH

#define GPIO_PULL *(gpio+37) // Pull up/pull down
#define GPIO_PULLCLK0 *(gpio+38) // Pull up/pull down clock

Approved for public release; distribution is unlimited.
29

Appendix D. C Code to Implement a Server Mode (from BinaryTides.com)

 This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.
30

#include<stdio.h>
#include<string.h> //strlen
#include<sys/socket.h>
#include<arpa/inet.h> //inet_addr
#include<unistd.h> //write

int main(int argc , char *argv[])
{
 int socket_desc , client_sock , c , read_size;
 struct sockaddr_in server , client;
 char client_message[2000];

 //Create socket
 socket_desc = socket(AF_INET , SOCK_STREAM , 0);
 if (socket_desc == -1)
 {
 printf("Could not create socket");
 }
 puts("Socket created");

 //Prepare the sockaddr_in structure
 server.sin_family = AF_INET;
 server.sin_addr.s_addr = INADDR_ANY;
 server.sin_port = htons(8888);

 //Bind
 if(bind(socket_desc,(struct sockaddr *)&server , sizeof(server)) < 0)
 {
 //print the error message
 perror("bind failed. Error");
 return 1;
 }
 puts("bind done");

 //Listen
 listen(socket_desc , 3);

 //Accept and incoming connection
 puts("Waiting for incoming connections...");
 c = sizeof(struct sockaddr_in);

 //accept connection from an incoming client
 client_sock = accept(socket_desc, (struct sockaddr *)&client,
(socklen_t*)&c);
 if (client_sock < 0)
 {
 perror("accept failed");
 return 1;
 }
 puts("Connection accepted");

 //Receive a message from client
 while((read_size = recv(client_sock , client_message , 2000 , 0)) > 0)
 {
 //Send the message back to client

Approved for public release; distribution is unlimited.
31

 write(client_sock , client_message , strlen(client_message));
 }

 if(read_size == 0)
 {
 puts("Client disconnected");
 fflush(stdout);
 }
 else if(read_size == -1)
 {
 perror("recv failed");
 }

 return 0;
}

Approved for public release; distribution is unlimited.
32

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
33

Appendix E. C Code to Implement a Client Mode (from BinaryTides.com)

 This appendix appears in its original form, without editorial change.

Approved for public release; distribution is unlimited.
34

#include<stdio.h> //printf
#include<string.h> //strlen
#include<sys/socket.h> //socket
#include<arpa/inet.h> //inet_addr

int main(int argc , char *argv[])
{
 int sock;
 struct sockaddr_in server;
 char message[1000] , server_reply[2000];

 //Create socket
 sock = socket(AF_INET , SOCK_STREAM , 0);
 if (sock == -1)
 {
 printf("Could not create socket");
 }
 puts("Socket created");

 //IP address of the server
 server.sin_addr.s_addr = inet_addr("192.168.2.1 ");
 server.sin_family = AF_INET;
 server.sin_port = htons(8888);

 //Connect to remote server
 if (connect(sock , (struct sockaddr *)&server , sizeof(server)) < 0)
 {
 perror("connect failed. Error");
 return 1;
 }

 puts("Connected\n");

 //keep communicating with server
 while(1)
 {
 printf("Enter message : ");
 scanf("%s" , message);

 //Send some data
 if(send(sock , message , strlen(message) , 0) < 0)
 {
 puts("Send failed");
 return 1;
 }

 //Receive a reply from the server
 if(recv(sock , server_reply , 2000 , 0) < 0)
 {
 puts("recv failed");
 break;
 }

 puts("Server reply :");
 puts(server_reply);

Approved for public release; distribution is unlimited.
35

 }

 close(sock);
 return 0;
}

Approved for public release; distribution is unlimited.
36

List of Symbols, Abbreviations, and Acronyms

CPU central processing unit

DHCP Dynamic Host Configuration Protocol

EAI Engineering Acoustics, Inc.

ESSID Extended Service Set Identifier

GPIO General Purpose Input/Output

GUI graphical user interface

HMTD head-mounted tactile display

IP Internet Protocol

LAN local area network

LCD liquid crystal display

lipo lithium-ion polymer

OS operating system

RPi Raspberry Pi

SD storage device

SoC system on chip

SSH secure shell

SSID Service Set Identifier

TCP Transmission Control Protocol

USB universal serial bus

WAV Waveform Audio

Approved for public release; distribution is unlimited.
37

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO L
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 DIR USARL
 (PDF) RDRL HRF C
 D CHHAN

	List of Figures
	List of Tables
	1. Introduction
	2. The RPi
	2.1 Raspberry Pi Model B+ Specifications
	2.2 Raspbian Operating System
	2.3 Setting up the RPi
	2.4 Network–Internet Connection
	2.4.1 Terminal Mode
	2.4.2 GUI Desktop Mode

	2.5 Useful Commands

	3. Development of RPi as a Tactor Controller
	3.1 Hardware
	3.1.1 EAI C-2 Tactor
	3.1.2 Class-D Audio Amplifier, Its Wiring, and RPi GPIO Pins Layout
	3.1.3 Lipo Rechargeable Battery

	3.2 Software
	3.2.1 How to Make Waveforms and Generate a WAV File
	3.2.2 How to Read Keyboard Input
	3.2.3 How to Use RPi GPIO for Tactor Selection and Activation
	3.2.4 How to Wirelessly Connect 2 or More RPi’s via Ad Hoc Network
	3.2.4.1 Wireless Ad Hoc Mode Setup
	3.2.4.2 Network Communication

	4. Application of the Wireless, Networked RPi HMTD
	5. Summary
	6. References
	Appendix A. C Code to Generate Morse-Code Modulated Carrier Tones in WAV Format0F(
	Appendix B. C Code to Read Keyboard Input1F(
	Appendix C. C Code to Access and Enable GPIO Pins Written by Gert van Loo and Dom (elinux.org/RPi_GPIO_Code _Samples#pigpio)2F(
	Appendix D. C Code to Implement a Server Mode (from BinaryTides.com)3F(
	Appendix E. C Code to Implement a Client Mode (from BinaryTides.com)4F(
	List of Symbols, Abbreviations, and Acronyms

