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Abstract

Background: The malarial parasite Plasmodium falciparum undergoes a complex life cycle, including an
intraerythrocytic developmental cycle, during which it is metabolically dependent on the infected human red blood
cell (RBC). To describe whole cell metabolic activity within both P. falciparum and RBCs during the asexual
reproduction phase of the intraerythrocytic developmental cycle, we developed an integrated host-parasite
metabolic modeling framework driven by time-dependent gene expression data.

Results: We validated the model by reproducing the experimentally determined 1) stage-specific production of
biomass components and their precursors in the parasite and 2) metabolite concentration changes in the medium
of P. falciparum-infected RBC cultures. The model allowed us to explore time- and strain-dependent P. falciparum
metabolism and hypothesize how host cell metabolism alters in response to malarial infection. Specifically, the
metabolic analysis showed that uninfected RBCs that coexist with infected cells in the same culture decrease their
production of 2,3-bisphosphoglycerate, an oxygen-carrying regulator, reducing the ability of hemoglobin in these
cells to release oxygen. Furthermore, in response to parasite-induced oxidative stress, infected RBCs downgraded
their glycolytic flux by using the pentose phosphate pathway and secreting ribulose-5-phosphate. This mechanism
links individually observed experimental phenomena, such as glycolytic inhibition and ribulose-5-phosphate
secretion, to the oxidative stress response.

Conclusions: Although the metabolic model does not incorporate regulatory mechanisms per se, alterations in
gene expression levels caused by regulatory mechanisms are manifested in the model as altered metabolic states.
This provides the model the capability to capture complex multicellular host-pathogen metabolic interactions of
the infected RBC culture. The system-level analysis revealed complex relationships such as how the parasite can
reduce oxygen release in uninfected cells in the presence of infected RBCs as well as the role of different metabolic
pathways involved in the oxidative stress response of infected RBCs.

Keywords: Host-pathogen interactions, Plasmodium falciparum, Metabolism, Intraerythrocytic developmental cycle,
Gene expression data, Oxidative stress response

Background
Despite extensive efforts to control malaria, the disease
continues to kill >600,000 and sicken hundreds of million
people annually [1]. Current strategies in vector control,
advances in diagnostic techniques, and drug development
have proven insufficient in controlling and eliminating

malaria due to the emergence of resistance to existing
drugs and the lack of effective prophylactic vaccines [1].
Fundamentally understanding the interactions of the mal-
aria parasite with its hosts during its complex multistage
life cycle have the potential to identify new key biological
and physiological processes that could lead to new and
improved antimalarial treatments. In the present study,
we delineate strain-specific metabolism and address
host-pathogen metabolic interactions that Plasmodium
falciparum, the most virulent causative agent of malaria,
engages in with its host environment [2].
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The life cycle of P. falciparum includes a number of
radically different host-dependent morphological stages
[3]. It enters the human host through the bite of an
infected Anopheles mosquito, where the infective sporozo-
ites rapidly move to the liver and proliferate asymptomati-
cally into merozoites. In turn, the merozoites invade red
blood cells (RBCs) in the bloodstream, where some mero-
zoites differentiate into sexual forms to reinfect mosqui-
tos. However, the bulk of the merozoites undergo asexual
reproduction during a ~48-h-long intraerythrocytic devel-
opmental cycle (IDC), which allows the parasites to infect
many more RBCs. A tightly controlled development pro-
gram characterizes the IDC, with one infecting merozoite
undergoing 4–5 asexual reproduction cycles [4]. Initially,
the merozoites establish themselves in a parasitophorous
vesicle, shed invasion-specific organelles, and enter into
the trophozoite form. The young trophozoite is initially
termed a “ring”-stage, characterized by low metabolic ac-
tivity, which after about 18 h post-infection rapidly grows
and expands by consuming host metabolites to encompass
the bulk of the infected erythrocyte volume. At around
30 h post-infection, the parasite enters the schizont stage,
rapidly divides, and at ~48 h releases merozoites into the
blood stream to complete the cycle.
During this process, P. falciparum alters key metabolic

processes among infected and circulating RBCs to pro-
mote the colonization of the blood habitat. For example,
P. falciparum inhibits two enzymes in the glycolysis
pathway (phosphofructokinase [PFK] and pyruvate kinase
[PYK]) in RBCs that are cocultured with infected RBCs
but are not infected themselves, to decrease glucose
utilization in the uninfected RBCs [5]. This inhibition en-
sures better glucose availability for the infected cells. Simi-
larly, it could be reasonably assumed that the parasite also
controls the glucose consumption of infected RBCs [6] to
reserve this major energy source for itself. Presumably to
compensate for the energy shortage in infected RBCs, P.
falciparum also supplies ATP to its host through adenyl-
ate translocator proteins [7]. Furthermore, infected RBCs
experience oxidative stress, which is intimately linked to
glutathione metabolism and the pentose phosphate path-
way [8]. These reactions and processes do not occur in
isolation but, rather, are connected in a comprehensive
systemic response. To unravel the metabolic components
of the host response to malarial infection, we need a
model that can simultaneously handle the coupled system
of infected RBCs, uninfected RBCs, and the P. falciparum
parasite itself. The technique of genome-scale metabolic
network simulations provides the means to perform such
system-level investigations.
Genome-scale metabolic networks are composed of

interconnected biochemical reactions, each processing
particular metabolites spontaneously or catalyzed through
enzymes encoded by genes. Analyzing these networks

under certain constrained conditions, such as limited nu-
trient uptake, allow for the prediction of cellular growth
(biomass accumulation) and other phenotypic functions
related to metabolism [9]. For example, metabolic net-
works for P. falciparum have been developed and used to
identify essential genes/reactions that represent candidates
for target-based antimalarial drug discovery [6, 10–14].
Importantly, these network descriptions have been used
with IDC stage-specific gene expression data to instantiate
ring-, trophozoite-, and schizont-specific metabolic net-
works to predict uptake or secretion of metabolites [12].
These studies were later extended by our group to capture
stage-specific growth phenotypes and biomass metabolite
production [15]. Among these metabolic descriptions,
only the network model developed by Huthmacher et al.
[6] includes explicit consideration of host metabolism
within P. falciparum-infected RBCs. This model was de-
signed to capture the stage-specific presence or absence of
metabolic reactions in the network but does not address
quantitative flux changes or the interplay between infected
and uninfected RBCs. To overcome these limitations and
to address the dynamic aspect of the host-pathogen meta-
bolic interactions, we developed a model that predicts
metabolic fluxes within both P. falciparum and its host
RBCs at each hour during the IDC.
We created a new computational framework that expli-

citly takes into account genome-scale metabolic networks
of both the parasite and the host RBC, metabolite exchange
between these species, and uninfected RBCs to represent
all components under in vitro culture conditions. Using the
available experimental parasite gene expression data and
media composition as the primary input, the model pre-
dicted metabolite utilization measured in the media during
the IDC, including the major energy metabolites and amino
acid uptake/secretion, to a high degree of accuracy. Energy
metabolism, fluxes through the tricarboxylic acid cycle, and
the accumulation of metabolite components into the bio-
mass, i.e., the main constituent building blocks of the or-
ganisms, was strongly dependent on time and stage of the
IDC, with high overall similarities between the P. falcip-
arum strains HB3, 3D7, and Dd2, but also with noticeable
differences in nicotinamide adenine dinucleotide (NAD),
flavin adenine dinucleotide (FAD), protoheme, and poly-
amine processing, for example.
The addition of explicitly modeling host RBC meta-

bolic reactions allowed us to explore how the infection
of P. falciparum affected metabolism in both uninfected
and infected RBCs. Because we do not capture all host-
pathogen interactions that occur in infected RBC cultures,
our approach was to effectively model known parasite ac-
tions, for example, by constraining specific metabolite
fluxes, and capture the host metabolic consequences of
these interactions. The direct manipulation of fluxes
allowed us to predict the metabolic host alterations for
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otherwise unknown molecular or regulatory interaction
mechanisms. These analyses suggested that the oxygen-
releasing capability of uninfected RBCs cocultured with P.
falciparum-infected RBCs was decreased, providing a mo-
lecular mechanism that could contribute to hypoxia in mal-
arial infection. In addition, we used the model to describe
the role of metabolism in the oxidative stress response of
infected RBCs, which provided a rationale for why patients

with enzyme deficiencies in the pentose phosphate pathway
exhibit resistance to malaria.

Methods
Overview
We calculated metabolic fluxes in human RBCs for two
different culture systems for which experimentally mea-
sured metabolomics data are available [16]. Figure 1a

Fig. 1 Schematic description for calculating metabolic fluxes in Plasmodium falciparum and human red blood cells. a Uninfected and infected human red
blood cell (RBC) cultures. We simulated metabolic activity within RBCs for two cell culture conditions, i.e., an uninfected culture that consists of normal
RBCs and an infected culture consisting of P. falciparum-infected RBCs and cocultured uninfected RBCs. b Modeling framework. In order to describe
metabolism in the infected cultured system, we used separate metabolic network descriptions for each RBC component. The P. falciparummodel was
imbedded in a separate compartment of the infected RBC, allowing metabolite uptake and secretion between these entities. Direct metabolite uptake and
secretion with the medium was only possible for the infected and cocultured RBC model. c Workflow of flux calculations. We used experimental
metabolomic data of the uninfected RBC culture [16] to determine normal and cocultured RBC fluxes using the RBC metabolic network. As for infected
RBCs, we combined RBC and P. falciparummetabolic networks into one integrated network and incorporated the parasite’s gene expression data to
predict both host RBC and P. falciparummetabolic fluxes. cRBC, cocultured uninfected RBCs; iRBC, P. falciparum-infected RBCs; nRBC, normal RBCs; MNPf,
metabolic network of P. falciparum; MNRBC, metabolic network of RBC; NIC, number of internal compartments; NM, number of metabolites; NR, number of
reactions; RPMI, Roswell Park Memorial Institute
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shows 1) the uninfected culture, which consisted of
normal RBCs in the absence of P. falciparum, and 2) the
infected culture, consisting of a mixture of P. falciparum-
infected and uninfected RBCs. The infected culture condi-
tion was set to 10 % infected cells and 90 % uninfected
cocultured RBCs [16].
Figure 1b shows the modeling framework and connec-

tions (metabolite secretion and uptake) between the com-
ponents of the infected RBC culture. We used established
metabolic networks with minor modification, as detailed
below, to capture metabolic processes within cocultured
and infected RBCs, where the P. falciparum metabolic
network was embedded as a separate compartment in the
infected cell. Exchange fluxes (thick arrows in Fig. 1b) ac-
count for uptake of nutrients and secretion of metabolites
to the medium and between different compartments,
including metabolite exchange between P. falciparum
and the cytosol of the infected RBC.
Figure 1c shows the overall work flow of the flux

calculations used to estimate metabolic activity within the
different culture systems. We used experimental metabo-
lomic data of the uninfected RBC culture [16] to deter-
mine fluxes in normal and cocultured RBCs based on
the host RBC metabolic network (see Additional file 1:
Text S1 and below). As one component of this work,
we predicted fluxes within RBCs infected with each of
three P. falciparum strains (HB3, 3D7, and Dd2). We
estimated fluxes within both the host and parasite by
combining the metabolic networks of the RBC [17] and
P. falciparum [15] into one integrated network and,
subsequently, for each strain, instantiating the network
with the strain-specific expression data [18, 19]. Given
the calculated fluxes in both cocultured and infected RBCs,
we predicted the metabolite concentration changes for the
infected RBC culture and validated the results using the
available experimental data for the 3D7 strain [16]. De-
tailed descriptions of the data sets (including metabolic
networks and gene expression data) and the computational
procedures for flux estimations are given below.
The model framework explicitly accounts for metabolic

and exchange reactions that are constitutively present in
RBCs and the parasite, but leave out other mechanisms
that mediate host-pathogen interactions. Although the de-
tailed mechanisms behind these interactions are generally
unknown, we can still use the developed framework to
study the effect of these interactions. Thus, we have taken
an effective approach where we constrain fluxes based on
direct or indirect literature evidence and study the down-
stream effect of these perturbations in the context of the
complete set of coupled metabolic reactions that constitute
the computational model of the infected culture (Fig. 1b).
All scripts, codes, and data files used to generate the

results are provided in http://bhsai.org/downloads/mal-
aria/Additional file 2.zip.

Metabolic networks
Host metabolic network
We started from the RBC metabolic network (iAB-RBC-
283) developed by Bordbar et al. [17], which is a
proteomic-based reconstruction that captures different
metabolic pathways related to carbohydrates, nucleo-
tides, amino acids, cofactors, and lipids. In addition to
these pathways, we inserted a glutathione oxidization re-
action to capture oxidative stress responses [20]. We
also added reactions, including pantothenate kinase and
Albumax II (a lipid-rich bovine serum albumin protein)
degradation, to be able to capture and monitor the ob-
served metabolite concentration changes in the medium
(see Additional file 1: Text S1 for details). The final RBC
model contained 469 reaction and 342 metabolites.

Parasite metabolic network
We used the parasite metabolic network model previ-
ously developed by us to describe the time-dependent
metabolism of P. falciparum during the IDC [15]. This
network, derived from the iTH366 network [12], in-
cludes a set of biomass functions instead of a single bio-
mass objective function, allowing us to monitor the
timing of the production of different biomass compo-
nents [15]. We further modified this network by adding
ATP secretion [7] and separating hemoglobin degrad-
ation into two reactions: the cleavage of hemoglobin into
peptides and the degradation of peptides into free amino
acids [21]. For the peptide degradation, we added the genes
(PF14_0517, PF14_0439, PFI1570c, and MAL13P1.56) that
encode the related aminopeptidase enzyme [22]. The final
P. falciparum model contained 1024 reactions and tracked
921 metabolites in three different internal compartments:
cytosol, mitochondria, and apicoplast.

The integrated host-parasite metabolic network
We developed an integrated malarial host-parasite network
to represent the overall metabolism in P. falciparum-in-
fected human RBCs. Formally, this network included all
intracellular compartments in the P. falciparum metabolic
network in a separate parasite compartment in the RBC.
This construction allowed for metabolite exchanges be-
tween the parasite and host, as well as indirectly to the
extracellular medium via the host cell (Fig. 1b).
We placed the intracellular reactions and metabolites

of the P. falciparum network [15] into the corresponding
cytosol, mitochondria, and apicoplast compartments of the
parasite and replaced the original extracellular metabolites
[15] with the corresponding materials from the RBC cyto-
sol compartment. In addition, we added an ATP transport
reaction from the parasite cytosol to the RBC compart-
ment, allowing the secretion of this metabolite from the
parasite into the host environment [7]. We assumed this
secretion flux to be no more than 5 % of the ATP
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utilization rate by non-metabolic activities, setting the
maximum secretion rate to 2.8 mmol/(h∙1012 RBC) [7].
We placed all intracellular reactions and metabolites

of the original RBC network [17] into the RBC cytosol
compartment. Based on the observation that the ratio of
the reduced to oxidized glutathione levels in infected
RBCs is roughly 10 times that of the ratio in normal
RBCs [20], indicating a higher level of oxidative stresses
faced by P. falciparum-infected RBCs, we forced the flux
for the glutathione oxidization reaction to be 10 times
its flux in normal RBCs. We also included transport re-
actions representing the metabolite exchanges between
the RBC and extracellular compartments (medium) into
the integrated network. This included all the original
RBC transport reactions [17] as well as the transport re-
actions for 1) the metabolites that exist in the extracellu-
lar compartment of the parasite network [15] but are
missing in the host network [17] and 2) metabolites
whose uptake/secretion require ATP or other cofactors
through membrane transport pathways induced by P.
falciparum in the infected RBC [23].

Gene expression data for P. falciparum during the IDC
Similar to our previous approach [15], we used gene ex-
pression data collected hourly from synchronized popu-
lations of P. falciparum during the IDC [18, 19]. Here,
we included data for all three P. falciparum strains
(HB3, 3D7, and Dd2) to compare strain-specific metabolic
activity. We processed the time-series gene expression data
to account for the mRNA/protein mismatch using the ex-
perimentally measured time difference between when a
gene was transcribed and when the synthesized proteins
appeared [24] to shift the gene expression data to when the
enzymes appear [15]. The outcome of this procedure
was an expression level rj

t for each reaction j at each
time point t that is representative of the corresponding
enzyme activity.

Predicting metabolic fluxes in cocultured RBCs
We estimated metabolic fluxes (vj

cRBC) in cocultured RBCs
by solving for vj in the following optimization problem:

min
X
j∈RBC

ωj vj−vnRBCj

���
��� ð1Þ

s:t: SRBC⋅v ¼ 0

lb ≤ v ≤ ub

vj ≤ f ⋅ vnRBCj j ¼ PYK or PFK

where vj
nRBC represents the predicted fluxes in normal

RBCs (see Additional file 1: Text S1 for the calculation
of vj

nRBC), ωj is a coefficient for each reaction j of the ob-
jective function, v denotes the vector of reaction fluxes

in the host metabolic network and its component vj rep-
resents the flux through reaction j in units of mmol/
(h∙1012 RBC), lb and ub indicate the lower and upper
bounds of these fluxes, respectively, and SRBC indicates
the stoichiometric matrix for the host metabolic net-
work. The special cases of PFK and PYK fluxes account
for their inhibitory effect f on uninfected RBCs in the
same culture [5].
We set ωj to 1) 0.0 for all transport reactions, 2) 1.0

for non-glycolytic intracellular reactions, and 3) 0.5 for
glycolytic reactions based on the assumption that the
RBCs have some leeway in adjusting the glycolytic func-
tion given that other intracellular functions are main-
tained. The sensitivity of the latter approximation was
tested by systematically examining values of ωj ranging
from 0.1 to 0.9 and observing no material changes in the
computational results. Finally, we set the value of f to
0.19 to match the relative glucose uptake rate observed
for coinfected compared to normal RBCs (16 %) [5].

Predicting metabolic fluxes within infected RBCs
We defined a nested set of optimization problems to esti-
mate metabolic fluxes of infected RBCs. Specifically, we
calculated flux vj

t at each time point t for each reaction j
for both the host and parasite by initially minimizing the
difference Jt between the reaction fluxes and the product
of their nominal fluxes and expression values as follows:

min J t ¼
X
j∈G

vtj − rtj ⋅ v
N
j

���
��� ð2Þ

s:t: S ⋅ vt ¼ 0

lb ≤ vt ≤ ub

vj ≤ f ⋅ vnRBCj j ¼ PYK or PFK in RBCs

where vj
N represents the nominal flux through reaction j

in P. falciparum as defined and calculated in our previ-
ous work [15], G represents the set of the parasite’s
intracellular irreversible reactions that can be associated
with gene expression data, and S denotes the stoichio-
metric matrix for the host-parasite integrated network.
We further selected the solution that best maintained

the host metabolic functions and was closest to the
nominal flux distribution of the parasite by solving the
following additional optimization problem:

min
X
j∈H

ωj vj − vnRBCj

���
���þ

X
j∈P

vtj − vNj

���
��� ð3Þ

s:t: S⋅vt ¼ 0

lb ≤ vt≤ub

vj≤f ⋅vnRBCj j ¼ PYK or PFK in RBCs
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X
j∈G

vtj − rtj ⋅ v
N
i

���
���≤ J�t

where H and P in the objective function denote the host
and parasite components of the integrated network, re-
spectively, Jt

* represents the optimal value for the object-
ive function from the previous optimization problem
defined by Eq. 2, and the last constraint ensures that this
solution is one of the optimal solutions for Eq. 2.
Given the metabolic flux distributions for all time

points obtained by solving Eqs. 1, 2 and 3, we finally
determined the overall biomass production level μt of
P. falciparum in human RBCs at each time point t as
follows:

μt ¼

X
j∈B

vtjwj

X
j∈B

wj

ð4Þ

where B denotes the set of biomass functions [15] and wj

indicates the biomass fraction of the metabolite(s) associ-
ated with biomass function j. We defined wj as follows:

wj ¼
X
i

cijW i

1000
ð5Þ

where cij represents the coefficient of metabolite i in
biomass function j, Wi denotes the molecular weight
of the metabolite, and the factor 1000 converts moles
into millimoles.

Comparison with experimental metabolomic data
We validated our model by comparing predicted time-
dependent metabolite concentrations in the medium of
P. falciparum 3D7-infected human RBC cultures with
the corresponding experimental data. We obtained the
experimental concentrations for 24 metabolites at 0, 8,
16, 24, 32, 40, and 48 h during the IDC by multiplying
each metabolite’s experimental normalized concentrations
(initial levels were normalized to one) in the culture
medium at each time point [16] with their corresponding
original concentrations in Roswell Park Memorial Institute
(RPMI) 1640 medium [25].
We calculated concentrations Xt

i,sim for metabolite i at
the time points t = 0, 8, 16, 24, 32, 40, and 48 h from the
following equation:

Xt
i;sim ¼ X0

i þ
Xt

τ¼1

0:1vτi;iEX þ 0:9vτi;cEX
� �

⋅Δt⋅ RBC½ � ð6Þ

where Xi
0 represents the initial concentration in the

medium (mmol/l) [25], τ indicates the hourly time
points up to time t, vτi,iEX and vτi,cEX denote the exchange
fluxes of metabolite i at time point τ for infected and

cocultured RBCs in mmol/(h · 1012RBC), respectively, Δt
is the time interval of 1 h, and [RBC] represents the total
RBC concentration in the culture, which was equal to
0.11 · 1012 RBCs/l based on a hematocrit of 1 % [16].
The coefficients 0.1 and 0.9 are the fractions of infected
and cocultured RBCs among the whole RBC population,
as defined by the 10 % parasitemia [16]. We obtained
the values for vτi,cEX and vτi,iEX by solving Eqs. 1 and 3, re-
spectively, and their positive and negative values indicate
secretion and uptake fluxes, respectively.

Results
By combining the metabolic network of the malarial
parasite P. falciparum [15], the network of its host cells
(human RBCs) [17], and the parasite’s gene expression
data during the IDC [18, 19] (see Methods for details),
we developed an integrated host-parasite metabolic
model that explicitly accounted for the metabolic activity
within both P. falciparum and RBCs at each hour during
the IDC. We used the modeling framework shown in
Fig. 1b to predict metabolic fluxes in RBC cultures in-
fected with each of three P. falciparum strains (HB3,
3D7, and Dd2), including the fluxes for biomass produc-
tion and metabolite uptake/secretion.
We organized the results into an initial set of model

validation studies focused on comparison with strain-
specific P. falciparum metabolic activity and RBC metab-
olism in infected cultures based on existing experimental
data. We then turned to investigating host-pathogen
interactions using the uninfected and infected RBC
models to highlight altered metabolic activities associated
with the effects of glycolytic inhibition and oxidative stress
associated using the 3D7 strain as a model organism.

Comparison and validation of P. falciparum metabolism
Comparison of standalone and integrated models of HB3
metabolism
We initially compared the results from the integrated
RBC/parasite model with those derived from a simplified
description of the system based on solely modeling P.
falciparum HB3 metabolism, i.e., without the explicit
host-pathogen coupling [15]. We calculated absolute dif-
ferences in metabolic fluxes of the parasite and time-
course correlation of fluxes across the IDC to assess
whether the explicit host-pathogen coupling per se intro-
duced any anomalies in parasite metabolism. The mean
of the absolute differences between the two sets of fluxes
was 5 % of the average absolute fluxes based on the
parasite-only model, and the correlation between time-
series fluxes had a mean and standard deviation of 0.88
and 0.27, respectively, suggesting that the explicit meta-
bolic coupling pursued here did not quantitatively change
internal P. falciparum metabolism per se.
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Comparison of strain-specific metabolism
We examined overall biomass production rates for three
different P. falciparum strains using the integrated RBC/
pathogen model. Figure 2a shows biomass production
rates μ of the HB3, 3D7, and Dd2 strains at each hour,
encompassing all three IDC stages, i.e., ring, trophozoite,
and schizont. The model predictions showed relatively
low levels of biomass production rate for all strains dur-
ing the ring stage, in agreement with the experimentally
observed slow-growth phenotype associated with remod-
eling of internal structures during this stage [26, 27].
The predicted biomass production rates for all the
strains were relatively higher during the trophozoite stage,
during which the parasite grows rapidly through the
consumption of the available nutrients in the infected
RBC [28]. Finally, the schizont-stage biomass production
rates decreased, compatible with the shifting focus of P.
falciparum from cellular growth and accumulation of
metabolites cell division [27].
We further compared macromolecular (RNA, protein,

DNA, and phospholipids) synthesis during the IDC with 1)
the available experimental data for the HB3 strain [29, 30]
and 2) model results for the HB3, 3D7, and Dd2 strains.
The comparison with the experimental data for the HB3
strain using the integrated model closely followed the
agreement seen in the previously published data based on
the standalone model (Additional file 1: Figure S1).
Figure 2b shows the model results for strain-specific
macromolecular syntheses during the IDC. We predicted
that RNA and proteins were mainly synthesized by P.
falciparum during the mid-IDC, whereas DNA and
phospholipids were primarily produced during the late

IDC, consistent with the corresponding experimental
observations [29, 30]. The timing of the DNA and
phospholipid syntheses corresponded to the produc-
tion of genomic materials and cellular membranes re-
quired for cell division during the schizont stage.
To compare modeled metabolic activity among the three

different strains, we calculated a pairwise Pearson correl-
ation coefficient for each metabolite’s time-dependent flux,
excluding reactions whose flux did not change during the
intraerythrocytic development cycle (IDC). Table 1 shows
significant correlations (mean r of 0.52–0.68 and r2 of
0.27–0.46) between time-series fluxes in each pair of
strains. The high correlation is a reflection of the similarly
highly conserved nature of the time-series gene expression
data among strains, when extracellular and plasma
membrane-associated genes were excluded [19]. Indeed,
the mean between-strain correlation coefficient for the ex-
pression profiles of metabolic genes was 0.62–0.76 with an
r2 of 0.38–0.58 (see Table 1). The overall decrease in flux
correlations versus expression correlations is statistically
significant and points to quantitative metabolic differences
among the strains. Thus, despite the qualitative similarities
that are expected based on the overall genomic strain
similarities, we predicted the presence of quantitative
strain difference at the metabolic level.
Figure 3 shows the time-dependent incorporation of

metabolites into the biomass for the three strains studied.
The detailed time courses for all biomass metabolites are
shown in Additional file 1: Figure S2. As the strains
execute similar transcriptional programs to process
nutrients and prepare for cell division through the IDC via
the metabolically distinct ring, trophozoite, and schizont

Fig. 2 Predicted overall biomass production rates μ and macromolecular syntheses of Plasmodium falciparum during the intraerythrocytic
developmental cycle. a Rates for the HB3 (blue solid curve), 3D7 (green dashed curve), and Dd2 (red dotted curve) strains of P. falciparum at each hour
during the intraerythrocytic developmental cycle are shown. The whole intraerythrocytic developmental cycle was classified into ring, trophozoite, and
schizont stages [19]. μ values are expressed as gram biomass per hour per 1012 red blood cells (g/[h · 1012 RBC]). b Synthesized amounts of RNA,
protein, DNA, and phospholipids in the HB3, 3D7, and Dd2 strains of P. falciparum in g/(h · 1012 RBC). Error bars represent standard deviation
(N = 20) of model uncertainty induced in response to 10 % Gaussian noise added to the gene expression data (Additional file 1: Text S2)
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stages, the data show both overall similarities and differ-
ences in stage-dependent metabolism. Given the variability
of the expression data, consistently large and small differ-
ences appear among the strains, for example, in the NAD,
FAD, protoheme, and polyamine processing between the
strains. The HB3 strain was predicted to peak before leav-
ing the ring stage compared to the more even production
levels observed for the other strains throughout the IDC.

Likewise, we predicted protoheme production levels
to initiate and peak roughly 5 h earlier for the HB3 strain
compared to 3D7 and Dd2. This indicated a potential dif-
ferential strain-dependent sensitivity to drugs that target
enzymes or pathways that produce these metabolites
[31, 32]. Similarly, putrescine show different production
rates indicating different metabolic strategies associated
with polyamine accumulation before committing to schiz-
ogony: whereas 3D7 shows only a minor stage-dependent
production rate variation, both HB3 and Dd2 show peak
production rates in the late trophozoite stage. Although
polyamine handing in Falciparum is not completely
understood, the capacity to withstand polyamine depletion
has been explored for anti-malarial drug development
[33, 34]. Thus, the observed variability of putrescine pro-
duction points to potentially large strain differences in
effectively targeting polyamine-dependent processes.
Energy (in the form of ATP) was produced from gly-

colysis and other metabolic pathways and consumed by
non-glycolytic metabolism and non-metabolic activity in
a time- and strain-dependent manner. These processes
exhibited a qualitative overall similarity, but with strain-
specific differences. In particular, Fig. 4 shows differ-
ences in onset and peak ATP-production levels among
the three strains. Whereas HB3 and 3D7 have an earlier

Table 1 Mean and standard deviation of Pearson correlation
coefficients of reaction fluxes and metabolic gene expression
data between different strains (HB3, 3D7, and Dd2) of
Plasmodium falciparum

Comparison Metabolic flux
correlation coefficient

Metabolic gene expression
correlation coefficient

Mean Standard deviation Mean Standard deviation

HB3 vs. 3D7 0.55 0.24 0.62 0.26

HB3 vs. Dd2 0.52 0.24 0.72 0.25

3D7 vs. Dd2 0.68 0.23 0.76 0.26

A flux correlation coefficient was determined as the Pearson correlation coefficient
between each strain pair’s time-series fluxes for each of the 530 reactions that were
associated with non-constant fluxes. Similarly, we calculated gene expression
correlation coefficients for the metabolic genes as the Pearson correlation
coefficient between time-series expression data for each pair of strains. All
pairwise strain differences between fluxes and gene expressions are statistically
significant with p-values < 10−4

Fig. 3 Predicted time-dependent production of biomass metabolites for the HB3, 3D7, and Dd2 strains of Plasmodium falciparum. The heat map
denotes the predicted time-dependent production levels of each biomass metabolite of P. falciparum, in which orange, grey, and blue colors
represent high, normal, and low production levels, respectively. Based on the time-dependent production, we classified these metabolites into
four groups. Groups I, II, and III include the metabolites mainly produced during the early (ring stage), middle (trophozoite and early schizont
stages), and late (schizont stage) periods of the intraerythrocytic developmental cycle, respectively, whereas group IV includes the metabolites for
which the production levels were basically constant throughout the intraerythrocytic developmental cycle. Production value of each individual
metabolite is normalized with respect to the median of its value for the HB3 strain
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onset of ATP production in the early trophozoite stage,
Dd2 production was delayed but, once initiated, it rap-
idly compensated for the delayed onset by exhibiting the
highest peak production level of 76 mmol/(h∙1012 RBC)
at 28 h post infection. On the contrary, the reactions
in the tricarboxylic acid (TCA) cycle all exhibited
similar time-dependent flux profiles among the strains
(see Additional file 1: Figure S3).
The modeling framework relies on gene expression

data to drive parasite IDC metabolism using con-
strained stoichiometry defined by the P. falciparum
metabolic network. The interpretation of the resultant
metabolite changes rely on two main underlying assump-
tions, i.e., a correlation between mRNA and enzyme levels
and limited non-transcriptional-based regulatory pro-
cesses of metabolism. These assumptions are largely borne
out by the observed general agreement with experimental
data, but can also lead to non-biological model predic-
tions, e.g., DNA production levels can continue into the
ring stage from the schizont stage because of a lack of
explicit cell-cycle regulation in the model. The correlation
between mRNA levels and enzyme levels propagates high-

frequency variations in mRNA levels to enzyme levels
and, hence, variable metabolite levels. In reality, the tran-
scriptional and translational machinery in the cell may not
be able to respond quickly enough to these variations. We
examined this latter point with respect to the biomass
metabolites in more detail in Additional file 1: Text S2.
Although we did not identify any major qualitative

metabolic differences during the IDC between the
strains for the RBC culture condition examined here,
the cross-species comparison showed potentially im-
portant strain differences. Thus, despite the expected
high correlation among gene transcription between
the strains, there was a significantly higher impact of
these differences on the metabolic level.

Experimental comparison of predicted metabolic activity
in infected RBCs
Compared with our previous work using a standalone
model [15], the advantage of the new coupled host-
pathogen model was that it allowed us to examine the
metabolic activity of the infected host cell per se. To val-
idate the modeled metabolic activity of the host cells, we

Fig. 4 Predicted energy production and consumption in three strains of Plasmodium falciparum. a Schematic description of energy production
and consumption. Energy (in the form of ATP) was produced from glycolysis (black) and other metabolic pathways (green) and consumed by
non-glycolytic metabolism (blue) and non-metabolic activity (grey). b-d: Predicted time-dependent ATP production and consumption with respect
to metabolic and non-metabolic processes (excluding ATP used for RNA synthesis) in the HB3 (b), 3D7 (c), and Dd2 (d) strains. Production or
consumption are expressed as mmol/(h · 1012 RBC). Error bars represent standard deviation (N = 20) of model uncertainty induced in response to
10 % Gaussian noise added to the gene expression data (Additional file 1: Text S2)
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compared time-course extracellular metabolite concen-
trations profiles predicted by our model to those derived
from the experimentally measured extracellular metabolite
data of a P. falciparum 3D7-infected RBC culture [16]
(see Methods for details). This data set captures metabol-
ite exchanges between the infected RBC and medium for
24 metabolites present in our model system. The metabol-
ite concentrations in these experiments range in magni-
tude from 10−4 mM (pantothenate) to 101 mM (glucose).
Figure 5 shows the detailed time-course comparison for
10 major nutrients, cofactors, and nutrients sorted by

concentration levels and Fig. 6 shows the time-course
comparison for the measured 14 amino acids measured
sorted alphabetically. Note that the concentration values
at the initial time point t = 0 h were set to the experimen-
tal values and the model predicted the total concentration
changes in the medium at subsequent times.
In the direct comparison between the measured and

predicted concentration changes, the time-course behav-
ior was captured for 16 out of the 24 metabolites with
computed correlation values r exceeding 0.73, indicative
of p-values < 0.05. For the metabolites and amino acids

Fig. 5 Extracellular metabolite concentrations for the Plasmodium falciparum 3D7-infected human red blood cell culture. Time-dependent computed
(○) and experimental (●) concentrations of extracellular metabolites in the medium of the infected red blood cell (RBC) culture during the
intraerythrocytic development cycle (IDC). Increasing values indicate secretion, whereas decreasing values indicate uptake. Note that the initial
concentration values at t = 0 h are set to the experimental values and the model predicts the concentration changes for t ≠ 0 h. Error bars
represent 95 % confidence interval calculated as ± 1.96 σ/√ N, where the standard deviation σ was determined from the data and N represent
the number of replicates. We used N = 3 experimental biological replicates and N = 20 simulation results, which were derived by adding 10 %
Gaussian noise to the gene expression data (Additional file 1: Text S2)
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where the time-course behavior was not reproduced, the
measured values tended to show less of a time depend-
ency, partly obscured by the relatively large experimental
uncertainty. These data reflect the cultured system and
contain contributions from both the 90 % uninfected
and 10 % P. falciparum infected RBCs.
To capture systemic metabolic differences due to the in-

fection, we compared these results to a pure uninfected

RBC culture as a control condition. Table 2 shows the
initial and final metabolite concentration values in the
medium for the control condition and the infected cul-
ture for the IDC, the difference between these values,
and the qualitative contribution to secretion/uptake for
the difference cultures. Note that in the control condi-
tion, there is no time variation in the rate of metabolite
consumption.

Fig. 6 Extracellular amino acid concentrations for the Plasmodium falciparum 3D7-infected human red blood cell culture. Time-dependent computed
(○) and experimental (●) concentrations of extracellular amino acids in the medium of the infected red blood cell (RBC) culture during the
intraerythrocytic development cycle (IDC). Increasing values indicate secretion, whereas decreasing values indicate uptake. Note that the initial
concentration values at t = 0 h are set to the experimental values and the model predicts the concentration changes for t ≠ 0 h. Error bars
represent 95 % confidence interval calculated as ± 1.96 σ/√ N, where the standard deviation σ was determined from the data and N represents
the number of replicates. We used N = 3 experimental biological replicates and N = 20 simulation results, which were derived by adding 10 %
Gaussian noise to the gene expression data (Additional file 1: Text S2)
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The glucose concentration in the medium decreased as
both RBCs and P. falciparum use it as their main source of
energy during the ICD. Figure 5 shows the quantitative
model predictions for this metabolite with a correlation co-
efficient r of 0.99 compared to the experimental data.
Under the 48 h culture conditions studied here, uninfected
RBCs consumed 0.5 mM of the initial amount at a con-
stant rate whereas the infected culture consumed ~10 mM
of the initial glucose at a stage-dependent rate. Thus, the
observed large and time-dependent uptake of glucose up-
take was mainly used to satisfy the energy requirement of
the parasite, with the largest uptakes corresponding to the
peak ATP demands shown in Fig. 4c.
The other two major metabolites taken up, myo-inositol

and hypoxanthine, showed a general agreement with the

experimental data. Myo-inositol uptake was largely driven
by RBC metabolism, whereas hypoxanthine were taken up
to larger degree in the infected cultures, consistent with
the known hypoxanthine requirements for in vitro malaria
growth [35]. The model predicted a small, but statically
significant, increased hypoxanthine uptake at the later time
points than what was observed experimentally. Hypoxan-
thine uptake is not tied to gene expression changes of any
nucleoside transporter in the model, but is solely governed
by the demands of the modeled metabolism. The up-
take of hypoxanthine peaks in the trophozoite stage,
commensurate with the peak in nucleic acid production
and utilization, and provides the precursors of guanosine
monophosphate that is required in nucleic acid synthesis.
While sources for these precursors are available within the

Table 2 Medium metabolite and amino acid secretion and uptake comparison between uninfected control (Ctr) red blood cell
(RBC) cultures versus Plasmodium falciparum (Pf) infected (Inf) RBC cultures

Metabolite C t=0 h ΔCtrt=48 h ΔInft=48 h ΔPf Inf Secretion(+)/Uptake(−)

mM mM mM mM RBC Pf

Glucose 1.11 10+1 −5.07 10−1 −9.97 10+0 −9.5 10+0 – – – – – – –

Myo-Inositol 1.94 10−1 −7.29 10−2 −7.28 10−2 8.7 10−5 – – – –

Hypoxanthine 1.00 10−1 −1.87 10−2 −8.09 10−2 −6.2 10−2 – – – – –

Choline 2.15 10−2 4.05 10−3 −1.47 10−3 −5.5 10−3 + –

Nicotinamide 8.19 10−3 0.00 10+0 −4.95 10−4 −5.0 10−4 ○ –

p-aminobenzoate 7.29 10−3 0.00 10+0 0.00 10+0 0.0 10+0 ○ ○

Pyridoxine 4.86 10−3 −2.73 10−3 −2.73 10−3 0.0 10+0 – –

Thiamine 2.96 10−3 2.18 10−3 1.99 10−3 −1.9 10−4 + +

Riboflavin 5.31 10−4 0.00 10+0 −9.35 10−5 −9.3 10−5 ○ –

Pantothenate 5.25 10−4 0.00 10+0 −1.25 10−4 −1.2 10−4 ○ –

Amino acid C t=0 h ΔCtrt=48 h ΔInft=48 h ΔPf Inf Secretion(+)/Uptake(−)

mM mM mM mM RBC Pf

Arginine 1.148 0.012 0.026 1.5 10−2 + +

Asparagine 0.378 0.074 0.036 −3.9 10−2 + +

Aspartate 0.150 0.213 0.200 −1.2 10−2 ++ ++

Glutamate 0.136 0.848 0.726 −1.2 10−1 +++ +++

Glutamine 2.053 0.479 0.518 3.8 10−2 +++ +++

Histidine 0.097 0.090 0.279 1.9 10−1 + ++

(Iso)Leucine 0.762 0.324 0.647 3.2 10−1 + +++

Methionine 0.101 0.021 0.052 3.1 10−2 + +

Phenylalanine 0.091 0.143 0.268 1.2 10−1 + ++

Proline 0.174 0.149 0.280 1.3 10−1 + ++

Serine 0.285 0.149 0.210 6.2 10−2 + ++

Tryptophan 0.024 0.011 0.039 2.9 10−2 + +

Tyrosine 0.110 0.106 0.140 3.4 10−2 + ++

Valine 0.171 0.191 0.491 3.0 10−1 ++ ++

The contribution to secretion (+) and uptake (−) from either RBCs or the parasite is qualitatively indicated in the last two columns by increasing number of +/− signs
from low to high or none ○
C t=0, medium concentration at t = 0; ΔCtrt=48 h, change in concentration at t = 48 h for the uninfected control RBC culture; ΔInft=48 h, change in concentration
at t = 48 h for the P. falciparum infected RBC culture; ΔPf Inf, ΔInft=48 h – ΔCtrt=48 h
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network model, the readily obtainable extracellular hypo-
xanthine provides the most parsimonious path to generate
these intermediates.
Consistent with the experimental data there was a

small choline secretion in the uninfected control condi-
tion [16], and a choline uptake in the infected culture
consistent with the requirement for its uptakes by the
parasite [36] (Table 2). The small variation of the overall
concentration changes and the variability in the experi-
mental data prevented a quantitative comparison (Fig. 5).
We predicted nicotinamide uptake in the infected culture
only, but not to the extent evident in the experimental
data. We could not model the experimentally observed
concentration changes of p-aminobenzoate because we
did not find any independent information to support
the addition of exchange reactions among the host,
parasite, and medium for this metabolite to include in
our model. The model predictions for pyridoxine up-
take and thiamine (vitamin B1) secretion into the
medium closely matched the experimental data, with
the bulk of the pyridoxine uptake and thiamine secre-
tion coming from the uninfected RBCs. In the infected
culture, thiamine was secreted, but to a lesser extent
than in the uninfected culture.
The model correctly predicted uptake of pantothenate,

whereas the comparison of the predicted uptake of
riboflavin (a required metabolite [12]) was obscured by ex-
perimental uncertainties for these data points. These
metabolites were not taken up in the uninfected control
culture.
Figure 6 and Table 2 show consistent model predic-

tions for amino acid secretion during the IDC. The bulk
of the secreted amino acids from the infected culture
originated from the parasite and not from RBC metabol-
ism (Table 2). The increased secretion was caused by the
P. falciparum metabolic network component continu-
ously synthesizing protein by metabolizing amino acids
from the host hemoglobin, transporting the excess to
the RBC, and, ultimately, to the medium [28]. The
model displayed the largest lack of trend agreement for
arginine, aspartate, and serine, i.e., the predicted increase
in secretion was not present in the experimental data. To
improve upon these predictions we will need additional
metabolic information, in particular estimations of quanti-
tative fluxes through arginase (for arginine) [16], aspara-
gine synthase (for asparagine and aspartate) [12], and for
currently unknown serine-related functions of the parasite
metabolism to improve this aspect of the model.
In summary, the coupled host-pathogen metabolic net-

work model showed a general good agreement with the
available experimental data, and the bulk of the important
metabolic processes and pathways showed quantitative
agreements. Given the depth and sophistication of the
model construct, we next examined how the infecting

pathogen influences and manipulates host-cell metabolism
in the cultured media.

Host response to P. falciparum-induced glycolytic
inhibition
Besides functioning as an exclusive energy source [37],
the glycolysis pathway in human RBCs also includes a
Rapoport-Luebering shunt, which generates and dephos-
phorylates 2,3-bisphosphoglycerate [38], a regulator of
hemoglobin binding and release of oxygen [39]. Glycolysis
within uninfected RBCs is affected by the presence of in-
fected RBCs within the same medium [5]. In the presence
of “conditioned medium,” i.e., the supernatant taken from
a P. falciparum-infected RBC culture, uninfected RBCs
have been observed to decrease their glucose consump-
tion, lactate production, and activity of two glycolytic en-
zymes (PFK and PYK) [5]. To understand the metabolic
implication of this effect, we incorporated the inhibition
of PFK and PYK into our model, predicted the fluxes
through the glycolytic enzymes of cocultured RBCs, i.e.,
uninfected RBCs cocultured with infected RBCs, and cal-
culated the ratios of these fluxes to those of normal RBCs
within a purely uninfected RBC culture.
Figure 7a shows that, for most of the glycolytic en-

zymes, the predicted fluxes in cocultured but uninfected
cells were 13–19 % of those in normal cells, indicating a
general inactivation of the glycolysis pathway induced by
the presence of infected cells within the same culture.
However, the ratio (0.65) for the phosphoglycerate kin-
ase (PGK) enzyme was higher than for other enzymes,
indicating resistance of the cocultured cells and an at-
tempt to maintain this enzymatic function. Given that
PGK converts one ADP molecule into one ATP mol-
ecule, this indicated that the ultimate purpose of this re-
sistance might be to ensure an adequate energy supply
for other biological processes in the RBC. In contrast
to the relatively high PGK flux, we obtained zero ratios
for diphosphoglycerate phosphatase (DPGase) and
diphosphoglycero mutase (DPGM), the two enzymes
in the Rapoport-Luebering shunt, suggesting signifi-
cantly decreased fluxes through these enzymes or even
a complete shutdown of the shunt. Given that DPGM
and DPGase are responsible for the synthesis and de-
composition of 2,3-bisphosphoglycerate, respectively, a
RBC hemoglobin-oxygen binding regulator [39], our
results implied a loss of oxygen-releasing capability of
the cocultured RBC. In other words, we predicted that
cocultured cells might maintain their energy support for
survival by sacrificing their oxygen-releasing capability.
The predicted loss of oxygen-releasing capability of

cocultured RBCs might be another mechanism that con-
tributes to the hypoxic effects of malarial anemia. While
one of the known mechanisms of malarial anemia is the se-
questration by the spleen of infected and morphologically
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abnormal RBCs, it is still unclear of how the malarial para-
site influences uninfected RBCs [40]. Other than the
parasite-generated ligands and cytokines that increase the
removal and decrease the production of uninfected RBCs,
respectively [40], our results suggested a novel possible
mechanism, i.e., P. falciparum might affect the glycolytic
metabolism of uninfected RBCs by impairing their oxygen-
releasing capabilities.
Importantly, the glycolytic pathways showed differen-

tial temporal activation among infected and cocultured
RBCs. Figure 7b shows that, during the very early and
late IDC, infected RBCs exhibited similar patterns to
cocultured RBCs in terms of relatively high fluxes through
PGK and low fluxes through DPGM and DPGase. How-
ever, during the middle IDC, we predicted low fluxes
through the PGK enzyme in infected RBCs due to ATP se-
cretion from P. falciparum [7] (Fig. 7b) when the parasite’s
energy metabolism became active (Fig. 4). This might
confer an advantage to the infected RBC, e.g., the
added ATP [7] could partly compensate the inhibition
of RBC glycolysis [5].

Host response to P. falciparum-induced oxidative stress
Compared with un-infected RBCs, cells infected with P.
falciparum confront higher levels of oxidative stress,
caused by leakage of toxic free heme and reactive oxygen
species from the hemoglobin degradation in the parasite

as well as from oxygen radicals produced by the host
immune response to malarial infection [41]. To gain
insights into how infected RBCs respond metabolically to
oxidative stress, we examined how our coupled host-
pathogen model generated metabolic fluxes that alleviate
the oxidative burden.
Figure 8a shows the pathways used by infected RBCs

in our model to handle the increased oxidative stress.
These pathways used a series of reduction-oxidation re-
actions as well as part of the pentose phosphate pathway
to ultimately reduce oxidative stress through the reduction
of reactive oxygen reactive species (GSHox) by reduced
glutathione (GSH). This process also simultaneously
converted GSH to its oxidized form (GSSG), which,
in turn, was reduced back to GSH through the oxidation of
nicotinamide adenine dinucleotide phosphate (NADPH)
to NADP by glutathione oxidoreductase. Finally, the
reduction of NADP to NADPH was done by glucose
6-phosphate dehydrogenase (G6PD) and phosphogluconate
dehydrogenase, two enzymes in the pentose phosphate
pathway, which require an upstream flux from glucose and
a downstream flux resulting in the secretion of ribulose 5-
phosphate. Model predictions also pointed to important
differences between cocultured and infected cells in the
utilization of these pathways. For example, by using a
higher GSHox flux in infected RBCs compared to cocul-
tured RBCs, based on the observed ratio of reduced to

Fig. 7 Flux ratios for reaction in the glycolysis pathways of human red blood cells. a The ratios of reaction fluxes in cocultured to those in normal
red blood cells (RBCs). b Time-dependent ratios of reaction fluxes in infected RBCs to those in normal RBCs and time-dependent ATP transport
from Plasmodium falciparum to its host RBC. ATP transport flux was expressed as mmol/(h∙1012 RBC). cRBCs, uninfected RBCs cocultured with
iRBCs; DPGase, diphosphoglycerate phosphatase; DPGM, diphosphoglycero mutase; ENO, enolase; FBA, fructose bisphosphate aldolase; GAPD,
glyceraldehyde-3-phosphate dehydrogenase; HEX, hexokinase; iRBCs, P. falciparum 3D7-infected RBCs in the infected RBC culture; LDH, lactate
dehydrogenase; nRBCs, normal RBCs in the uninfected RBC culture; PFK, phosphofructokinase; PGI, glucose-6-phosphate isomerase; PGK,
phosphoglycerate kinase; PGM, phosphoglycerate mutase; PYK, pyruvate kinase; TPI, triose-phosphate isomerase
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oxidized glutathione levels in infected RBCs [20], we pre-
dicted that infected RBCs have higher fluxes through the
G6PD reaction and secrets ribulose 5-phosphate (Fig. 8b).
The above pathway analysis implicated G6PD as an

important enzyme related to oxidative stress in infected
RBCs. Previous clinical observations have linked G6PD
deficiency to resistance [42], but its underlying molecular
mechanism is not clear. Here, we simulated G6PD defi-
ciency by constraining the G6PD flux to be no greater
than 26 % of that in normal RBCs [43] to understand its
metabolic consequences. Figure 8c shows that G6PD-
deficient cocultured RBCs were able to handle 27 % of
their oxidative stress (represented by the flux through the
GSHox reaction), whereas infected RBCs could only han-
dle 3 %, indicating a relatively impaired survival capability
of infected RBCs to survive within G6PD-deficient pa-
tients. This result is compatible with the observed re-
sistance to malaria seen in G6PD-deficient patients
[42], i.e., lack of G6PD impairs the ability of infected
RBCs to survive oxidative stress, leading to RBC lysis and
loss of a suitable host habitat for the parasite during the
blood stage of malaria [44].

Connecting oxidative stress and metabolism
The coupled host-pathogen model simulation provided a
comprehensive metabolic description of how infected
RBCs respond to the parasite-generated oxidative stress.
Given the increase in stress, infected host cells inhibited

PFK and PYK (see Fig. 7a), two enzymes in the glycolysis
pathway [5], in order to increase the flux from glucose
through the host oxidative-phase pentose phosphate
pathway. The ultimate product of this pathway was ribu-
lose 5-phosphate, which, in turn, was secreted to the
medium [16]. The requirement of the G6PD enzyme in
this pathway provided a rationale for explaining why
G6PD-deficient infected cells are less able to survive oxi-
dative stress and, hence, why G6PD-deficient patients
are more resistant to malaria [42]. Although it has been
proposed that infected RBCs use the pentose phosphate
pathway to handle oxidative stress [8], to date, no mech-
anistic links have been reported that link oxidative stress
to glycolytic inhibition [5] and ribulose-5-phosphate se-
cretion [41]. Thus, the coupled host-pathogen model
allowed us to connect previous observations on 1) the
inhibition of the host glycolysis by the malaria parasite
[5], 2) the parasite-exacerbated oxidative stress faced by
RBCs [41], 3) the ribulose-5-phosphate secretion induced
by P. falciparum infection [16], and 4) the malarial resist-
ance for G6PD-deficient patients [42] into a single coher-
ent metabolic description of the oxidative stress response.

Discussion
The life cycle of P. falciparum is complex, with two
different hosts and multiple stages within each host.
During the human blood stage, the asexual reproductive
phase during the IDC takes place in infected RBCs,

Fig. 8 The pathway used for oxidative stress alleviation in Plasmodium falciparum-infected human red blood cells. a The pathway used by P.
falciparum-infected red blood cells (RBCs) to deal with oxidative stresses. b Metabolic fluxes through the reactions of GSHox, G6PD, and RU5Pt
within infected and cocultured RBCs, i.e., uninfected RBCs cocultured with infected RBCs. c GSHox fluxes within G6PD-sufficient (wild type) and
G6PD-deficient RBCs. cRBCs, un-infected RBCs co-cultured with iRBCs; G6PD, glucose 6-phosphate dehydrogenase; GSH, reduced glutathione;
GSHox, the GSH-based oxidative stress alleviation; GSSG, oxidized glutathione; iRBCs, P. falciparum 3D7-infected RBCs in the infected RBC culture;
RU5Pt, the transport of ribulose 5-phosphate from iRBCs into the medium
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resulting in the familiar malarial symptoms of the disease.
A key aspect of the host-pathogen interaction during the
IDC is the heavy nutritional requirements faced by the
rapidly dividing parasite. The host cell provides the envir-
onment and most nutrients necessary for the metabolism
of the parasite, while at the same time, the parasite alters
the metabolic activity of the host cell [5, 7, 8]. Previous P.
falciparum metabolic network models have not captured
these host-parasite metabolic interactions, although
these models have correctly described the metabolism
and growth phenotypes of the parasite during the IDC
[6, 12, 15]. Thus, our effort focused on developing an inte-
grated host-parasite metabolic model that allowed us to
separately assess parasite and host metabolism in a culture
consisting of infected and uninfected RBCs. We con-
structed the model by integrating the metabolic networks
of both P. falciparum and human RBCs and using time
course-dependent gene expression of the parasite during
the IDC to drive the modeled metabolism.

Parasite metabolism
Given the hourly gene expression data for three strains
(HB3, 3D7, and Dd2) of P. falciparum [18, 19], we calcu-
lated metabolic fluxes in each of these strains at each
hour during the IDC. These fluxes generally exhibited
similar stage-specific time-series profiles for key meta-
bolic processes, indicating no major qualitative differ-
ences among the strains under “normal” infected RBC
culture conditions. This similarity among the different
strains was largely due to their overall similar gene ex-
pression profiles. In spite of the highly correlated gene
expression data, metabolic fluxes were significantly less
correlated (r2 reduced by 20–30 %), indicating a quantita-
tive less consistency in exactly how the metabolic program
was executed during the IDC. We noted consistent
strain-dependent differences among certain metabolites,
e.g., NAD, FAD, protoheme, and polyamines, whereas
others, such as 10-formyltetrahydrofolate, coenzyme-A,
and thiamine-diphosphate, do not show strain-dependent
differences. Differences in onset and peak ATP-production
levels also differed noticeably among the three strains.
Because the model provides the theoretical framework
for describing metabolism, it requires condition-specific
gene expression data to instantiate a particular condition.
Thus, strain differences might become more important
under different physiological stress or drug treatment
conditions [19, 45].

Host-pathogen interactions
The integrated host-pathogen metabolic model included
the ability to describe separate populations of infected
and uninfected RBCs in the same culture, allowing us to
investigate the detailed and complex metabolic responses
of the host. However, the underlying mechanisms by

which the parasite regulates and affects cellular host
processes, including both metabolic and non-metabolic
are not always known. Here, we have taken an approach
to directly implement such host-pathogen interactions
by explicitly manipulating particular fluxes and model-
ing the downstream metabolic effects in our modeling
framework.
Given the established glycolytic inhibition of unin-

fected RBCs under malarial infection [5], we predicted
that uninfected RBCs strive to maintain their energy
supply by decreasing the production of 2,3-bisphospho-
glycerate, which is used by RBCs to regulate the oxygen
binding of hemoglobin [39]. Therefore, the predicted de-
crease in the production of 2,3-bisphosphoglycerate indi-
cated that the infection impaired the oxygen-releasing
capability of uninfected RBCs, which could be a contrib-
uting factor to the observed hypoxic effects of malarial
infections.
In addition, the inclusion of separate metabolic de-

scriptions of infected and uninfected RBCs in our model
allowed us to derive a comprehensive picture of how in-
fected RBCs overcome the oxidative stress induced by
the infection. We predicted that P. falciparum used the
glycolysis pathway of infected RBCs to drive the meta-
bolic flux from glucose to the pentose phosphate path-
way. This process reduced parasite-induced reactive
oxygen species and generated ribulose-5-phosphate as
the final metabolic product, which was ultimately se-
creted to the environment. These predictions highlighted
the importance of the G6PD enzyme in this process and
provided a rationale for the observed malarial resistance
of G6PD-deficient patients. To our knowledge, this is first
description that links the oxidative stress response to a
number of individual observations on parasite-induced
metabolic changes in RBCs (the glycolytic inhibition [5],
the oxidative stress increase [41], and ribulose-5-phosphate
secretion [16]) as well as to the resistance of G6PD-
deficient patients to malaria [42].

Conclusion
During its life cycle, the malaria parasite sequentially
progresses through multiple stages in female Anopheles
mosquitos and humans. In humans, the blood stage of
the disease is associated with the debilitating clinical
symptoms of malaria. These symptoms are linked to the
parasite undergoing synchronized asexual reproduction
in RBCs, during which one parent cell multiplies into
16–32 daughter cells in ~48 h. Here, we developed a
genome-scale, gene-expression-driven integrated host-
pathogen metabolic network model that can capture and
describe systemic changes in metabolism of the replicat-
ing malaria parasite P. falciparum as well as for infected
and cocultured uninfected human RBCs. Although the
modeling framework does not explicitly incorporate
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regulatory mechanisms, changes in the tightly controlled
gene expression program of the parasite are sufficient to
drive metabolic alterations in the modeling framework.
This allowed us to predict not only strain-specific meta-
bolic programs of P. falciparum during the reproductive
cycle but also to examine parasite modulation of host
metabolism in surrounding RBCs. Our system-level ana-
lysis suggested a primary metabolic similarity between
the three studied strains, but also pointed to specific dif-
ference in metabolite production levels. Furthermore,
our analysis revealed complex relationships such as how
the parasite reduces oxygen-releasing capability of unin-
fected cells in the presence of infected RBCs as well as
the role of different metabolic pathways involved in the
oxidative stress response of infected RBCs.
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