
AFRL-AFOSR-JP-TR-2016-0073

Large-scale Linear Optimization through Machine Learning: From Theory to Practical System
Design and Implementation

Jinwoo Shin
Korea Advanced Institute of Science and Technology

Final Report
08/10/2016

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ IOA
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

 a. REPORT

Unclassified

 b. ABSTRACT

Unclassified

 c. THIS PAGE

Unclassified

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188). Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control
number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)
 10-08-2016

2. REPORT TYPE
 Final

3. DATES COVERED (From - To)
 28 May 2014 to 27 May 2016

4. TITLE AND SUBTITLE
Large-scale Linear Optimization through Machine Learning: From Theory to Practical System
Design and Implementation

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA2386-14-1-4058

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)
Jinwoo Shin

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Korea Advanced Institute of Science and Technology
291 Daehak-ro, Yuseong-gu
Taejon, 305701 KR

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AOARD
UNIT 45002
APO AP 96338-5002

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/AFOSR IOA

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)
AFRL-AFOSR-JP-TR-2016-0073

12. DISTRIBUTION/AVAILABILITY STATEMENT
A DISTRIBUTION UNLIMITED: PB Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The linear programming (LP) is one of the most popular necessary optimization tool used for data analytics as well as in various scientific fields.
However, the current state-of-art algorithms suffer from scalability issues when processing Big Data. For example, the commercial optimization
software IBM CPLEX cannot handle an LP with more than hundreds of thousands variables or constraints. Existing algorithms are fundamentally
hard to scale because they are inevitably too complex to parallelize. To address the issue, we study the possibility of using the Belief Propagation
(BP) algorithm as an LP solver. BP has shown remarkable performances on various machine learning tasks and it naturally lends itself to fast
parallel implementations. Despite this, very little work has been done in this area. In particular, while it is generally believed that BP implicitly solves
an optimization problem, it is not well understood under what conditions the solution to a BP converges to that of a corresponding LP formulation.

Our efforts consist of two main parts. First, we perform a theoretic study and establish the conditions in which BP can solve LP [1,2]. Although there
has been several works studying the relation between BP and LP for certain instances, our work provides a generic condition unifying all prior
works for generic LP. Second, utilizing our theoretical results, we develop a practical BP-based parallel algorithms for solving generic LPs, and it
shows 71x speed up while sacrificing only 0.1% accuracy compared to the state-of-art exact algorithm.

As a result of the study, the PIs have published two conference papers and two follow-up journal papers are under submission. We refer the
readers to our published work for details.
15. SUBJECT TERMS
Cloud, AOARD

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

SAR

18. NUMBER
 OF
 PAGES
 13

19a. NAME OF RESPONSIBLE PERSON
LUTZ, BRIAN

19b. TELEPHONE NUMBER (Include area code)
315-227-7006

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Page 1 of 1FORM SF 298

9/26/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

Final Report for AOARD Grant FA2386-14-1-4058

“Large-scale Linear Optimization through Machine Learning”

8 August 2016

Name of Principal Investigators (PI and Co-PIs): Jinwoo Shin
- E-mail address : jinwoos@kaist.ac.kr
- Institution : Korea Advanced Institute of Science and Technology
- Mailing Address : 335 Gwahangno, Yuseong-gu, Daejeon, Republic of Korea, 305701
- Phone : 82-42-350-7432

Period of Performance: 28 May 14 – 27 May 16

Abstract: The linear programming (LP) is one of the most popular necessary optimization tool used
for data analytics as well as in various scientific fields. However, the current state-of-art algorithms
suffer from scalability issues when processing Big Data. For example, the commercial optimization
software IBM CPLEX cannot handle an LP with more than hundreds of thousands variables or
constraints. Existing algorithms are fundamentally hard to scale because they are inevitably too
complex to parallelize. To address the issue, we study the possibility of using the Belief Propagation
(BP) algorithm as an LP solver. BP has shown remarkable performances on various machine learning
tasks and it naturally lends itself to fast parallel implementations. Despite this, very little work has
been done in this area. In particular, while it is generally believed that BP implicitly solves an
optimization problem, it is not well understood under what conditions the solution to a BP converges
to that of a corresponding LP formulation.

Our efforts consist of two main parts. First, we perform a theoretic study and establish the conditions
in which BP can solve LP [1,2]. Although there has been several works studying the relation between
BP and LP for certain instances, our work provides a generic condition unifying all prior works for
generic LP. Second, utilizing our theoretical results, we develop a practical BP-based parallel
algorithms for solving generic LPs, and it shows 71x speed up while sacrificing only 0.1% accuracy
compared to the state-of-art exact algorithm [3, 4].

As a result of the study, the PIs have published two conference papers [1,3] and two follow-up journal
papers [3,4] are under submission. We refer the readers to our published work [1,3] for details.

Introduction: The main goal of our research is to develop a distributed and parallel algorithm for
large-scale linear optimization (or programming). Considering the popularity and importance of linear
optimizations in various fields, the proposed method has great potentials applicable to various big data
analytics. Our approach is based on the Belief Propagation (BP) algorithm, which has shown
remarkable performances on various machine learning tasks and naturally lends itself to fast parallel
implementations.

Our key contributions are summarized below:
1) We establish key theoretic foundations in the area of Belief Propagation. In particular, we

show that BP converges to the solution of LP if some sufficient conditions are satisfied. Our

DISTRIBUTION A. Approved for public release: distribution unlimited.

conditions not only cover various prior studies including maximum weight matching, min-
cost network flow, shortest path, etc., but also discover new applications such as vertex cover
and traveling salesman.

2) While the theoretic study provides understanding of the nature of BP, it falls short in slow
convergence speed, oscillation and wrong convergence. To make BP-based algorithms more
practical, we design a BP-based framework which uses BP as a ‘weight transformer’ to
resolve the convergence issue of BP.

We refer the readers to our published work [1, 3] for details. The rest of the report contains a
summary of our work appeared in UAI (Uncertainty in Artificial Intelligence) and IEEE Conference
in Big Data [1,3] and follow up work [2,4] under submission to major journals.

Experiment: We first establish theoretical conditions when Belief Propagation (BP) can solve Linear
Programming (LP), and second provide a practical distributed/parallel BP-based framework solving
generic optimizations. We demonstrate the wide-applicability of our approach via popular
combinatorial optimizations including maximum weight matching, shortest path, traveling salesman,
cycle packing and vertex cover.

Results and Discussion: Our contribution consists of two parts: Study 1 [1,2] looks at the theoretical
conditions that BP converges to the solution of LP. Our theoretical result unify almost all prior result
about BP for combinatorial optimization. Furthermore, our conditions provide a guideline for
designing distributed algorithm for combinatorial optimization problems. Study 2 [3,4] focuses on
building an optimal framework based on the theory of Study 1 for boosting the practical performance
of BP. Our framework is generic, thus, it can be easily extended to various optimization problems. We
also compare the empirical performance of our framework to other heuristics and state of the art
algorithms for several combinatorial optimization problems.

-- Study 1 --

We first introduce the background for our contributions. A joint distribution of � (binary) variables
� = [��] ∈ {0,1}� is called graphical model (GM) if it factorizes as follows: for � = [��] ∈ {0,1}�,

where 𝜓𝜓� ,�� are some non-negative functions so called factors; � is a collection of subsets

(each 𝛼𝛼� is a subset of {1,⋯ ,�} with |��| ≥ 2; �� is the projection of � onto dimensions included
in 𝛼𝛼. Assignment �∗ is called maximum-a-posteriori (MAP) assignment if �∗maximizes the
probability.
The following figure depicts the graphical relation between factors � and variables �.

DISTRIBUTION A. Approved for public release: distribution unlimited.

Figure 1: Factor graph for the graphical model with factors 𝛼𝛼1 = {1,3},�2 = {1,2,4},�3 = {2,3,4}

Now we introduce the algorithm, (max-product) BP, for approximating MAP assignment in a
graphical model. BP is an iterative procedure; at each iteration �, there are four messages

between each variable �� and every associated 𝛼𝛼 ∈ ��, where ��: = {� ∈ �:� ∈ �}. Then,
messages are updated as follows:

Finally, given messages, BP marginal beliefs are computed as follows:

Then, BP outputs the approximated MAP assignment ��� = [����] as

Now, we are ready to introduce the main result of Study 1. Consider the following GM: for � =
[��] ∈ {0,1}� and � = [��] ∈ ��,

where the factor function 𝜓𝜓𝛼𝛼 for 𝛼𝛼 ∈ � is defined as

for some matrices ��,�� and vectors ��,��. Consider the Linear Programming (LP) corresponding
the above GM:

One can easily observe that the MAP assignments for GM corresponds to the (optimal) solution of the
above LP if the LP has an integral solution �∗ ∈ {0,1}�. The following theorem is our main result of
Study 1 which provide sufficient conditions so that BP can indeed find the LP solution

DISTRIBUTION A. Approved for public release: distribution unlimited.

Theorem 1 can be applied to several combinatorial optimization problems including matching,
network flow, shortest path, vertex cover, etc. See [1,2] for the detailed proof of Theorem 1 and its
applications to various combinatorial optimizations including maximum weight matching, min-cost
network flow, shortest path, vertex cover and traveling salesman.

-- Study 2 --

Study 2 mainly focuses on providing a distributed generic BP-based combinatorial optimization
solver which has high accuracy and low computational complexity. In summary, the key contributions
of Study 2 are as follows:

1) Practical BP-based algorithm design: To the best of our knowledge, this paper is the first to
propose a generic concept for designing BP-based algorithms that solve large-scale
combinatorial optimization problems.

2) Parallel implementation: We also demonstrate that the algorithm is easily parallelizable. For
the maximum weighted matching problem, this translates to 71x speed up while sacrificing
only 0.1% accuracy compared to the state-of-art exact algorithm.

3) Extensive empirical evaluation: We evaluate our algorithms on three different combinatorial
optimization problems on diverse synthetic and real-world data-sets. Our evaluation shows
that the framework shows higher accuracy compared to other known heuristics.

Designing a BP-based algorithm for some problem is easy in general. However (a) it might diverge or
converge very slowly, (b) even if it converges quickly, the BP decision might be not correct, and (c)
even worse, BP might produce an infeasible solution, i.e., it does not satisfy the constraints of the
problem.

DISTRIBUTION A. Approved for public release: distribution unlimited.

Figure 2: Overview of our generic BP-based framework

To address these issues, we propose a generic BP-based framework that provides highly accurate
approximate solutions for combinatorial optimization problems. The framework has two steps, as
shown in Figure 2. In the first phase, it runs a BP algorithm for a fixed number of iterations without
waiting for convergence. Then, the second phase runs a known heuristic using BP beliefs instead of
the original weights to output a feasible solution. Namely, the first and second phases are respectively
designed for ‘BP weight transforming’ and ‘post-processing’. Note that our evaluation mainly uses
the maximum weight matching problem. The formal description of the maximum weight matching
(MWM) problem is as follows: Given a graph � = (�,�) and edge weights � = [��] ∈ �|�|, it
finds a set of edges such that each vertex is connected to at most one edge in the set and the sum of
edge weights in the set is maximized. The problem is formulated as the following IP (Integer
Programming):

where 𝛿𝛿(�) is the set of edges incident to vertex � ∈ �. In the following paragraphs, we describe the
two phases in more detail in reverse order.

We first describe the post-processing phase. As we mentioned, one of the main issue of a BP-based
algorithm is that the decision on BP beliefs might give an infeasible solution. To resolve the issue, we
use post-processing by utilizing existing heuristics to the given problem that find a feasible solution.
Applying post-processing ensures that the solution is at least feasible. In addition, our key idea is to
replace the original weights by the logarithm of BP beliefs, i.e. function of (3). After this, we apply
known heuristics using the logarithm of BP beliefs to achieve higher accuracy.

To confirm the effectiveness of the proposed post-processing mechanism, we compare it with the
following two alternative post-processing schemes for the maximum weight matching problem that
remove edges to enforce matching after BP processing in a naive manner:

- Random: If there exists a vertex � such that more than one neighboring edges are selected on
the BP decision, randomly select one edge and remove other edges.

- Weight: If there exists a vertex � such that more than one neighboring edges are selected on
the BP decision, remove edges of smaller weight.

Figure 3 compares the approximation ratio obtained using BP-belief-based post-processing versus the
naive post-processing heuristics (random and weight). It shows that the proposed BP-belief-based
post-processing outperforms the rest. Note, the results in Figure 3 were obtained by first applying BP
message passing for weight transformation. Next, we explain how this is done in our framework.

DISTRIBUTION A. Approved for public release: distribution unlimited.

Figure 3: a) Average approximation ratio for different post-processing schemes. We use a local
greedy algorithm as a post-processing based on original weights and BP messages (i.e., beliefs). The
‘Random selection’ post-processing is also compared. b) Effects of initial messages on the

convergence of BP. We set ���: = ���
��→(�,�)

0(0)
��→(�,�)

0(1)
= ���� where x-axis represent the value of�.

c) Approximation ratio for different initial messages ��� = 0,���/2,���.

Now, we describe the BP weight transforming phase. To improve the approximation quality and solve
the convergence issues, we use three modifications to the standard BP algorithm: (1) careful
initialization on messages, (2) noise addition and (3) hybrid damping on message updates.

Message Initialization. The standard message initialization is ��→�0 = ��→�0 = 1 for the maximum
weight matching problem. However, the convergence rate of BP depends on the initialized messages.
As reported in Figure 4, we try different initializations by varying the log ratio ���: =

���
��→(�,�)

0(0)
��→(�,�)

0(1)
= ���� for 0 ≤ � ≤ 1, where the case � = 0.5 shows the fastest convergence.

The choice ��� = 0.5��� alleviates the fluctuation behavior of BP and boosts up its convergence
speed. We remind that, under our framework, BP runs only for a fixed number of iterations since it
might converge too slowly, even with the initialization ��� = 0.5��� for practical purposes. With
fixed number of iterations, careful initialization becomes even more critical as experimental results in
Figure 3(c) and Figure 4 suggest. For example, if one runs 5000 iterations of BP, they show that the
standard initialization achieves at most 30% approximation ratio, while the proposed method achieves
99%. Moreover, one can also observe that the advantage of more BP updates diminishes as the
number of iterations

Figure 4: Effects of initial messages on the number of BP iterations. We set ��� = ���� for a value
c of x-axis.

Noise Addition. The BP algorithm often oscillates when the MAP solution is not unique. To address
this issue, we transform the original problem to one that has a unique solution with high probability
by adding small noises to the weights. We apply this to all cases. Here, one has to be careful in
deciding the range � of noises. If � is too large, the quality of BP solution deteriorates because the
optimal solution might have changed from the original problem. On the other hand, if � is too small

DISTRIBUTION A. Approved for public release: distribution unlimited.

compared to we, BP converges very slowly. To achieve a balance, we choose the range r of noise re as
10% of the minimum distance among weights. We find that this results in over 99.8% approximation
ratio even when the solution is not unique, which has little difference with that of unique solution as
shown in Table I.

Table I: Approximation ratio of BP for MWM with multiple optima and a unique optimum. We
introduce a small noise to the edge weights and set the initial message by ��� = ���/2.

Hybrid Damping. To boost up the convergence speed of BP updates further, we use a specific
damping strategy to alleviate message oscillation. We update messages to be the average of old and
new messages as follows:

We note that the damping strategy provides a similar effect as our proposed initialization ��� =
���/2. Hence, if one uses both, the effect of one might be degraded due to the other. Due to this, we
first run the half of BP iterations without damping (this is for keeping the effect of the proposed
initialization) and perform the last half of BP iterations with damping. As reported in Table II, this
hybrid approach outperforms other alternatives, including (a) no use of damping, (b) using damping in
every iteration, and (c) damping in the first half of BP iterations and no-damping in the last half.

Table II: Approximation ratio of BP without damping, BP with damping, BP with damping only for
first 50 iterations, and BP with damping for last 50 iterations. We introduce a small noise to the edge
weights and set the initial message by ��� = ���/2.

Now we describe the implementation, mostly parallelization, of our framework. First, we introduce
asynchronous message update that enables efficient parallelization of BP message passing. Second,
we illustrate the issues in parallelizing post-processing. Finally, we describe the parallel
implementations of our algorithm and their benefits.

Asynchronous Message Update. For parallelization, we first divide the graph by partitioning the
vertices, and assign each partition to a single thread. However, if we naively parallelize the process
using multiple threads, frequent synchronization may incur large overhead. Thus, we apply
asynchronous message update where each vertex updates the message value right after new message
value is calculated and eliminate synchronization point between iterations. This makes the process
faster because of the reduced synchronization points. Figure 5 shows that performance improvement

DISTRIBUTION A. Approved for public release: distribution unlimited.

(speed up in running time) of asynchronous update over synchronous is up to 237% in our example
graph for the maximum weight matching problem with 16 threads

Figure 5: Average running time of our BP-based algorithm with synchronous message update and
asynchronous message update.

Local Post-Processing. The second phase of our algorithm runs existing heuristics for post-processing
to enforce the feasibility of BP decisions. While the framework works with any heuristics-based post-
processing methods, for the entire process to be parallel, it is important that the post-processing step is
also parallel. An important criterion for efficient parallelization is locality of computation; if the post-
processing heuristics can compute the result locally without requiring global knowledge, they can be
easily parallelized. Moreover, if they do not require synchronization, the running time can be further
reduced.

Parallel Implementation. The BP algorithm is easy to parallelize because of its message passing
nature. To demonstrate this, we parallelize our BP-based framework using three platforms: GraphChi,
OpenMP and pthread.

Now we show the empirical performance of our framework using three popular combinatorial
optimization problems: maximum weight matching, minimum weight vertex cover (MWVC) and
maximum weight independent set problem (MWIS). We already introduced the IP formulation of the
maximum weight matching (MWM), where those of the minimum weight vertex cover (MWVC) and
maximum weight independent set problem (MWIS) are as follows:

Experimental Setup. In our experiments, both real-world and synthetic datasets are used for
evaluation. For MWM, we used data-sets from the university of Florida sparse matrix collection. For
larger scale synthetic evaluation, we generate Erdős-Rényi random graphs (up to 50 million vertices
with 2.5 billion edges) with average vertex degree of 100 with edge weights drawn independently
from the uniform random distribution over the interval [0, 1]. For MWVC and MWIS, we use the frb-
series from BHOSLIB, where it also contains the optimal solutions. We note that we perform no
experiment using synthetic data-sets for MWVC and MWIS since they are NP-hard problems, i.e.,
impossible to compute the optimal solutions. On the other hand, for MWM the Edmonds’ Blossom
algorithm can compute the optimal solution in polynomial time. All experiments in this section are

DISTRIBUTION A. Approved for public release: distribution unlimited.

conducted on a machine with Intel Xeon(R) CPU E5-2690 @ 2.90GHz with 8 cores and 8
hyperthreads with 128GB of memory, unless otherwise noted.

Approximation Ratio. We now demonstrate our BP-based approximation algorithm produces highly
accurate results. In particular, we show that our BP-based algorithms outperform well-known
heuristics for MWVC, MWIS and closely approximate exact solutions for MWM for all cases we
evaluate.

- For MWM, we compare the approximation qualities of serial, synchronous BP and parallel,
asynchronous implementation on both synthetic and real-world data-sets, where we compute
the optimal solution using the Blossom algorithm to measure the approximation ratios. Table
III summarize our experimental results for MWM for the synthetic data-sets and the Florida
data. Our BP-based algorithm achieves 99% to 99.9% approximation ratios.

Table III: MWM: Approximation ratio of our BP-based algorithm on synthetic and sparse matrix
collection data-sets

- For MWVC, we use two post-processing procedures: greedy and 2-approximation algorithm.
For the local greedy algorithm, we choose a random edge and add one of its adjacent vertices
with a smaller weight until all edges are covered. We compare the approximation qualities of
our BP-based algorithm compared to the cases when one uses only the greedy algorithm and
the 2-approximation algorithm. Figure 6 shows the experimental results for the two post-
processing heuristics. The results show that our BP-based weight transformation enhances the
approximation quality of known approximation heuristics by up to 43%.

Figure 6: MWVC: Average approximation ratio of our BP-based algorithm, the 2-approximation
algorithm and the greedy algorithm on frb-series data-sets.

- For MWIS, the experiment was performed on frb-series data-sets. We use a greedy algorithm
as the post-processing procedure, which selects vertices in the order of higher weights until no

DISTRIBUTION A. Approved for public release: distribution unlimited.

vertex can be selected without violating the independent set constraint. We compare the
approximation qualities of our BP-based algorithm and the standard greedy algorithm. Figure
7 shows that our BP-based framework enhances the approximation ratio of the solution by 2%
to 23%.

Figure 7: MWIS: Average approximation ratio of our BP-based algorithm and the greedy algorithm
on frb-series data-sets.

Parallelization Speed-up. Figure 8 compares the running time of the Blossom algorithm and our BP-
based algorithm with 1 single core and 16 cores. With five million vertices, our asynchronous parallel
implementation is eight times faster than the synchronous serial implementation, while still retaining
99.9% approximation ratio as reported in Table III. To demonstrate the overall benefit in context, we
compare its running time with that of the current fastest implementation of the Blossom algorithm due
to Kolmogorov. Here, we note that the Blossom algorithm is inherently not easy to parallelize. For
parallel implementation, we report results for our pthread implementation, but the OpenMP
implementation also show comparable performance. For 20 million vertices (one billion edges), it
shows that the running time of our algorithm can be accelerated by up to 71 times than the Blossom
algorithm, while sacrificing 0.1% of accuracy. The running time gap is expected be more significant
for larger graphs since the running times of our algorithm and the Blossom algorithm are linear and
cubic with respect to the number of vertices, respectively.

Figure 8: MWM: Running time of Blossom algorithm and our BP-based algorithms.

Large-scale Optimization. Our algorithm can also handle large-scale instances because it is based on
GMs that inherently lend itself to parallel and distributed implementations. To demonstrate this, we
create a large-scale instance containing up to 50 million vertices and 2.5 billion edges. We experiment
our algorithm using GraphChi on a single consumer level machine with i7 CPU and 24GB of
memory. Figure 9 shows the running time and memory usage of our algorithm for MWM and MWVC
on large data-sets.

DISTRIBUTION A. Approved for public release: distribution unlimited.

Figure 9: MWM and MWVC: Running time and memory usage of GraphChi-based implementation
on large-scale graphs.

List of Publications and Significant Collaborations that resulted from your AOARD supported
project: In standard format showing authors, title, journal, issue, pages, and date, for each category
list the following:
a) papers published in peer-reviewed journals,
b) papers published in peer-reviewed conference proceedings,

[1] Sejun Park and Jinwoo Shin, Max-Product Belief Propagation for Linear Programming:
Applications to Combinatorial Optimization, Conference on Uncertainty in Artificial Intelligence
(UAI) 2015

[3] Inho Cho, Soya Park, Sejun Park, Dongsu Han and Jinwoo Shin, Practical Message-passing
Framework for Large-scale Combinatorial Optimization, IEEE International Conference on Big Data
(IEEE BigData) 2015

c) papers published in non-peer-reviewed journals and conference proceedings,
d) conference presentations without papers,
e) manuscripts submitted but not yet published, and

[2] Sejun Park and Jinwoo Shin, Convergence and Correctness of Max-Product Belief Propagation for
Linear Programming, under the second round of revision in SIAM J. Discrete Math (SIDMA)

[4] Inho Cho, Soya Park, Sejun Park, Dongsu Han and Jinwoo Shin, Large-scale Combinatorial
Optimization via Belief Propagation: Practical Perspective, submitted to IEEE Transaction on Parallel
and Distributed Systems (TPDS)

f) provide a list any interactions with industry or with Air Force Research Laboratory scientists or
significant collaborations that resulted from this work.

Attachments: Publications a), b) and c) listed above if possible.

DISTRIBUTION A. Approved for public release: distribution unlimited.

Max-Product Belief Propagation for Linear Programming:
Applications to Combinatorial Optimization

Sejun Park Jinwoo Shin
Department of Electrical Engineering Department of Electrical Engineering

Korea Advanced Institute of Science and Technology Korea Advanced Institute of Science and Technology
sejun.park@kaist.ac.kr jinwoos@kaist.ac.kr

Abstract

Max-product belief propagation (BP) is a pop-
ular message-passing algorithm for computing
a maximum-a-posteriori (MAP) assignment in
a joint distribution represented by a graphical
model (GM). It has been shown that BP can
solve a few classes of Linear Programming (LP)
formulations to combinatorial optimization prob-
lems including maximum weight matching and
shortest path, i.e., BP can be a distributed solver
for certain LPs. However, those LPs and corre-
sponding BP analysis are very sensitive to under-
lying problem setups, and it has been not clear
what extent these results can be generalized to.
In this paper, we obtain a generic criteria that BP
converges to the optimal solution of given LP,
and show that it is satisfied in LP formulations
associated to many classical combinatorial op-
timization problems including maximum weight
perfect matching, shortest path, traveling sales-
man, cycle packing and vertex cover. More im-
portantly, our criteria can guide the BP design
to compute fractional LP solutions, while most
prior results focus on integral ones. Our results
provide new tools on BP analysis and new direc-
tions on efficient solvers for large-scale LPs.

1 INTRODUCTION

Graphical model (GM) has been one of powerful
paradigms for succinct representations of joint probability
distributions in variety of scientific fields (Yedidia et al.,
2005; Richardson and Urbanke, 2008; Mezard and Mon-
tanari, 2009; Wainwright and Jordan, 2008). GM repre-
sents a joint distribution of some random vector to a graph
structured model where each vertex corresponds to a ran-
dom variable and each edge captures to a conditional de-
pendency between random variables. In many applications
involving GMs, finding maximum-a-posteriori (MAP) as-
signment in GM is an important inference task, which is

known to be computationally intractable (i.e., NP-hard) in
general (Chandrasekaran et al., 2008). Max-product belief
propagation (BP) is the most popular heuristic for approxi-
mating a MAP assignment of given GM, where its perfor-
mance has been not well understood in loopy GMs. Nev-
ertheless, BP often shows remarkable performances even
on loopy GM. Distributed implementation, associated ease
of programming and strong parallelization potential are
the main reasons for the growing popularity of the BP al-
gorithm. For example, several software architectures for
implementing parallel BPs were recently proposed (Low
et al., 2010; Gonzalez et al., 2010; Ma et al., 2012) by dif-
ferent research groups in machine learning communities.

In the past years, there have been made extensive research
efforts to understand BP performances on loopy GMs be-
hind its empirical success. Several characterizations of the
max-product BP fixed points have been proposed (Weiss
and Freeman, 2001; Vinyals et al., 2010), whereas they do
not guarantee the BP convergence in general. It has also
been studied about the BP convergence to the correct an-
swer, in particular, under a few classes of loopy GM formu-
lations of combinatorial optimization problems: matching
(Bayati et al., 2005; Sanghavi et al., 2011; Huang and Je-
bara, 2007; Salez and Shah, 2009), perfect matching (Bay-
ati et al., 2011), matching with odd cycles (Shin et al.,
2013) and shortest path (Ruozzi and Tatikonda, 2008). The
important common feature of these instances is that BP
converges to a correct MAP assignment if the Linear Pro-
gramming (LP) relaxation of the MAP inference problem
is tight, i.e., it has no integrality gap. In other words, BP
can be used an efficient distributed solver for those LPs,
and is presumably of better choice than classical central-
ized LP solvers such as simplex methods (Dantzig, 1998),
interior point methods (Thapa, 2003) and ellipsoid methods
(Khachiyan, 1980) for large-scale inputs. However, these
theoretical results on BP are very sensitive to underlying
structural properties depending on specific problems and it
is not clear what extent they can be generalized to, e.g.,
the BP analysis for matching problems (Bayati et al., 2005;
Sanghavi et al., 2011; Huang and Jebara, 2007; Salez and
Shah, 2009) are not extended to even for perfect matching

ones (Bayati et al., 2011). In this paper, we overcome such
technical difficulties for enhancing the power of BP as a LP
solver.

Contribution. We establish a generic criteria for GM for-
mulations of given LP so that BP converges to the optimal
LP solution. By product, it also provides a sufficient con-
dition for a unique BP fixed point. As one can naturally ex-
pect given prior results, one of our conditions requires the
LP tightness. Our main contribution is finding other suffi-
cient generic conditions so that BP converges to the correct
MAP assignment of GM. First of all, our generic criteria
can rediscover all prior BP results on this line, including
matching (Bayati et al., 2005; Sanghavi et al., 2011; Huang
and Jebara, 2007), perfect matching (Bayati et al., 2011),
matching with odd cycles (Shin et al., 2013) and shortest
path (Ruozzi and Tatikonda, 2008), i.e., we provide a uni-
fied framework on establishing the convergence and cor-
rectness of BPs in relation to associated LPs. Furthermore,
we provide new instances under our framework: we show
that BP can solve LP formulations associated to other pop-
ular combinatorial optimizations including perfect match-
ing with odd cycles, traveling salesman, cycle packing and
vertex cover, which are not known in the literature. While
most prior known BP results on this line focused on the
case when the associated LP has an integral solution, the
proposed criteria naturally guides the BP design to com-
pute fractional LP solutions as well (see Section 4.2 and
Section 4.4 for details).

Our proof technique is built upon on that of Sanghavi et al.
(2011) where the authors construct an alternating path in
the computational tree induced by BP to analyze its perfor-
mance for the maximum weight matching problem. Such
a trick needs specialized case studies depending on the as-
sociated LP when the path reaches a leaf of the tree, and
this is one of main reasons why it is not easy to generalize
to other problems beyond matching. The main technical
contribution of this paper is providing a way to avoid the
issue in the BP analysis via carefully analyzing associated
LP polytopes.

The main appeals of our results are providing not only
tools on BP analysis, but also guidelines on BP design for
its high performance, i.e., one can carefully design a BP
given LP so that it satisfies the proposed criteria. We run
such a BP for solving the famous traveling saleman prob-
lem (TSP), and our experiments show that BP outperforms
other popular heuristics (see Section 5). Our results provide
not only new tools on BP analysis and design, but also new
directions on efficient distributed (and parallel) solvers for
large-scale LPs and combinatorial optimization problems.

Organization. In Section 2, we introduce necessary back-
grounds for the BP algorithm. In Section 3, we provide
the main result of the paper, and several concrete applica-
tions to popular combinatorial optimizations are described

in Section 4. In Section 5, we show empirical performances
of BP algorithms for solving TSP.

2 PRELIMINARIES

2.1 GRAPHICAL MODEL

A joint distribution of n (binary) random variables Z =
[Zi] ∈ {0, 1}n is called a Graphical Model (GM) if it fac-
torizes as follows: for z = [zi] ∈ {0, 1}n,

Pr[Z = z] ∝
∏

i∈{1,...,n}

ψi(zi)
∏
α∈F

ψα(zα),

where {ψi, ψα} are (given) non-negative functions, so-
called factors; F is a collection of subsets

F = {α1, α2, ..., αk} ⊂ 2{1,2,...,n}

(each αj is a subset of {1, 2, . . . , n} with |αj | ≥ 2); zα
is the projection of z onto dimensions included in α.1 In
particular, ψi is called a variable factor. Figure 1 depicts
the the graphical relation between factors F and variables
z.

α1 α2 α3

z1 z2 z3 z4

Figure 1: Factor graph for the graphical model
Pr[z] ∝ ψα1

(z1, z3)ψα2
(z1, z2, z4)ψα3

(z2, z3, z4), i.e.,
F = {α1, α2, α3} and n = 4. Each αj selects a subset
of z. For example, α1 selects {z1, z3}.

Assignment z∗ is called a maximum-a-posteriori (MAP)
assignment if z∗ = arg maxz∈{0,1}n Pr[z]. This means
that computing a MAP assignment requires us to compare
Pr[z] for all possible z, which is typically computation-
ally intractable (i.e., NP-hard) unless the induced bipartite
graph of factors F and variables z, so-called factor graph,
has a bounded treewidth (Chandrasekaran et al., 2008).

2.2 MAX-PRODUCT BELIEF PROPAGATION

The (max-product) BP algorithm is a popular heuristic for
approximating the MAP assignment in GM. BP is imple-
mented iteratively; at each iteration t, BP maintains four
messages {mt

α→i(c),m
t
i→α(c) : c ∈ {0, 1}} between

every variable zi and every associated α ∈ Fi, where
Fi := {α ∈ F : i ∈ α}; that is, Fi is a subset of F
such that all α in Fi are associated with zi. The messages

1For example, if z = [0, 1, 0] and α = {1, 3}, then zα =
[0, 0].

are updated as follows:

mt+1
α→i(c) = max

zα:zi=c
ψα(zα)

∏
j∈α\i

mt
j→α(zj) (1)

mt+1
i→α(c) = ψi(c)

∏
α′∈Fi\α

mt
α′→i(c). (2)

Where each zi only sends messages to Fi; that is, zi sends
messages to αj only if αj selects/includes i. The outer-
term in the message computation (1) is maximized over all
possible zα ∈ {0, 1}|α| with zi = c. The inner-term is a
product that only depends on the variables zj (excluding
zi) that are connected to α. The message-update (2) from
variable zi to factor ψα is a product containing all messages
received by zi in the previous iteration, except for the mes-
sage sent by ψα itself.

One can reduce the complexity by combining (1) and (2)
as:

mt+1
i→α(c) = ψi(c)

∏
α′∈Fi\α

max
zα′ :zi=c

ψα′(zα′)

×
∏

j∈α′\i

mt
j→α′(zj).

The BP fixed-point of messages is defined as mt+1 = mt

under the above updating rule. Given a set of messages
{mi→α(c),mα→i(c) : c ∈ {0, 1}}, the so-called BP
marginal beliefs are computed as follows:

bi[zi] = ψi(zi)
∏
α∈Fi mα→i(zi). (3)

This BP algorithm outputs zBP = [zBPi] where

zBPi =

1 if bi[1] > bi[0]

? if bi[1] = bi[0]

0 if bi[1] < bi[0]

.

It is known that zBP converges to a MAP assignment after
a sufficient number of iterations, if the factor graph is a
tree and the MAP assignment is unique. However, if the
graph contains cycles, the BP algorithm is not guaranteed
to converge a MAP assignment in general.

3 CONVERGENCE AND CORRECTNESS
OF BELIEF PROPAGATION

In this section, we provide the main result of this paper:
a convergence and correctness criteria of BP. Consider the
following GM: for x = [xi] ∈ {0, 1}n and w = [wi] ∈ Rn,

Pr[X = x] ∝
∏
i

e−wixi
∏
α∈F

ψα(xα), (4)

where F is the set of non-variable factors and the factor
function ψα for α ∈ F is defined as

ψα(xα) =

{
1 if Aαxα ≥ bα, Cαxα = dα

0 otherwise
,

for some matrices Aα, Cα and vectors bα, dα. Now we
consider the Linear Programming (LP) corresponding the
above GM:

minimize w · x
subject to ψα(xα) = 1, ∀α ∈ F

x = [xi] ∈ [0, 1]n.

(5)

One can easily observe that the MAP assignments for GM
(4) corresponds to the (optimal) solution of LP (5) if the
LP has an integral solution x∗ ∈ {0, 1}n. As stated in the
following theorem, we establish other sufficient conditions
so that the max-product BP can indeed find the LP solution.

Theorem 1 The max-product BP on GM (4) with arbitrary
initial message converges to the solution of LP (5) if the
following conditions hold:

C1. LP (5) has a unique integral solution x∗ ∈ {0, 1}n,
i.e., it is tight.

C2. For every i ∈ {1, 2, . . . , n}, the number of factors as-
sociated with xi is at most two, i.e., |Fi| ≤ 2.

C3. For every factor ψα, every xα ∈ {0, 1}|α| with
ψα(xα) = 1, and every i ∈ α with xi 6= x∗i , there
exists γ ⊂ α such that

|{j ∈ {i} ∪ γ : |Fj | = 2}| ≤ 2

ψα(x′α) = 1, where x′k =

{
xk if k /∈ {i} ∪ γ
x∗k otherwise

.

ψα(x′′α) = 1, where x′′k =

{
xk if k ∈ {i} ∪ γ
x∗k otherwise

.

Since Theorem 1 holds for arbitrary initial messages, the
conditions C1, C2, C3 also provides the uniqueness of BP
fixed-points in term of marginal beliefs, as follows.

Corollary 2 The BP fixed-points of GM (4) have the same
marginal beliefs if conditions C1, C2, C3 hold.

The conditions C2, C3 are typically easy to check given
GM (4) and the uniqueness in C1 can be easily guaran-
teed via adding random noises, where we provide several
concrete examples in Section 4. On the other hand, the in-
tegral property in C1 requires to analyze LP (5), where it
has been extensively studied in the field of combinatorial
optimization (Schrijver, 2003). Nevertheless, Theorem 1
provides important guidelines to design BP algorithms, ir-
respectively of the LP analysis. For example, in Section
5, we report empirical performances of BP following the
above guideline for solving the traveling salesman prob-
lem, without relying on whether the corresponding LP has
an integral solution or not.

3.1 PROOF OF THEOREM 1

To begin with, we define some necessary notation. We let
P denote the polytope of feasible solutions of LP (5):

P := {x ∈ [0, 1]n : ψα(xα) = 1, ∀α ∈ F} .

Similarly, Pα is defined as

Pα :=
{
x ∈ [0, 1]|α| : ψα(xα) = 1

}
.

We first state the following key technical lemma.
Lemma 3 There exist universal constants K, η > 0 for LP
(5) such that if z ∈ [0, 1]n and 0 < ε < η satisfy the
followings:

1. There exist at most two violated factors for z, i.e.,
|{α ∈ F : zα /∈ Pα}| ≤ 2.

2. For each violated factor α, there exist i ∈ α such that
z†α ∈ Pα, where z† = z + εei or z† = z − εei and
ei ∈ {0, 1}n is the unit vector whose i-th coordinate
is 1,

then there exists z‡ ∈ P such that ‖z − z‡‖1 ≤ εK.

The proof of Lemma 3 is presented in Section 3.2. Now,
from Condition C1, it follows that there exists ρ > 0 such
that

ρ := inf
x∈P\x∗

w · x− w · x∗

‖x− x∗‖1
> 0. (6)

We let x̂t ∈ {0, 1, ?}n denote the BP estimate at the t-
th iteration for the MAP computation. We will show that
under Conditions C1-C3,

x̂t = x∗, for t >
(
wmax

ρ
+ 1

)
K,

where wmax = maxj |wj | and K is the universal con-
stant in Lemma 3. Suppose the above statement is false,
i.e., there exists i ∈ {1, 2, . . . , n} such that x̂ti 6= x∗i for

t >
(
wmax

ρ + 1
)
K. Under the assumption, we will reach

a contradiction.

Now we construct a tree-structured GM Ti(t), popularly
known as the computational tree (Weiss and Freeman,
2001), as follows:

1. Add yi ∈ {0, 1} as the root variable with variable fac-
tor function e−wiyi .

2. For each leaf variable yj and for each α ∈ Fj and ψα
is not associated with yj in the current tree-structured
GM, add a factor function ψα as a child of yj .

3. For each leaf factor ψα and for each variable yk such
that k ∈ α and yk is not associated with ψα in the cur-
rent tree-structured GM, add a variable yk as a child
of ψα with variable factor function e−wkyk .

4. Repeat Step 2, 3 t times.

Suppose the initial messages of BP are set by 1, i.e.,
mj→α(·)0 = 1. Then, if x∗i 6= x̂ti, it is known (Weiss,
1997) that there exists a MAP configuration yMAP on Ti(t)
with yMAP

i 6= x∗i at the root variable. For other initial mes-
sages, one can guarantee the same property under changing
weights of leaf variables of the tree-structured GM. Specif-
ically, for a leaf variable k with |Fk = {α1, α2}| = 2 and
α1 being its parent factor in Ti(t), we reset its variable fac-
tor by e−w

′
kyk , where

w′k = wk−log
maxzα2 :zk=1 ψα2

(zα2
)Πj∈α2\km

0
j→α2

(zj)

maxzα2 :zk=0 ψα2
(zα2

)Πj∈α2\km
0
j→α2

(zj)
.

(7)
This is the reason why our proof of Theorem 1 goes through
for arbitrary initial messages. For notational convenience,
we present the proof for the standard initial message of
m0
j→α(·) = 1, where it can be naturally generalized to

other initial messages using (7).

Now we construct a new valid assignment yNEW on the
computational tree Ti(t) as follows:

1. Initially, set yNEW ← yMAP .

2. Update the value of the root variable of Ti(t) by
yNEWi ← x∗i .

3. For each child factor ψα of root i ∈ α, choose γ ⊂ α
according to Condition C3 and update the associated
variable by yNEWj ← x∗j ∀j ∈ γ.

4. Repeat Step 2,3 recursively by substituting Ti(t) by
the subtree of Ti(t) of root j ∈ γ until the process
stops (i.e., i = j) or the leaf of Ti(t) is reached (i.e., i
does not have a child).

One can notice that the set of revised variables in Step 2 of
the above procedure forms a path structure Q in the tree-
structured GM. We first, consider the case that both ends
of the path Q touch leaves of Ti(t), where other cases can
be argued in a similar manner. Define ζj and κj be the
number of copies of xj in path Q with x∗j = 1 and x∗j = 0,
respectively, where ζ = [ζj], κ = [κj] ∈ Zn+ . Then, from
our construction of yNEW , one can observe that

yNEW = yMAP + ζ − κ
w · yMAP − w · yNEW = w · (κ− ζ).

If we set z = x∗ + ε(κ− ζ) where 0 < ε < min{1/2t, η},
then one can check that z satisfies the conditions of Lemma
3 using Conditions C2, C3. Hence, from Lemma 3, there
exists z‡ ∈ P such that

‖z‡ − z‖1 ≤ εK
‖z‡ − x∗‖1 ≥ ε(‖ζ‖1 + ‖κ‖1 −K) ≥ ε(t−K).

where z = x∗ + ε(κ− ζ). Hence, it follows that

0 < ρ ≤ w · z‡ − w · x∗

‖z‡ − x∗‖1

≤ w · z + εwmaxK − w · x∗

ε(t−K)

=
εw · (κ− ζ) + εwmaxK

ε(t−K)

=
w · (κ− ζ) + wmaxK

t−K

Furthermore, if t >
(
wmax

ρ + 1
)
K, the above inequality

implies that

w · yMAP − w · yNEW = w · (κ− ζ)

≥ ρt− (wmax + ρ)K > 0.

This contradicts to the fact that yMAP is a MAP configura-
tion. This completes the proof of Theorem 1.

3.2 PROOF OF LEMMA 3

One can write P = {x : Ax ≥ b} ⊂ [0, 1]n for some
matrix A ∈ Rm×n and vector b ∈ Rm, where without loss
of generality, we can assume that ‖Ai‖2 = 1 where {Ai}
is the set of row vectors of A. We define

Pε = {x : Ax ≥ b− ε1},

where 1 is the vector of ones. Then, one can check that
z ∈ Pε for z, ε satisfying conditions of Lemma 3. Now we
aim for finding a universal constant K satisfying

dist(P,Pε) := max
x∈Pε

(min
y∈P
‖x− y‖1) ≤ εK,

which leads to the conclusion of Lemma 3.

To this end, for ξ ⊂ [1, 2, . . . ,m] with |ξ| = n, we let Aξ
be the square sub-matrix of A by choosing ξ-th rows of A
and bξ is the n-dimensional subvector of b corresponding ξ.
Throughout the proof, we only consider ξ such that Aξ is
invertible. Using this notation, we first claim the following.

Claim 4 If Aξ is invertible and vξ := A−1ξ bξ ∈ P , then vξ
is a vertex of polytope P .

Proof. Suppose vξ is not a vertex of P , i.e. there exist
x, y ∈ P such that x 6= y and vξ = λx + (1 − λ)y for
some λ ∈ (0, 1/2]. Under the assumption, we will reach a
contradiction. Since P is a convex set,

3λ

2
x+

(
1− 3λ

2

)
y ∈ P. (8)

However, as Aξ is invertible,

Aξ

(
3λ

2
x+

(
1− 3λ

2

)
y

)
6= bξ. (9)

From (8) and (9), there exists a row vector Ai of Aξ and
the corresponding element bi of bξ such that

Ai ·
(

3λ

2
x+

(
1− 3λ

2

)
y

)
> bi.

Using the above inequality and Ai · (λx+ (1− λ)y) = bi,
one can conclude that

Ai ·
(
λ

2
x+

(
1− λ

2

)
y

)
< bi,

which contradict to λ
2x +

(
1− λ

2

)
y ∈ P . This completes

the proof of Claim 4. �

We also note that if v is a vertex of polytope P , there exists
ξ such that Aξ is invertible and v = A−1ξ bξ. We define the
following notation:

I = {ξ : A−1ξ bξ ∈ P} Iε = {ξ : A−1ξ (bξ − ε1) ∈ Pε},

where Claim 4 implies that {vξ := A−1ξ bξ : ξ ∈ I} and
{uξ,ε := A−1ξ (bξ − ε1) : ξ ∈ Iε} are sets of vertices of
P and Pε, respectively. Using the notation, we show the
following claim.

Claim 5 There exists η > 0 such that Iε ⊂ I for all ε ∈
(0, η).

Proof. Suppose η > 0 satisfying the conclusion of Claim
5 does not exist. Then, there exists a strictly decreasing
sequence {εk > 0 : k = 1, 2, . . . } converges to 0 such that
Iεk − I 6= ∅. Since |{ξ : ξ ⊂ [1, 2, . . . ,m]}| < ∞, there
exists ξ′ such that

|K := {k : ξ′ ∈ Iεk − I}| =∞. (10)

For any k ∈ K, observe that the sequence {uξ′,ε` : ` ≥
k, ` ∈ K} converges to vξ′ . Furthermore, all points in the
sequence are in Pεk since Pε` ⊂ Pεk for any ` ≥ k. There-
fore, one can conclude that vξ′ ∈ Pεk for all k ∈ K, where
we additionally use the fact that Pεk is a closed set. Be-
cause P =

⋂
k∈K Pεk , it must be that vξ′ ∈ P , i.e., vξ′

must be a vertex of P from Claim 4. This contradicts to the
fact ξ′ /∈ I. This completes the proof of Claim 5. �

From the above claim, we observe that any x ∈ Pε can be
expressed as a convex combination of {uξ,ε : ξ ∈ I}, i.e.,
x =

∑
ξ∈I λξuξ,ε with

∑
ξ∈I λξ = 1 and λξ ≥ 0. For all

ε ∈ (0, η) for η > 0 in Claim 5, one can conclude that

dist(P,Pε) ≤ max
x∈Pε

‖
∑
ξ∈I

λξuξ,ε −
∑
ξ∈I

λξvξ‖1

= max
x∈Pε

ε‖
∑
ξ∈I

λξA
−1
ξ 1‖1

≤ εmax
ξ
‖A−1ξ 1‖1,

where we choose K = maxξ ‖A−1ξ 1‖1. This completes
the proof of Lemma 3.

4 APPLICATIONS OF THEOREM 1 TO
COMBINATORIAL OPTIMIZATION

In this section, we introduce concrete instances of LPs
satisfying the conditions of Theorem 1 so that BP cor-
rectly converges to its optimal solution. Specifically, we
consider LP formulations associated to several combina-
torial optimization problems including shortest path, max-
imum weight perfect matching, traveling salesman, maxi-
mum weight disjoint vertex cycle packing and vertex cover.
We note that the shortest path result, Corollary 6, is known
(Ruozzi and Tatikonda, 2008), where we rediscover it as a
corollary of Theorem 1. Our other results, Corollaries 7-11,
are new and what we first establish in this paper.

4.1 SHORTEST PATH

Given directed graph G = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ , the shortest path prob-
lem is to find the shortest path from the source s to the
destination t: it minimizes the sum of edge weights along
the path. One can naturally design the following LP for this
problem:

minimize w · x

subject to
∑

e∈δo(v)

xe −
∑

e∈δi(v)

xe

=

1 if v = s

−1 if v = t

0 otherwise
∀ v ∈ V

x = [xe] ∈ [0, 1]|E|.

(11)

where δi(v), δo(v) are the set of incoming, outgoing edges
of v. It is known that the above LP always has an integral
solution, i.e., the shortest path from s to t. We consider the
following GM for LP (11):

Pr[X = x] ∝
∏
e∈E

e−wexe
∏
v∈V

ψv(xδ(v)), (12)

where the factor function ψv is defined as

ψv(xδ(v)) =

1 if
∑
e∈δo(v) xe −

∑
e∈δi(v) xe

=

1 if v = s

−1 if v = t

0 otherwise
0 otherwise

.

For the above GM (12), one can easily check Conditions
C2, C3 of Theorem 1 hold and derive the following corol-
lary whose formal proof is presented in the supplementary
material due to the space constraint.
Corollary 6 If the shortest path from s to t, i.e., the solu-
tion of the shortest path LP (11), is unique, then the max-
product BP on GM (12) converges to it.

The uniqueness condition in the above corollary is easy to
guarantee by adding small random noises to edge weights.

4.2 MAXIMUM WEIGHT PERFECT MATCHING

Given undirected graphG = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ on edges, the maximum
weight perfect matching problem is to find a set of edges
such that each vertex is connected to exactly one edge in
the set and the sum of edge weights in the set is maximized.
One can naturally design the following LP for this problem:

maximize w · x

subject to
∑
e∈δ(v)

xe = 1, ∀ v ∈ V

x = [xe] ∈ [0, 1]|E|.

(13)

where δ(v) is the set of edges connected to a vertex v. If
the above LP has an integral solution, it corresponds to the
solution of the maximum weight perfect matching problem.

It is known that the maximum weight matching LP
(13) always has a half-integral solution x∗ ∈ {0, 12 , 1}

|E|.
We will design BP for obtaining the half-integral solution.
To this end, duplicate each edge e to e1, e2 and define a
new graph G′ = (V,E′) where E′ = {e1, e2 : e ∈ E}.
Then, we suggest the following equivalent LP that always
have an integral solution:

maximize w′ · x

subject to
∑

ei∈δ(v)

xei = 2 ∀ v ∈ V

x = [xei] ∈ [0, 1]|E
′|.

(14)

where w′e1 = w′e2 = we. One can easily observe that solv-
ing LP (14) is equivalent to solving LP (13) due to our con-
struction of G′ and w′. Now, construct the following GM
for LP (14):

Pr[X = x] ∝
∏
ei∈E′

ew
′
ei
xei
∏
v∈V

ψv(xδ(v)), (15)

where the factor function ψv is defined as

ψv(xδ(v)) =

{
1 if

∑
ei∈δ(v) xei = 2

0 otherwise
.

For the above GM (15), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 7 If the solution of the maximum weight perfect
matching LP (14) is unique, then the max-product BP on
GM (15) converges it.

Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights [w′ei]. We note that it is known (Bayati et al., 2011)
that BP converges to the unique and integral solution of LP
(13), while Corollary 7 implies that BP can solve it without
the integrality condition. We note that one can easily ob-
tain a similar result for the maximum weight (non-perfect)
matching problem, where we omit the details in this paper.

4.3 MAXIMUM WEIGHT PERFECT MATCHING
WITH ODD CYCLES

In previous section we prove that BP converges to the opti-
mal (possibly, fractional) solution of LP (14), equivalently
LP (13). One can add odd cycle (also called Blossom) con-
straints and make those LPs tight i.e. solves the maximum
weight perfect matching problem:

maximize w · x

subject to
∑
e∈δ(v)

xe = 1, ∀ v ∈ V

∑
e∈C

xe ≤
|C| − 1

2
, ∀C ∈ C,

x = [xe] ∈ [0, 1]|E|.

(16)

where C is a set of odd cycles in G. The authors (Shin
et al., 2013) study BP for solving LP (16) by replacing∑
e∈δ(v) xe = 1 by

∑
e∈δ(v) xe ≤ 1, i.e., for the maximum

weight (non-perfect) matching problem. Using Theorem 1,
one can extend the result to the maximum weight perfect
matching problem, i.e., solving LP (16). To this end, we
follow the approach (Shin et al., 2013) and construct the
following graph G′ = (V ′, E′) and weight w′ = [w′e : e ∈
E′] ∈ R|E′| given set C of disjoint odd cycles:

V ′ = V ∪ {vC : C ∈ C}
E′ = {(u, vC) : u ∈ C,C ∈ C} ∪ E \ {e ∈ C : C ∈ C}

w′e =

1
2

∑
e′∈E(C)(−1)dC(u,e′)we′ if e = (u, vC)

for some C ∈ C
we otherwise

,

where dC(u, e′) is the graph distance between u, e′ in cycle
C. Then, LP (16) is equivalent to the following LP:

maximize w′ · y

subject to
∑
e∈δ(v)

ye = 1, ∀ v ∈ V

∑
u∈V (C)

(−1)dC(u,e)y(vC ,u) ∈ [0, 2], ∀e ∈ E(C)

∑
e∈δ(vC)

ye ≤ |C| − 1, ∀C ∈ C

y = [ye] ∈ [0, 1]|E
′|.

(17)

Now, we construct the following GM from the above LP:

Pr[Y = y] ∝
∏
e∈E

eweye
∏
v∈V

ψv(yδ(v))
∏
C∈C

ψC(yδ(vC)),

(18)
where the factor function ψv , ψC is defined as

ψv(yδ(v)) =

{
1 if

∑
e∈δ(v) ye = 1

0 otherwise
,

ψC(yδ(vC)) =

1 if

∑
u∈V (C)(−1)dC(u,e)y(vC ,u) ∈ {0, 2}∑
e∈δ(vC) ye ≤ |C| − 1

0 otherwise

.

For the above GM (18), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 8 If the solution of the maximum weight perfect
matching with odd cycles LP (17) is unique and integral,
then the max-product BP on GM (18) converges to it.

We again emphasize that a similar result for the maximum
weight (non-perfect) matching problem was established in
(Shin et al., 2013). However, the proof technique in the
paper does not extend to the perfect matching problem.
This is in essence because presumably the perfect match-
ing problem is harder than the non-perfect matching one.
Under the proposed generic criteria of Theorem 1, we over-
come the technical difficulty.

4.4 VERTEX COVER

Given undirected graph G = (V,E) and non-negative in-
teger vertex weights b = [bv : v ∈ V] ∈ Z|V |+ , the vertex
cover problem is to find a set of vertices minimizes the sum
of vertex weights in the set such that each edge is connected
to at least one vertex in it. This problem is one of Karp’s
21 NP-complete problems (Karp, 1972). The associated LP
formulation to the vertex cover problem is as follows:

minimize b · y
subject to yu + yv ≥ 1, (u, v) ∈ E

y = [yv] ∈ [0, 1]|V |.

(19)

However, if we design a GM from the above LP, it does not
satisfy conditions in Theorem 1. Instead, we will show that
BP can solve the following dual LP:

maximize
∑
e∈E

xe

subject to
∑
e∈δ(v)

xe ≤ bv, ∀ v ∈ V

x = [xe] ∈ R|E|+ .

(20)

Note that the above LP always has a half-integral solution.
As we did in Section 4.2, one can duplicate edges, i.e.,

E′ = {e1, . . . , e2bmax : e ∈ E} with bmax = maxv bv ,
and design the following equivalent LP having an integral
solution:

maximize w′ · x

subject to
∑

ei∈δ(v)

xei ≤ 2bv, ∀ v ∈ V

x = [xei] ∈ [0, 1]|E
′|

, (21)

where w′ei = we for e ∈ E and its copy ei ∈ E′. From the
above LP, we can construct the following GM:

Pr[X = x] ∝
∏
ei∈E′

ew
′
ei
xei
∏
v∈V

ψv(xδ(v)), (22)

where the factor function ψv is defined as

ψv(xδ(v)) =

{
1 if

∑
ei∈δ(v) xei ≤ 2bv

0 otherwise
.

For the above GM (22), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 9 If the solution of the vertex cover dual LP (21)
is unique, then the max-product BP on GM (22) converges
it.

Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights [w′ei]. We further remark that if the solution of
the primal LP (19) is integral, then it can be easily found
from the solution of the dual LP (21) using the strictly com-
plementary slackness condition (Bertsimas and Tsitsiklis,
1997) .

4.5 TRAVELING SALESMAN

Given directed graph G = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ , the traveling salesman
problem (TSP) is to find the minimum weight Hamiltonian
cycle inG. The natural LP formulation to TSP is following:

minimize w · x

subject to
∑
e∈δ(v)

xe = 2

x = [xe] ∈ [0, 1]|E|.

(23)

From the above LP, one can construct the following GM:

Pr[X = x] ∝
∏
e∈E

e−wexe
∏
v∈V

ψv(xδ(v)), (24)

where the factor function ψv is defined as

ψv(xδ(v)) =

{
1 if

∑
e∈δ(v) xe = 2

0 otherwise
.

For the above GM (24), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 10 If the solution of the traveling salesman LP
(23) is unique and integral, then the max-product BP on
GM (24) converges it.

Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights. In Section 5, we show the empirical performance
of the max-product BP on GM (24) for solving TSP without
relying on the integrality condition in Corollary 10.

4.6 MAXIMUM WEIGHT CYCLE PACKING

Given undirected graphG = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ , the maximum weight
vertex disjoint cycle packing problem is to find the maxi-
mum weight set of cycles with no common vertex. It is easy
to observe that it is equivalent to find a subgraph maximiz-
ing the sum of edge weights on it such that each vertex of
the subgraph has degree 2 or 0. The natural LP formulation
to this problem is following:

maximize w · x

subject to
∑
e∈δ(v)

xe = 2yv

x = [xe] ∈ [0, 1]|E|, y = [yv] ∈ [0, 1]|V |.

(25)

From the above LP, one can construct the following GM:

Pr[X = x, Y = y] ∝
∏
e∈E

ewexe
∏
v∈V

ψv(xδ(v), yv),

(26)
where the factor function ψv is defined as

ψv(xδ(v), yv) =

{
1 if

∑
e∈δ(v) xe = 2yv

0 otherwise
.

For the above GM (26), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 11 If the solution of maximum weight vertex
disjoint cycle packing LP (25) is unique and integral, then
the max-product BP on GM (26) converges it.

Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights.

5 EXPERIMENTAL RESULTS FOR
TRAVELING SALESMAN PROBLEM

In this section, we report empirical performances of BP on
GM (24) for solving the traveling salesman problem (TSP)

Table 1: Experimental results for small size complete graph and each number is the average among 100 samples. For
example, Greedy+BP means that the Greedy algorithm using edge weights as BP beliefs as we describe in Section 5. The
left value is the approximation ratio, i.e., the average weight ratio between the heuristic solution and the exact solution.
The right value is the average weight of the heuristic solutions. The last row is a ratio of tight TSP LP (23).

Size 5 10 15 20 25
Greedy 1.07 / 1.84 1.20 / 2.25 1.33 / 2.58 1.51 / 2.85 1.51 / 3.04
Greedy+BP 1.00 / 1.75 1.05 / 1.98 1.13 / 2.23 1.19 / 2.27 1.21 / 2.43
Christofides 1.38 / 1.85 1.38 / 2.56 1.67 / 3.20 1.99 / 3.75 2.16 / 4.32
Christofides+BP 1.00 / 1.75 1.09 / 2.07 1.23 / 2.43 1.30 / 2.50 1.45 / 2.90
Insertion 1.03 / 1.79 1.29 / 2.38 1.53 / 2.95 1.72 / 3.26 1.89 / 3.77
Insertion+BP 1.00 / 1.75 1.29 / 2.39 1.52 / 2.97 1.79 / 3.38 1.94 / 3.89
N-Neighbor 1.07 / 1.84 1.27 / 2.39 1.42 / 2.74 1.55 / 2.96 1.64 / 3.30
N-Neighbor+BP 1.00 / 1.75 1.05 / 1.98 1.13 / 2.23 1.15 / 2.21 1.20 / 2.40
2-Opt 1.00 / 1.75 1.08 / 2.04 1.12 / 2.21 1.24 / 2.36 1.28 / 2.57
2-Opt+BP 1.00 / 1.75 1.04 / 1.96 1.07 / 2.11 1.11 / 2.13 1.16 / 2.34
Tight LPs 100% 93% 88% 87% 84%

Table 2: Experimental results for sparse Erdos-Renyi graph with fixed average vertex degrees and each number is the
average among 1000 samples. The left value is the ratio that a heuristic finds the Hamiltonian cycle without penalty edges.
The right value is the average weight of the heuristic solutions.

Size 100 200
Degree 10 25 50 10 25 50
Greedy 0% / 7729.43 0.3% / 2841.98 13% / 1259.08 0% / 15619.9 0% / 5828.88 0.3% / 2766.07
Greedy+BP 14% / 1612.82 21% / 1110.27 44% / 622.488 6.4% / 2314.95 10% / 1687.29 16% / 1198.48
Christoifeds 0% / 19527.3 0% / 16114.3 0% / 10763.7 0% / 41382.5 0% / 37297.0 0% / 32023.1
Christofides+BP 14% / 2415.73 20% / 1663.47 34% / 965.775 6.1% / 3586.77 9.2% / 2876.35 12% / 2183.80
Insertion 0% / 12739.2 84% / 198.099 100% / 14.2655 0% / 34801.6 0.9% / 3780.71 99% / 44.1293
Insertion+BP 0% / 13029.0 76% / 283.766 100% / 14.6964 0% / 34146.7 0.3% / 4349.11 99% / 41.2176
N-Neighbor 0% / 9312.77 0% / 3385.14 7.6% / 1531.83 0% / 19090.7 0% / 7383.23 0.3% / 3484.82
N-Neighbor+BP 16% / 1206.95 26% / 824.232 50% / 509.349 6.9% / 1782.17 12% / 1170.38 24% / 888.421
2-Opt 34% / 1078.03 100% / 14.6873 100% / 7.36289 2% / 3522.78 100% / 35.8421 100% / 18.6147
2-Opt+BP 76% / 293.450 100% / 13.5773 100% / 6.53995 33% / 1088.79 100% / 34.7768 100% / 17.4883
Tight LPs 62% 62.3% 63% 52.2% 55% 52.2%

that is presumably the most famous one in combinatorial
optimization. In particular, we design the following BP-
guided heuristic for solving TSP:

1. Run BP for a fixed number of iterations, say 100, and
calculate the BP marginal beliefs (3).

2. Run the known TSP heuristic using edge weights as
log b[0]

b[1] using BP margianl beliefs instead of the orig-
inal weights.

For TSP heuristic in Step 2, we use Greedy, Christoifeds,
Insertion, N-Neighbor and 2-Opt provided by the LEMON
graph library (Dezső et al., 2011). We first perform the ex-
periments on the complete graphs of size 5, 10, 15, 20, 25
and random edge weight in (0, 1) to measure approxima-
tion qualities of heuristics, where it is reported in Table 1.
Second, we consider the sparse Erdos-Renyi random graph
of size 100, 200 and random edge weight in (0, 1). Then,
we make it a complete graph by adding non-existing edges
with penalty edge weight 1000.2 For these random in-

2This is to ensure that a Hamiltonian cycle always exists.

stances, we report performance of various heuristics in Ta-
ble 2. Our experiments show that BP boosts performances
of known TSP heuristics in overall, where BP is very easy
to code and does not hurt the simplicity of heuristics.

6 CONCLUSION

The BP algorithm has been the most popular algorithm
for solving inference problems arising graphical models,
where its distributed implementation, associated ease of
programming and strong parallelization potential are the
main reasons for its growing popularity. In this paper, we
aim for designing BP algorithms solving LPs, and pro-
vide sufficient conditions for its correctness and conver-
gence. We believe that our results provide new interesting
directions on designing efficient distributed (and parallel)
solvers for large-scale LPs.

Acknowledgements.

We would like to acknowledge the support of the AOARD
project, FA2386-14-1-4058.

References

Mohsen Bayati, Devavrat Shah, and Mayank Sharma.
Maximum weight matching via max-product belief
propagation. In Information Theory, 2005. ISIT 2005.
Proceedings. International Symposium on, pages 1763–
1767. IEEE, 2005.

Mohsen Bayati, Christian Borgs, Jennifer Chayes, and Ric-
cardo Zecchina. Belief propagation for weighted b-
matchings on arbitrary graphs and its relation to linear
programs with integer solutions. SIAM Journal on Dis-
crete Mathematics, 25(2):989–1011, 2011.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to
linear optimization, volume 6. Athena Scientific Bel-
mont, MA, 1997.

Venkat Chandrasekaran, Nathan Srebro, and Prahladh Har-
sha. Complexity of inference in graphical models. In
UAI 2008, Proceedings of the 24th Conference in Un-
certainty in Artificial Intelligence, pages 70–78. AUAI
Press, 2008.

George B Dantzig. Linear programming and extensions.
Princeton university press, 1998.

Balázs Dezső, Alpár Jüttner, and Péter Kovács. Lemon–
an open source c++ graph template library. Electronic
Notes in Theoretical Computer Science, 264(5):23–45,
2011.

Joseph Gonzalez, Yucheng Low, and Carlos Guestrin. Par-
allel splash belief propagation. Technical report, DTIC
Document, 2010.

Bert C Huang and Tony Jebara. Loopy belief propagation
for bipartite maximum weight b-matching. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 195–202, 2007.

Richard M Karp. Reducibility among combinatorial prob-
lems. Springer, 1972.

Leonid G Khachiyan. Polynomial algorithms in linear
programming. USSR Computational Mathematics and
Mathematical Physics, 20(1):53–72, 1980.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos Guestrin, and Joseph M. Hellerstein.
Graphlab: A new framework for parallel machine learn-
ing. In UAI 2010, Proceedings of the Twenty-Sixth Con-
ference on Uncertainty in Artificial Intelligence, pages
340–349. AUAI Press, 2010.

Nam Ma, Yinglong Xia, and Viktor K Prasanna. Task
parallel implementation of belief propagation in factor
graphs. In Parallel and Distributed Processing Sympo-
sium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International, pages 1944–1953. IEEE, 2012.

Marc Mezard and Andrea Montanari. Information, physics,
and computation. Oxford University Press, 2009.

Tom Richardson and Ruediger Urbanke. Modern coding
theory. Cambridge University Press, 2008.

Nicholas Ruozzi and Sekhar Tatikonda. st paths using the
min-sum algorithm. In Communication, Control, and
Computing, 2008 46th Annual Allerton Conference on,
pages 918–921. IEEE, 2008.

Justin Salez and Devavrat Shah. Belief propagation: an
asymptotically optimal algorithm for the random assign-
ment problem. Mathematics of Operations Research, 34
(2):468–480, 2009.

Sujay Sanghavi, Dmitry Malioutov, and Alan Willsky. Be-
lief propagation and lp relaxation for weighted matching
in general graphs. Information Theory, IEEE Transac-
tions on, 57(4):2203–2212, 2011.

Alexander Schrijver. Combinatorial optimization: polyhe-
dra and efficiency, volume 24. Springer, 2003.

Jinwoo Shin, Andrew E Gelfand, and Misha Chertkov. A
graphical transformation for belief propagation: Maxi-
mum weight matchings and odd-sized cycles. In Ad-
vances in Neural Information Processing Systems, pages
2022–2030, 2013.

George B Dantzig Mukund N Thapa. Linear programming.
2003.

Meritxell Vinyals, Alessandro Farinelli, Juan A Rodrı́guez-
aguilar, et al. Worst-case bounds on the quality of max-
product fixed-points. In Advances in Neural Information
Processing Systems, pages 2325–2333, 2010.

Martin J Wainwright and Michael I Jordan. Graphical
models, exponential families, and variational inference.
Foundations and Trends R© in Machine Learning, 1(1-2):
1–305, 2008.

Yair Weiss. Belief propagation and revision in networks
with loops. 1997.

Yair Weiss and William T Freeman. On the optimality
of solutions of the max-product belief-propagation al-
gorithm in arbitrary graphs. Information Theory, IEEE
Transactions on, 47(2):736–744, 2001.

Jonathan S Yedidia, William T Freeman, and Yair Weiss.
Constructing free-energy approximations and general-
ized belief propagation algorithms. Information Theory,
IEEE Transactions on, 51(7):2282–2312, 2005.

2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 24

Practical Message-passing Framework for Large-scale Combinatorial Optimization

Inho Cho* Soya Park* Sejun Park

KAIST

Dongsu Han Jinwoo Shin

Abstract—Graphical Model (GM) has provided a popular
framework for big data analytics because it often lends itself
to distributed and parallel processing by utilizing graph-based
‘local’ structures. It models correlated random variables where
in particular, the max-product Belief Propagation (BP) is the
most popular heuristic to compute the most-likely assignment
in GMs. In the past years, it has been proven that BP can solve
a few classes of combinatorial optimization problems under
certain conditions.

Motivated by this, we explore the prospect of using BP
to solve generic combinatorial optimization problems. The
challenge is that, in practice, BP may converge very slowly
and even if it does converge, the BP decision often violates
the constraints of the original problem. This paper proposes
a generic framework that enables us to apply BP-based
algorithms to compute an approximate feasible solution for
an arbitrary combinatorial optimization task. The main novel
ingredients include (a) careful initialization of BP messages,
(b) hybrid damping on BP updates, and (c) post-processing
using BP beliefs. Utilizing the framework, we develop parallel
algorithms for several large-scale combinatorial optimization
problems including maximum weight matching, vertex cover
and independent set. We demonstrate that our framework
delivers high approximation ratio, speeds up the process by
parallelization, and allows large-scale processing involving
billions of variables.

Keywords-Combinatorial optimization, Belief propagation,
Parallel algorithm, Maximum weighted matching

I. INTRODUCTION

Graphical Models (GMs) provide a useful framework

for modeling and processing real-world, large-scale data

applications. From traditional big data analytics, such as

page rank [1] and graph mining [2], to more recent deep

learning [3], graphical models have been commonly applied

for processing large-scale data-sets. GM is a particularly

good fit for big data applications because it lends itself

to fast parallel implementations by utilizing graph-based

‘local’ structures. Several modern programming models, such

as GraphLab [4], GraphChi [5] and GraphX [6], enable

distributed, parallel computation on GMs.

One of the most common computational tasks found in

GM’s applications is to compute the most-likely assign-

ment to random variables, so-called a MAP (Maximum-

A-Posteriori) estimate. This can be viewed as solving a large-

scale optimization problem, which is becoming increasingly

important for big data analytics since it presents a major

computational bottleneck. Motivated by this, we explore

*The first two authors contributed equally to this work.

the prospect of using GMs to solve optimization problems

at scale. In particular, we propose a message-passing based

algorithm to solve combinatorial optimization problems based

on Belief Propagation (BP). The (max-product) BP algorithm

is a well-studied heuristic that has been popularly used to

approximately solve MAP optimization tasks. It is an iterative,

message-passing algorithm proven to produce exact solutions

for tree structured GMs. However, understanding on the

performance of BP for loopy GMs has been quite limited.

Our goal is to design a highly accurate approximation

algorithm based on BP that solves generic large-scale

combinatorial optimization problems. The benefit of such

an algorithm is that it inherently lends itself to parallel

implementations, enabling fast performance and ensuring

scalability. However, the challenge is that the BP algorithm

is not guaranteed to be correct or even converge in general.

Even if it converges to the correct solution, its convergence

speed is too low for solving large-scale instances. Especially,

when there are multiple optima (multiple solutions), BP is

known to oscillate in many cases [7, 8, 9]. One can stop

BP iterations without waiting for convergence, but then BP

algorithms often produce infeasible solutions, i.e., violate the

constraints of the targeted combinatorial optimization.

Contribution. We resolve the issues by designing a generic

BP-based framework that computes highly accurate and

feasible approximation solutions. The basic idea is to use a

truncated BP algorithm in conjunction with existing heuristics

to enforce a feasible solution in a way that ensures high

approximation ratio. At a high level, the algorithm takes

the following steps. First, given an optimization problem,

we represent the problem in the MAP framework of GM.

Second, we run the corresponding BP’s message-passing and

‘partially’ solve the optimization problem. However, because

BP often does not converge quickly, we run only a fixed

number of BP iterations; we do not wait for convergence.

Instead, to boost up the quality of BP decisions, we (a)

carefully initialize the BP messages, (b) add a small noise

to weights, and (c) apply a hybrid damping strategy on

BP message updates (Section III-B). Finally, we apply

existing heuristics as post-processing procedures to enforce

the feasibility of the BP decision. In particular, we run known

heuristics for a given combinatorial optimization problem by

replacing the parameters of the original problems (e.g., edge

weights) with BP beliefs. This ensures that the framework

is applicable to any combinatorial optimization problems,

25

while achieving a higher approximation ratio than existing

heuristics.

In summary, this paper makes three key contributions:

1) Practical BP-based algorithm design: To the best

of our knowledge, this paper is the first to propose a

generic concept for designing BP-based algorithms that

solve large-scale combinatorial optimization problems.

2) Parallel implementation: We also demonstrate that

the algorithm is easily parallelizable. For the maximum

weighted matching problem, this translates to 71x speed

up while sacrificing only 0.1% accuracy compared to

the state-of-art exact algorithm [10].

3) Extensive empirical evaluation: We evaluate our al-

gorithms on three different combinatorial optimization

problems on diverse synthetic and real-world data-sets.

Our evaluation shows that the framework shows higher

accuracy compared to other known heuristics.

Related Work. In the past years, the convergence and

correctness of BP has been studied analytically for several

classical combinatorial optimization problems, including

matchings [7, 11, 12], perfect matchings [13], shortest paths

[8], independent sets [14], network flows [9] and vertex

covers [15]. The important common feature of these models

is that BP converges to a correct assignment when the

linear programming (LP) relaxation of the combinatorial

optimization is tight, i.e., when it shows no integrality

gap. However, LP tightness is an inevitable condition to

guarantee the convergence of BP to the optimal solution,

which is the main limitation of these theoretical studies

towards wider applicability. Moreover, even if BP converges

to the optimal solution, its convergence speed is often too

slow for solving large-scale instances. There have been

also empirical studies of BP-based algorithms for specific

combinatorial optimization instances, including traveling

salesman [16], graph partitioning [16], Steiner tree [17] and

network alignment [18]. However, their focuses are not on

large-scale instances and the running times of the proposed

algorithms typically grow super-linearly with respect to the

input size. In contrast, we provide a generic framework

on designing BP-based scalable, parallel algorithms that

are widely applicable to arbitrary large-scale combinatorial

optimization problems.

Organization. We provide backgrounds on BP and com-

binatorial optimization problems in Section II. Section III

describes our BP-based algorithm design, and Section IV

provides details on its parallel implementation. We evaluate

our algorithm on several combinatorial optimization problems

in Section V. Finally, we conclude in Section VI.

II. PRELIMINARIES

A. Graphical Model and Belief Propagation

A joint distribution of n (binary) random variables Z =
[Zi] ∈ {0, 1}n is called a Graphical Model (GM) if it

factorizes as follows: for z = [zi] ∈ {0, 1}n,

Pr[Z = z] ∝
∏

i∈{1,...,n}
ψi(zi)

∏
α∈F

ψα(zα),

where {ψi, ψα} are non-negative functions, so-called factors;

F is a collection of subsets

F = {α1, α2, ..., αk} ⊂ 2{1,2,...,n}

(each αj is a subset of {1, 2, . . . , n} with |αj | ≥ 2); zα
is the projection of z onto dimensions included in α.1 In

particular, ψi is called a variable factor. Assignment z∗ is

called a maximum-a-posteriori (MAP) assignment if z∗ =
argmaxz∈{0,1}n Pr[z]. This means that computing a MAP

assignment requires us to compare Pr[z] for all possible z,

which is typically computationally intractable (i.e., NP-hard)

unless the induced bipartite graph of factors F and variables

z, the so-called factor graph, has a bounded tree width [19].
The max-product belief propagation (BP) is a popular

heuristic for approximating the MAP assignment in GM. BP

is implemented iteratively; at each iteration t, BP maintains

four messages {mt
α→i(c),m

t
i→α(c) : c ∈ {0, 1}} between

every variable zi and every associated α ∈ Fi, where Fi :=
{α ∈ F : i ∈ α}. The messages are updated as follows:

mt+1
α→i(c) = max

zα:zi=c
ψα(zα)

∏
j∈α\i

mt
j→α(zj) (1)

mt+1
i→α(c) = ψi(c)

∏
α′∈Fi\α

mt
α′→i(c). (2)

One can reduce the complexity of messages by combining

(1) and (2) as:

mt+1
i→α(c) = ψi(c)

∏
α′∈Fi\α

max
zα′ :zi=c

ψα′(zα′)
∏

j∈α′\i
mt

j→α′(zj).

Given a set of messages {mi→α(c),mα→i(c) : c ∈ {0, 1}},
the so-called BP marginal beliefs are computed as follows:

bi[zi] = ψi(zi)
∏

α∈Fi
mα→i(zi). (3)

This BP algorithm outputs zBP = [zBP
i] where

zBP
i =

⎧⎪⎪⎨
⎪⎪⎩
1 if bi[1] > bi[0]

? if bi[1] = bi[0]

0 if bi[1] < bi[0]

.

It is known that zBP converges to a MAP assignment after

a sufficient number of iterations, if the factor graph is a tree

and the MAP assignment is unique. However, if the graph

contains cycles or MAP is not unique, the BP algorithm is

not guaranteed to converge to a MAP assignment in general.

B. Belief Propagation for Combinatorial Optimization
The max-product BP can be applied to compute an

approximate solution for any ‘discrete’ optimizations. This

1For example, if z = [0, 1, 0] and α = {1, 3}, then zα = [0, 0].

26

section describes the maximum weight matching problem as

an example. Given a graph G = (V,E) and edge weights

w = [we] ∈ R
|E|, it finds a set of edges such that each

vertex is connected to at most one edge in the set and the

sum of edge weights in the set is maximized. The problem

is formulated as the following IP (Integer Programming):

maximize w · x
s.t.

∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V, x = [xe] ∈ {0, 1}|E|, (4)

where δ(v) is the set of edges incident to vertex v ∈ V .

Now consider the following GM: for x = [xe] ∈ {0, 1}|E|,

Pr[X = x] ∝
∏
e∈E

ewexe

∏
v∈V

ψv(xδ(v)), (5)

where
ψv(xδ(v)) =

{
1 if

∑
e∈δ(v) xe ≤ 1

0 otherwise
.

One can easily observe that the MAP assignments for GM (5)

correspond to the (optimal) solution of IP (4). Therefore, one

can use the max-product BP for solving the maximum weight

matching problem, where the algorithm can be simplified

using ai→j = log
mi→(i,j)(0)

mi→(i,j)(1)
as described in Algorithm 1.

Algorithm 1 BP for Maximum Weight Matching

(ITERATION) Calculate new messages as follows:

at+1
i→j ← max

k∈δ(i)\{j}

{
max

{
wik − at

k→i, 0
}}

(DECISION) For each edge e = (i, j) ∈ E, decide

xe =

⎧⎪⎨
⎪⎩
1 if (ai→j + aj→i) < we

? if (ai→j + aj→i) = we

0 if (ai→j + aj→i) > we

.

Note that one can design similar BP algorithms for arbitrary

combinatorial optimization problems (e.g., minimum weight

vertex cover and maximum weight independent set) as we

demonstrate in Section V.

III. ALGORITHM DESIGN

The main goal of this paper is to design BP-based parallel

algorithms for solving combinatorial optimizations. To this

end, one can design a BP algorithm as described in Section

II-B. However (a) it might diverge or converge very slowly,

(b) even if it converges quickly, the BP decision might be not

correct, and (c) even worse, BP might produce an infeasible

solution, i.e., it does not satisfy the constraints of the problem.

To address these issues, we propose a generic BP-

based framework that provides highly accurate approximate

solutions for combinatorial optimization problems. The

framework has two steps, as shown in Figure 1. In the

first phase, it runs a BP algorithm for a fixed number of

iterations without waiting for convergence. Then, the second

phase runs a known heuristic using BP beliefs instead of the

original weights to output a feasible solution. Namely, the

first and second phases are respectively designed for ‘BP

weight transforming’ and ‘post-processing’. In the following

sections, we describe the two phases in more detail in reverse

order. For illustration purposes, we focus on the maximum

weight matching problem while the results are derived using

Erdős–Rényi random graphs with 1000 vertices, average

degree 100, and edge weights drawn from the uniform

distribution over the interval [0, 1]. Later in Section V,

we demonstrate the framework is applicable to any other

combinatorial optimization problems.

A. Post-Processing Phase.

The decision on BP beliefs might give an infeasible

solution. For example, in the maximum weight matching

problem, BP decides xe = 0, 1 based on the sign of

wij − (ai→j + aj→i) (see Algorithm 1), but the edges of

xe = 1 might not form a matching even if BP converges,

i.e., there exists a vertex v such that
∑

e∈δ(v) xe > 1.

To resolve the issue, we use post-processing by utilizing

existing heuristics to the given problem that find a feasible

solution. Applying post-processing ensures that the solution

is at least feasible. In addition, our key idea is to replace the

original weights by the logarithm of BP beliefs, i.e., the new

weight on edge e becomes: wij − (ai→j + aj→i). After this,

we apply known heuristics using the logarithm of BP beliefs

to achieve higher accuracy.

For example, the following ‘local’ greedy algorithm can

be used as a post-processing mechanism:

1. Initially, all vertices are ‘unmatched’, i.e., xe = 0 for

all e ∈ E.

2. Choose an arbitrary unmatched vertex i and match it

to an unmatched vertex j �= i having the highest value

in wij − (ai→j + aj→i), i.e., set xij = 1.

3. Keep iterating step 2 until no more vertex can be

matched.

To confirm the effectiveness of the proposed post-processing

mechanism, we compare it with the following two alternative

post-processing schemes that remove edges to enforce

matching after BP processing in a naive manner:

• Random: If there exists a vertex v such that∑
e∈δ(v) xe > 1 on the BP decision, randomly select

one edge and remove other edges.

• Weight: If there exists a vertex v such that
∑

e∈δ(v) xe >
1 on the BP decision, remove edges of smaller weight.

Figure 3(a) compares the approximation ratio obtained

using BP-belief-based post-processing versus the naive post-

processing heuristics (random and weight). It shows that

the proposed BP-belief-based post-processing outperforms

the rest. Note, the results in Figure 3 were obtained by

first applying BP message passing for weight transformation.

Next, we explain how this is done in our framework.

27

Figure 1: Overview of our generic BP-based framework
Figure 2: Effects of initial messages on the

number of BP iterations. We set
a0i→j = a0j→i = c · wij for a value c of x-axis.

(a) (b) (c)
Figure 3: (a) Average approximation ratio for different post-processing schemes. We use a local greedy algorithm as a post-processing based on original
weights and BP messages (i.e., beliefs). The ‘Random selection’ post-processing is also compared. (b) Effects of initial messages on the convergence of BP.

We set a0i→j = a0j→i = c · wij for the value c of x-axis (c) Approximation ratio for different initial messages a0i→j = a0j→i = 0, wij/2, wij

B. BP Weight Transforming Phase

To improve the approximation quality and solve the

convergence issues, we use three modifications to the standard

BP algorithm: (1) careful initialization on messages, (2) noise

addition and (3) hybrid damping on message updates.

Message Initialization. The standard message initialization

is m0
α→i = m0

i→α = 1, i.e., a0i→j = 0 for the maximum

weight matching problem (see Algorithm 1). The convergence

rate of BP depends on the initialized messages. As reported

in Figure 3(b), we try different initializations, a0i→j = c ·wij

for 0 ≤ c ≤ 1, where the case c = 0.5 shows the fastest

convergence. The main intuition we found for explaining

such a phenomenon is as follows. If a0i→j = wij/2, the BP

decision at the initial step is neutral, i.e., xe =?, since a0i→j+
a0j→i = wij . On the other hand, if a0i→j = 0, BP chooses

xe = 1 initially for all edges and most likely does xe = 0 for

most edges in the next step, i.e., it keeps oscillating between

xe = 1 and xe = 0 for a while. The choice a0i→j = wij/2
alleviates the fluctuation behavior of BP and boosts up its

convergence speed.

We remind that, under our framework, BP runs only

for a fixed number of iterations since it might converge

too slowly, even with the initialization a0i→j = wij/2, for

practical purposes. With fixed number of iterations, careful

initialization becomes even more critical as experimental

results in Figure 3(c) and Figure 2 suggest. For example, if

one runs 5000 iterations of BP, they show that the standard

initialization (a0i→j = 0) achieves at most 30% approximation

ratio, while the proposed method (a0i→j = wij/2) achieves

99%. Moreover, one can also observe that the advantage

of more BP updates diminishes as the number of iterations

vertices Approximation Ratio
Difference

(# edges) Multiple optima Unique optimum

1k (50k) 99.88 % 99.90 % -0.02 %

5k (250k) 99.86 % 99.85 % +0.01 %

10k (500k) 99.85 % 99.84 % +0.01 %

20k (1M) 99.84 % 99.83 % +0.01 %

Table I: Approximation ratio of BP for MWM with multiple optima and
a unique optimum. We introduce a small noise to the edge weights and set

the initial message by a0i→j = a0j→i = wij/2.

becomes large. The observation holds for much larger graphs.

Thus, we only run 100 BP iterations in our algorithm and

do not wait for BP’s convergence.

Noise Addition. The BP algorithm often oscillates when

the MAP solution is not unique. To address this issue, we

transform the original problem to one that has a unique

solution with high probability by adding small noises to the

weights, i.e., we ← we + re, where re ∈ [−r, r] is a random

number chosen independently across edges. We apply this to

all cases. Here, one has to be careful in deciding the range

r of noises. If re is too large, the quality of BP solution

deteriorates because the optimal solution might have changed

from the original problem. On the other hand, if re is too

small compared to we, BP converges very slowly. To achieve

a balance, we choose the range r of noise re as 10% of the

minimum distance among weights. We find that this results

in over 99.8% approximation ratio even when the solution

is not unique, which has little difference with that of unique

solution as shown in Table I.

Hybrid Damping. To boost up the convergence speed of

BP updates further, we use a specific damping strategy to

alleviate message oscillation. We update messages to be the

28

vertices

(# edges)

Approximation Ratio

no-damp(100) damp(100)
no-damp(50) damp(50)

+damp(50) +no-damp(50)

10k (500k) 99.58 % 99.69 % 99.83 % 99.56 %

20k (1M) 99.55 % 99.68 % 99.82 % 99.56 %

50k (2.5M) 99.56 % 99.69 % 99.83 % 99.57 %

100k (5M) 99.56 % 99.69 % 99.83 % 99.57 %

Table II: Approximation ratio of BP without damping, BP with damping,
BP with damping only for first 50 iterations, and BP with damping for last
50 iterations. We introduce a small noise to the edge weights and set the

initial message by a0i→j = a0j→i = wij/2.

average of old and new messages.

at+1
i→j ← max

k∈δ(i)\{j}

{
max

{
wik − atk→i, 0

}}
at+1
i→j ← (ati→j + at+1

i→j)/2.

We note that the damping strategy provides a similar effect as

our proposed initialization a0i→j = wij/2. Hence, if one uses

both, the effect of one might be degraded due to the other. Due

to this, we first run the half of BP iterations without damping

(this is for keeping the effect of the proposed initialization)

and perform the last half of BP iterations with damping.

As reported in Table II, this hybrid approach outperforms

other alternatives, including (a) no use of damping, (b) using

damping in every iteration, and (c) damping in the first half

of BP iterations and no-damping in the last half.

IV. PARALLEL DESIGN AND IMPLEMENTATION

This section addresses issues in parallelization of our

algorithm. First, we introduce asynchronous message up-

date that enables efficient parallelization of BP message

passing. Second, we illustrate the issues in parallelizing post-

processing. Finally, we describe the parallel implementations

of our algorithm and their benefits.

A. Asynchronous Message Update

So far, we have assumed that there is only one thread, and

BP messages are updated synchronously among vertices after

calculating new message values. Thus, each iteration consists

of two phases: message calculation phase and message update

phase.

For parallelization, we first divide the graph by partitioning

the vertices, and assign each partition to a single thread (see

Section IV-C for details). However, if we naively parallelize

the process using multiple threads, frequent synchronization

may incur large overhead. Thus, we apply asynchronous

message update where each vertex updates the message value

right after new message value is calculated and eliminate

synchronization point between iterations. This makes the

process faster because of the reduced synchronization points.

Figure 4 shows that performance improvement (speed up in

running time) of asynchronous update over synchronous

is up to 237% in our example graph for the maximum

weight matching problem with 16 threads2; we leave detailed

2We use a machine with two Intel Xeon(R) CPU E5-2690 @ 2.90GHz
each with 8 cores.

evaluation in Section V.

We now discuss its impact on approximation quality.

Two factors marginally affect the approximation quality in

opposite directions. First, updating the message value of each

vertex right after its message calculation marginally improves

the approximation ratio, as shown in Figure 5. Updating a

message right after its calculation on a individual vertex

basis implicitly has a similar effect to applying an additional

iteration, which improves the quality. Second, having multiple

threads run without synchronizing across iterations marginally

degrade the approximation quality. The reason is that some

threads run faster than others, and messages from the slower

threads are not updated as frequently. We quantify this effect

in Figure 5 and find that the impact is marginal; we still

achieve 99.9% accuracy with multiple threads.

In summary, using asynchronous message updates, we

speed up the run-time of the algorithm by up to 240%,

while achieving 99.9% approximation ratio. In Section V,

we show that the results also extend to other combinatorial

optimization problems.

B. Local Post-Processing

The second phase of our algorithm runs existing heuristics

for post-processing to enforce the feasibility of BP decisions.

While the framework works with any heuristics-based post-

processing methods, for the entire process to be parallel, it

is important that the post-processing step is also parallel. An

important criterion for efficient parallelization is locality of

computation; if the post-processing heuristics can compute

the result locally without requiring global knowledge, they

can be easily parallelized. Moreover, if they do not require

synchronization, the running time can be further reduced.

Fortunately, for most combinatorial optimization problems

heuristics that match the two criteria exist. A local greedy

algorithm, for example, enables local post-processing (i.e.,

it does not require global information). and require little

synchronization. As reported in Section V, we also evaluate

our algorithm in conjunction with other post-processing

heuristics to demonstrate its flexibility.

C. Parallel Implementation

The BP algorithm is easy to parallelize because of its

message passing nature. To demonstrate this, we parallelize

our BP-based framework using three platforms:

• GraphChi enables large-scale graph computation on a

personal computer by utilizing disk drive [5]. Using

its API, we specify the BP message update rules to

enable parallel message updates and scale the size of

the problem up to billions of variables.

• OpenMP is a task-based parallelization library developed

by Intel. Simply putting OpenMP pragma directive

enables the compiler to support parallel computation.

• For our pthread-based implementation, we divide a

single BP iteration into the smaller execution blocks

29

Figure 4: Average running time of our BP-based
algorithm with synchronous message update and
asynchronous message update. We apply all three

modifications to BP of Section III-B.

Figure 5: Approximation ratio of our BP-based
algorithm with synchronous and asynchronous message

update with 16 threads. We apply all three
modifications to BP of Section III-B.

Vertices # Edges
apache1 80k 230k
apache2 715k 2M
ecology2 1M 2M
G3_circuit 1.6M 3M
bone010 1M 23.4M

Table III: Summary of MWM
data-sets

Vertices
Optimal Cost
MVC MIS

frb-30-15 450 420 30
frb-45-21 945 900 45
frb-53-24 1,272 1,219 53
frb-59-26 1,534 1,475 59

Table IV: Summary of MWVC
and MWIS data-sets

called tasks. Each iteration is divided into per-thread

tasks. Because we have fixed multiple number of BP

iterations, it concerns many more tasks. We put these

tasks in a task queue. Initially all threads are assigned

a task and the thread finished its task will be assigned

the next task in the task queue. This minimizes the

overlap between different iterations and synchronization

points, which reduces the run time while obtaining high

approximation ratio.

Algorithm 2 BP for Minimum Weight Vertex Cover

(ITERATION) Calculate new messages as follows:

at+1
i→j ← min

⎧⎨
⎩wv +

∑
k∈δ(i)\{j}

at
k→i, 0

⎫⎬
⎭

(DECISION) For each vertex i ∈ V , decide

xi =

⎧⎪⎪⎨
⎪⎪⎩
1 if

∑
j∈δ(i) aj→i < −wi

? if
∑

j∈δ(i) aj→i = −wi

0 if
∑

j∈δ(i) aj→i > −wi

Algorithm 3 BP for Maximum Weight Independent Set

(ITERATION) Calculate new messages as follows:

at+1
i→j ← max

⎧⎨
⎩wv −

∑
k∈δ(i)\{j}

at
k→i, 0

⎫⎬
⎭

(DECISION) For each vertex i ∈ V , decide

xi =

⎧⎪⎪⎨
⎪⎪⎩
1 if

∑
j∈δ(i) aj→i < wi

? if
∑

j∈δ(i) aj→i = wi

0 if
∑

j∈δ(i) aj→i > wi

V. EVALUATION

We evaluate our BP framework using three popular combi-

natorial optimization problems: maximum weight matching,

minimum weight vertex cover and maximum weight indepen-

dent set problem. We perform extensive empirical evaluation

to demonstrate the benefit of our algorithm for the following

three questions:

1) Does the BP-based algorithm provide high approxima-
tion ratio?

2) Can the algorithm achieve speed-up due to parallel
implementations?

3) Can it solve large-scale problems involving billions of
variables?

We already introduced the IP formulation of the maximum

weight matching (MWM) in (4), where those of the mini-

mum weight vertex cover (MWVC) and maximum weight

independent set problem (MWIS) are as follows:

MWVC: minimize w · x
subject to xu + xv ≥ 1, ∀e = (u, v) ∈ E

x = [xv] ∈ {0, 1}|V | (6)

MWIS: maximize w · x
subject to xu + xv ≤ 1, ∀e = (u, v) ∈ E

x = [xe] ∈ {0, 1}|V |. (7)

We provide descriptions of BP algorithms in Algorithm 2–3

for MWVC and MWIS. As we propose in Section III-B, we

choose initial BP messages for neutral decisions: a0j→i =
−wij/|δ(i)| for vertex cover and a0j→i = wij/|δ(i)| for

independent set.

A. Experiment Setup

In our experiments, both real-world and synthetic data-

sets are used for evaluation. For MWM, we used data-sets

from the university of Florida sparse matrix collection [20]

summarized in Table III. For larger scale synthetic evaluation,

we generate Erdős-Rényi random graphs (up to 50 million

vertices with 2.5 billion edges) with average vertex degree of

100 with edge weights drawn independently from the uniform

random distribution over the interval [0, 1]. For MWVC

and MWIS, we use the frb-series from BHOSLIB [21]

summarized in Table IV, where it also contains the optimal

solutions. We note that we perform no experiment using

synthetic data-sets for MWVC and MWIS since they are

NP-hard problems, i.e., impossible to compute the optimal

solutions. On the other hand, for MWM the Edmonds’

Blossom algorithm [10] can compute the optimal solution

in polynomial time. All experiments in this section are

conducted on a machine with Intel Xeon(R) CPU E5-2690

@ 2.90GHz with 8 cores and 8 hyperthreads with 128GB of

memory, unless otherwise noted.

30

Approximation Ratio
Serial BP Parallel BP
(1 thread) (16 threads)

Synthetic
vertices
(# edges)

500k (25M) 99.93 % 99.90 %
1M (50M) 99.93 % 99.90 %
2M (100M) 99.94 % 99.91 %
5M (250M) 99.93 % 99.90 %
apache1 100.0 % 100.0 %

Real-world apache2 100.0 % 100.0 %
Data-set ecology2 100.0 % 100.0 %
(Florida) G3_circuit 99.95 % 99.95 %

bone010 99.11 % 99.12 %

Table V: MWM: Approximation ratio of our BP-based algorithm on
synthetic and sparse matrix collection data-sets [20].

Figure 6: MWVC: Average approximation ratio of our BP-based
algorithm, the 2-approximation algorithm and the greedy algorithm on

frb-series data-sets.

B. Approximation Ratio

We now demonstrate our BP-based approximation algo-

rithm produces highly accurate results. In particular, we

show that our BP-based algorithms outperform well-known

heuristics for MWVC, MWIS and closely approximate exact

solutions for MWM for all cases we evaluate.

Maximum Weight Matching. For MWM, we compare the

approximation qualities of serial, synchronous BP (i.e., one

thread) in Section III and parallel, asynchronous imple-

mentation (i.e., using multiple threads) in Section IV on

both synthetic and real-world data-sets, where we compute

the optimal solution using the Blossom algorithm [10] to

measure the approximation ratios. Table V summarize our

experimental results for MWM for the synthetic data-sets

and the Florida data. Our BP-based algorithm achieves 99%

to 99.9% approximation ratios.

Minimum Weight Vertex Cover. For MWVC, we use two

post-processing procedures: greedy and 2-approximation

algorithm [22]. For the local greedy algorithm, we choose

a random edge and add one of its adjacent vertices with a

smaller weight until all edges are covered. We compare the

approximation qualities of our BP-based algorithm compared

to the cases when one uses only the greedy algorithm and the

2-approximation algorithm. Figure 6 shows the experimental

results for the two post-processing heuristics. The results

show that our BP-based weight transformation enhances the

approximation quality of known approximation heuristics by

up to 43%.

Figure 7: MWIS: Average approximation ratio of our BP-based
algorithm and the greedy algorithm on frb-series data-sets.

Maximum Weight Independent Set. For MWIS, the exper-

iment was performed on frb-series data-sets. We use a greedy

algorithm as the post-processing procedure, which selects

vertices in the order of higher weights until no vertex can

be selected without violating the independent set constraint.

We compare the approximation qualities of our BP-based

algorithm and the standard greedy algorithm. Figure 7 shows

that our BP-based framework enhances the approximation

ratio of the solution by 2% to 23%.

C. Parallelization Speed-up
One of the important advantages of our BP-based algorithm

is that it is fast, while delivering high approximation

guarantees. In this section, we focus on the speed-up due

to parallelization. Figure 8 compares the running time of

the Blossom algorithm and our BP-based algorithm with

1 single core and 16 cores. With five million vertices,

our asynchronous parallel implementation is eight times

faster than the synchronous serial implementation, while

still retaining 99.9% approximation ratio as reported in

Table V. To demonstrate the overall benefit in context, we

compare its running time with that of the current fastest

implementation of the Blossom algorithm due to Kolmogorov

[10]. Here, we note that the Blossom algorithm is inherently

not easy to parallelize. For parallel implementation, we report

results for our pthread implementation , but the OpenMP

implementation also show comparable performance. For

20 million vertices (one billion edges), it shows that the

running time of our algorithm can be accelerated by up

to 71 times than the Blossom algorithm, while sacrificing

0.1% of accuracy. The running time gap is expected be

more significant for larger graphs since the running times

of our algorithm and the Blossom algorithm are linear and

cubic with respect to the number of vertices, respectively.

We also experiments our algorithms for other problems to

demonstrate the parallelization speedup. Due to the space

limitation, we only report that for the minimum weight vertex

cover problem in Figure 9.

D. Large-scale Optimization
Our algorithm can also handle large-scale instances be-

cause it is based on GMs that inherently lend itself to parallel

and distributed implementations. To demonstrate this, we

create a large-scale instance containing up to 50 million

vertices and 2.5 billion edges. We experiment our algorithm

31

Figure 8: MWM: Running time of Blossom
algorithm and our BP-based algorithms.

5.88

5.43

5.13 5.03

5.52

1

10

100

1,000

10,000

5k 100k

Sp
ee

d
U

p

R
un

ni
ng

 T
im

e
(s

ec
)

10k 20k 50k

BP Serial BP Parallel Speed Up BP Serial
(1 Thread)

BP Parallel
(16 Threads)

umber of Vertices

Figure 9: MWVC: Running time of our
parallel BP-based algorithm (pthread

implementation) on large-scale graphs.

Figure 10: MWM and MWVC: Running time
and memory usage of GraphChi-based
implementation on large-scale graphs.

using GraphChi on a single consumer level machine with i7

CPU and 24GB of memory. Figure 10 shows the running time

and memory usage of our algorithm for MWM and MWVC

on large data-sets. For large graphs, GraphChi partitions

them to load parts of them in memory, while storing the rest

on disk by leveraging graph-based ‘local’ structures. Thus,

we were able to solve problems with 2.5 billion edges on a

single machine. In contrast, Kolmogorov’s implementation

[10] of the Blossom algorithm cannot handle such large

graphs because distributed processing is difficult (e.g., it

cannot handle more than 6M vertices on the same machine).

Similarly, our algorithm can be run on multiple machines

to scale to even larger problems. However, we leave this as

future work.
VI. CONCLUSION

This paper explores the possibility of applying the BP

algorithm to solve generic combinatorial optimizations at

scale. We propose BP-based algorithm that achieves high

approximation ratio and allows parallel implementation.

We evaluate the algorithm’s effectiveness and performance

by applying our framework on three popular combinato-

rial optimization problems. Our evaluation shows that the

algorithm outperforms existing approximation algorithms

across many instances and is able to solve large-scale

problems with billions of variables. We believe our BP-

based framework is of broader interest for a wider class of

large-scale optimization tasks.

ACKNOWLEDGMENT

This work was supported in part by Institute for Infor-

mation & Communications Technology Promotion (IITP)

granted by the Korea government (MSIP) (No.B0126-15-

1078, Creation of PEP based on automatic protocol behavior

analysis and Resource management for hyper connected for

IoT Services); the Center for Integrated Smart Sensors funded

by MSIP as Global Frontier Project (CISS-2011-0031863);

and Asian Office of Aerospace Research and Development

(AOARD) Project (FA2386-14-1-4058).

REFERENCES

[1] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale
hypertextual web search engine,” Computer networks, vol. 56, no. 18,
pp. 3825–3833, 2012.

[2] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, generators,
and algorithms,” ACM Computing Surveys (CSUR), vol. 38, no. 1,
p. 2, 2006.

[3] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in
International Conference on Artificial Intelligence and Statistics, 2009,
pp. 448–455.

[4] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed graphlab: A framework for machine
learning and data mining in the cloud,” Proc. VLDB Endow.,
vol. 5, no. 8, pp. 716–727, Apr. 2012. [Online]. Available:
http://dx.doi.org/10.14778/2212351.2212354

[5] A. Kyrola, G. E. Blelloch, and C. Guestrin, “Graphchi: Large-scale
graph computation on just a pc.” in OSDI, vol. 12, 2012, pp. 31–46.

[6] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph processing in a distributed dataflow
framework,” in Proceedings of OSDI, 2014, pp. 599–613.

[7] S. Sanghavi, D. Malioutov, and A. Willsky, “Belief propagation and
lp relaxation for weighted matching in general graphs,” Information
Theory, IEEE Transactions on, vol. 57, no. 4, pp. 2203–2212, 2011.

[8] N. Ruozzi and S. Tatikonda, “st paths using the min-sum algorithm,” in
Communication, Control, and Computing, 2008 46th Annual Allerton
Conference on. IEEE, 2008, pp. 918–921.

[9] D. Gamarnik, D. Shah, and Y. Wei, “Belief propagation for min-cost
network flow: Convergence and correctness,” Operations Research,
vol. 60, no. 2, pp. 410–428, 2012.

[10] V. Kolmogorov, “Blossom v: a new implementation of a minimum cost
perfect matching algorithm,” Mathematical Programming Computation,
vol. 1, no. 1, pp. 43–67, 2009.

[11] M. Bayati, D. Shah, and M. Sharma, “Maximum weight matching via
max-product belief propagation,” in Information Theory, 2005. ISIT
2005. Proceedings. International Symposium on. IEEE, 2005, pp.
1763–1767.

[12] B. C. Huang and T. Jebara, “Loopy belief propagation for bipar-
tite maximum weight b-matching,” in International Conference on
Artificial Intelligence and Statistics, 2007, pp. 195–202.

[13] M. Bayati, C. Borgs, J. Chayes, and R. Zecchina, “Belief propagation
for weighted b-matchings on arbitrary graphs and its relation to
linear programs with integer solutions,” SIAM Journal on Discrete
Mathematics, vol. 25, no. 2, pp. 989–1011, 2011.

[14] S. Sanghavi, D. Shah, and A. S. Willsky, “Message passing for maxi-
mum weight independent set,” Information Theory, IEEE Transactions
on, vol. 55, no. 11, pp. 4822–4834, 2009.

[15] S. Park and J. Shin, “Max-product belief propagation for lin-
ear programming: Convergence and correctness,” arXiv preprint
arXiv:1412.4972, 2014.

[16] S. Ravanbakhsh, R. Rabbany, and R. Greiner, “Augmentative message
passing for traveling salesman problem and graph partitioning,” in
Advances in Neural Information Processing Systems, 2014, pp. 289–
297.

[17] M. Bayati, C. Borgs, A. Braunstein, J. Chayes, A. Ramezanpour, and
R. Zecchina, “Statistical mechanics of steiner trees,” Physical review
letters, vol. 101, no. 3, p. 037208, 2008.

[18] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and Y. Wang,
“Algorithms for large, sparse network alignment problems,” in Data
Mining, 2009. ICDM’09. Ninth IEEE International Conference on.
IEEE, 2009, pp. 705–710.

[19] V. Chandrasekaran, N. Srebro, and P. Harsha, “Complexity of inference
in graphical models,” in UAI 2008, Proceedings of the 24th Conference
in Uncertainty in Artificial Intelligence. AUAI Press, 2008, pp. 70–78.

[20] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Transactions on Mathematical Software (TOMS),
vol. 38, no. 1, p. 1, 2011.

[21] “bhoslib benchmark set.” [Online]. Available: http://iridia.ulb.ac.be/
~fmascia/maximum_clique/BHOSLIB-benchmark

[22] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:
algorithms and complexity. Courier Corporation, 1998.

	paper_1.pdf
	INTRODUCTION
	PRELIMINARIES
	GRAPHICAL MODEL
	MAX-PRODUCT BELIEF PROPAGATION

	CONVERGENCE AND CORRECTNESS OF BELIEF PROPAGATION
	PROOF OF THEOREM 1
	PROOF OF LEMMA 3

	APPLICATIONS OF THEOREM 1 TO COMBINATORIAL OPTIMIZATION
	SHORTEST PATH
	MAXIMUM WEIGHT PERFECT MATCHING
	MAXIMUM WEIGHT PERFECT MATCHING WITH ODD CYCLES
	VERTEX COVER
	TRAVELING SALESMAN
	MAXIMUM WEIGHT CYCLE PACKING

	EXPERIMENTAL RESULTS FOR TRAVELING SALESMAN PROBLEM
	CONCLUSION

