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AFIT-ENY-DS-16-S-061
Abstract

For spacecraft conducting on-orbit operations, changes to the structure of the
spacecraft are not uncommon. These planned or unanticipated changes in inertia
properties couple with the spacecraft’s attitude dynamics and typically require
estimation. For systems with time-varying inertia parameters, multiple model
adaptive estimation (MMAE) routines can be utilized for parameter and state
estimates. MMAE algorithms involve constructing a bank of recursive estimators,
each assuming a different hypothesis for the system’s dynamics. This research
has three distinct, but related, contributions to satellite attitude dynamics and
estimation. In the first part of this research, MMAE routines employing parallel banks
of unscented attitude filters are applied to analytical models of spacecraft with time-
varying mass moments of inertia (MOI), with the objective of estimating the MOI
and classifying the spacecraft’s behavior. New adaptive estimation techniques were
either modified or developed that can detect discontinuities in MOI up to 98% of the
time in the specific problem scenario. Second, heuristic optimization techniques and
numerical methods are applied to Wahba’s single-frame attitude estimation problem,
decreasing computation time by an average of nearly 67%. Finally, this research poses
MOI estimation as an ODE parameter identification problem, achieving successful
numerical estimates through shooting methods and exploiting the polhodes of rigid
body motion with results, on average, to be within < 1% to 5% of the true MOI

values.

v



Acknowledgments

I would first like to extend a sincere thank you to my advisor, Dr. Eric
Swenson. His guidance, mentorship, and trust have been invaluable and instrumental
in developing and completing this dissertation. I would like to thank Dr. Jonathan
Black, Dr. Richard Cobb, and Dr. Richard Martin for their time, effort, guidance,
and willingness to serve on my research committee. To the committee as a whole,
thank you for extending to me your trust and the degree of independence to develop
knowledge and contribute to the field. To Dr. Fred Leve, thank you for introducing
me to the community’s need for this problem, and for your help in constructing the
research objectives and key dynamics, and for your continued support.

During the course of a dissertation, it is easy to become lost in a sea of technical
jargon and extremely niched research. I would also like to thank my office colleagues
for providing not only technical inputs, but also for their friendship outside of AFIT.
To my first calculus teacher in high school, thank you for building such a strong
foundation of independent thought and analytical reasoning.

Finally, to my friends and family. Thank you for helping me balance research
with life during the past three years. My mother, stepfather, grandparents, and sister
have been a sounding board for ideas and a source of inspiration. To my fiancée, you
and your family have been by my side through this entire experience, and thank you
for your commitment, ideas, time, and your positive attitude and support.

To the countless number of friends, family, and colleagues who have helped along

the way, I give you my sincerest thanks.

Joshuah A. Hess



Table of Contents

Page

Abstract . . . . . v
Acknowledgments . . . . . . . ... v
Table of Contents . . . . . . . . . . . vi
List of Figures . . . . . . . . . . X
List of Tables . . . . . . . xiii
List of Algorithms . . . . . . . . .. . xvi
List of Symbols . . . . . . . . . xvii
List of Acronyms . . . . . . . .. Xix
I. Introduction . . . . . . . . . . ..o 1
1.1 Motivation . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . .. 4

1.3 Research Objectives. . . . . . . . . . . . .. .. .. .. ... ..., 4
1.4 Methodology Overview . . . . . . . . . . .. . ... ... .. ..... )

1.5 Research Contributions . . . . . . . . . . . . .. ... .. 6

1.6 Dissertation Overview . . . . . . . . . . .. 8

1.6.1 Adaptive Estimation of Nonlinear Spacecraft Attitude Dynam-

ics with Time Varying Moments of Inertia . . . . . . . .. .. 9
1.6.2 Alternate Numerical Solutions to Wahba’s Problem of Sequen-

tial Frame Attitude Estimation Using Heuristic Optimization

and Fast Quartic Numerical Solvers . . . . . . .. .. .. ... 9

1.6.3 Spacecraft Moment of Inertia Estimation Posed as an Ordinary
Differential Equation Parameter Estimation . . . . . . . . .. 10
1.7 Chapter Summary . . . . . . . .. ... 10
IT. Background . . . . . . . . . . . ... 11
2.1 A Discussion on Rigid Body Motion and Spacecraft Attitude Dynamics 11
2.1.1 Euler’s Rotational Equations of Motion . . . . . . . . ... .. 12
2.1.2  Closed-Form Solutions for Spacecraft Rigid Body Motion . . . 13

vi



2.1.3 Attitude Parameterization . . . . . . ... ... ... ... .. 15
2.1.3.1 FEuler Angles . . . ... ... ... ... 15

2.1.3.2 Quaternions . . . . . . .. ... ... 16

2.1.3.3 Rodrigues Parameters . . . . . . ... ... ... .. 17

2.1.4  Quaternion Dynamics . . . . . . ... ... ... ... 18
2.1.5 Time Varying Moment of Inertia Effects . . . . .. ... ... 19

2.2 An Overview of Kalman Filtering . . . . . ... ... ... ... .... 20
2.2.1 Linear Kalman Filter . . . . . . ... ... ... ... ..... 20
2.2.2  Extended Kalman Filter . . . . . .. ... ... .. ...... 23
2.2.3 Unscented Kalman Filter . . . . . . .. ... ... ... .... 23

2.3 Survey on Attitude Estimation . . . . . ... ... ... .00 25
2.3.1 Extended Kalman Filter . . . . . .. ... ... ... ..... 25
2.3.2  Solutions to Wahba’s Problem . . . . . .. ... .. ... ... 26
2.3.3 Unscented Kalman Filter for Attitude Estimation . . . . . . . 28
2.3.4 Miscellaneous Estimation Techniques . . . . . . . ... .. .. 29

2.4 Survey on Adaptive Estimation Techniques . . . . . . . . . . ... .. 29
2.4.1 Adaptive Estimation in General . . . . . . ... ... ... .. 29
2.4.2 Applications of Adaptive Estimation to Attitude Dynamics . . 31
2.4.3 Applications of Adaptive Estimation to Orbital Mechanics . . 34

2.5 Survey on Spacecraft Moment of Inertia Estimation . . . . . .. . .. 34
2.6 Survey on Heuristic Optimization . . . . . .. ... ... ... ... .. 36
2.6.1 Particle Swarm Optimization . . .. ... ... .. ... ... 37
2.6.2 Genetic Algorithms . . . . . ... ... oL 39
2.6.3 Conclusions . . . . ... ... ... 40

ITI. Adaptive Estimation of Nonlinear Spacecraft Attitude Dynamics with Time

Varying Moments of Inertia . . . . . . .. ... .. ... ... ... 42
3.1 Introduction and Motivation . . . . . . .. ... .. ... ... .. .. 42
3.2 Background . . .. ... 44
3.3 Methodology . . . . . . . . . 44
3.3.1 Unscented Quaternion Estimation . . . . . . .. .. ... ... 44
3.3.2 Adaptive Estimation Methods . . . . . ... ... ... .... 48
3.3.2.1 Classical Multiple Model Adaptive Estimation . . . . 48

3.3.2.2 Adaptive Likelihood Mixtures . . . . . . . ... ... 51

3.3.2.3 Soken’s Likelihood Function . . . . . .. .. ... .. 52

3.3.2.4 A Hybrid Likelihood Mixture Method . . . . .. .. 54

3.3.3 Sensor Model . . . ... ... ... ... ... .. ... 54
3.3.4 Spacecraft Moment of Inertia Model . . . . .. .. ... ... o7
3.3.5  Descriptions of Numerical Experiments and Common Parameters 61
3.3.6  Nominal Flow of Numerical Experiments . . . . . . . .. ... 62
3.3.7 Comparison Metrics . . . . . . . . ... ... ... 63

vil



3.4

3.5

Results and Discussion . . . . . . .. . .. ... oL 64
3.4.1 Results from Scenario 1: Principal MOI Estimation . . . . . . 64
3.4.2 Results from Scenario 2: Payload Input Command Identification 70
3.4.3 Results from Scenario 3: Payload Separation . . . . . . . . .. 74
Conclusions and Future Work . . . . . . .. ... ... ... ... .. 84

IV. Alternate Numerical Solutions to Wahba’s Problem of Sequential Frame
Attitude Estimation Using Heuristic Optimization and Fast Quartic

Numerical Solvers . . . . . . . . . . . ... 86

4.1 Introduction and Motivation . . . . . . . . ... ... ... 86

4.2 Background . . . . .. ... 88

4.2.1 Wahba’s Problem and Classical Numerical Solutions . . . . . . 89

4.2.2 Fast Quartic Solver . . . . . . .. ..o 93

4.3 Methodology . . . . . . ... 95

4.3.1 Fast Quartic Solver Methodology . . . . . .. ... ... ... 95

4.3.2 Heuristic Optimization Methodology . . . . . . ... ... .. 97

4.3.3 Comparison Metrics . . . . . . . ... ... 98

4.4 Results and Discussion . . . . . . . ... ... L 99

4.4.1 Numerical Results Using Fast Quartic Solver (FQS) . . . . . . 99
4.4.2  Numerical Results Using Particle Swarm Optimization (PSO)

and Genetic Algorithm (GA) . . . ... ... ... ... ... 104

4.5 Conclusions and Future Work . . . . .. .. .. ... .. ... .. .. 108

V. Spacecraft Moment of Inertia Estimation Posed as an Ordinary Differential

Equation Parameter Estimation Problem . . . . . . . . .. ... ... ... 111
5.1 Introduction and Motivation . . . . . . . ... ..o 112
5.2 Background . . . . .. .. 113
5.2.1 Relative MOI Ratios or Smelt Parameters . . . . . . .. . .. 114
5.2.2  Poinsot’s Ellipsoids for Torque Free Rigid Body Motion . . . . 117
5.2.3 Parameter Estimation in Ordinary Differential Equations . . . 120
5.2.4 Numerical Shooting and Iterative Techniques. . . . . . . . .. 121
5.3 Methodology . . . . . . . .. 122
5.3.1 Numerical Single Shooting Solutions . . . . .. .. ... ... 123
5.3.2 Polhode Exploitation . . . . . . ... ... ... 126
5.4 Results and Discussion . . . . . . . ... ... L. 131
5.4.1 Numerical Results and Discussion for Relative Moment of
Inertia (MOI) Ratio Estimation Using Single-Shooting . . . . 131
5.4.2  Numerical Results and Discussion for Spacecraft MOI Estima-
tion with Known Constant Torques . . . . . . . .. ... ... 135

viil



Page

5.4.3 Numerical Results and Discussion for Relative MOI Ratio Es-
timation Using Heuristic Optimization and Polhode Exploitation140

5.5 Conclusions and Future Work . . . . . ... .. ... ... ... ... 148
VI.Conclusions . . . . . . . . . . . e 151
6.1 Contributions . . . . . ... oo 151
6.2 Research Conclusions and Future Work . . . . . ... ... ... ... 154
6.2.1 Adaptive Estimation . . . . . . ... ... ... ... 154

6.2.2 Single-Frame Attitude Estimation . . . . . . . . .. ... ... 157

6.2.3 Moment of Inertia Estimation . . . . . ... ... ... .... 158

6.3 Summary . . . ... . 159
Appendix A: Spacecraft Parameters used in Chapter 3, Scenario 2 . . . . . . . 161
Appendix B: Spacecraft Parameters used in Chapter 3, Scenario 3 . . . . . . . 162

Appendix C: Ballistic Coefficient Estimation for a Re-entering Satellite using
Ground Based Radar via Adaptive Estimation . . . . . . . ... ... ... 163

Bibliography . . . . . . .. 171

X



List of Figures

Figure

2.1

3.1

3.2

3.5

3.6

3.11

4.1

4.2

5.1

Recreation of Li and Jilkov’s interpretation of the general multiple model
algorithm with two filters. . . . . . . . . . ... ... ... ... ...
Visualization of the classical Multiple Model Adaptive Estimation
(MMAE) algorithm. . . . ... ... ... ... o
A notional diagram of a spacecraft with deployable rotating payload,
solar panels, and (not shown) separable payloads used in Chapter 3 for
numerical simulations [100]. . . . . . . .. ... oL
Comparison of noise levels to the true w time history for Scenario 1,
indicating that the changes in system dynamics and parameters that are
greater than noise levels are difficult for the adaptive estimation scheme
todetect. . . ..
Depiction of the eight different input commands used as hypotheses in
Scenario 2. For clarity, the input commands are plotted every five time
StePS. . . e
Comparison of model likelihoods for a realization of Scenario 3. The
modified Soken and hybrid methods outperform MMAE and ALM for
sudden change detection. a = 1,b = 0, = 0.997, Ay = 0.95,8 =
0.05, =100 . . . . . .
Attitude estimation results - average computation time over 10° realiza-
tions with sensor noise weighting. . . . . . . .. ... .. ... .. ....
Attitude estimation results - principal angle error metric ¢, over 10°
realizations with sensor noise weighting. . . . . . . . ... ... ... ..

Petal shape formed by the Smelt parameter (ki ko, k3) plane. . . . . . .

Page

100



Figure

5.2

5.3

5.4

9.5
5.6
5.8

9.9

5.10

5.11

5.12

Polhode example - Intersection of angular momentum ellipsoid (H =

4.712 N-m-s) and kinetic energy ellipsoid (7" = 0.2315 N-m) for rigid body

with principal MOI given as I; = 50 kg-m?, I, = 40 kg-m?, I3 = 20 kg-m”.

Example of a single-shooting algorithm where some design variable is
iterated on to minimize the residuals r; at time t; between the trajectory
y and the generated trajectory (dashed-line). . . . . . . . . ... ... ..
A graphical depiction of the two-step optimization process using PSO and

SQP to estimate the principal MOI of a spacecraft given angular velocity

Example of the behavior of damping coefficient A, taken from Case 3. . .
Example of the behavior of the residual norm, taken from Case 3. . . . .
Example of an optimal polhode fit for Case 1 with o = 10~* deg/s. Fitting
resulted in a 0.5% estimate error in I, a 3.6% estimate error in I, and a
1.2% estimate error in Is. . . . . . . ...
Example of an optimal polhode fit for Case 2 with o = 10~ deg/s. Fitting
resulted in a 0.3% estimate error in I, a 3.9% estimate error in I, and a
1.7% estimate error in Is. . . . . . .. ...
Example of an optimal polhode fit for Case 3 with o = 10~* deg/s. Fitting
resulted in a 1.4% estimate error in I, a 3.5% estimate error in Iy, and a
2.1% estimate error in Is. . . . . . . ...
Example of an optimal polhode fit for Case 3 with ¢ = 10™* deg/s with
an increased observation time of 15 minutes. . . . . . . . .. .. ... ..
Example of an optimal polhode fit for Case 4 with o = 10~ deg/s. Fitting
resulted in a 0.9% estimate error in I;, a 0.6% estimate error in I, and a

1.3% estimate error in Is. . . . . . . . ...

x1

Page

119

121

130
134
134

143

144

145

145



Figure Page
5.13 Example of an optimal polhode fit for Case 4 with o = 107* deg/s with
an increased observation time of 15 minutes. . . . . . . . .. ... ... 148
5.14 Average final cost values for 100 runs of the four test cases at four noise
levels. . . . . . 149
C.2 Likelihood time series and weighted B* estimate for a realization of the

reentry Scenario. . . . ... ... 169

xii



List of Tables

Table
3.1 Simulation parameters used for magnetometer measurements and orbital
characteristics. . . . . . . . . ..
3.2 Filter bank for Scenario 1: Principal MOI Estimation. . . . . ... . ..
3.3 Filter bank for Scenario 2: Payload Input Command Identification. Input
commands are given in degrees. Here, wy = 2m/ts, where t; is the final
simulation time, to ensure one period is completed during the simulation,
and O = 20°% . . L e
3.4 Filter bank for Scenario 3: Payload Separation. . . . . ... ... .. ..
3.5 Percent correct model identification using a maximum likelihood metric.
Results are from 30 realizations of Scenario 3. a = 1,0 = 0,\; =
0.997, A0 =0.95,5=0.05, =100 . . . . . ... .. .. ... ...,
3.6 Percent correct model identification using a maximum likelihood metric.
Results are from 30 realizations of Scenario 3. a = 1,0 = 0,\; =
0997, X =0.95,5=0.05,=20 . . . . .. .. ... ... ...
3.7 Percent correct model identification using a maximum likelihood metric.
Results are from 30 realizations of Scenario 3. a = 1,b = 0,\; =
0.997, X0 =0.95,8=0.05,, =150 . . . . ... ... ... ... ...,
3.8 Percent correct model identification using a maximum likelihood metric.
Results are from 30 realizations of Scenario 3. a = 1,b = 0,\; =
0.997, X0 =0.95,8=0.05,, =200 . . ... ... ... ... ... ...

4.1 Simulated sensor data used in the test cases. . . . . . . . . ... ... ..

xiil

Page



Table

4.2

4.3

5.1
5.2

5.3
5.4
9.5

0.6

5.7

Comparison of average computation time for the eight different single
frame estimation cases. Percent differences are taken with respect to
QUEST solution. . . . . . . . . . .. .
Comparison of average error ¢, for the eight different single frame
estimation cases. . . . . . . . ...
Relative MOI Ratio Single Shooting Test Cases . . . . . ... ... ...
Average results from single shooting simulations. 100 simulations with a
convergence tolerance e = N 0. . . . . . . . ...
Principal MOI Single Shooting Test Cases . . . . . . .. ... ... ...
MOI and Moment Profile . . . . . ... .. ... ... ... ... .. ..
Average results from single shooting simulations estimating principal MOL.
1000 simulations with a convergence tolerance ¢ = 1072 & 0.6 deg/s, or
approximately 0.02 deg/s per time step. Maximum number of iterations
is 1000. Averages are taken from converged values. Initial guess randomly
distributed around true value with o =5 kg-m?. . . . . . . ... ... ..
Convergence rates from single shooting simulations estimating principal
MOI. 1000 simulations with a convergence tolerance ¢ = 1072 ~ 0.6 deg/s,
or approximately 0.02 deg/s per time step. Maximum number of iterations
is 1000. Averages are taken from converged values. Initial guess randomly
distributed around true value with ¢ = 15 kg-m?. . . . . . ... ... ..
Principal MOI configurations used for the two-step optimization of

polhodes using measured angular velocity. . . . . . . .. ... ... ...

Xiv

Page

102

103
132

132
137
137

138

139



Table Page

5.8

9.9

5.10

5.11

Al
A2
B.1
C.1

Results from 100 simulations of Case 1 at four different noise levels.
Variables with a tilde are final estimates. Numbers in parentheses indicate
percent errors. Noise values are given in deg/s. Initial angular velocity is
wo=[4,3,1)"deg/s. . . ... ... 142
Results from 100 simulations of Case 2 at four different noise levels.
Variables with a tilde are final estimates. Numbers in parentheses indicate

percent errors. Noise values are given in deg/s. Initial angular velocity is

Results from 100 simulations of Case 3 at four different noise levels.
Variables with a tilde are final estimates. Numbers in parentheses indicate
percent errors. Noise values are given in deg/s. Initial angular velocity is
wo=[2,1,1)" 144
Results from 100 simulations of Case 4 at four different noise levels.
Variables with a tilde are final estimates. Numbers in parentheses indicate

percent errors. Noise values are given in deg/s. Initial angular velocity is

wo= 15,321 . . 147
Separable payload parameters used in Scenario 2 of Chapter 3 . . . . . . 161
Solar panel and payload parameters used in Scenario 2 of Chapter 3 . . . 161
Separable payload parameters used in Scenario 3 of Chapter 3 . . . . . . 162

Filter bank for the ballistic reentry ballistic coefficient estimation problem. 168

XV



List of Algorithms

Algorithm Page
1 Unscented Kalman Filter algorithm . . . . . . .. ... ... ... ... 41
2 Hybrid Likelihood Mixture Method . . . . . . . . . . ... .. ... .. 55
3 Relative MOI Estimation by Single Shooting and LM Iteration . . . . 126
4 Heuristic Polhode Exploitation for MOI Estimation . . . . . . ... .. 131

Xvi



Symbol

A
H
M

€

nxn

=]

nxn

(a)

T N0 v s

List of Symbols

Definition

Jacobian

Angular momentum vector

External moment vector

Angular velocity vector

Moment of inertia matrix

Major, intermediate, and minor principal MOI
Alternate form for major, intermediate, and minor MOI
Relative spin rate in axisymmetric angular velocity
Rotation matrix

Principal rotation angle

Eigenaxis or principal rotation angle
Quaternion

Three components of quaternion

N x N identity matrix

N x N zero matrix

Skew-symmetric matrix of vector a

State transition matrix

System input allocation matrix

System disturbance allocation matrix
Covariance matrix

Process noise matrix

Measurement noise matrix

Measurement relation matrix

XVil



Symbol

f(x,t)
h(x,t)

klyk27k3

Definition

System dynamics

Measurement state relation
Sigma points in UKF

Cost function

Weighting value

Residual vector

Tuning values in UKF
Measurement vector
Probability distribution function
State vector

Indicates estimate

Parameter vector

Low-pass filter values
Innovation metric

Magnetic field components
Noise vector

Standard deviation, unless specified otherwise
Mass

Time step

Davenport K-matrix
Constriction factor in PSO
Principal angle error metric
Scalar angular momentum
Scalar rotational kinetic energy

Smelt parameters

xXviil



Acronym
AFIT
AFSPC
AGI
ALM
ASAT
ADCS
BVP
CDF
COM
CRP
DOF
EKF
EOM
FQS
GEO
GA
GPS
HOUF
IC
IMM
IMU
ISR
JSpOC

List of Acronyms

Definition

Air Force Institute of Technology
Air Force Space Command
Analytical Graphics Incorporated
Adaptive Likelihood Mixture
Anti Satellite

Attitude Determination and Control System
Boundary Value Problem
Cumulative Distribution Function
Center of Mass

Classical Rodrigues Parameters
degrees of freedom

Extended Kalman Filter
Equations of Motion

Fast Quartic Solver
geosynchronous Earth orbit
Genetic Algorithm

Global Positioning System

Higher Order Unscented Filter
initial conditions

Interacting Multiple Model
Inertial Measurement Unit
Intelligence, Surveillance, and Reconnaissance

Joint Space Operations Center

Xix



Acronym
LEO
LKF
LOS
MAP
MEO
MMAE
MOI
MRP
NRC
NSSS
ODE
PDF
PID
PSO
QUEST
RSO
RMM
RV
SGP4
SP

SSA
SQP
STM
SVD
TAM

Definition

low Earth orbit

Linear Kalman Filter

Line of Sight

Maximum a Posteriori

medium Earth orbit

Multiple Model Adaptive Estimation
Moment of Inertia

Modified Rodrigues Parameters
National Research Council
National Security Space Strategy
Ordinary Differential Equations
Probability Distribution Function
Proportional Integral Derivative
Particle Swarm Optimization
Quaternion Estimation

Resident Space Object

Residual Magnetic Moment
random variable

Simplified General Perturbations 4
Special Perturbations

Space Situational Awareness
Sequential Quadratic Programming
State Transition Matrix

Singular Value Decomposition

Three Axis Magnetometer



Acronym
TVMOI
UsSs
USAF
UKF
USQUE

Definition

Time Varying Moment of Inertia
United States

United States Air Force
Unscented Kalman Filter

Unscented Quaternion Estimation

xxi



ADAPTIVE ESTIMATION AND HEURISTIC OPTIMIZATION OF
NONLINEAR SPACECRAFT ATTITUDE DYNAMICS

I. Introduction

1.1 Motivation

The National Security Space Strategy (NSSS) highlights the vital role of space
in Intelligence, Surveillance, and Reconnaissance (ISR), power projection, diplomacy,
and military operations 1][1]. Further, the NSSS details the increasingly congested,
contested, and competitive space environment and the need to maintain the strategic
national security advantages afforded by space. The growing global domain of space
operations requires an improvement in shared Space Situational Awareness (SSA),
and the NSSS recommends the United States (US) invest its knowledge base to foster
SSA cooperation while protecting US and partner space capabilities [1].

There are over 1,000 operational satellites and an excess of 11,000 pieces of
trackable debris among the low Earth orbit (LEO), medium Earth orbit (MEO), and
geosynchronous Earth orbit (GEO) orbital regimes [1; 2]. The Joint Space Operations
Center (JSpOC) performs the SSA mission by tasking collections from various
sensor sources to collect orbital data and perform current and future predictions
of space object ephemeris. The SSA mission is becoming increasingly difficult when
considering the trend towards smaller space vehicles [3], discussion of disaggregated
mission sets [4], as well as debris created from collisions [5], Anti Satellite (ASAT)
testing [1], and other catastrophic events.

Further impeding the SSA mission are the methods by which the JSpOC

tracks and propagates Resident Space Object (RSO)s. In 2011, Air Force Space



Command (AFSPC) tasked the National Research Council (NRC) to “assess (their)
astrodynamics standards...and their effectiveness...” [6]. Nongravitational effects (e.g.,
solar radiation pressure, atmospheric drag) perturb the nominal Keplerian motion
of an object with a wide range of effects depending on the position and attitude
of the object. AFSPC employs a number of astrodynamics algorithms to generate
ephemerides with varying degrees of accuracy and inclusions of perturbing forces,
which directly affect computational time. The analytic models in the more commonly
known Simplified General Perturbations 4 (SGP4) and Special Perturbations (SP)
numerical integration techniques do not take into account certain key satellite
properties, such as attitude and shape, and additions of these states could improve
orbit predictions [6].

The accuracy from including an RSO’s attitude within an orbital state
propagator is limited by the accuracy of the attitude estimate. The attitude dynamics
of a rigid (or flexible) body are highly nonlinear, coupled, and sensitive to particular
system parameters such as the spacecraft moment of inertia (MOI) [7]. Accurate
attitude determination and the tight coupling between the MOI and rotational
dynamics of the spacecraft is of concern to SSA operators. Miscalculation of the
spacecraft orientation, changes in MOI, or assumptions of rigidity could directly
contribute to the observed effect of non-gravitational perturbations on an orbit and
the consequential error and state covariance growth. Moment of inertia changes
are not always deterministic. Unplanned changes to a spacecraft’s structure can
result from debris, external actors, or hardware faults. For example, the recent loss
of the Japanese satellite Hitomi has been attributed to human error and possible
solar panel faults [8]. In this example, adaptive estimation techniques applied to
the available streaming attitude telemetry could have potentially identified the fault

through various filters assuming different MOI modes.



As three independent parameters are needed to define a body’s attitude, the
number of sensor measurements often pose the attitude estimation as under- or
overdetermined, and implies that attitude determination algorithms are essentially
estimation routines. Some particular spacecraft configurations allow for special case
solutions of Euler’s rotational equations (for example, an axisymmetric, torque-free
rigid body), but nonlinearities and external forcing functions will perturb even this
simplistic model and one must estimate the attitude. Various sensor sources ranging
from inertial measurement units to star sensors are used to construct observations
for attitude estimation algorithms. The sensor observations are then operated on by
some estimation routine in order to determine the state and account for sensor noise.
A survey of various estimation and filtering techniques will be discussed in Chapter
2.

The NRC found that for the nonlinear governing equations in astrodynamics,
advanced estimation techniques should be employed to characterize state estimates
and their uncertainties [6]. Space is a data-sparse environment, and, consequently,
convergence times for state estimators and filters can be of considerable duration.
Multiple model filters have been shown to be capable of converging on state
estimates with limited data [6; 9]. Multiple model techniques have also demonstrated
operational efficacy in detecting the states of maneuvering missiles and aircraft where
sudden changes in dynamics are experienced [6; 10; 11]. Multiple model techniques
are well posed for the spacecraft maneuver estimation problem, determining if and
how a maneuver occurred for a given satellite at a given time [12-15]. The rotational
analog to the translational maneuver detection seeks to determine sudden changes in
a spacecraft’s MOI via streaming attitude telemetry. Sudden or gradual MOI changes

that are not accounted for are likely to introduce an evolving error into the coupled



rotational and translational dynamics, potentially leading to position tracking errors

while hindering on-orbit missions that are functions of attitude.

1.2 Problem Statement

For spacecraft conducting on-orbit operations, changes to the structure of
the spacecraft are not uncommon. The extension of a communications antenna,
deployment of a gravity gradient boom, solar panel rotation, fuel usage, or
catastrophic events such as debris collisions, will produce changes in the spacecraft’s
MOI.  There is a tight coupling between MOI and rotational dynamics which
further couples with translational motion when model perturbations are included,
or the point mass assumption is relaxed. Thus, accurate situational awareness and
characterization of a spacecraft is a function of both translational and rotational
motion, and requires accurate attitude determination and estimation of structural

properties.

1.3 Research Objectives

The objective of this research is to develop and evaluate new estimation
methodologies to determine spacecraft attitude and MOI, and probabilistically
classify spacecraft behavior. Chapter 3 examines a new application of adaptive
attitude estimation to a spacecraft with time-varying MOI as a proof of concept that
lays the foundation for future hardware experiments. In Chapter 4, newly developed
computational techniques and heuristic optimization methods are evaluated with
respect to the single-frame attitude estimation problem where orientation is
determined by using multiple unit vector observations. In Chapter 5, the MOI
estimation problem is formulated as one of parameter estimation within a system of
nonlinear Ordinary Differential Equations (ODE), wherein single-shooting numerical

methods are enhanced. Finally, also in Chapter 5, classical properties of analytical



mechanics are combined with hybrid optimization techniques to estimate principal

MOIL.

1.4 Methodology Overview

The dissertation is formatted as three separate, but distinct, articles intended
as journal submissions. Chapters 3 through 5 are related with the commonality of
studying satellite attitude dynamics, rigid body motion, and estimation theory. Due
to this construct, background and methodology are repeated throughout. Chapter 3
demonstrates a novel application of MMAE to attitude dynamics with a time-varying
MOI, while Chapter 4 looks at attitude estimation as a single-frame problem rather
than the filtering methods in Chapter 3. Finally, Chapter 5 enhances and develops
algorithms for estimating the spacecraft mass MOI, a key system characteristic of
rigid body motion. This section provides a main overview of the methodology used
in each chapter.

The research presented in Chapter 3 examines the application of MMAE
to spacecraft attitude determination using an on-board gyro and three-axis
magnetometer. The multiple model filter bank is constructed of variants of the
Unscented Quaternion Estimation (USQUE) filter developed by Crassidis, et al. [16].
Three scenarios are examined: (1) a scenario identifying the correct relative MOI
ratio; (2) determining an input command to a deployable, rotating payload; and
(3) detecting a series of separating payloads. Truth data is simulated using Euler’s
Equations of Motion (EOM) and converted to measurements while corrupting with
Gaussian noise for filter inputs. Finally, a series of adaptive estimation algorithms
are analyzed for robustness and detection capabilities.

Chapter 4 examines the use of new computational and optimization techniques
to the single-frame attitude estimation problem. For the computational portion, a

series of test cases constructed by Markley [17] are used which are designed to be



representative of various sensor combinations, observations, and sensor noise. The
research makes use of Strobach’s Fast Quartic Solver [18] to rapidly solve a quartic
eigendecomposition problem to compute the optimal quaternion, and is compared
to classical methods such as QUEST and the ¢g-method. The optimization portion
performs a Monte Carlo type simulation on a series of vector measurements with
varying noise, and directly minimizes a least-squares cost function using particle
swarm optimization (PSO) and a genetic algorithm (GA). Various combinations of
noise levels, vector observations, and optimization solver parameters are analyzed.
Results are assessed using computational time and attitude error as metrics.
Chapter 5 presents a novel approach to determining the relative MOI ratios and
the actual principal MOI values given angular velocity measurements. The relative
MOI ratios are estimated by constructing an algorithm to perform single-shooting
on Euler’s equations while iterating on the MOI ratios via the Levenberg-Marquardt
variant of Newton-Raphson iteration. Known external torques are then accounted for
by re-deriving a Jacobian in an effort to determine the principal MOI using single-
shooting. Finally, the principal MOI is estimated by exploiting a classical shape in
rigid body motion known as a polhode, which is formed by the intersection of an
angular momentum and kinetic energy ellipsoid. Various sets of angular velocity
measurements are simulated, and a two-step optimization process is employed that
uses intermediate conversions between variables known as Smelt parameters. The
shape of two ellipsoids is then iterated on until their intersection is within a degree

of numerical tolerance error when compared to the measured polhode.

1.5 Research Contributions
The development of an adaptive estimation methodology in Chapter 3 has
immediate and future impacts to the space community. This research presented a

first-of-its-kind examination of time-varying MOI characterization using streaming



attitude data. Although this research focuses on the use of on-board sensor suites,
ground-based or stand-off sensors, that are capable of detecting some phenomenology
that correlates with attitude, follow analogous algorithms. The problem of detecting
separating payloads is also directly analogous to estimating positive additions to
the MOI or spacecraft structure. This work demonstrated that time-varying MOI
characterization is possible using adaptive estimation and has set a path for hardware
experimentation, and the reformulation of the problem that is not as reliant on the
variability of filters in the adaptive estimation bank.

A key contribution from the work in Chapter 4 resulted in the application
of a rapid quartic root solver applied to the characteristic equation from Wahba’s
problem for a savings in computational cost. This research also allowed for the
contribution of a new application of heuristic optimization to a total least-squares
problem for attitude determination. For the rapid root solver, faster and precise
attitude estimates allow for decreased time lag between observation and estimate,
and can assist in the implementation of near real-time optimal control. One of
the main benefits to estimating the quaternion via a heuristic method is a ‘close
enough’ initial guess is not required, as heuristic techniques implement randomly
chosen initial candidate solutions. Although these optimization methods may be
too computationally demanding for on-board processing, the heuristic algorithms are
applicable to off-line post-processing of a vector observation time history.

The research contributions from Chapter 5 are more mathematical and abstract
in nature, but do present two new methodologies to estimate structural configurations
of spacecraft using angular rate data. Relative MOI ratios and principal MOI values
have not, to the author’s knowledge, been posed as an ODE parameter estimation
problem using Euler’s equations, and, further, have not been estimated via single-

shooting techniques. For torque free rigid body motion, the literature has also



indicated that only the relative MOI ratios can typically be estimated, but via
intermediate normalizations and two-step optimization this research has shown that,
given a measured set of angular velocity, the principal MOI of a spacecraft can be
estimated. For a tumbling non-cooperative spacecraft or piece of debris, capture
requires some knowledge of the body’s MOI. This research has shown that, by some
type of sensor measurement that results in an angular velocity estimate, the principal

MOI can be estimated by exploiting the polhodes of classic analytical mechanics.

1.6 Dissertation Overview

The author has organized this dissertation into six chapters. In Chapter 1, the
problem and its motivation are introduced. Chapter 2 presents a broad, in-depth
review of previous research in the various fields this dissertation extends. Chapter
3 demonstrates a novel application of MMAE to attitude dynamics with a time-
varying MOI, while Chapter 4 looks at attitude estimation as a single-frame problem
rather than the filtering methods in Chapter 3. Chapter 5 enhances and develops
algorithms for estimating the spacecraft mass MOI, a key system characteristic of
rigid body motion. Chapter 6 concludes the dissertation by providing a summary of
the research results, detailed contributions made by this work, and future work the
author has deemed noteworthy. As the dissertation is presented as distinct but related
articles, there will inevitably be some overlapping background, literature review, and
methodology in each chapter that is included for completeness, but may appear as
redundant to the reader. Hyperlinks are included throughout to enable quick reference
to equations, sections, sources, and acronyms. The following subsections present a

brief overview of Chapters 3 to 5.



1.6.1 Adaptive Estimation of Nonlinear Spacecraft Attitude Dy-
namics with Time Varying Moments of Inertia.

In Chapter 3 a series of scenarios are constructed to evaluate the performance
of various adaptive estimation routines in identifying and estimating a spacecraft’s
time varying MOI. To the extent of the author’s knowledge, this effort is the first
application of adaptive estimation to the case of a variable spacecraft MOI using
streaming attitude data. A methodology is developed to detect sudden MOI changes
using a bank of Unscented Kalman Filters as a numerical testbed for future real-world
implementation. A hybrid adaptive estimation algorithm to detect sudden parameter
changes in nonlinear systems is developed combining two state of the art routines.
The work in [19] presented the preliminary results of the research discussed in Chapter
3.

1.6.2 Alternate Numerical Solutions to Wahba’s Problem of Se-
quential Frame Attitude Estimation Using Heuristic Opti-
mization and Fast Quartic Numerical Solvers.

In Chapter 4 the single-frame estimation problem is solved by a rapid numerical
solver and by heuristic optimization techniques. Grace Wahba posed the satellite
attitude determination problem as a least-squares optimization problem in 1965 [20].
That is, given N sets of simultaneous vector measurements in two different reference
frames, Wahba’s problem seeks to approximate the rotation matrix between the two
frames that minimizes a particular cost function. This rotation matrix defines the
current attitude estimate. Classical numerical solutions to Wahba’s problem include
Davenport’s g-method [21], TRIAD [22], QUEST [23], and several other techniques
[24].  This research proposes the application of Strobach’s Fast Quartic Solver
[18] to quickly solve a fourth-order eigenvalue problem required for the quaternion

attitude estimate. Additionally, this work examines the application of heuristic based



techniques, to include particle swarm optimization (PSO) and genetic algorithms
(GA), to solve Wahba’s minimization problem to estimate spacecraft attitude.
1.6.3 Spacecraft Moment of Inertia Estimation Posed as an
Ordinary Differential Equation Parameter Estimation.
Chapter 5 investigates the problem of MOI estimation given measurements of
the rotational trajectory and initial conditions. The current problem is solved in
two manners. The first approach formulates the problem as a parameter estimation
in a nonlinear ordinary differential equation under the presence of stochastic
measurement noise. Relative MOI ratios are estimated with Single-shooting methods
employing Levenberg-Marquardt iteration schemes. The second approach, in a
new fashion, employs a cost function exploiting the classical polhodes of analytical
mechanics and known constants of the motion, within a two-step optimization process
utilizing heuristic optimization techniques as warm starts to Sequential Quadratic
Programming (SQP) optimizers. Intermediate normalizations and use of Smelt
parameters are used to minimize the cost function to estimate actual principal MOI

values rather than relative MOI ratios.

1.7 Chapter Summary

This chapter served to introduce the reader to research and results discussed
throughout this dissertation. Motivating examples were given and a problem
statement detailed. From this problem statement, research goals were developed.
The methodology used in the research was detailed and the contributions to the field

were also discussed.
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II. Background

This chapter provides a discussion on related work in satellite attitude dynamics,
attitude and adaptive estimation, MOI estimation, and heuristic optimization. The
review presented in this chapter provides a contained, consolidated basis of research
upon which this dissertation is built. An additional goal of this chapter is to establish
boundaries on relevant research in order to demonstrate contributions to the fields
made by this dissertation. The chapter begins with a philosophical and mathematical
discussion of spacecraft attitude dynamics. Next, this chapter provides a discussion
on estimation theory immediately followed by its application to spacecraft attitude
estimation. A survey on adaptive estimation, a methodology critical to the results of
Chapter 3, is then provided. The estimation portion of this chapter will then finish
with a discussion of spacecraft MOI estimation, the focus of Chapter 5. Next, a survey
on heuristic optimization, focusing on PSO and GA, is provided as these methods
are pertinent to the results presented in Chapters 4 and 5. As this document is
constructed with three distinct articles, some background in Chapters 3 to 5 may
appear repetitive when compared to the forthcoming discussing. This section is
intended to provide a broad overview, while individual chapters will provide more

details regarding the literature review.

2.1 A Discussion on Rigid Body Motion and Spacecraft Attitude
Dynamics

The commonality among the three distinct research projects presented in this

dissertation is spacecraft attitude dynamics. Therefore, this section will present a

top-level discussion on rigid body motion and attitude dynamics. The derivation of

Euler’s equations will be presented along with a particular solution to the system.

A discussion on attitude parameterization will be presented, accompanied by the
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quaternion equations of motion. The section will conclude by examining the impact
of time-varying MOI on a spacecraft’s attitude motion.

2.1.1 FEuler’s Rotational Equations of Motion.

The rotational dynamics of a rigid body, where rigid implies that the distance
between any two points on the body is constant, are derived by essentially restating
the conservation of angular momentum principle. That is, in an inertial frame, the
time rate of change of a body’s angular momentum, H, is equal to the vector sum of
external torques, M, acting on the body. Let w denote the angular velocity of a body
expressed in a reference frame fixed to the body, but with respect to some inertial
frame, and let I denote a real, symmetric 3 x 3 matrix whose elements are the body’s
moments and products of inertia. The conservation of angular momentum principle
can be stated mathematically as

M =H, (2.1)

where H is expressed as

H=lw, (2.2)

and the () notation indicates an inertial derivative with respect to time. Substituting
Eq. (2.2) into Eq. (2.1), and subsequently applying the Transport Theorem to

Eq.(2.1) results in the following body-frame derivative
M = Iw + w*lw, (2.3)

where the MOI has been assumed constant, and the w* operator is the skew-

symmetric matrix multiplication representation of a cross-product, given as

0 —Ws3 Wa
W = |ws 0 —w1 | - (24)

wWo w1 0
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Solving for w, the rotational equations of motion become
w=I"M-wIw] (2.5)

The system of equations represents a set of coupled, nonlinear ODE, the solution of
which yields the instantaneous angular velocity w. Since the attitude of a body is
an orientation with respect to another reference frame, this angular velocity is then
used to map to a particular attitude parameterization, discussed in Sections 2.1.3
and 2.1.4. The coupled, nonlinear ODEs of rotational motion are difficult to solve in
closed-form. The following presents a popular particular case of torque-free motion.
2.1.2 Closed-Form Solutions for Spacecraft Rigid Body Motion.
Without loss of generality, the rigid body is now assumed as a rigid spacecraft,
and the assumption is made that there are no external torques, and that MOI matrix

has been diagonalized such that

A0 0
I=(0 B 0], (2.6)
00 C

where A, B,and C' are now the MOI about the body’s principal axes. Given the
assumption that I is real, symmetric, and has been diagonalized, the inverse of this
matrix is then the diagonal matrix of the reciprocals of the diagonal. Placing these

assumptions in Eq. (2.5), the matrix-vector form of Euler’s equations in the principal

frame are
w 5 0 010 —ws w ||A 0 Of |wn
| =—10 & 0| |ws 0 —wi||0 B 0| |wa- (2.7)
ws 00 & |w w0 [[0 0 Cf |ws
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Eq. (2.7) is now expabnded in three scalar equations and rearranged to represent the

full coupled, nonlinear system of ODEs

: (B—C’)
w1 = A Wows

Gy = (O; A) W3ws . (2.8)

: (A— B)
W3 = C W19

From Eq.(2.8), it is immediately apparent that for torque-free rigid body motion, one

of the main driving system characteristics is the relative MOI ratios (the coefficients in
the parentheses), versus the individual MOI values. Closed form solutions of Euler’s
torque-free equations of motion exist in closed-form for special cases. Consider the
case of a rigid body that is isoinertial (e.g., a sphere), the rotational equations of
motion would then integrate such that all angular velocities were constant values.

A particular solution presented now is the case of the axisymmetric body (e.g.,

a rectangular prism or cylinder) where A and B are equal. Placing this assumption

. C
w1 = (1 — Z) Waols

Gy = (% _ 1> s (2.9)

02}320

in Eq. (2.8) produces

Immediately, ws integrates as a constant, and the (wy,ws) time-history integrates as

two harmonic oscillators. Hughes [7] provides the (w;,ws) solution as

w1 (t) = wy g cos (§2t) 4 wa o sin(Qt)
: (2.10)

wa(t) = wa g cos (Qt) — wy o sin(2)

where () is a relative spin rate given as

0= (1 - %) wWso. (2.11)
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Equations (2.10) and (2.11) present a closed-form solution for the torque-free
axisymmetric body, but the mapping to an attitude parameterization still remains
to be solved. In general, a spacecraft will not be precisely axisymmetric, nor be
operating in an environment without external torques. The relations above serve
to demonstrate the complexity in Euler’s equations, and the strong dependence the
system has on spacecraft MOI and coupling among states.

2.1.3 Attitude Parameterization.

Shuster provides a broad survey of attitude representations in [25]. This section
will present key highlights from [25] while augmenting with additional sources. The
parameters focused on in this section are those used in the course of this research,
namely Euler angles, quaternions, and Rodrigues parameters. The purpose of this
section is to familiarize the reader with the terminology, difficulties, and complexity
of parameter choices with respect to this research. During this research, the author
will primarily make use of the quaternion parameterization.

2.1.3.1 FEuler Angles.

One of the more common attitude representations are Euler angles, which
describe the orientation of reference frame B relative to another frame 91 through
three consecutive rotations [26]. The successive rotations are typically defined as
(X,Y,Z) where X,Y, and Z represent axes of rotation. For example, a popular set
of Euler angles in astrodynamics is the (3,1, 3) set that defines the orientation of an
orbital plane with respect to the central body inertial frame.

Although Euler angles are easier to visualize for small rotations and have
the minimum dimension required to specify an attitude, there is a computational
singularity associated with their use. Symmetric rotations of the form (XY, X)
have geometric singularities when the second rotation is 0 or 2w, as the first and

third rotation are indistinguishable. Additionally, asymmetric rotations of the form
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(X,Y, Z) will have singularities when the second rotation is +7/2, as the first and
third rotations are again indistinguishable. In order to fully describe the attitude
using a single Euler angle parameterization, one must have a priori knowledge of the
operational pointing of the spacecraft; otherwise, one may require the employment of
two or more sets of Euler angles [25].
2.1.3.2 Quaternions.

Euler’s principal rotation theorem implies that rather than three consecutive
motions, the orientation of a rigid body can be described by a single rotation through
a principal angle about a principal axis [26]. Given a rotation matrix R that describes

frame ‘B relative to frame 91, the principal rotation angle ® can be found as
1
cos d = 5 (tr(R) — 1) (2.12)

where tr is the trace operator (i.e., the sum of the diagonal terms of a matrix) and

the principal rotation axis é can be found from

Ros — R3y

1

¢=5| Ru—Ry |- (2.13)
Ris — Roy

Equations (2.12) and (2.13) can be used to describe an identical attitude as an Euler
angle set but will have two solutions including a short and long rotation about the axis
to the desired orientation [26], which is not troublesome for numerical propagation
schemes. A popular coordinate that employs the principal rotation axis and angle is

the quaternion, which is expressed following the notation of Crassidis et al. [24] as

q=| ° (2.14)
44
where
0 = [ g1 Q2 Q3 ]T = éSlIl(I)/Q (215)
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and

qs = cos P /2. (2.16)

The quaternion is a four-dimensional vector but only specifies three degrees of

freedom (DOF) due to a unity norm constraint such that
q'q=1. (2.17)

The most prominent advantage of the quaternion parameterization is the lack of
singularities in the kinematics, and successive rotations can be accomplished using
quaternion multiplication [24]. However, one negative in the use of quaternions
is a lack of attitude visualization due to the four-dimensional parameterization.
Mathematical treatment and derivation of quaternions that has been cited frequently
in the astrodynamics community can be found in Shuster [25] and is not replicated
here. A philosophical examination of the quaternion and its historical development
can be found in [27].
2.1.3.3 Rodrigues Parameters.

The Classical Rodrigues Parameters (CRP) essentially reduce the four-dimensionality
of the quaternions to a three-dimensional set by normalizing the quaternion vector by
q4 [26]. Schaub and Junkins describe the CRPs as stereographic projects of the four-
dimensional quaternion unit sphere to a three-dimensional hyperplane orthogonal to

4 [28]. Since the normalization is performed with ¢4 = cos ®/2 in the denominator,
the CRPs are singular for ® = +m, which is a broader operational range than the
+7/2 range associated with Euler angles. The Modified Rodrigues Parameters (MRP)
are similar to the CRPs in that they are fundamentally derived from the quaternions;
however, the normalization occurs with a division by (1 + ¢4), which moves the sin-
gularity to +2m, doubling the rotational range of the MRPs compared to the CRPs
26].
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2.1.4 Quaternion Dynamaics.

Discussed previously in Section 2.1.3.2, quaternions avoid the FEuler angle
singularities and will be the attitude parameterization used most often in this research.
The rotation matrix can be determined from the quaternion through the following
relationship using Crassidis’ notation [24], while an equivalent representation can be

found in Schaub [26],
R(aq) = (¢} — ||@|]*) 13xs + 200" — 2q20* = E"(q)¥(q) (2.18)

where the matrices = and W are expressed as

_ qalzx3 + 0~
E(q) = .
o
. - (2.19)
qalsxs — 0"
¥(q) =
_QT
Using this matrix notation, Crassidis gives the quaternion kinematics as [24]
1 1
4= 4@ = ;0w (2.20)
where the 2 matrix is given as
—w* w
Qw) = : (2.21)
—wT

Expanding Eq. (2.20) in matrix-vector form, the following equivalent expressions are

found [29]

G q4  —q3 QG2 0 W3 —Ws Wy q1
w1

o 113 @ —q¢ 1 |—ws O wi w2l |q2

_1 =1 . (222)

) 2 2 2

q3 —G@2 @ QU wp —wi; 0 wz| |g
w3

a |~ —q —g3] —w —ws —ws 0] |ga]

18



Notation will differ throughout the literature, as various authors may organize
the quaternion structure differently. One immediate advantage of the quaternion
kinematics is the far-right expression in Eq. (2.22) is linear in terms of the
quaternions. This allows for a linear approximation via a matrix exponential that
can be used in a Jacobian. Integration for the attitude history requires a seven state
vector, where four states are the quaternions, and the remaining states are the angular
velocities.

The four states in the quaternion vector should not be confused with additional
degrees of freedom for the rotational system. Given three values of a quaternion
representation, the fourth can be found by solving for the constraint. However, there
will be an ambiguity in the sign of the fourth element which is representative of the
same rotation, but differs only by a “long way” and a “short way” to achieve the
orientation, which can be easily distinguished.

2.1.5 Time Varying Moment of Inertia Effects.

Rigidity of the body was a key assumption in Euler’s equations, which implies the
time derivative of the MOI tensor is zero. Structural changes such as boom extensions
or antenna deployment, or internal phenomena such as fuel slosh, may introduce a
time variance to the MOI. That is

d

7 (1) # Oas (2.23)

Re-examining the first principles in Euler’s equations, use of the transport theorem
becomes slightly more complicated. Rather than re-deriving using angular momentum
conservation arguments, Thakur, et al. [30], present the attitude dynamics of the
nonrigid body as

I(Hw = —1(t)w — w*I(t)w + M, (2.24)
where the time dependency is explicitly stated for the MOI but is assumed on

w. Comparing to the rigid body Euler’s equations Eq.(2.3), the time-varying MOI
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increases the coupling in the system and, depending on the structural dynamics, is
likely to increase the nonlinearity of the system as well. Because properties of the
MOI tensor are now time-dependent, the eigenvalues will now evolve according to a
given set of structural dynamics, and the corresponding principal axes may evolve
as well. Analytical solutions to Euler’s equations with a time-varying MOI quickly
become cumbersome, complex, and difficult to generalize [31], and in some cases can
result in chaotic attitude motion [32]. However, for particular spacecraft geometries,
controlled variable MOI has been demonstrated as a means of possible attitude control
[33]. Thakur et al. provide time dependent MOI models for appendage deployment

and fuel loss resulting from maneuvering [30; 34].

2.2 An Overview of Kalman Filtering

The physical phenomena that are immediately available for observation and
measurement, are not always the variables or states of interest. In the current
spacecraft attitude problem, control and pointing requirements make a state vector
of attitude parameters desirable, but noisy physical measurements such as gyro rates
and magnetometer observations may only be available. This section will introduce
classical sequential estimation techniques in the sense of the Kalman filter and its
variants.

2.2.1 Linear Kalman Filter.

This section will present a top-level discussion of the linear Kalman filter. The
Kalman filter is often termed the optimal estimator [35] and minimizes the expected
value of the mean squared error and the trace of the covariance matrix. As a sequential
estimator, the filter is recursive and propagates the previous time step based on
stochastic properties and system dynamics. Though not presented here, [36] presents

a classical scheme for linear Kalman filtering applied to attitude dynamics.
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An inherent assumption in the linear Kalman filter are disturbance inputs and
measurement errors that are distributed with a zero-mean Gaussian distribution as
well as stationary and uncorrelated processes [37]. The linear Kalman filter can be

divided into three main phases:
1. Propagate State and Covariance Estimates
2. Compute Gain
3. Update State and Covariance Estimates

Note that the three phases are sometimes combined into two phases, where
propagation and gain computation are consolidated. Following the development
in Stengel [37], the initial phase propagates the state estimate from the previous
iteration using the dynamic system model, while ignoring new measurement data.
The covariance estimate is also propagated using the system dynamics and process
noise in this initial phase. The second phase is the computation of the Kalman gain
using a priori knowledge, while also ignoring the measurements. The final update
phase uses innovations from the measurement residuals along with the Kalman gain
to update the previously propagated state estimates.

The linear Kalman filter process will now be detailed mathematically using a
modification of Stengel’s notation in [37]. Proofs concerning the minimization of the
mean squared error and derivation of the Kalman gain can be found in most stochastic

estimation texts. Given a discrete time linear system that evolves with the dynamics
Xp = P 1xp—1 + Tpmqupg + A wiy (2.25)

where ® is a state transition matrix, and I' and A operate, respectively, on the
system input u and system disturbance w. The covariances of the state, disturbance

vector, and measurement noise are assumed as P, @, and R, respectively. The
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following algorithm will use the notation that a superscript — or + is the propagated
or updated value at a given time step, respectively, and assumes an understanding

that the states are estimated values. The state and covariance propagation are given

as
X, =P, 1% |+ Tpqup
: (2.26)
P, =®, P/ &, + Qi
A measurement vector yyi is assumed to be expressed by the linear mapping
yi = Hpxp + 1y (2.27)

where H is a known mapping from state to observation and nj is uncorrelated zero-
mean Gaussian measurement noise with covariance R. The Kalman gain K can now

be calculated as the matrix gain that minimizes the trace of the covariance P

1

K, =P, VH! [H,P,H +R,] . (2.28)

The Kalman gain requires the inversion of a matrix that is of the order of the
observation vector. Having the Kalman gain, the state and covariance can now be

updated using measurement data

+ (), mrr-trr ] '
P/ = [Pk, +HI'R; Hk]

If v is a vector of residuals such that v = y, — Hyx, , then the state update in
Eq.(2.29) becomes
X =x; + K. (2.30)

The (HfR,;lHk) relation in the covariance update serves to illustrate the
problem with measurement perfection, in that zero measurement noise results in
a singular matrix inversion and an invalid update. The Kalman gain is a function of

the relation between the stochastic input and the measurement mapping and noise,
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and does not depend on the actual measurements. The measurement residuals only
impact the update to the state estimate.

This section presented the linear Kalman filter, which assumes the system
dynamics can be propagated as a linear system. The following sections relax this
assumption and present estimation methods for nonlinear systems.

2.2.2 FExtended Kalman Filter.

The linear Kalman filter in Section 2.2.1 relied on linear system dynamics.
However, most problems of interest in astrodynamics and spacecraft attitude are
nonlinear in nature (for example, orbit and attitude determination). The Extended
Kalman Filter (EKF) is best applied to nonlinear estimation problems by linearizing
the system dynamics about the most current estimate. The EKF typically has a longer
computation time than the linear Kalman filter as a Jacobian and state transition
matrix must be computed at each time step [38].

The EKF follows a nearly similar structure to the linear Kalman filter with slight
differences. The propagation of the state and covariance requires integration of the
®(t) matrix, or State Transition Matrix (STM). The differential equation for the
STM is given as

d of

Sa(t) = AD() = 5B (1) (231)

with the initial condition on the ® matrix as identity. The matrix A is the Jacobian of
the system dynamics with respect to the state and requires evaluation at the current
estimate. In dynamics regimes where nonlinearities are present, there is potential
for the Jacobian to be a poor approximation of the system and contribute to filter
divergence [38].

2.2.3 Unscented Kalman Filter.

As the governing equations for attitude dynamics are nonlinear, an EKF is more

desirable over a linear Kalman filter. However, the EKF does have some drawbacks,
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the most paramount being the loss of higher-order terms in the system dynamics
[39] and often complicated Jacobians in the state-measurement relations. Julier
and Uhlmann introduced the Unscented Kalman Filter (UKF) in [40] to avoid the
linearization inherent in the EKF.

The system model for the UKF formulation assumes the form

X1 = f(xp, tr) + Wi
(2.32)

yvi = h(x, ty) + v

where f and h are arbitrary nonlinear functions for the dynamics and measurements,
respectively. The filter initializes the state estimate and covariance and then
performs the unscented transform. The unscented transform assumes that a Gaussian
distribution is easier to approximate than an arbitrary nonlinear function [40]. A set
of sigma points x are deterministically selected such that their mean and covariance
match that of the state. The UKF can be described using phases similar to the three
phases of the linear Kalman filter [39]. The sigma points are calculated from a priori
state statistics. A posterior mean and covariance are then determined from weighted
combinations of the sigma points. A Kalman gain is found using the cross-correlation
and innovation covariance matrices. The new state estimate is then found using
traditional Kalman update equations.

Rather than discussing the UKF routine in textual form, Algorithm 1, provided
at the end of this chapter, summarizes and outlines the mathematical steps for the
unscented filter from [39; 40]. The (k,«, ) parameters are heuristically chosen
to allow tuning, but the literature provides some rules of thumb exist for tuning
these parameters [40]. The a parameter controls the spread of the sigma points,
essentially controls the admission of prior knowledge in the filter, and « is a scaling

parameter [41]. The UKF is presented here in a pseudo-classical form, but the
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unscented filter used in this research is that of Crassidis, et al., [16] and will be

discussed later in Chapter 3.

2.3 Survey on Attitude Estimation

The purpose of this section is to discuss with the reader a variety of estimation
methods available for satellite attitude determination. This brief survey is intended
as a top-level discussion that is important in discussing this research. Chapter 3
relies on a development of a UKF, Chapter 4 determines attitude by the single-frame
formulation, and Chapter 5 estimates MOI values that can be used to propagate
dynamics in Chapter 3’s filters. The author refers the reader to [24] for a thorough
and mathematically rigorous survey of attitude estimation methods.

To define orientation in a three-dimensional space, one needs three independent
parameters. A single vector measurement will provide two independent parameters,
as a unit vector constraint removes a DOF making the problem underdetermined,
while two vector measurements will provide at least four quantites, making the
problem overdetermined [22]. Attitude estimation techniques can be described as
deterministic, where two or more measurements are used to determine the attitude,
or as stochastic, where observations are used to recursively estimate the attitude with
statistical methods [22].

The following section describes commonly used attitude estimation techniques
found in the literature and used in this research. The presented survey will minimize
the use of mathematical descriptions and will provide textual discussion. A thorough
review of early estimation techniques to include linear Kalman filtering can be found
in [36].

2.3.1 FExtended Kalman Filter.

The EKF is portrayed as the “workhorse” of satellite attitude determination [24],

where a linearization of the nonlinear system is performed about the current best state
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estimate. This linearization requires derivation and calculation of the Jacobian which
could be computationally expensive depending on the system. Minimal representation
EKFs have been used to estimate Rodrigues parameters and, consequently, MRPs
[42]; however, this EKF realization has not been widely implemented [24]. The
multiplicative EKF has been used to estimate attitude error vectors using quaternion
multiplication to maintain the unit norm constraint on the quaternions, and several
realizations exist depending on the attitude parameterization [24; 36]. A backwards
smoother can also be applied to the EKF by minimizing a loss function in what is
posed as a Maximum a Posteriori (MAP) estimation problem [24; 43]; however, the
backwards smoother comes with a greater computational cost than other estimators.

2.3.2 Solutions to Wahba’s Problem.

The previous section discussed the EKF, an attitude estimator that takes
advantage of the system dynamics to propagate and update state and covariance
estimates. This section focuses on the single frame estimation problem, where the
objective is to find the rotation matrix that minimizes a particular cost function
composed of unit vector measurements in two different reference frames. This section
will provide a broad discussion on the single frame estimation problem, while Chapter
4 will provide a mathematical development of numerical solution methods and discuss
more advanced solution techniques.

The attitude determination problem is either underdetermined or overdetermined
[22]. This formulation leads to computing a rotation matrix (attitude) to minimize
a loss (cost) function of these measurements. One loss function is often defined as
Wahba’s problem [20; 22; 24|, and is given as

R .
J (Rbl) = 5 Z Wi Hvkb — R,bZV]ﬂ'H2 5 (233)
k=1

where J is the loss function, k is the index for the N observations, wy, is the observation

weight, v is k' vector of body frame components, v;; is the £ vector of components
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in the inertial frame, and R is the rotation matrix to be found to minimize J. The

original problem posed by Wahba posited the cost function slightly different as

2

1 .
J (Rbl) = 5 Z Hka - szvki s (234)
k=1

with the only difference between Eqgs. (2.33) and (2.34) being the presences of sensor
weights.

There are three commonly referenced solutions to this problem: (1) numerical
minimization; (2) solution in the eigenspace known as the g-method; and (3) an
eigenspace approximation method [23]. We will now discuss each in the order listed.

The numerical minimization problem typically seeks to minimize Wahba’s
problem directly by numerically solving for the optimal rotation matrix. Although
the rotation matrix has nine components, the number of constraints require only three
numbers to solve for, and the rotation matrix can be parameterized by these three
numbers (e.g., Euler angles) [22]. This minimization generally involves the standard
appendage of Lagrange multipliers with the unity norm quaternion constraint, a
Jacobian, and a Newton-Raphson type iteration [22].

Davenport’s g-method [21; 22] rewrites Wahba’s minimization problem (min J(R")
as a maximization of a gain function (max g(q)), where quaternions are the indepen-
dent variables. Appending the quaternion norm constraint leads to an eigenvalue
problem, where the eigenvector corresponds to the maximum eigenvalue [21; 22].

Shuster expanded Davenport’s g-method with QUEST in an attempt to decrease
the computational time required for eigenspace computations [23]. Rearranging
the gain function derived from Wahba’s problem, an initial guess for the optimal
eigenvalue can be approximated as the sum of the weights wy,, and the corresponding
eigenvector can be iteratively determined. Often, very few iterations are required
for the QUEST solution to converge [23; 24]. However, when noise is present, more

iterations may be required and convergence to the non-maximum eigenvalue is a

27



possibility discovered in [44] and discussed more in this research in Chapter 4. While
less robust than the g-method, QUEST has proven reliable and computationally
efficient [24]. Psiaki modified Shuster’s work with Extended QUEST [45] to allow
for the estimation of other states (e.g., gyro bias) by modifying the cost function and
implementing information filtering algorithms. As mentioned earlier, this section was
presented as part of this literature review as a primer. Chapter 4 will provide a more
in-depth development of the problem. Next, we will discuss the recursive UKF used
in Chapter 3.

2.3.3 Unscented Kalman Filter for Attitude Estimation.

Estimation methods that use the EKF are inherently reliant upon linearization
of the nonlinear system about the most current state estimate and neglecting higher
order terms [39]. The UKF is an extension of the linear Kalman filter that attempts
to circumvent short-comings of the EKF, such as reducing linearization errors [39].
The UKF assumes the fundamental premise that a Gaussian distribution is easier
to approximate than arbitrary nonlinear functions [24]. The UKF approximates the
state as a Gaussian random variable with a sample of sigma points based on the
current state estimate and covariance. The sigma points are propagated using the
system dynamics, and the a posterior: state mean and covariance are determined by
using the UKF. The UKF retains second-order accuracy over the EKF’s first-order
[24; 39]. Other advantages provided by the UKF over the EKF are its applicability to
nonlinear functions while avoiding the creation or computation of the Jacobian matrix
[16]. This allows an immediate extension to complex measurement-state relations
without the need to compute the Jacobian.

For the attitude estimation problem, numerical error in direct application of the
UKEF yields a quaternion estimate that often violates the unit-norm constraint [24].

Vandyke, et al. [39], implement the three-element error quaternion in the state and
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solve for the fourth component using the unit norm constraint. Crassidis, et al. [24],
developed the USQUE algorithm where intermittent conversions are made between
Rodrigues parameters while also estimating gyro biases from the measurements [24].
As the primary estimation routines employed in the adaptive estimation portion of
this research, the UKF algorithm and USQUE methods will be discussed in more
detail in Chapter 3.

2.3.4 Miscellaneous Estimation Techniques.

Although this section has surveyed some of the more common attitude estimation
techniques, there are some less employed techniques worth mentioning. As an
alternative to the EKF, the two-step optimal attitude estimation performs time- and
measurement-updates to first-step estimates, while next minimizing a cost function
for the orthogonal attitude matrix [24].

Other approaches worth mentioning are particle filters and observers. Particle
filters form a broad field of estimators that are sub-optimal and use Monte Carlo
simulations to propagate and updates particles based off sequential importance
sampling or resampling. Nonlinear observers can also be applied when there is perfect

knowledge of the observations [24; 46].

2.4 Survey on Adaptive Estimation Techniques

2.4.1 Adaptive Estimation in General.

Estimation routines must be equipped to account for modeling and measurement
errors. Estimation confidence can be represented using statistical methods, such as
the covariance to correlate estimation error among the states. Vallado [38], Kay [47],
and Stengel [37] detail the fundamentals of estimation theory and its applications
to multiple engineering fields. Common optimal estimation techniques assume that
errors and noise are distributed in the Gaussian sense, and, do not easily allow

for changes in the system dynamics. Multiple model adaptive estimation (MMAE)
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approaches, though often referred to as sub-optimal, deviate from traditional filtering
techniques and allow for the inclusion of non-Gaussian noise and changes in the
dynamical modes of the system [37; 48].

Consider an observable system where there is uncertainty in some system
parameter. MMAE generalizes the principle of defining hypotheses based on
corresponding system characteristics (e.g., state transition matrices, measurement
noise, initial estimates), and generating a filter based on each hypothesis. The filter
that provides the “best” state estimate could then be used to identify the uncertain
parameter and likely operational mode [37]. An example of parameter estimation in
a nonlinear system can be found in Appendix C, where the author provides a nominal
scenario of a re-entering satellite being tracked by ground radar with the objective of
estimating the satellite’s ballistic coefficient.

Li and Jilkov provide an exhaustive survey of multiple model adaptive estimation
methods in [49]. Generally speaking, an adaptive estimation scheme can be divided

into four main parts:

1. Model-set determination: The selection and design of the models or parameters

included in the elemental filter bank.

2. Cooperation strategy: The interaction among the various filters in the bank, to

include the pruning or merging of models.

3. Conditional filtering: The recursive estimation process based on an assumed

probability distribution.

4. Qutput processing: The combination of individual filter estimates along with

conditional filtering outputs for the overall state and covariance estimate.

Figure 2.1 provides a visualization of Li’s interpretation of the the general adaptive

estimation algorithm flow [49]. Along with the four generalized segments of an
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adaptive estimation scheme, multiple model methods can also be viewed as having
evolved through three distinct generations of algorithms [49; 50]. The first generation
is the classical form most heavily used in this research. Pioneers of the first generation
include Magill [51; 52], Lainiotis [53], and Maybeck [54]. This first generation
used limited cooperation strategies and did not include pruning or merging. The
ground radar target tracking problem affected the rise of the second generation
of multiple-model algorithms, wherein there is interaction among the filters in the
bank [49; 55|, but often requires a reformulation of the problem as a Markov system
with a specific probability transition matrix. The third and most recent generation
incorporates cooperation among the filters in the bank, where poor performing models
are removed (or pruned), and similar models are merged. This variable structure

adaptive estimation effort has been led by Li et al. [49].

The following sections will examine specifically how adaptive estimation schemes
have been applied to the areas of attitude dynamics and orbital mechanics.

2.4.2 Applications of Adaptive Estimation to Attitude Dynamics.

Rupp, et al. employed a bank of EKFs inside a MMAE architecture to detect
sensor and actuator faults [56]. In this bank of filters, each filter represents a system
model for a potential fault pattern. Simulation results for an aircraft aileron problem
indicated that the MMAE architecture developed is capable of detecting faults [56].
In a similar set-up, Tudoroiu et al. employ a interactive bank of UKF's to detect faults
in reaction wheel components of a spacecraft’s Attitude Determination and Control
System (ADCS) [57]. Their estimation algorithm is able to detect single, decoupled
faulty modes and multiple faults including unexpected changes in the power supply
bus and motor torque gain [57].

Bolandi and Saberi use a MMAE construct to tackle the attitude estimation

problem using star sensors with unknown noise levels [58]. The authors assume a
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Figure 2.1: Recreation of Li and Jilkov’s interpretation of the general multiple model

algorithm with two filters.

rigid spacecraft with a pyramid configuration of four reaction-wheels and use eight
models to investigate high and low noise values for attitude estimation about three
axes. Using this construct, the authors are able to estimate attitude with accuracy
on the order of 1072 degrees during three slewing maneuvers [58].

Soken, et al. provided an in-orbit routine to estimate time-varying residual
magnetic moments using an adaptive Kalman filter in [59]. Soken’s filter adapts
the level of covariance to converge on Residual Magnetic Moment (RMM) estimates
following instantaneous changes [59]. Soken, et al., later sought a more autonomous
adaptive algorithm and proposed a MMAE technique to estimate the RMM for small

satellites [60]. Soken’s MMAE routine constructs a bank of EKFs assuming different
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levels of process noise and RMM estimates, and also proposes a novel likelihood
function that combines filter agility with steady state behavior [60].

Linares employed MMAE to characterize the behavior RSOs using light curve
data in [61]. A bank of multiple UKFs is used in the construct where each filter
assumes a different control profile. RSOs are classified as intact or fragments, passive
or active, and further characterized as spin stabilized, sun pointing, or Nadir pointing
[61] based on a control profile. The coupling between RSO attitude and torques from
non-conservative forces is exploited in [9], where light curve and orbit determination
observations are taken from ground sites and propagated using an UKF. The attitude
couplings enters the EOMs through a perturbing solar radiation pressure, and the
MMAE filter bank hypotheses assume different RSO shapes to estimate to area-to-
mass ratio for an object in GEO. A memoryless form of MMAE called “adaptive
likelihood mixtures” is also introduced in [9] and is shown to detect abrupt data
changes faster than other adaptive estimation methods. A comprehensive method
is shown in [62] fusing astrometric and photometric data to determine RSO shape,
attitude, and orbital states where two scenarios are successfully tested in the MMAE,
one where the true system model is in the bank, and the other where the true model
is a combination of models in the bank.

Lam and Crassidis developed an attitude determination system mixing various
EKF models with different state dimensions and showed the MMAE scheme can
reduce the effects of gyroscopic scale factors and misalignments compared to
traditional EKF schemes [63]. In [64], the same authors expand upon the work in [63]
to demonstrate the fusion of multiple sensor sources at differing sampling frequencies.

Hess et al. [19] investigated the application of MMAE to a satellite with
time-varying MOI using on-board sensors including a three-axis magnetometer and

gyroscopes. The work in [19] presented the preliminary results of the research
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discussed in Chapter 3 of this dissertation. Besides the work presented in [19],
adaptive estimation has not, to the knowledge of this author after an extensive
literature review, been previously applied to the attitude estimation of a spacecraft
with time-varying MOI.

2.4.3 Applications of Adaptive Estimation to Orbital Mechanics.

Recent work has shown some success in using MMAE to perform spacecraft
translational maneuver detection [12-15]. Lee and Hwang [14] examine planar
two-body Keplerian dynamics and characterize maneuvers by changes in classical
orbital elements from ground observations. A bank of EKFs is used assuming
different maneuvers in the system model, and numerical simulations demonstrated
success in detecting maneuvers. In [15], Lee and Hwang extend the work in [14] by
developing an adaptive estimation scheme with state-dependent probability transition
models, and successfully demonstrated the algorithm on a maneuvering geostationary
satellite.  Goff et al. [13] investigated translational maneuver detection using
both Interacting Multiple Model (IMM) and variable state dimension filters. The
translational spacecraft state is tracked using ground observations, and once residual-
based heuristic thresholds are exceeded, the state is extended to include the thrust
vector as additional states. Two thresholds are recommended: (1) a filter-smoother
consistency test used in post-processing; and (2) a maneuver detection threshold,
similar to the Mahalanobis distance, used for more real-time detection based on
heuristics. The IMM construct assumes various levels of process noise, which, when
combined with covariance inflation, allows for success in maneuver detection and

thrust estimation [13].

2.5 Survey on Spacecraft Moment of Inertia Estimation
The rotational dynamics of a rigid body are primarily a function of the current

rotational state, external torques, and the MOI tensor. Pre-flight, the MOI is
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estimated, but there will inevitably be changes in the MOI due to the space
environment and operational needs. This section will briefly detail some of the open
literature that examines MOI estimation.

Tanygin and Williams [65] demonstrate successful estimation of both the MOI
and the spacecraft center of mass using coasting maneuvers and energy conservation
techniques. The work by Tanygin and Williams was also experimentally verified on the
STS-64 mission (September 1994) [65]. Similarly, conservation of angular momentum
arguments are used to develop in-flight MOI estimation for the Cassini spacecraft
using least-squares estimates when slewing telemetry is available [66]. The approach
used in [66] builds upon Peck’s work in [67]. Using angular momentum principles,
Peck removed the need to determine the uncertainty in energy dissipation [66], [67].
Norman, Peck, and O’Shaughnessy [68] combine both angular momentum and energy
conservation principles for on-board MOI and reaction wheel alignment estimation.

Thakur, Srikant, and Akella derive an adaptive attitude-tracking controller to
estimate and compensate for time-variance in the MOI tensor [30]. In [30] and [34],
Thakur, et al., also provide mathematical insight into the time-varying MOI that
will be discussed in Chapter 3. A passive adaptive control scheme is also introduced
in [46] assuming a constant MOI tensor by selecting a desired angular velocity for
persistent excitation of the estimator. The persistency of excitation (PE) condition
is found to promote exponential convergence of the MOI estimates and drives the
tracking error to zero.

VanDyke, et al., employ a dual UKF to estimate both the spacecraft attitude
and MOI [39]. The MOI parameter estimation is performed within a loop at each
iteration, where the current state estimate is used to determine the MOI parameters,
which are then fed back into the state estimator for the next iteration. Vandyke,

et al., compare their results to a baseline EKF algorithm, showing that the UKF
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consistently outperforms the EKF [39]. Further, the EKF demonstrated a tendency
to diverge with poor initial MOI estimates. VanDyke’s work assumed the MOI as
constant parameters to be estimated using the dual UKF. Additionally, Bordany et
al. [69] as well as Ferguson [70] approached the MOI estimation problem by using an
EKF to estimate mass properties and thruster characteristics.

Wright developed a methodology to estimate the full MOI tensor using maneuver
based estimation to approximate the MOI ellipsoid [71]. Wright implements a least-
squares cost function on an over-determined set of measurements and minimizes
the cost function by a static optimization method [71]. Wright’s methodology was
implemented on a terrestrial-based attitude simulator [72; 73] with significant MOI
estimate improvements over previous methodologies [71].

Sheinfeld and Rock [74] propose a framework to estimate the MOI of a tumbling
rigid body. The motivation in [74] is to incorporate the MOI estimate into the
dynamics for the capture of the tumbling spacecraft. Sheinfeld’s algorithm essentially
becomes an overdetermined least-squares problem. Sheinfeld and Rock also made an
important note that in the torque-free formulation of the problem, only the relative
MOTI ratios can be recovered, and scale factors must be determined by exploiting

known torques and forces [74].

2.6 Survey on Heuristic Optimization

Heuristic optimization, or metaheuristics, is a generalized term for a subfield of
stochastic optimization, wherein a degree of randomness is exploited and employed
to some extent in the search for optimality [75]. This section is not intended to
survey, either conceptually or mathematically, the entire field of metaheuristics, but
rather focus on the two specific routines employed in Chapter 4 of this research. The
justification in this narrow focus can be found in Luke’s textbook [75], in which his list

of detailed algorithms numbers 137 in total. The author refers the reader to [75; 76]
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for an exhaustive survey of the field. Rather, this presented research attempts to
solve the single frame attitude problem by using heuristic optimization rather than a
classical method like Quaternion Estimation (QUEST), thereby avoiding singularities
and exploiting inventive optimization and estimation routines.

2.6.1 Particle Swarm Optimization.

Eberhart and Kennedy [77] developed the metaheuristic PSO algorithm. The
algorithm duplicates the random and unpredictable motion of a flock of birds
gathering food [78]. An initial swarm is selected by random assignment of position
and velocity vectors in the solution space to various particles. In this algorithm,
position refers to the design variables through which the cost is being optimized, and
velocity refers to updates to the design variables. An individual particle’s position

and velocity solution are updated by three mechanisms [78]:

1. Inertial update: an update proportional to the particle’s own velocity in the

previous iteration.

2. Cognitive update: an update to a specific particle that is directed toward the

best position known to that particle.

3. Social update: an update to a specific particle that is directed toward the best

position known to all particles in the swarm.

Mathematically, this update to a particle p’s position X,, at the s iteration is

described using the global PSO version as [79]:
X,(s) =X,(s — 1) +V,(s) (2.35)
where V,(s) is the velocity calculated from the swarm at iteration s as

Vip(s) = x [Vp(s = 1) + 121 (Poest = Xp(s = 1)) + 222 (8pest — Xp(s — 1))], (2.36)
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where ¢; is the cognitive parameter, ¢y is the social parameter, ppest is the best
position visited by the individual particle, gpest is the best position visited by the
entire swarm, z; and zo are uniformly distributed random numbers between zero and

one, and Y is a constriction factor given as

(2.37)

2

I Ve 1

with ¢ = ¢; + 3. The three updates are used to iterate on the swarm until the
a cost function differential is below a certain threshold, or through some similar
tolerance check. Work has been done to reduce the tendency of the PSO algorithm to
become stuck in local extrema, and to balance the weights of global and local searches
[78; 80; 81]. Moreso, constrained optimization problems can be handled by the use
of penalty functions, which assign additional costs to constraint violations [79; 82].
The PSO shares with other heuristic algorithms the ability to handle arbitrary cost
functions and nonlinear systems, but provides for a less complex implementation [83].
Particle swarm optimization has seen applications in both spacecraft trajectory
design as well as attitude control. In [78], Pontani and Conway use PSO to find
optimal low-thrust planetary transfers. Pontani and Conway continue in [84] to use
PSO to investigate optimal rendezvous trajectories in the Hill frame for relative
satellite motion. Showalter extends the application of PSO to trajectory design
to optimize spacecraft responsive theater maneuvers [79; 82]. Rahimi et al. [85]
applied PSO to the spacecraft reentry problem to determine initial conditions to
minimize total applied heating to the spacecraft. Hu et al. [86] applied and modified
the PSO algorithm to optimize parameters in a flexible satellite attitude controller.
Additionally, heuristic algorithms such as PSO have been employed to determine

optimal Proportional Integral Derivative (PID) controller gain settings [87].
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2.6.2 Genetic Algorithms.

The genetic algorithm was initially developed by Holland [88] while modeling
natural adaptive processes [82]. An initial population is generated from some
random distribution of the solution space, and future generations are generated
by combinations of previous parent generations. The primary two methods of
combination are selection and reproduction. Selection uses some problem specific
metric to evaluate which current population members are used as generation parents,
choosing the most optimal members. Reproduction involves mutation and crossover,
where in mutation small changes are made to individuals, and in crossover pieces of
parents solutions are combined [82].

The employment of genetic algorithms has seen success when there are a large
number of design variables [89; 90] and multiple optimization objectives [91]. Mosher
proposed the use of genetic algorithms in automating the search space of conceptual
satellite design [90], and found that the use of evolutionary heuristic algorithms
can expedite the design process. In [89] and [92] Thompson et al. implement
a GA to design a constellation from a systems engineering perspective to design
a disaggregated weather system with multiple objectives, constraints, and design
variables. In [91], Diniz employed the GA to design a navigation satellite constellation
minimizing dilution of precision and financial cost, while Abbate designed an imagery
constellation with a GA in [93].

The heuristic genetic algorithm has also been applied to singular spacecraft orbit
and trajectory design. Abdelkhalik and Mortari [94] used the GA solution as a warm
start to classical optimization methods to determine an optimal orbit for given targets
and imaging capabilities. Kim and Spencer [95] employ a GA to determine optimal

satellite rendezvous conditions.
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Alfriend et al. [96] posed the geosynchronous satellite servicing problem as a
traveling salesman problem. The traveling salesman problem is a classical problem
in mathematics determining the optimal path for a salesman to take given a certain
number of cities to travel among. Alfriend et al. found the optimal geosynchronous
servicing route by brute-force permutations on the possible servicing routes [96]. Zhou
et al. later used a genetic algorithm to determine the optimal servicing route, noting
that as the number of satellites to service increases, the approach in [96] becomes
numerically exhaustive when compared to the GA search pattern.

2.6.3 Conclusions.

In this chapter, we discussed a broad background on topics of importance to
the presented research. This chapter discussed classical rigid body dynamics, and
expanded on the state of the art of attitude estimation, adaptive estimation, and
heuristic optimization. Next, Chapters 3, 4, and 5 each present the three distinct
components of this dissertation. One will notice immediately some repetition due
to the dissertation format selected where Chapters 3, 4, and 5 stand as complete

discussions to themselves, ultimately becoming articles.
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Algorithm 1: Unscented Kalman Filter algorithm

Given 5(;_1 and covariance PL 41 estimates at epoch time t;_;

1 Calculate sigma points from a priori mean and covariance:

Xk-1= X} X+ ( (n+ k) P;crac,k—l)i Xf - ( (n+ k) PL,k-l)j
using Cholesky decomposition and (.); indicates row or column of the matrix.

2 Calculate weights, where «, 3, k are heuristically tuned:
Wy =

Woc—n_m—i—l—a +0

Wm=Wwe =

1 s
i m fOI' 1= 1,277/

s Propagate sigma points individually using nonlinear state equations:
(@)
Xpjk—1 = £ (Xk 1)
4 Calculate propagated state:
X), = ZWka\)k 1
5 Calculate propagated covariance:
c =\ () =\"
ZW (Xk|k 1 Xk) (Xk|k71 - Xk) + Qr1
6 Transform sigma points to observations using nonlinear measurement transformation h():
@ _ (@)
Ly—1=h (Xk|k 1)
7 Calculate expected measurement from sigma points
oo (i)
Y = ZWZmrk\k—1
=0
s Calculate the predicted observation covariance:
we ()~ =) (r9 %) +R
Z k:\k 17 YTk k|lk—1 k) TRy
o Calculate the predicted (innovation) cross covariance:
P. — & Wwe (4) & I\(l) Y T
zy = '2‘6 i (Xgjk—1 — X% klk—1 — Tk
1=
10 Update the estimate with traditional linear Kalman filter update equations:
v=Y — YAvk
K, =P,,P,}
X =%, + Ky

P! =P, —KiP, K]
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III. Adaptive Estimation of Nonlinear Spacecraft Attitude Dynamics

with Time Varying Moments of Inertia

In this chapter, a series of scenarios were constructed to evaluate the performance
of various adaptive estimation routines in identifying and estimating a spacecraft’s
time varying MOI. To the extent of the author’s knowledge, this effort is the first
application of adaptive estimation to the case of a variable spacecraft MOI using
streaming attitude data. A methodology is developed to detect sudden MOI changes
using a bank of Unscented Kalman Filters as a numerical testbed for future real-world
implementation. A hybrid adaptive estimation algorithm to detect sudden parameter
changes in nonlinear systems is developed combining two state of the art routines.
As previously mentioned, the reader may notice repetition between the presented
motivation and background. Section 3.2 refers the reader to relevant background
material in Chapter 2. New material is presented beginning with the methodology in

Section 3.3.

3.1 Introduction and Motivation

The NSSS highlights the vital role of space in ISR, power projection, diplomacy,
and military operations [1]. Further, the NSSS details the increasingly congested,
contested, and competitive space environment and the need to maintain the strategic
national security advantages afforded by space. The growing global domain of space
operations requires an improvement in shared SSA, and the NSSS recommends the US
invest its knowledge base to foster SSA cooperation while protecting US and partner
space capabilities [1].

The SSA mission is becoming increasingly difficult when considering the trend
towards smaller space vehicles [3], discussion of disaggregated mission sets [4], as

well as debris created from collisions [5], ASAT testing [1], and catastrophic events.
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Further difficulties facing the SSA mission are the methods by which the JSpOC
tracks and propagates RSOs. In 2011, AFSPC tasked the NRC to “assess (their)
astrodynamics standards...and their effectiveness...”[6]. Nongravitational effects (e.g.,
solar radiation pressure, atmospheric drag) perturb the nominal Keplerian motion of
an object with a wide range of effects depending on the position and orientation
of the object. AFSPC employs a number of astrodynamics algorithms to generate
ephemerides with varying degrees of accuracy and inclusions of perturbing forces,
which directly effects computational time. The analytic models in the more commonly
known SGP4 and SP numerical integration techniques do not take into account certain
key satellite properties, such as attitude and shape, and additions of these states could
improve orbit predictions [6].

The NRC found that for the nonlinear governing equations in astrodynamics,
advanced estimation techniques should be employed to characterize state estimates
and their uncertainties [6]. Space is a data-sparse environment, and, consequently,
convergence times for state estimators and filters can be of considerable duration.
Multiple model filters have been shown to be capable of converging on state
estimates with limited data [6; 62]. Moreover, multiple model techniques have
also demonstrated operational efficacy in estimating the states of maneuvering
missiles and aircraft where sudden changes in dynamics are experienced [6; 10; 11].
Sudden dynamical changes are not always deterministic. Unplanned changes to
spacecraft’s structure can result from debris, external actors, or hardware faults.
For example, the recent 2016 loss of the JAXA X-ray science satellite Hitomi has
been attributed to human error, possible payload deployment faults, and attitude
control logic malfunction [8]. Adaptive estimation techniques applied to the available
streaming attitude data could have potentially identified the fault through various

filters assuming different MOI modes.
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3.2 Background

The current research on adaptive estimation examines the fields of spacecraft
attitude dynamics, time-varying moments of inertia, attitude estimation, multiple
model adaptive estimation, and stochastic filtering. For background information,
the reader is referred to Section 2.1 regarding attitude dynamics, Section 2.1.5 for
time-varying moments of inertia, Section 2.3 for attitude estimation, Section 2.4 for

multiple model adaptive estimation, and Section 2.2 for stochastic filtering.

3.3 Methodology

The following section will provide the methodology and mathematical algorithms
for the numerical experiments validating the use of adaptive estimation for spacecraft
attitude determination and MOI estimates. Crassidis and Markley’s unscented
quaternion estimator is presented, followed by a discussion of the various adaptive
estimation routines used. Next, the magnetometer and gyro sensor model used in
this research is introduced. The spacecraft MOI model is developed, and the flow of
numerical experiments is discussed.

3.3.1 Unscented Quaternion Estimation.

Crassidis and Markley previously constructed a UKF routine for attitude
estimation that is parameterized by the quaternion called the Unscented Quaternion
Estimtor (USQUE) [16]. The standard UKF algorithm as established by Julier
and Uhlmann [40; 41] is employed in USQUE; however, as the predicted attitude
quaternion is a weighted sum of filtered estimates, there is no guarantee of satisfying
the quaternion unit-norm constraint [16]. Thus, intermediate conversions between
error quaternions and error Generalized Rodrigues Parameters (GRPs) are used to
maintain the unit-norm constraint. Although the Extended Kalman Filter (EKF)
has been the “workhorse” of attitude estimation, Crassidis offers four advantages of

the UKF over the EKF: (1) the USQUE has a lower expected error than the EKF,
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(2) application to functions that are not differentiable, (3) avoidance of the Jacobian
derivation, and (4) applicability to higher-order expansions than the EKF [16]. This
section will briefly detail the USQUE algorithm, while the fundamentals of unscented
filtering, such as the 2n + 1 sigma point calculation, can be found in the works by
Julier and Uhlmann [40; 41] and are also detailed in Algorithm 1 in Chapter 2. The
estimation routine presented here will vary from the classical USQUE method in that
the angular velocities are being included as states. Further, for initial results in this
research, sensor gyroscopic measurements are assumed as unbiased, thus precluding
the need to include bias estimates as sigma points. A significant portion of the
USQUE algorithm relies on quaternion mathematics which are briefly described in
this section; for a more thorough overview of quaternion operations, the reader is
directed to Shuster [27] or Arribas, et al. [97].

First, a set of sigma points corresponding to the error GRPs Xip is constructed,
and then converted to local error quaternions. Denoted by dq, (i), the local error
quaternion associated with the i error GRP at time step k is constructed as [16]

dgy (1)

oqy, (i) = : (3.1)
6y, (4)

The local error quaternion components dg@,, (i) and dq,, (i) are calculated as [16]
6e; (i) = £~ [a+ 045, (D] ()

2
) 5y e

724 |||

2

(3.2)

—a

XG)

0qy, (i) =

Here, a is a parameter between 0 and 1, f is a scaling factor, and 7+ = 0,1,...2n
represents the (2n+1) sigma points. Both of the a and f parameters can heuristically
be tuned for the filter, while setting f to 2(a + 1) yields attitude error covariance on

the order of roll, pitch, and yaw angle errors [62]. Having a representation of the
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local error quaternion, a quaternion sigma point can be constructed using quaternion

multiplication
q (1) = oqy, (1) @ G, (0), (3.3)
where q, (0) is the a priori quaternion estimate resulting from propagating the

previous time step. The quaternion multiplication is taken as

qQo @ qp = {\Il(qa) qb:| Qp- (34)

Having assembled a set of sigma points now consisting of quaternions and angular
velocities, the sigma points are propagated through the nonlinear system dynamics
such that

X(0) = £(x (i), (i), (3.5)
where f(-) represents the assumed dynamics of the system. For the rigid body example
with constant MOI, this would simply be Euler’s equations. The mean quaternion
sigma point q,,,(0) from the propagation is stored, and serves as the a priori estimate
for the next time step k£ + 1. The error quaternion associated with each propagated

quaternion sigma point is also calculated from q,_ ,(0) using

06, (1) = iy, (1) ® [a5,,(0)] (3.6)

. . . -1 . .
The conjugate or inverse quaternion [q] " is given as

[~ = - (3.7)
qs

Note that, as expected, a quaternion times its inverse produces the identity

quaternion. The error GRP points at time step k£ + 1 can now be determined from

59;—1—1@)

0P (1) = fm- (3.8)

Now there is a complete set of sigma points with care taken to maintain a unit norm

constraint. The sigma points are now implemented in the standard UKF state and
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covariance estimation scheme, briefly detailed here. The weighted sum of sigma points

yields the mean state estimate as [62]

2n
Xpp1 = Z Wi X1 (1), (3.9)
i=0

and the state covariance Pi%, is calculated from a weighted sum as

2n
T

= Qe+ )W (X (6) = Xy1) (e (0) = X)) (3.10)

=0

where Q41 is the process noise covariance. The weights W/™*" and WV can be
heuristically chosen for proper tuning, or to match higher order statistical moments.

The information gained from the available measurements can now be used to
innovate the state estimate. Let the measurement state vector be denoted as y. Each
sigma point construction (consisting of quaternions rather than GRPs) can be used
to compute expected measurements using a given measurement relation h(). For the

i" sigma point, the corresponding output can be given as [62]

st (0) = b (xern (1), 5 (7)) (3.11)

Similar to Eq. (3.9), the output estimate can be computed as a weighted sum as

2n

Vi1 = Z Wiy 4 (7). (3.12)

1=0

The difference between the actual measurement vector y;,1 and the output estimate
Yiy1 is the residual v, for this time step. The residual covariance P}, and cross-

correlation P}¥, covariances are now given as [62]

2n
1 = Ryp1 + Z W (Y1 (1) = Yigr) (Ve (4) — 5’1;+1)T
i=0
o . . (3.13)
P?«JH - Z Wi (XkH(i) - Xl;rl) (7k+1(i) - S’I;H)
i=0

The remaining steps now exploit the information available in the estimate covariances

to calculate a Kalman gain to update the state estimate. The Kalman gain is
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computed using the classical relation
Ki =Py, (PY) 7, (3.14)
and the state (with attitude represented as error GRPs) is updated accordingly by
Xi = X+ Kipiveg, (3.15)

The last step now involves transforming the newly updated error GRP to update
the quaternion estimate. Already having the a priori quaternion estimate q,_,(0),
the error GRP is converted to the error quaternion dqy1 using Eq. (3.2), and then

producing the updated quaternion with

apy = 0k ® i 4 (0). (3.16)

3.3.2 Adaptive Estimation Methods.

The following section will mathematically describe the adaptive estimation
routines used in this research. The classical MMAE algorithm is first detailed,
followed by Linares’ modification of the recursive weighting scheme in the Adaptive
Likelihood Mixture (ALM) method. Next, Soken’s modification of the MMAE
Probability Distribution Function (PDF) is presented where sudden changes are
sought by implementing a psuedo low-pass filter in the scheme. Finally, a hybrid
of the Soken and ALM scheme developed in this research is presented and discussed.

3.3.2.1 Classical Multiple Model Adaptive Estimation.

In this section, the MMAE algorithm will be shown following Stengel [37],
Marschke and Crassidis [98], and Linares [62]. Given a vector of parameters p that is
assumed constant during a particular sampling or adaptation interval, the goal of the
(MMAE) process is to determine the conditional PDF of the j'™ element of p given
the current measurement y,. The conditional probability of a particular parameter

or assumed dynamics model given a measurement sequence will be the metric to
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select likely models. The measurement vector enters the bank of filters, each with its
own assumed model and output estimates. Additionally, a filter-specific covariance
estimate will be output as in most standard estimation routines.

The following probability equations use the convention that a superscript (1)
indicates the value is associated with model (), while a subscript (k) indicates
the variable is associated with time-step k. For example, f(l(f) is the state estimate
associated with model (1) at time-step k. The conditional probability of an individual

bank model given a measurement vector at time k can be found via Bayes’ rule and

Kalman recursion as [98]
~ 1a—() O
p(¥el%" ) p (PY[5k-1)

S N
‘21 [p (yk|xk ’ )p (p(])|}’k—1)}
]:

p (P"]y:) = (3.17)
where M is the number of filters in the bank. There is an inherent recursive relation
in the algorithm, as p (p(l)|§fk) is a direct function of p (p(l)|§fk_1). The p (yk|§<,;<”>
term is the likelihood of an observed measurement given the estimated state from
each filter. A standard PDF used in the literature is a multivariate Gaussian using
the residuals v and estimated innovation covariance P,,, given as

PG 1
p (y x ) = exp (
kIR (2m)""2 det(PY))1/2 2

1 _
——Tp 1(”1/,3)) . (3.18)

v,k

Eq. 3.18 is a multivariate Gaussian distribution that is centered around a zero-mean
residual vector, implying that the PDF is examining where the n-dimensional residual
vector lies along the m-dimensional normal distribution with a given covariance.
Eq. 3.18 is computationally less expensive for single state measurements as matrix
inversions are reciprocals, and the determinant of a scalar is a scalar. Whereas for
an n-dimensional residual vector, the covariance inversion requires approximately
O(n?®) operations, and the covariance determinant also requires approximately O(n?)

operations. Further examining Eq. (3.18), models with lower residuals will increase
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the probability, while smaller values of det(Pl(,lgvk)l/ 2 (that is, a smaller variance) will
also increase the likeliness of a specific model. Near-singular covariance values will
provide difficulties for the algorithm.

The conditional probabilities can now be cast into weights to produce weighted
state estimates and covariances as a function of the multiple models in the bank. A

common recursion relation for the calculation of the weight W]E;l) vector is

wi = wilp (705, 7) (3.19)

An initial value for the weight must be assumed, and equal weighting is often
appropriate unless prior knowledge is known to initialize otherwise. Weighted sums
of the filter estimates can now be used to estimate the conditional mean state xy,

parameter estimate p,, and state error covariance P_ , from the following

E:Wk Xk

m:ZWW> . (3.20)

P‘é“”*zwk {(A_ _5(1;> (ﬁﬁ(”—ﬁﬁ +mek}

Eq. (3.20) concludes the estimation routine at time-step k. The new state and

zx,k

covariance estimates are then used as inputs for the next iteration. The covariance
relations can provide bounds on the parameter estimates in terms of standard
deviations o. The estimation outputs allow for easy visualization of a time history of
the state estimate and its 30 boundaries. The bank of filters in the MMAE framework
can assume a variety of modes to capture the parameter, but computational time will
increase with additional hypotheses. Figure 3.1 provides a visualization of the classical

MMAE algorithm.
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Figure 3.1: Visualization of the classical MMAE algorithm.

3.3.2.2 Adaptive Likelithood Mixtures.

Linares modified and presented the likelihood functions of the classical MMAE
scheme in an algorithm proposed as ALM [9]. The main motivation in the ALM
development was to decrease the memory of the likelihood ratios. Noting in
Eq. (3.19), the weighting calculation is recursive and has a memory that retains
information from the beginning of the adaption. The ALM method innovates the
MMAE scheme by weighing models using current performance and measurements,
and by reinitializing each filter in the bank by the weighted state and covariance
estimates [9]. Each model is initialized with an equal weighting and probability, and
the current weight ascribed to model (1) at time step (k), rather than being recursively

calculated, is found by

w? = p (yk_lpz,jﬁ’l)) , (3.21)
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where the PDF in Eq. (3.21) is the Gaussian calculation from Eq. (3.18). The
recursion is removed now using only the current PDF values, and the weights are

normalized by

(1) Wi
23:1 le:])

where j is the elemental filter index. The state and covariance estimates are then
found using the MMAE formulation in Eq. (3.20), and the individual filter state
and covariance estimates at time step (k + 1) are reset as the weighted state and
covariance estimates from time step (k). Linares’ ALM development now provides a
reduced memory multiple model scheme that is better suited for sudden changes in
system dynamics over long propagation intervals than the classical MMAE algorithm
[9]. However, for short propagation intervals the ALM scheme will tend to equalize
models [9].
3.3.2.3 Soken’s Likelihood Function.

In [60], Soken et al. modified the likelihood function of the classical MMAE
scheme to account for steady-state errors and the agility of the filter. The remainder
of the classical MMAE algorithm remains the same as described in Section 3.3.2.1.
Using the notation from the current research, Soken’s likelihood function takes the

form
l l
exp (—al — af))

S [exo (o - o)) |
0

where ¢, is a measure of steady-state error and qéli accounts for the agility of

p (p“)lﬂ “’) = (3.23)

the filter [60]. Here, qj(l,l is a function input and should not be confused with the
quaternion or components of the quaternion. The steady-state error is accounted
for by first establishing a moving window of size pu. Soken’s algorithm incorporates
the parameter as a state, and since the current research decouples the parameter

from the state vector, Soken’s algorithm must be modified slightly. This modification
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produces a novelty in that the state dimension remains the same, and the Soken
scheme is adapted to decouple the parameter from the state vector. A moving average
parameter estimate Peanr 1S defined as the average of the weighted estimates over
the previous u time steps as

k
. 1 .
Pmeank = — Z Pj. (324)
H j=k—p+1

Given that each filter is assuming a parameter value p, a scalar filter specific error

metric can be calculated as
2 = (Bucant = P) " (Bmeanss — 7). (3.25)
The error metric is then filtered with a pseudo low-pass filter scheme
g =Mgigs (1= M) 2, (3.26)

where A; controls the the amount of recursiveness and impact of the error metric.

Lastly, the likelihood function input is scaled to fall into a range [0, a] as

a (gili — min (gl,k))

)

{1
b max (gl,k) — min (gl,k)

= (3.27)
The filter agility is accounted for by examining the individual filter innovation

covariances by the metric

Enl) = 17 [HP" HT + R _1/2[~ — "] (3.28)
kT M™ k—1/k k Ye =Y 7] .

where M is the number of filters in the bank, 1,, is an M x 1 vector of ones, and
the other values have previously been described. However, Soken’s innovation metric
is prescribed for an EKF and must be adopted for the current UKF implementation.
The first bracketed term in Eq. (3.28) is the innovation covariance P,,, and the
second bracketed term in Eq. (3.28) is the innovation or residual v. Using the UKF

notation, the innovation metric is then calculated as

1 _
En{) = ngpg;;%,gw. (3.29)
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A pseudo low-pass filter is then applied to the innovation metric, and a recursive

relation gives non-normalized value
! ! !
Goe = Aagyy + (1= A2) Eny, (3.30)

where \s is a tuning parameter similar to A;. A scaling parameter 3 is then introduced

such that the likelihood function input is
Qo = 7 (3.31)

The likelihood inputs gﬁc and gélac are calculated for each filter (I) and used to
determine the normalized likelihood value.
3.3.2.4 A Hybrid Likelihood Mixture Method.

A portion of this research examined the combination of the ALM algorithm
described in Section 3.3.2.2 and the Soken likelihood model described in Section
3.3.2.3.  This hybrid likelihood mixture method replaces the likelihood quotient
calculation in the classical MMAE structure with the Soken likelihood calculation
discussed previously. Additionally, rather than each filter self-initializing with
its own state and covariance estimates, the filters are all re-initialized with the
current weighted state and covariance estimate from the adaptive estimation process.
Additionally, the model weights are calculated using the memoryless method provided
by ALM. The hybrid likelihood mixture method is summarized in Algorithm 2.

3.3.3 Sensor Model.

To simulate available on-orbit measurements, this numerical experiment assumes
the availability of Three Axis Magnetometer (TAM) data as well as gyroscope data
providing angular rates. Deterministically speaking, a single TAM is typically not
capable of providing attitude estimates, but in a recursive stochastic filtering sense,

a single TAM is able to allow estimate convergence [99].
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Algorithm 2: Hybrid Likelihood Mixture Method

Given )Ac;_l, measurement vector y, and covariance P:w x_1 estimates at time ¢;_; and a

filter bank of multiple models

1 Initialize filters 1,2, ..., M with state and covariance estimates

2 For filters 1, 2, ..., M, calculate residuals v, innovation covariance P,,, state and covariance
estimates according to individual filter rules

3 Calculate likelihood values p (p(l)|}7k_,(l)> according to Eq. (3.23)

4 Calculate model weights w,(cl) according to Egs.(3.21) and (3.22).

5 Calculate weighted state, covariance, and parameter estimates for time step ¢ using Eq.

(3.20).

6 Re-initialize filters 1,2, ..., M with weighted estimates, repeat algorithm.

To demonstrate a proof of concept in this research, an unbiased TAM is used
along with inertial gyroscopes. The TAM measures the magnetic field of the
Earth in the spacecraft body frame, while the gyroscopes provide the angular rate
measurements with respect to an inertial frame. The Earth’s magnetic field can be
expressed in the spacecraft’s orbital frame with a simple dipole model as [99]

By (t) = % [ce [cos (€) sin (i) — sin(€) cos (7) cos (wet)] — s, sin (€) sin (wet)]
= —% [cos(€) cos (i) + sin(e) sin(i) cos(w.t)] . (3.32)
Bs(t) = QT_]\? 8w [cos (€) sin () — sin(e) cos (2) cos (wet)] + 2¢,, sin (€) sin (wet)]

oy
)
—~

~+
~—

where M, is the magnetic dipole moment of the Earth, r( is the orbital radius of the
spacecraft, wy is mean motion of the spacecraft, i is the orbital inclination, € is the
magnetic dipole tilt, ¢, is cos (wyt), s, is sin (wot) and w, is the spin rate of the Earth.

Since this magnetic field is given in the orbital frame and the spacecraft measures the
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magnetic field expressed in the body frame, the TAM measurement is then given as

By(t)
yram = Rpo(ad(t)) | By(t) | + vran, (3.33)

Bs(t)
where R go is the rotation matrix from the orbital frame to the spacecraft body frame
using the current quaternion, and vray is zero-mean Gaussian measurement noise

with covariance assumed as 0%,,;13x3-

As the rotation matrix Rpp is a function of the quaternion defining the
orientation of the body frame with respect to the orbital frame, the quaternion
dynamics must be modified slightly to include the rotation of the orbital frame. The

EOMs used for the quaternion are now [99]

m@=%%®%@—w@%®+m@%@+w@%w
Mﬂzamw%@+w@%@—m®m@+%@%@] @.aa)
Gs(t) = % [—er (B)as(8) + wn(B)ar () + s (Das(t) — wolO)r (6]
G(t) = %-P—uh(t)ql(t)-—-u&(t)Qz(t)-—cvs(t)Q3(t)-—-ub(t)qQ(tﬂ
and the rotation matrix Rpo is given as [99]
G—a-G+d 2(aet+an)  2(00 — d)
Roo=| 2(qgz —qsa1) G- ~G+d  2(@e+aw) |- (635

2(as + 1) 2(@e—aw) @ -4 — @+
TAM measurements can now be generated using Eqgs. (3.32) - (3.35) and corrupted
with the appropriate Gaussian noise to simulate TAM measurements observed by the
spacecraft.
Additionally, gyroscopic measurements are assumed available. Inertial gyros will
also be employed on-board for the attitude estimation routine. Inertial gyros provide

measurements of the angular velocity of the spacecraft body frame with respect to
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the inertial frame, while expressed in the body frame. For this numerical experiment,
the gyros are assumed to have zero-bias, although the USQUE method [16] assumes
a bias whose time rate derivative is zero-mean Gaussian. The gyros will, however, be
susceptible to measurement noise. The measurements observed by the spacecraft can

then be expressed as

YGYRO = W = W + VGYRO, (3.36)

where w is the true angular velocity and vgygro is zero-mean Gaussian measurement
noise with covariance assumed as 04yrolsxs. The true angular velocity will be
simulated through numerical integration, while the appropriate noise will be added
to produce the observations.

To summarize the preceding measurement discussion, the complete measurement
vector is given as

y
T (3.37)

<
I

YGYRO

The observation function h(x) is taken as the TAM measurement function and an
identity multiplication on the angular velocities (assuming direct observation of the
angular rate states that is only corrupted by the measurement noise).

3.3.4 Spacecraft Moment of Inertia Model.

A spacecraft model with separating and rotating payloads was developed by Leve,
et al. [100] and is replicated here. Assume a particular spacecraft consists of a main
bus, three separating payloads, a potentially rotating solar panel, and a large payload

capable of large gimbal angles. A graphical depection is provided in Figure 3.2.

The MOI I of the overall system is taken as the sum of the individual components
as

I=1p+1Is+1Isp+1Ipg, (3.38)
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Rg;sp = Ry(0sp)R3(8)
. . Rg/p, = Ry(0py)
Main Satellite Bus

@ Component
Center of Mass

Figure 3.2: A notional diagram of a spacecraft with deployable rotating payload,
solar panels, and (not shown) separable payloads used in Chapter 3 for numerical

simulations [100].

where Ip is the primary bus MOI in the body frame, I is the total MOI of the
separable payloads, Isp is the MOI of the solar panel, and Ip; is the MOI of a
deployable, gimbaling payload. The primary bus MOI will be taken as a constant in
the body frame, and the other components will be expressed in the body frame. The
rotation of the MOI matrix from one frame to another is known to require a pre- and
post-matrix multiplication.

The MOI of the individual components will be calculated using the skew-

symmetric formulation of the parallel axis theorem. The total MOI contribution
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of the separable payloads is

3
Is = Z (Isi — mgts,t5,) (3.39)

i=1
where Ig; is the MOI of the payload expressed in the body frame, mg; is the
mass of payload i, and f‘gz is the skew-symmetric matrix consisting of the constant
moment arm for separable payload ¢ until separation. Separations will be treated as
discontinuous changes in the payload mass and MOI and it is assumed translational
motion is either unaffected or is controlled to remain nominal on-board the spacecraft.

The MOI contributions of the solar panel and rotating payload follow a similar
development. The MOI matrix for the individual components is expressed in their
respective references frames, and requires a rotation to the spacecraft body frame.
Additionally, moment arms that are constant in the component frame are not
necessarily constant when the payloads are rotating and also require a rotation.
Finally, the skew-symmetric form of the parallel axis theorem is applied. For the

solar panel SP and rotating payload PL, the MOI matrices are calculated using

for = Ry (T~ Figkin) R —mritly
Ip, = Rp/pr (Tpno — mprth 5, RE/pL —mpr¥ptpy
where Rp/sp and Rp/py, are the time-varying rotation matrices between, respectively,
the body and solar panel frame and the body and rotating payload frame, mgp and
mpy, are the masses of the solar panel and rotating payload, Ispy and Ipy are the
MOTI of the solar panel and rotating payload in their respective reference frames, r5p

is a skew-symmetric matrix of a constant moment arm in the solar panel frame, and

I'ip is a skew-symmetric matrix of a constant moment arm in the spacecraft body
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frame. The time-varying rotation matrices are defined as

cos (fsp) 0 —sin(Osp) cos(d) sin(d) 0O
Rp/sp = Ry (0sp) R3 (9) = 0 1 0 —sin(0) cos(d) 0O
sin (6sp) 0  cos(fsp) 0 0 1

cos(f@pr) 0 —sin(0py)
Rp/pr. = Ry (Opr) = 0 1 0

sin (HPL) 0 COS (GPL)

(3.41)
Here, O5p, 0, and Op;, are the solar panel input angle, solar panel gimbal angle, and
rotating payload input angle. The time derivatives of the rotation matrices can be

found by simply differentiating component-wise or calculated in matrix form as

RB/SP = RZ (Osp)R3 (6) + Ro (Osp) R:s (0)
) (3.42)

RB/PL =R; (0p1)

The time variation in the spacecraft MOI can now be found by differentiating

Eq. (3.38) as
I=15+1Ig+1Isp+1ps. (3.43)
The primary bus MOI is taken as a constant such that I is zero, and the separable
MOI changes are treated as discontinuities, so the Ig term is neglected. The MOI
time dependency is now only a function of the solar panel and rotating payload MOI
contributions, which are primarily functions of the direction cosines between the body

and component frames. For brevity, the following MOI terms are defined

— SX =X
Isp = Ispo — msprgplyp

, (3.44)
I, =1 — R
pr = 4pPL0 — MpLYp TPy,
such that the solar panel and payload MOI are more compactly expressed as
Isp = RB/SPI:S‘PRE/SP — mgpf'gpf‘gp
. (3.45)

_ ! T =X =X
Ipr = Rp/prlp Ry pr, — mprTp Tpp
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The time-derivative can now be calculated as

Igp = RB/SPI/SPRE/SP + RB/SPI/SPRg/SP
. (3.46)
iPL = RB/PLIZDLRE/PL + RB/PLI/PLRE/PL
The time-dependency of the spacecraft MOI is entirely a function of the variation of
the direction cosines or, when applicable, the instantaneous payload separation. This
coupling will allow for identification of solar panel and rotating payload inputs based
on either a filter bank consisting of either possible payload input scenarios or a bank
consisting of possible MOI configurations based on the current payload configuration
of the spacecraft. Further, a note must be made concerning the numerical difficulties
now faced. Care must be taken to ensure the principal MOI satisfies the triangle
inequality for each MOI model for all time. Additionally, considering computation
time, a single UKF propagates 2n+1 sigma points. For m filters in the bank, m(2n+1)
points are now being propagated. When the MOI is included for as a time-varying
3 X 3 matrix, n increases to n + 9, and the computation costs increase accordingly.

3.3.5 Descriptions of Numerical Experiments and Common Pa-

rameters.

The following section will provide a description of the numerical experiments
performed in this research. Three main scenarios are presented. The first
demonstrates the utility of adaptive estimation is determining principal MOI ratios.
The second scenario investigates the correct identification of payload input commands.
The final scenario investigates a series of payload separations and a comparative study
of various adaptive estimation schemes and their ability to detect sudden structural
changes. Parameters that differ will be discussed in Sections 3.4.1 through 3.4.3
such as filter banks and initial conditions. The TAM measurements are assumed
to be Gaussian distributed with a noise value (oram) of 300 nT [19]. The gyro

measurements are assumed Gaussian distributed with noise values (o,) detailed
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in their respective results section. The measurement noise matrix R; is assumed

constant as

2
oram - Isxs  Osxs
R,= | ™M™ o (3.47)
O3x3 02 - Lgxs
The process noise in this experiment adapts a modified version of the process noise

given in the USQUE method, where Q. is given as [16]

02 - At - 1343 0343
0343 02 - At - 1343

Note, the process noise in the USQUE method also has a gyro bias term [16], but
this bias term is assumed zero in this research as the gyro is assumed unbiased. As
an initial testbed, this is valid, as future real-world experiments will examine direct
quaternion measurements. The spacecraft is assumed to be in LEO at a 400 km
altitude. Only Keplerian two-body motion is considered, and perfect knowledge of
the orbital parameters is assumed for the magnetometer relations. Other parameters
used in the magnetometer simulation are given in Table 3.1. Individual scenario initial

conditions will be described in their respective results section.

3.3.6 Nominal Flow of Numerical Experiments.

Truth data will be generated from a set of initial conditions and the true dynamics
model through numerical integration. The governing truth model will be determined
by the specific numerical experiment being performed. Having simulated the true
state and parameter values, TAM and gyroscopic measurements will be calculated
using the measurement relation h(x). The true measurements will then be corrupted
by a given amount of measurement noise that is distributed zero-mean Gaussian.
These measurements now serve as input to a parallel bank of filters, each assuming a
different dynamics model that will be described in the specific experiment. Although

each filter assumes a different dynamics model, the general form of each filter will
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Table 3.1: Simulation parameters used for magnetometer measurements and orbital

characteristics.

Parameter Value

Magnetic Dipole Tilt (deg) 11.7

Magnetic Dipole Moment (Wb-m) | 7.943F15

Orbital Altitude (km) 400

Orbital Inclination (deg) 45

Gravitational Parameter (m?/s?) | 3.9860F14

Earth Rotational Rate (rad/s) 729E —5

follow the USQUE method, where the sigma points are numerically propagated to
maintain the unit quaternion norm according to the specific filter’s assumed dynamics.
The residuals and innovation covariance from each filter will then be input to the
particular adaptive estimation scheme for evaluation.

3.3.7 Comparison Metrics.

Numerical simulations immediately provide a truth comparison, and there are
immediate error metrics available. The error in the quaternion estimate q. will
be taken as the 2-norm of difference between the identity quaternion q; and the
quaternion product of the quaternion estimate q at time step k£ and the inverse of the

true quaternion at the same time step. Mathematically, this is expressed as

Qe(tr) = ||an — alte) -a ™' (t)]] - (3.49)

If the estimate q is near the true value q, then the product of the the estimate and
the inverse of the true value will be near identity, and the 2-norm of the difference

provides a comparison metric.
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The angular velocity error will simply be the 2-norm of the vector difference
between the estimated angular velocity from the filter and the true angular velocity
from the truth simulation. The error in the MOI will be taken as the norm of the
difference between the diagonal elements of the ada