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Abstract 

 

This thesis presents the results of a study to quantify the effects of biaxial loading 

on fatigue crack behavior in both air and saltwater (3.5% NaCl) environments from pre-

cracked notched circular hole in a 7075-T6 cruciform specimen using a fracture 

mechanics approach.  With stress ratio of R = 0.5, the crack growth behavior was 

investigated under fatigue loading with biaxial stress ratio λ of 0.5, 0, -0.5, and -1. The 

crack propagation was monitored using optical microscopy. Finite Element Analysis was 

performed using the different stress ranges and stress ratios with various crack sizes to 

compute stress intensity factors range (∆K) at the crack tips. It was observed from the 

study that negative biaxiality has a very pronounced effect on the crack growth rate. The 

crack propagates faster with negative biaxiality and also the saltwater environment 

accelerates the crack propagation due to corrosion.  
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CRACK INITIATION AND GROWTH NATURE AT NOTCHED HOLE IN 7075-T6 
UNDER DIFFERENT BIAXIAL STRESS RATIOS 

 

I. Introduction 

   1.1 Corrosion  

Corrosion is one of the wide spread concerns, especially when we want to 

increase the efficiency of the metal products or decrease the operation cost.  It is almost 

an inevitable impasse in most of the infrastructures. Infrastructure and transportation 

suffer from the metallic corrosion, because of the major role that it plays in the strength, 

efficiency and cost of system [12].   

Approximately, United States loses 3.1% of its Gross National Product to the 

corrosion each year, which is almost $276 Billion [9, 12]. Yearly, the transportation 

division alone pays around $29.7 billion for corrosion damages, and this is 21.5% of the 

total cost that United States pay for corrosion [9].  These losses indicate that the corrosion 

needs to be handled more. Figure 1.1 shows that corrosion impacts almost every industry 

sector [2].   

The United States Department of Defense has made a strategy to fight corrosion 

throughout its forces [13]. DODs’ resources have been directed toward corrosion 

prevention.  Also, it started to look into acquisition level before manufacturing, 

management decisions, maintenance procedures, and sustainment to extend the life of 

materiel [13]. DOD pays $22.5 billion each year to prevent corrosion and searches for 

new corrosion solutions and prevention technologies, procedures, products, 

and management systems for its armed forces and infrastructure [13, 14]. 
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Figure 1.1: Cost of Corrosion in Different Categories of Industry [2]. 

Corrosion can be defined as deterioration of a metallic material due to the reaction 

between the metal and its environment [29]. There are many ways to control the 

corrosion, such as painting, coatings, chemical inhibitors and materials selection. The 

understanding of the type of corrosion is the way to choose which method is suitable to 

control it [29, 33].   

 Aluminum alloy is used in this study and it is most common metals that being used 

in the aircraft industries, because of its light weight, low cost and its resistance to 

corrosion. However, aluminum alloy could be effected by corrosion if subjected to acidic 

solutions. [23] 

   1.2 Corrosion Fatigue 

Fatigue is the failing of a material due to applying of repeating load under the 

yield point of that material. There are several factors that contribute to fatigue failures, 

such as applied cyclic stresses, thermal expansions and contractions, poor assembly, 
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welding, and casting [31].  When these different factors failure modes are combined, the 

failure occurs sooner. Corrosion fatigue (CF) occurs when the crack generated by the 

repeating load and corrosion at the same time. The material fails faster by the corrosion 

fatigue than cycles loading only [2]. Corrosion fatigue could lead to catastrophic failure if 

the cracks are not observed by inspectors in time [10]. 

   1.3 Biaxial Corrosion Fatigue 

Aircraft structure fails due to corrosion fatigue, however the way to eliminate the 

failures is to understand how these failures occurs at the beginning. Then by eliminating, 

preventing or at least delaying the reasons, the materials performance will be enhanced 

and that will decrease the cost of operations and increase the lifetime of the aircraft. 

During the operation of an aircraft, the aircraft structures experience different 

types of loads and moments in different directions.  If the structures experience these 

loads and moments in a corrosive environment, the initiation and the propagation of 

cracks will be accelerated, which could result in corrosion fatigue failure.  Accordingly, 

crack initiation and propagation in a corrosive environment is one of the most important 

topics that need to be addressed and understood in order to prevent the failures associated 

with it. A very important approach that has been used a lot to examine the propagation of 

cracks is the damage tolerance approach.  This approach is used to study the crack 

propagation, and follows the assumption that flaws are present in all structures and 

propagate due to cyclic loading and corrosion. Through the application of the principles 

of fracture mechanics, this approach is universally used in aerospace engineering to 

manage the extension of cracks in structure [24].  

http://en.wikipedia.org/wiki/Fracture_mechanics
http://en.wikipedia.org/wiki/Aerospace_engineering
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Researchers have already started studying crack propagation and the affect of 

environments on the crack growth behavior [24].   In this time, a lot of data has been 

documented from those studies, but most of the studies had been done under uniaxial 

loading [5, 7, 24].   Almost all aircraft structures are subjected to mixed mode of stresses, 

which can limit the benefits gained from the data of the uniaxial fatigue tests.  

The most common loading conditions on aircraft structures is in-plane biaxial 

loading.  A lot of information will be gained from conducting tests in these loading states, 

which help understanding crack growth rate [24].  

Corrosion fatigue crack growth for aluminum alloys and in corrosive (saltwater) 

environment has been investigated under uniaxial loading conditions, but none of these 

studies tried to conduct a test under biaxial loading conditions in a corrosive environment 

[24]. Several studies of an in-plane biaxial fatigue crack growth of aluminum alloy had 

been conducted in saltwater environment to give a better understanding of crack growth 

rate generated from rivet holes or bolted joints [25]. In addition, earlier studies have 

shown that biaxial loading has an influence on fatigue crack growth rates [16, 25]. 

   1.4 Problem Statement  

 Almost 70% of fatigue cracks start growing from rivet holes or bolted joints 

Fatigue. That is why the cracks around holes should be examined [20]. In recent years, 

many experimental studies have been conducted on fatigue crack growth under various 

biaxial loading conditions [10, 24, 25, 26].  Lately, in-plane biaxial fatigue tests in 

saltwater environment have been started to be conducted [24, 25]. Many of these studies 

have focused on positive biaxial loading cases. No conclusive study has been reported out 
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yet that accurately quantifies the influence of negative biaxiality on fatigue crack growth 

behavior. This is area of focus of this research, using fracture mechanics approach.  

A specimen of 7075-T6 aluminum alloy was examined under in-plane biaxial 

loading in both ambient air and saltwater (3.5% NaCl) environments with 0.5, 0, -0.5, and 

-1 biaxial stress ratio λ.  After that, the results have been compared between positive 

biaxial loading cases and negative biaxial loading cases having the same experimental 

setup, to study the effect of negative biaxiality on fatigue crack growth behavior, which is 

what has been lacking in this field up to now.  

Cruciform specimens were made from a 3.18 mm thick sheet of 7075-T6 

aluminum alloy to conduct the experiments.  Length of the specimen’s arm was 120 mm, 

and width was 45 mm. The radius of curvature at the junction of arms was 28 mm and a 

hole of 3 mm was drilled at the center. Then, a notch with 1 mm length and 0.25 mm 

width was machined on the edge of the hole at 0° to horizontal arm. These specimens 

have stress ratio of 0.5 (R = 0.5). Lastly, a precrack was made from the notch. 

The crack growth rate has been measured with the number of cycles to failure. 

Then, finite element analysis was carried out to calculate the intensity factor range, ΔK. 

After that, ΔK was linked with the crack growth rate in order to study the behavior of the 

cracks.  

This research provided a great deal of valuable and usable information for fatigue 

crack growth behavior from a notched hole and will make useful data to compare 

different biaxial loading conditions in different environments, to better calculate the 

lifespan of an aging fleet of aircrafts.  Also, this study will help to fill the missing part 

from the previous studies in this field. 
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II. Background 

   2.1 Fatigue 

There has been a steady increase in the number of military airplanes, commercial 

airplanes, and unmanned aerial vehicles. With the increased number of aircraft, there is a 

need to enhance the structural integrity analysis of the old airplanes. The advent of 

fracture mechanics is a blessing in disguise as it has been applied in the design of aircraft 

structures. Every aircraft structural component is usually assumed to be having a crack 

within it. As the aircraft ages, the cracks usually increase in size with time (fatigue) [1].  

 There is a correlation between fatigue and structural integrity. The disaster in 

Comet aircraft, for instance, arose due to a crack that grew big enough thus promulgating 

in an unsteady manner as per the Griffith theory [34]. Fatigue refers to a steady expansion 

of cracks caused by cycling loads, if the stress falls below the yield point of the material 

[5, 32]. Fatigue failure can be caused by many types of stress types such as torsion, 

bending, and rotation [34]. 

Fatigue in metals begins at surface locations with concentrated stress. It first 

begins with shear flow along slip planes, and then graduates by generating intrusions and 

extrusions that the same particular slip, leaving minor steps on the surface. The small 

steps grow to intensify stress in the particular area and causes the formation of 

microcracks [30, 31, 34]. The planes of high shear stress experience microcracks more 

than other regions. The angle is usually 45 degrees to the direction of the load. This is 

just the first phase, and the second phase occurs when the small voids join and spread 

through the structure, thus creating a 90 degrees angle crack to the load direction. Finally, 
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the third phase of the fatigue failure occurs when the resistance is exceeded, and a 

structure occurs, Figure 2.1 [30].  

 

Figure 2.1: Intrusion and Extrusion of Fatigue Crack Initiation [30].  

   2.2 Corrosion Fatigue 

Corrosion fatigue (CF) is one of the most complicated topics of the aircraft 

structure failure. CF is a variable that needs to be tested for components of aircraft and 

other structures in the aerodynamic industry because CF is the mechanical breakdown of 

the materials like the aluminum alloys used in the construction of the structures when 

they are in a corrosive environment [20, 22]. In other words, the metals used to construct 

aircraft undergo harsh combinations of stress in the form of loadings and are often in 

corrosion-causing environment that leads to metals corrosion fatigue [20, 22]. Stress and 

corrosive environment can cause CF when aircraft components experience them 

separately or both at the same time. The stress is caused by repeating loading cycles that 

buildup stress on portions of a metal structure plus the damage caused by a corrosive 

environment on the same spot [10, 34]. In real life environments a part of a structure 
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becomes weaker when something causes a hole, notch and other similar flaws in the 

component. Therefore testing the components is necessary to make sure that materials 

used to construct aircraft and aerospace products must be done to guarantee reliability, 

durability and safety. Life predictions are made by testing aluminum alloy components 

for how they act under conditions of uniaxial cyclic, biaxial cyclic, out-of-phase and 

irregular loads as well as corrosive environments [20, 22]. 

The definition of corrosion fatigue is the damage that results in a corrosive 

environment on a metal structure from repetitive loading cycles and buildup of the load 

caused by the cycles [10, 34]. Components are tested for corrosive environments by 

placing them in a chamber with saltwater containing 3.5% NaCl (sodium chloride) [26, 

27]. The damage becomes worse over time and four stages can be identified during the 

process:  

1. Cycle plastic deformation. 

2. The initiation of microcracks. 

3. Small crack growth from the microcracks. 

4. The enlargement of small crack growths into larger cracks and finally into 

macrocracks [10]. 

Mechanical engineers study corrosion fatigue mechanisms and fractography of 

aluminum alloy metals in laboratories because modes of failure that cause damage must 

be prevented. Research is done to prevent corrosion fatigue by learning details of the 

processes involved. Two of the mechanisms, hydrogen embrittlement and film rupture, 

are the main causes researchers identify as causing corrosive fatigue, therefore those 

mechanisms are studied very closely [5]. This research study is focused on the 
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mechanism of hydrogen embrittlement of the aluminum metal alloy 7075-T6. In other 

words this study looks at the hydrogen embrittlement process from start to finish on the 

aluminum metal alloy 7075-T6 while it is causing corrosion fatigue failure [11].  

A flaw in the metal that causes a hole through the protective coating material of a 

metal surface and reaches the surface allows the initiation of hydrogen entitlement such 

as a notch.  Avoiding all flaws is the ideal situation, because when the surface is exposed 

to the environment, even a very small amount, corrosion is expected to occur. An open 

space in protective coating that allows the environment to reach the surface allows the 

production of hydrogen ions. The hydrogen ions are the source that causes weakening of 

metallic binding within the metal structure.  

After reaching the surface of the alloy through the flaws, the hydrogen ions start 

entering the alloy’s lattice metal structure until embrittlement results. When 

embrittlement occurs, the metal alloy becomes brittle and as the process of embrittlement 

continues, the more brittle the metal alloy structure becomes [5]. Figure 2.2 provides an 

overview of the mechanism of corrosion fatigue [5]. 
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Figure 2.2: Mechanism of Corrosion Due to Hydrogen Embrittlement [5]. 

Transgranular cracks are initiated by the hydrogen embrittlement [5, 31]. 

Repeated loading cycles enhance the propagation of the cracks in the grain of the alloy 

[5, 31]. If a notch has a sharp V-shape at its root and other conditions are favorable 

transgranular cracks occur. Corners in a flaw are also the originating site of a 

transgranular crack under coating, therefore coatings are not foolproof. Even under 

coatings the cracks can form and grow [31]. Interpreting the laboratory stress test by 

inputting measurement results and inputting them into computer models to simulate the 

mechanisms helps gain more information from the corrosion fatigue mechanism from 

hydrogen embrittlement [10, 11]. Computer model simulations of the mechanisms are 

described in more detail in Chapter 3. Ductile, cleavage and intergranular fractures are all 

examples of micromechanisms seen in metal corrosion fatigue [5]. The mechanisms are 

described below, because an understanding of how corrosion fatigue happens is needed 

for making sense of laboratory results [10, 11]. 
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CF and stress corrosion cracking (SCC) are similar mechanisms for crack 

formation and fractures when embrittlement is present. Nevertheless, they are also 

different based on loading types and amounts. SCC results from static loading. CF results 

from fluctuating loading. SCC and CF also look different, the appearance of surface 

cracks looks like cleavage in SCC and striations (or benchmarks) in CF. The shape of the 

cracks (also known as the morphology) is also different between SCC and CF. SCC 

shows branched cracks while CF is characterized by a blunt tip appearance [43]. 

   2.3 Corrosion Effect on Fatigue Life  

A cyclic loading and a corrosive environment together cause more damage when 

compared to corrosion and cyclic loading that occur separately. The combination of the 

corrosive environment and the cyclic loading on metal structures causes synergistic 

damage [42]. Notches are mad from intrusion and extrusion processes produced from the 

fatigue loading [42]. Add to that situation a corrosive environment, then oxidation occurs 

at the metal surface of the notches [42]. And then, the corrosion does become inactive for 

a time as more damage is caused to by fatigue. The fatigue causes a negative impact on 

the passive layer of the material so that the corrosion has a new exposed surface to attack. 

The process causes a highly reduced fatigue life [42]. 

Fatigue life and fatigue limit need to be understood because they are commonly 

used to interpret laboratory results caused by fatigue. Corrosion cracking caused by stress 

and other crack growth factors relate to time factors and must be taken into account when 

predictions are made [5]. Fatigue life is measured by how many cycles lead to the failure 

of a component [18]. Fatigue limit refers to the maximum value of all the alternating 
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stresses that are survived with no failure by a component [18]. In a corrosive environment 

both fatigue life and fatigue limit are reduced [18]. The negative effects of corrosion on a 

structural component’s fatigue life are expressed as Damage ratio [18]. 

Damage Ratio =   𝜎𝜎𝑐𝑐𝑐𝑐
𝜎𝜎𝑓𝑓

 (2.1) 

where  

𝜎𝜎𝑐𝑐𝑐𝑐 = Corrosion fatigue strength, and 

𝜎𝜎𝑓𝑓 = Fatigue strength in a neutral environment [18]. 

Corrosion fatigue is represented by low values for maximum stress and failure in a 

short period of time for the metal or alloy structural component. The amount of stress and 

the numbers of stress cycles in a corrosive environments lead to the fatigue limit. See 

Figure 2.3. 

 

Figure 2.3: The Effect of Environment on the Fatigue Limit of a Material [42].  
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Several ways to prevent corrosion fatigue are available such as design of the 

aluminum alloy, design of the structure, the construction process of the component, the 

amount of loading and knowing the environment expected [18]. Therefore tests that can 

help predict how the component will react to CF are practical as well as necessary. The 

design and construction of the metal and metal alloy components, when properly carried 

out can reduce the damage. Techniques like shot peening (SP), laser peening (LP), and 

low plasticity burnishing (LPB) enhance the performance under compressive residual 

stresses according to some researchers [35]. The flaws like notches and rough surfaces 

need to be avoided as much as possible in order to prevent corrosion fatigue to a large 

degree [18]. Treating the component according to its ability to perform is helpful, so 

applying only the minimum cyclic loading, keeping the environment clean of corrosion-

inducing factors and using protective coatings that prevent corrosion are all used in the 

industry [18]. 

   2.4 Fracture Mechanics 

Mechanical performance of structure components can be enhanced by studies in 

fracture mechanics that research the details of crack propagation [34]. The fracture 

mechanics requires stress and strain analysis of elastic and plastic components that have 

known flaws and cracks. The purpose is to predict the macroscopic failure in components 

[5]. The core of fracture mechanic is to predict the crack growth behavior. Crack can 

experience there type of loading, see Figure 2.4 [5]:  

• Opening mode, Mode I:  the principle load is applied normal to the crack plane, 

tends to open the crack, 
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• Sliding mode, Mode II: corresponds to in-plane shear loading and tends to slide 

the one crack face with respect to the other, and 

•  Tearing mode, Mode III: refers to out-of-plane shear [5].  

 

Figure 2.4: The Three Modes of Loading That Can Be Applied to a Crack [5].  

Depending upon the circumstances a crack may be exposed to only one mode or 

exposed to two or to three of the mode types listed above [5]. For mode I and mode II the 

stress field that is just in front of the crack tip are isotropic and linear elastic material [5].   

In the current study, the mode studied is Mode I loadings. The reason Mode I was 

chosen due to the characteristics of the experiment being studied. The experiments for the 

current research were designed to cause Mode I loading. A more detailed description is 

found in Chapter 3, the methodology chapter. 

In this study, the cracks in AA7075-T6 were propagated from a circular hole in 

the thin cruciform experimental material under biaxial loading. The material was 

prepared for the experiment by notching and afterwards pre-cracking the material. The 

purpose of the research is to study the crack propagation from the circular hole and to 

determine the propagation direction. The next sections are dedicated to a literature review 
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on characteristics such as cracks starting from a circular hole and the stress intensity 

factor, stress transformation, global coordinate system, local coordinate system and the 

crack propagation direction. An analytical study for the prediction of the crack 

propagation direction is also discussed below. 

2.4.1 Stress Intensity Factors for a Crack Initiated From a Circular Hole in 

Thin Plate under Biaxial Loading 

The stress intensity factor is identified near the crack tip and the stress state at that 

location [5]. If a crack is initiated from a circular hole in a thin plate (plane stress 

condition) then, the stress intensity factors for mode I and II are given by the following 

expressions [17]: 

KI =  
√πr
2√2

 �
l0 (l0 + 2)3

(l0 + 1)3
 ( Syy + Sxx−(Syy − Sxx) cos2α ) (2.2) 

and  

KII =  
√πr
2√2

 �
l0 (l0 + 2)3

(l0 + 1)3
 ( Sxx−Syy) sin2α ) (2.3) 

where 

l0 =
1
2
�−1 +

a
r

+ �2
a
r

+
a2

r2
+ 1 � (2.4) 

where: 

 Sxx is the nominal stress at a large distance from the crack tip in the x-direction 

(N/𝑚𝑚2). 
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Syy is the nominal stress at a large distance from the crack tip in the y-direction 

(N/𝑚𝑚2). 

 r is the radius of the circular hole (m).  

a is the length of the crack (m). 

 α is the angle between the y-axis and the crack.  

φ is the angle between the x-axis and the crack ( φ = π
2
− α ). 

Figure 2.5 shows a crack initiated from a circular hole, subjected to biaxial remote 

stresses (Sxand Sy) with respect to the global rectangular (x and y) coordinate system. 

 

Figure 2.5: A Crack Initiated From a Circular Hole While Subjected to Biaxial Remote 

Stresses.  

 

Now, when the angle α between the y-axis and the crack is 90⁰ as in the case of 

this study, then equations (2.2) and (2.3) become [17]: 

KI =  
√πr
2√2

 �
l0 (l0 + 2)3

(l0 + 1)3
 ( Syy + Sxx) + (Syy − Sxx)  (2.5) 

ϕ 
α 

𝑆𝑆𝑦𝑦 

𝑆𝑆𝑦𝑦 

𝑆𝑆𝑥𝑥 𝑆𝑆𝑥𝑥 
𝑎𝑎 

𝑟𝑟 

𝑆𝑆𝑦𝑦 = 𝑆𝑆𝑦𝑦𝑦𝑦 
𝑆𝑆𝑥𝑥 = 𝑆𝑆𝑥𝑥𝑥𝑥 
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and  

KII =  0 (2.6) 

 

2.4.2 Direction of Crack Propagation 

 Erdogan and Sih consider the stress component σθθ(θ) as the maximum value, 

when θ = θ∗, which is σθθ(θ) takes the maximum value causing the crack propagation 

towards the direction of angle 𝜃𝜃 = 𝜃𝜃∗ [8]. Other researchers tried to predict the direction 

of the crack propagation with the results shown below: 

 Sih Cha [37, 38]: 

𝜃𝜃∗ =  −2
KII

KI
−
2ϰ − 30
9 − 3ϰ

�
KII

KI
�
3

+ ⋯ (2.7) 

where  

ϰ =  �
3 − 4ν  for plane strain
3 − ν
1 + ν

    for plane stress
 (2.8) 

and ν is the Poisson's ratio.  

 Berezhnitski and Gromyak criterion [6]: 

𝜃𝜃∗ =  −2
KII

KI
−

168 − 2(ϰ − 1)2

36 − 3(ϰ − 1)2 �
KII

KI
�
3

+ ⋯ (2.9) 

Tian, Lu and Zhu criterion [40]: 

𝜃𝜃∗ =   −2
KII

KI
+
20ϰ − 6

3ϰ
�

KII

KI
�
3

+ ⋯ (2.10) 

Tiroshu criterion [41]: 



18 

𝜃𝜃∗ =  −2
KII

KI
+

20
3
�

KII

KI
�
3

+ ⋯ (2.11) 

 In this study, thin specimens (plane stress condition) of aluminum alloy 7075-

T6 used for which the young’s modulus E and the Poisson’s ratio ν are [1]: 

E = 7.17 × 1010Pa, ν = 0.33 (2.12) 

which make  

ϰ =
3 − ν
1 + ν

= 2.0075 (2.13) 

the previous formulas becomes:  

Erdogan and Sih criterion: 

𝜃𝜃∗ =  −2
KII

KI
+ 4.6667 �

KII

KI
�
3

+ ⋯ (2.14) 

Sih Cha criterion: 

𝜃𝜃∗ =  −2
KII

KI
+ 8.7271 �

KII

KI
�
3

+ ⋯ (2.15) 

Berezhnitski and Gromyak criterion: 

𝜃𝜃∗ =  −2
KII

KI
+ 5.0363 �

KII

KI
�
3

+ ⋯ (2.16) 

Tian, Lu and Zhu criterion: 

𝜃𝜃∗ =  −2
KII

KI
+ 5.6704 �

KII

KI
�
3

+ ⋯ (2.17) 

Tiroshu criterion: 

𝜃𝜃∗ =  −2
KII

KI
+ 6.6667 �

KII

KI
�
3

+ ⋯ (2.18) 
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Because KII is equal to zero equation (2.6) and the crack lies on a principle plane and 

subjected to Mode I loading, the crack propagation angle is zero. 

   2.5 Fractography 

 In general, fractography is the study of material surfaces that have been fractured 

due to stress, loading, environment, or other reasons [28]. Fractography is a high 

technology science that uses a variety of instruments like high powered microscopes and 

scanning electron microscopes to carry out failure analysis. Fractography is used during 

testing in order to learn the types of causes of failure so they can be avoided in finished 

components. The major use of fractography is to better understand and predict crack 

growth behavior. 

   2.6 Previous Research 

The combination of corrosion and fatigue can cause fatal accidents and that is 

why research on failure behavior due to those two factors is so important. Material 

science laboratories contain experimental equipment to test materials and better 

understand failure behavior. Laboratory studies control certain factors to learn the effects 

of a variety of materials and loadings. For example, fatigue testing instrument was used 

as early as 1985 to study crack growth behavior for the two aluminum alloys, 7075-T6 

and 2024-T3 [22]. 

In the 1960s the first study for the stress intensity factor range (ΔK) versus the 

crack propagation rate ( 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) was carried out [19]. The number and types of research 

are growing due to the importance of safety in the aerospace program as well as other 

industrial projects. As technology and computer capacity increases more complex 
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research is possible. For example crack propagation and the influence of environment on 

the growth and behavior of cracks is commonly investigated for materials [24]. Research 

results are published and relied upon, but not all areas for study have been well-

documented. The area that has been most studied is on the topic of uniaxial fatigue 

conditions, so more research is needed on mixed mode of stresses, which is necessary for 

most aircraft structures [5, 7, 24]. Recently studies rely upon biaxial fatigue test 

instrumentation for research on crack growth behavior assuming ambient air and 

saltwater (3.5%) conditions in-plane. The research is carried out from the perspective of 

fracture mechanics using cruciform-type specimens. The next paragraphs discuss some of 

these studies. 

2.6.1 Biaxial Stress Ratios 

7075-T7351 and 2024-T351 aluminum alloys were materials that were studied to 

learn about fatigue crack growth behavior when center-cracked cruciform specimens 

were the samples [21]. The conditions applied were biaxial loading under a variety of 

biaxial stress ratios (-1.5 ≤ λ ≤ 1.75 for constant amplitude tests, -0.5 ≤ λ ≤ 0.5 for 

periodic single overload and spectrum load test) [21]. The three main results of the study 

are listed below. 

• A relationship between the crack direction and the impact of the stress component 

was identified; a parallel stress component applied in equal or smaller amounts 

than a specimen receives under normal conditions at the crack direction causes the 

crack to grow in a straight line [21]. 
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• The biaxiality ratio has an influence when the specimen experiences a stress 

parallel to the crack; under such conditions the crack growth rates were shown to 

range from small to negligible dependent of the value of the biaxiality ratio [21]. 

• A large biaxial stress component behaves as the controlling factor for the crack 

growth rate [21]. 

Therefore it was learned that the crack growth rate depended directly upon larger biaxial 

stress values. 

2.6.2 Notched and un-notched specimens 

A servo-hydraulic testing machine was used to study fatigue cracks propagation 

to observe the biaxial stresses for two types of materials, un-notched and central circular 

notched plates [15]. The servo-hydraulic testing machine did not allow vertical and 

horizontal cycles to take place simultaneously [15]. Therefore the research was carried 

out by holding the horizontal stress stationery and cycling the vertical stress at three 

variations: when λ are equal to -1, 0 and 1. Two other conditions were used in each 

experiment; measurements of crack length were taken with a microscope and curve-

fitting technique [15]. The experiment results showed that when decreasing tensile 

loading occurs parallel to the crack, then the crack growth rates; meanwhile, compressive 

loading resulted in crack growth rates. 

2.6.3 Biaxial stress & crack growth 

Researchers designed changeover tests on steel cruciform specimens with a 

central crack in order to observe how biaxial stress influences crack growth [4]. The 

biaxiality ratio was changed after the duration of the experiment reached 50% and λ (the 
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biaxial ratio) used in the current research [4]. The change in the rate of crack rate was 

recorded [4]. 

• During biaxial loading applying tensile stress parallel to the crack caused a higher 

uniaxial loading compared to the crack growth rate [4], but 

• During biaxial loading by applying compressive stress parallel to the crack in the 

specimen; the results showed that the crack rate was higher than during uniaxial 

loading [4]. 

2.6.4 Cabin pressure conditions 

An experiment for the complex circumstances of a mixed mode internal cabin 

pressure with gust loading under laboratory conditions [39]. The purpose of the 

experiment was to observe fatigue crack growth when biaxial quasi-static loads under 

conditions of constant amplitude [39]. The conditions were applied to the specimens, 

which were the cruciform test coupons to simulate the “pressurized transport aircraft 

fuselage panels” that have to work and work safely during flights [39].   

The two sets of specimens used for the experiment were formed at different 

thicknesses. The first set was steel of a 1-mm thickness and the conditions of the 

experiment held the amplitude at a constant loading. The purpose of a constant amplitude 

loading was carried out to observe if the process of the testing system was useful [39]. 

The second set of specimens consisted of 2024-T3 aluminum alloy with a 2.7-mm 

thickness [39]. 

Testing for the load spectrum under biaxial loading conditions for CF studies is 

usually done use the “TWIST load spectrum”. The transport aircraft wing loading for CF 
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is commonly test with Marker-TWIST or variables of the TWIST load spectrum [39]. 

The aluminum alloy was tested using a modified Marker-MiniTWIST system at different 

loads [39]. The axial load offsets and the static transverse loadings were different for 

each sub-set of the experiment. For test numbers 1 through 3 the spectrum used was the 

Marker-MiniTwist. Test 1 was carried out with an axial load offset of 1.5 kN and a static 

transverse load of 3 kN. Test 2 was carried out with an axial load offset of 1.0 kN and a 

static transverse load of 2 kN. Test 1 was carried out with an axial load offset of 0.5 kN 

and a static transverse load of 1 kN. Test number four was more complicated because 

three spectrums were used: Marker-MicroTWIST up to 33 mm, Marker-MiniTWIST up 

to 37 mm, and Marker-Twist up to 40 mm [39]. The axial load offset for test 4 amounted 

to 1.5kN. The static transverse load was more complex because the researcher “toggled 

between 0 and 3 kN after each 1 mm crack increment” [39]. The findings were that the 

amount of biaxiality loading and fatigue crack rates are directly related [39]. 

2.6.5 Fatigue crack growth & biaxial cyclic loadings 

Biaxial cyclic loadings were applied to AK4-1T1 and Al-alloy D16T specimens 

of on 1.2 to 10 mm thickness to carry out fatigue crack growth experiments [36]. The 

purpose of the experiment was to test cruciform specimens for fatigue crack growth [36]. 

The thickness of the research specimens ranged from 1.2 to 10 mm and produced from 

aluminum based alloys [36]. Loadings during the experiment were carried out under both 

“constant (regular) and variable (irregular) amplitudes of uniaxial and biaxial loads” with 

some loadings specifically designed to simulate overloads [36]. Crack closure effects 
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were observed during “rotation instability,” blunting effect, crack retardation, and other 

measurements of effects resulting from the loads [36]. 

The results of the experiment determined a biaxiality ratio of  between -1.4 and 

+1.5; while the stress ratios ranged from 0.05 to 0.8 [36]. The amplitude cycle was kept 

constant for some runs and was varied for other cyclic loads [36]. Three conditions were 

measured plane-stress condition, plane-strain condition and out-of phase loading to 

simulate the crack closure effects on crack growth [36]. 

• The results for the plastic zone increased when the phase difference was 

increased from 0⁰ to 180⁰; but 

• above 108° the plastic zone decreased as the phase difference was raised; and  

• The researcher demonstrated that the fatigue cracks increase at a faster rate 

when the biaxiality stress ratios are large. [36]  

2.6.6 Biaxial stress on fatigue variables 

The fatigue behaviors of fatigue life, fatigue crack growth, and fatigue crack path 

were measured in aluminum alloys under conditions of biaxial loadings [20]. Aluminum 

alloys 1100-H14 and 7075-T651 cruciform specimens with 2 mm in thickness [20]. The 

plane was a horizontal or a 45° angle from the notch in the center of the specimens [20]. 

The biaxiality ratio, λ ranged from 0 to 1.5, the stress ratio, R equaled 0.1 and the loading 

frequency 15 Hz in an ambient air environment [20]. The biaxial load was applied out-of-

phase to all the specimens [20]. The results showed that: 

• during reduced longitudinal stress then the fatigue life increased when the loading 

was both in-phase and out-of-phase, on the other hand  
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• an improved fatigue life resulted for in-phase loading than with the out-of-phase 

loading (at specific biaxiality ratios) [20].   

• The three aspects that were found to influence the path of a fatigue crack during 

the experiment were the biaxiality ratio, the phase angle and the initial center 

notch location [20].   

• Interestingly the fatigue growth rates decreased when the biaxiality ratio was high 

and lower the in-phase loading causing fatigue life increases and a small change 

in biaxiality ratio under out-of-phase conditions [20]. 

The fatigue crack growth was investigated under the influence of biaxial stresses 

and a biaxial fatigue testing machine [44]. Center cracks were evaluated in samples of 

SUS 304 stainless steel for stress intensity factors while applying constant and variable 

biaxiality stress conditions [44]. The biaxial ratios of λ= -1, 0, and +1 were used, and the 

stress ratio, R equal to 0.1 [44]. The crack length measurements were made with a 

travelling microscope [44]. At low stress the biaxiality showed only negligible influence 

on the crack growth rates, but the effects were noticeable at high stresses [44]. 

2.6.7 Two environmental conditions compared 

 The two environments of ambient air and saltwater (3.5% or 0.6 M NaCl) were 

used in fatigue crack growth experiments with biaxial cycle loadings (that cause stresses) 

for biaxiality ratios of 1 and 1.5 and the stress ratio set at 0.5 [26, 27]. Aluminum alloy 

7075-T6 cruciform specimens, 3.18 mm thick with a 6 mm diameter center hole along 

with a machined notch measuring 1mm x 0.25mm [26]. The angle of the horizontal to 

vertical arms was 45° [26, 27]. Pre-cracking of the notch was carried out under conditions 
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of biaxial fatigue loading while the notch and the crack were both perpendicular to the 

specimens’ rolling direction [26, 27]. The crack lengths were measured using an optical 

microscope system [26, 27]. The stress intensity factors were calculated using a finite 

element analysis computer model [26, 27].   

• When the biaxiality ratio (λ) was equal to 1, the experiment demonstrated crack 

initiation with a growth path coplanar with the notch system, but if λ equaled less 

than 1.5 the crack growth path was non-coplanar [26]. 

• Crack initiation during biaxial fatigue occurred showing a lower crack driving 

force level compared to increasing the biaxiality ratio, which exhibited a 

decreased crack initiation driving force [26]. 

• Under ambient laboratory air conditions the biaxial fatigue (at λ = 1) and uniaxial 

fatigue (at λ = 0) demonstrated the same growth rate [26]. Whereas, at λ = 1.5 and 

a specified crack driving force the crack growth rate was higher [26].   

• The slowest crack growth rate occurred for uniaxial fatigue in a saltwater 

environment, but the fastest crack growth rate occurred for biaxial fatigue at λ 

equal to 1.5 in the same environment; meanwhile  

• For biaxial fatigue in saltwater conditions with λ equal to 1 the crack rate growth 

was between the slowest and the fastest [25]. 

• Experiments taking place under laboratory ambient air conditions to observe 

fatigue damage mechanisms showed planar slip when the biaxial ratio equaled 

zero, wavy slip when the biaxial ratio equaled 1.5, and a combination of wavy and 

planar when the biaxial ration equaled 1 [25]. 
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• Experiments under a saltwater environment displayed fatigue crack propagation 

that was transgranular at a biaxial ratio of 1 for both uniaxial and biaxial fatigue 

[25]. 

   2.7 Purpose of Thesis 

 The effect on fatigue crack growth experiencing under uniaxial loading conditions. 

On the other hand, biaxial loading conditions are included in only a few studies in the 

published literature. The studies reviewed and demonstrated that crack growth rate is 

influenced by biaxial fatigue.  

This research is unique because the aluminum 7075-T6 studied the fatigue crack 

growth with a negative biaxiality. The aluminum 7075-T6 alloy was observed under the 

two conditions of ambient air and saltwater (3.5% NaCl) during plane biaxial loading. A 

comparison was then made to positive biaxiality for studying the effect of changing 

biaxiality to crack growth rate. This study attempted to fill in the research gap by its 

design. The study also addressed the fracture mechanics issues to explain the results and 

also to predict results. The research databases and documents show the experimental 

results so that corrosion fatigue can be better understood and so corrosion fatigue failure 

can be addressed. 

   2.8 Summary 

The characteristics of failure due to stress and corrosion have been published for a 

variety of materials and loading conditions. McEvily (1985) researched crack growth in 

aluminum alloys 7075-V T6 and 2024-T3 by using a fatigue testing machine [22]. Paris 

(2007) undertook the stress intensity factor range (ΔK) versus the crack propagation rate 
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range (ΔP) using the ratio 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 [19]. Recent advances in technology have led to the 

ability to carry out new studies on failure. Research into the influence of the environment 

and propagation of cracks on crack growth behavior was one of the first topics [24]. 

Uniaxial fatigue conditions are those used for most of the experiments but not for those 

concerning aircraft whereas for aircraft structures [5, 7, 24]. Aircraft components are 

exposed to stresses in mixed modes, and in that way the benefits from the uniaxial fatigue 

tests data are limited. 

The experimental researches on airplane components are necessary in order to 

measure and analyze crack growth behavior when the conditions causing fatigue are 

plane axial loadings. The experiments for this research were done using biaxial fatigue 

instrumentation.  The conditions of the tests for the aluminum alloy components were  

• The plane biaxial loading condition,  

• Saltwater environment (3.5% or 0.6 M NaCl) and  

• Ambient air environment 

while using a fracture mechanics approach and cruciform-type specimens. 

The methodology chapter below explains the details of the experimental process. 
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III. Methodology 

  3.1 Overview  

 Many examples of uniaxial tests were found in the literature, showing that more 

biaxial tests are needed. Metal cruciform specimens are better for carrying out biaxial 

tests in contemporary times so that the prediction of load and the strain are more reliable 

for real life aircraft components. A cruciform specimen is one with a two dimensional 

shape because is formed from two uniaxial components at a 90° angles from each other 

forming a cross [36]. Loadings and a corrosive environment are the causes of CF 

investigated here. The two causes are responsible for CF when aircraft components are 

exposed to them separately or at the same time. Therefore the methodology takes a look 

at the three circumstances of loading, corrosive environment (saltwater 3.5%), or both 

loading stress and a corrosive environment at the same time. 

   3.2 Material 

The specimens used for this research were made of aluminum alloy 7075-T76. 

Aluminum is a lightweight material that is very attractive for airplanes because it is so 

strong and it can be strengthened by additional treatment. Other attractive characteristics 

are high-quality corrosion and stress resistance and high strength-to-density ratio coupled 

with other fundamental properties necessary for applications in aircraft construction. 

Although, the strength-to weight ratio is high in aluminum [3]. Aluminum is a material 

that can be fabricated into a diverse range of shapes. 

The aluminum alloy 7075 is the fundamental material that is the basis for the 

development of the 7075-T6 alloy [3]. It was developed by the manufacturer Alcoa in 
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1943, since that time the aluminum alloy series 7XXX was developed throughout the 

years in materials that the aerospace industry uses for many components [3]. The material 

so popular with the aerospace industry because of high strength and durable 

characteristics like moderate toughness that are necessary under the harsh conditions 

airplanes and other aerospace products need to withstand [3]. The basic composition of 

aluminum alloy 7075 is aluminum, zinc, magnesium and copper plus chromium [3]. 

Table 3.1 shows the chemical composition of AA 7075-T6 [3]. 

Table 3.1: Chemical compositions of AA7075-T6 alloy [3]. 

Element Weight Percentage 

Aluminum 87.1 - 91.4 

Zinc 5.1-6.1 

Magnesium 2.1-2.9 

Copper 1.2-2 

Iron Max 0.5 

Silicon Max 0.4 

Manganese Max 0.3 

Chromium 0.18-0.28 

Titanium Max 0.2 

Other each Max 0.05 

Other total Max 0.15 
 

The suffix T6 shows that the aluminum alloy has been tempered by thermal 

treatment (also known as heat treatments) after that an aging process was used to prepare 

the finished alloy. Thermal treatments are applied to increase alloy to their optimum 

toughness and strength along with other practical features [3]. T6 is the temper of the 
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aluminum alloy used in this research because it is typically used for aircraft component 

construction [3]. The structures for the aerospace industry require components built from 

aluminum alloy 7075-T6 because of the high strength, low density, moderate toughness 

and corrosion resistance [3]. Table 3.2 shows AA 7075-T6 mechanical properties [3]. 

Table 3.2: Mechanical properties of AA 7075-T6 [3]. 

Mechanical Properties 
  Metric English Comments 

Hardness, Brinell 150 150  AA; Typical; 500 g load; 10 mm 
ball 

Hardness, Knoop 191 191  Converted from Brinell Hardness 
Value 

Ultimate Tensile 
Strength 572 MPa 83000 psi  AA; Typical 

Tensile Yield Strength 503 MPa 73000 psi  AA; Typical 

Elongation at Break 11 % 11 %  AA; Typical; 1/16 in. (1.6 mm) 
Thickness 

Modulus of Elasticity 71.7 GPa 10400 ksi 

 AA; Typical; Average of tension 
and compression. Compression 
modulus is about 2% greater than 
tensile modulus. 

Poisson's Ratio 0.33 0.33   

Fatigue Strength 159 MPa 23000 psi  AA; 500,000,000 cycles 
completely reversed stress; 

Fracture Toughness 20 MPa-
m½ 

18.2 ksi-
in½  K(IC) in S-L Direction 

Fracture Toughness 25 MPa-
m½ 

22.8 ksi-
in½  K(IC) in T-L Direction 

Fracture Toughness 29 MPa-
m½ 

26.4 ksi-
in½  K(IC) in L-T Direction 

Machinability 70 % 70 %  0-100 Scale of Aluminum Alloys 
Shear Modulus 26.9 GPa 3900 ksi   
Shear Strength 331 MPa 48000 psi  AA; Typical 
Density 2.81 g/cc 0.102 lb/in³  AA; Typical 

http://asm.matweb.com/search/GetUnits.asp?convertfrom=79&value=83
http://asm.matweb.com/search/GetUnits.asp?convertfrom=79&value=73
http://asm.matweb.com/search/GetUnits.asp?convertfrom=138&value=11
http://asm.matweb.com/search/GetUnits.asp?convertfrom=79&value=10400
http://asm.matweb.com/search/GetUnits.asp?convertfrom=124&value=23000
http://asm.matweb.com/search/GetUnits.asp?convertfrom=111&value=20
http://asm.matweb.com/search/GetUnits.asp?convertfrom=111&value=20
http://asm.matweb.com/search/GetUnits.asp?convertfrom=111&value=25
http://asm.matweb.com/search/GetUnits.asp?convertfrom=111&value=25
http://asm.matweb.com/search/GetUnits.asp?convertfrom=111&value=29
http://asm.matweb.com/search/GetUnits.asp?convertfrom=111&value=29
http://asm.matweb.com/search/GetUnits.asp?convertfrom=138&value=70
http://asm.matweb.com/search/GetUnits.asp?convertfrom=45&value=26.9
http://asm.matweb.com/search/GetUnits.asp?convertfrom=79&value=48
http://asm.matweb.com/search/GetUnits.asp?convertfrom=43&value=2.81
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   3.3 Test Specimens Description 

 The material for the tests consisted of 7075-T6 aluminum alloy sheets measuring 

3.18 mm thick from which cruciform specimens were produced. The specimens arm 

measured 120 mm in length, and an arm width of 45 mm. The radius of curvature of the 

arm junction measured 28 mm. A hole was drilled into the center of the specimens that 

were also notched by an electro-discharge method. The notch produced for each 

specimen was collinear with the horizontal arm and measured 1 mm in length by 0.25 

mm width as shown in Figure 3.1. The purpose of the notch was to draw stress 

concentration. In that way, the crack formed during the experiment at the location of the 

stress concentration. Also at the machined notch, a pre-crack measuring 1 mm in length 

was produced lying collinearly to the notch. Stress fatigue was used to for purposes of the 

pre-cracking so there would be an initial sharp crack. A sharp crack was needed for the 

initial crack to make sure that the stress intensity factor was meaningful [5]. 

 
Figure 3.1: Drawing Shows the Specimen Dimensions.  
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   3.4 Test Procedures 

The first step of the experiment was to prepare the cruciform specimens. The 

biaxial experiments were carried out on the laboratory’s Material Testing System (MTS). 

The cyclic biaxial loading was controlled so that the vertical and horizontal loadings were 

set by the researcher as desired. In that way the biaxial stress ratio was controlled. The 

stress ratios were equal for both the horizontal and vertical loadings (Rx=Ry=0.5). The 

loads were applied at the frequency of 10 Hz. 

The first sets of experiments were carried out under the condition of ambient 

laboratory air. Figure 3.2 shows the biaxial experimental setup with a cruciform specimen 

in air. A second set of experiments were carried out under conditions produced with a 

chamber containing saltwater (3.5% NaCl), Figure 3.3. 

 

Figure 3.2: The Biaxial Experimental Setup with a Cruciform Specimen in Air 

Environment.  

Precrack 

Notch 
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Figure 3.3: The Cruciform Specimen With Saltwater Chamber Attached to It.  

Images of the results during the experiment were recorded with a PixeLINK 

camera. The images were taken after timed intervals to record the crack behaviors. The 

PixeLINK camera was used at a resolution of 3 mega pixels using an AF Micro Nikko 

200 mm lens. When the crack grew to a length of approximately 20 mm the experiment 

was stopped. The resulting images were studied with uSCOPE software. The software 

measured the crack lengths using a resolution of 0.01 mm. 

   3.5 Finite Element Modeling 

 The stress intensity factor was calculated using Abaqus/CAE 6.10-1 for the test 

specimens, for both modes. The following assumptions applied: 

1.  The material was isotropic and homogeneous. 

2.  The mechanical properties of the aluminum alloy remained constant throughout 

the experiments (E=73 GPa, ν=0.33). 
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3.  The center hole in all of the specimens had the same uniform shape with smooth 

edges. 

4.  The experimental specimens used did not have flaws and no cracks except for the 

cracks initiated from the pre-cracked notched hole. 

5.  The applied loads have no variation.  

In Abaqus, a model was designed exactly according to the experimental specimens’ 

dimensions. A sketch of pre-crack and notch locations were added to the model. The 

properties of the aluminum alloy 7075-T6 were assigned into the part. Next, the pre-crack 

direction were defined to the tip of the pre-crack with its prerequisite constraints. The 

experiments’ dynamic loads and specimen constraints were input. After that, a mesh was 

produced for the each specimen. 

A job was created and submitted after the mesh was completed. Each specimen was 

analyzed during the run of the job submmition. The computer results included the values 

for 𝐾𝐾𝐼𝐼, G and crack direction. The other cases have the exact same procedures, but with 

changing the lengths of the crack and the dynamic loads. Abaqus modeling procedure is 

available in Appendix A.  
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IV. Results and Discussion 

   4.1 Overview 

As mentioned in the previous chapters, the fatigue crack growth behavior of 

specimens of 7075-T6 aluminum alloy was examined under in-plane biaxial loading in 

both air and saltwater (3.5% NaCl) environments with 0.5, 0, -0.5, and -1 biaxial stress 

ratio λ to study the difference between the positive and negative biaxiality and the effects 

of the negative biaxiality on crack propagation path and crack growth rate. 

Section 4.2 in this section we are going to study the crack propagation direction 

for all specimens tested in air and saltwater environments. Then, section 4.3 will show 

and study the effects of the negative biaxiality on the crack growth rate in both air and 

saltwater environments. Finally, section 4.4 will present and study the microstructure 

results of the cracks surfaces. Table 4.1 shows a summary of the tests under fatigue loads 

with 0.5, 0, -0.5 and -1 biaxial stress ratio λ in air and saltwater environments. 

Table 4.1: Summary of tests with 0.5, 0, -0.5, and -1 biaxial stress ratio λ in air and 

saltwater environments. 

Environment 𝑹𝑹𝒙𝒙,𝒚𝒚 λ Frequency 
(Hz) 

Total Initial ∆K 
(MPa · m1/2) (FEA) 

Air 0.5 0 10 4.026025 
Air 0.5 0.5 10 3.368765 
Air 0.5 -0.5 10 4.72659 
Air 0.5 -1 10 5.48557 

Saltwater 0.5 0 10 4.026025 
Saltwater 0.5 0.5 10 3.34571 
Saltwater 0.5 -0.5 10 4.72659 
Saltwater 0.5 -1 10 5.48557 
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   4.2 Crack Path 

In uniaxial (λ = 0) experiment, the crack path looked the same for both air and 

saltwater environments. The crack growth at 90° angle to the direction of the load and it 

was collinear to the precrack and notch. The crack path did not change due to the absence 

of mode II stress intensity factor (𝐾𝐾𝐼𝐼𝐼𝐼 = 0) [25]. Figure 4.1 shows the crack path of a 

uniaxial specimen tested under cyclic load in air and saltwater. 

 

Figure 4.1: The Crack Path of an AA 7075-T6 Uniaxial Specimen Tested under Cyclic 

Load in Air and Saltwater Environments. 

 In biaxial (λ = 0.5, -0.5, -1) experiments, the crack looked the same for all 

biaxility ratios in both air and saltwater environments. The crack growth at 90° angle to 

the load applied in y-direction and it was collinear to the precrack and notch as in the 

case of the uniaxial fatigue. Figure 4.2 shows the crack path of an AA 7075-T6 biaxial 

specimen tested under cyclic load in air environment.   
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Figure 4.2: The Crack Path of an AA 7075-T6 Biaxial Specimen Tested under Cyclic 

Load in Air Environment. 

The crack stayed collinear up to the failure of the specimens and didn’t change its 

path as it propagated.  Therefore, we could conclude the same explanation as the uniaxial 

experiment from the collinear path of the crack in the biaxial test which is the 

nonexistence of the mode II stress intensity factor (𝐾𝐾𝐼𝐼𝐼𝐼 = 0).  This conclusion can be 

verified analytically using equation (2.36) and also, from the finite element analysis. 

Figure 4.3 shows the direction of crack propagation for this case. 

 
Figure 4.3: The Direction of the Initial Crack Path of an AA 7075-T6 Biaxial Specimen 

under Fatigue Load in Air and Saltwater Environments Using Analytical, Finite Element 

and Experimental Methods. 

Loads direction 
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   4.3 Crack Growth Rate 

Crack growth rates (da/dN) were calculated from the measured crack length and 

its corresponding number of cycles relationship. It is common to define fatigue crack 

growth behavior by the relationship between crack growth rate (da/dN) and the crack 

driving force. After that, these were correlated with the crack driving forces to explain the 

fatigue crack growth behavior. Mode I stress intensity factor range (∆KI)  usually states 

the crack driving force, and that’s when the crack is collinear to the precrack  

4.3.1 Crack Growth Rate of Uniaxial Specimen λ = 0 in Air and Saltwater 

Environments 

In this case, the fatigue load was applied in Y-direction only. The maximum load 

was 12000 N and the minimum load was 6000 N. Figure 4.4 shows the load applied 

versus the time. The crack length versus number of cycles for λ = 0 specimen in air and 

saltwater environments can be seen in Figure 4.5. 

 

Figure 4.4: The Applied Loads of Specimen λ = 0 in Air and Saltwater Environments.  
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Figure 4.5: Crack Length Versus Number of Cycles for λ = 0 Specimen in Air & 

Saltwater Environments. 

Figure 4.6 shows the crack growth behavior for uniaxial tests λ = 0 in air and 

saltwater environments by looking into the relationship between the crack growth rate 

(da/dN) and the stress intensity factor (∆K). In both environments, seem to have the same 

crack growth rate versus stress intensity factor curve.  In other words, as (ΔK) increases, 

the (da/dN) increases too but in saltwater environment the curve of crack growth rate 

versus the stress intensity factor (∆K) is higher than the air environment by 36%. 
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Figure 4.6: Crack Growth Rate versus Stress Intensity Factor for Uniaxial Specimens in 

Air and Saltwater Environments. 

   

4.3.2 Crack Growth Rate of Biaxial Specimen λ = 0.5 in Air and Saltwater 

Environments 

 Figure 4.7 shows the applied load on biaxial specimen with λ = 0.5 for both air 

and saltwater environments. The maximum and minimum loads in Y-direction were 

12000 N and 6000 N respectively. There for, the maximum and minimum loads on X-

direction were 6000 N and 3000 N respectively. Figure 4.8 shows the crack length versus 

number of cycles for biaxial specimen λ = 0.5 for both air and saltwater environments. 

The crack propagates in the saltwater environment faster than the air environment.  
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Figure 4.7: The Applied Loads of Specimen λ = 0.5 in Air and Saltwater Environments.  

 

 

Figure 4.8: Crack Length versus Number of Cycles for λ = 0.5 Specimen in Air & 

Saltwater Environments.  
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Figure 4.9 shows the crack growth behavior for biaxial tests λ = 0.5 in air and 

saltwater environments by looking into the relationship between the crack growth rate 

(da/dN) and the stress intensity factor (∆K). They seem to have the same crack growth 

rate versus stress intensity factor curve as stress intensity factor increases, the crack 

growth rate increases too but in saltwater environment the curve is higher than the air 

environment, which means that corrosion accelerates the crack growth rate. 

 

Figure 4.9: Crack Growth Rate versus Stress Intensity Factor for Biaxial Specimen λ = 

0.5 in Air and Saltwater Environments.  
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direction were 6000 N (compression) and 3000 N (compression) respectively, Figure 

4.10. 

 

Figure 4.10: The Applied Loads of Specimen λ = -0.5 in Air and Saltwater Environments.  

The relationship between the crack length and the number of cycles for the 
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saltwater environment comparing to air environment.  
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Figure 4.12 shows the relationships between crack growth rates (da/dN) and stress 

intensity factor (ΔK) for negative biaxial specimen λ = -0.5. The curve of saltwater 

environment was higher than air environment, which shows that with corrosion the crack 

propagates faster. 

 

Figure 4.12: Crack Growth Rate versus Stress Intensity Factor for Negative Biaxial 

Specimen λ = -0.5 in Air and Saltwater Environments.  
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Figure 4.13: The Applied Loads of Specimen λ = -1 in Air and Saltwater Environments.  

 

Figure 4.14: Crack Length versus Number of Cycles for λ = -1 Specimen in Air & 

Saltwater Environments.  
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environment was higher than air environment, which shows the crack grows faster in 

saltwater environment due to the existing of corrosion. 

 

Figure 4.15: Crack Growth Rate versus Stress Intensity Factor for Negative Biaxial 

Specimen λ = -1 in Air and Saltwater Environments.  

 

4.3.5 Crack Growth Rate of All Specimens in Air and Saltwater 

Environments 

Now, for purpose of comprehension and correlation, all tests were plotted in 

figures together to give a superior look to the impacts of changing the biaxial ratio λ on 

the crack growth rate versus the stress intensity factor. Figure 4.16 delineates the 

relationship between the crack length and the number of cycles for all tests in air 

environment. It was observed that when biaxial ratio λ decreased the crack required less 

number of cycles. In saltwater environment, appears to have the same result, which is as 

the biaxial ratio λ decreased the crack required less number of cycle to fail, Figure 4.17. 

0.000001

0.00001

0.0001

0.001

2 4 8

𝑑𝑑𝑎𝑎
/𝑑𝑑
𝑁𝑁

 (m
m

/c
yc

le
)  

  

ΔK (MPa*m^0.5) 

Crack Growth Rate vs Stress Intensity Factor for Biaxial 
Specimen λ = -1 in Air & Saltwater Environments 

Air

saltwater



48 

 

 

Figure 4.16: Crack Length versus Number of Cycles for All Specimens in Air 

Environment.  

 

Figure 4.17: Crack Length versus Number of Cycles for All Specimens in Saltwater 

Environment.  
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Figure 4.18 shows the crack growth rates (da/dN) versus stress intensity factor 

(ΔK) for all specimens in air environment. It was observed that the curve located higher 

as the biaxial ratio decreased. This means that crack propagated faster when the biaxial 

ratio decreased. Also, the stress intensity factor (ΔK) greatly increased at same crack 

length when the biaxial ratio decreased. Figure 4.19 shows that the curves of (da/dN) 

versus (ΔK) of all experiments tested in saltwater environment. It shows the same 

tendency comparing to the air environment. As λ decreased, the curve moves upper and 

ΔK sufficiently increased at the same crack length.  

 

Figure 4.18: Crack Growth Rate versus Stress Intensity Factor for All Specimens in Air 

Environment.  
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Figure 4.19: Crack Growth Rate versus Stress Intensity Factor for All Specimens in 

Saltwater Environment.  
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Figure 4.20: SEM Images of Fracture Surfaces for Different Biaxial Cases in Air 

Environment: (a) biaxial (λ= 0.5), (b) uniaxial (λ= 0), (c) biaxial (λ= -0.5),  

(d) biaxial (λ= -1).  

 

 The uniaxial (λ= 0) and the negative biaxiality (λ= -0.5, -1) have a planar slip 

microstructural feature. In case of positive biaxiality (λ= 0.5), the fracture surface has a 

combination of planar and wavy slip microstructural features. See Appendix C. 
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V. Conclusions and Recommendations 

   5.1 Conclusions 

This thesis presents the results of a study to quantify the effects of biaxial loading 

on fatigue crack behavior in both air and saltwater (3.5% NaCl) environments from pre-

cracked notched circular hole in a 7075-T6 cruciform specimen using a fracture 

mechanics approach.  With stress ratio of R = 0.5, the crack growth behavior was 

investigated under in-plane biaxial tension-tension and compression-tension fatigue with 

0.5, 0, -0.5, and -1 biaxial stress ratio λ. This research presents and documents the details 

of these experiments which can be useful to understand the concept of corrosion fatigue 

and overcome this mode of failure in the real applications. The following conclusions can 

be drawn from this study: 

1. A single crack propagates collinear to the precrack and notch for negative 

biaxial and uniaxial fatigue. 

2. The crack required less number of cycles to fail in saltwater environment, than 

in ambient air environment. The number of cycles in corrosion environment 

decreases on 57%. The number of cycles decreases when the biaxial ratio 

decreases. 

3. The specimens tested with a negative biaxiality have a higher crack growth 

rate than a positive biaxiality and uniaxial loading. This happens due to the 

effect of Poisson’s ratio. When the specimen is compressed in x-direction, it 

tends to expand in y-direction (i.e. perpendicular to the direction of 

compression).  
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4. At a given crack length, the stress intensity factor (ΔK) at the crack tip greatly 

increased as the biaxial ratio decreased. 

   5.2 Recommendations 

 More testing on the fatigue crack growth from cracks initiated from a notched 

circular hole in air and saltwater environment in AA 7075-T6 should be conducted due to 

the variability that is inherent in materials testing. To simulate real life boundary 

conditions, further analysis could be done for the negative biaxiality such as:   

1. Different angles of the crack. 

2. Multiple cracks.  
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Appendix A: Finite Element Method (FEA) 

 

Figure A.1: Sketch of the Specimen in Abaqus Program. 

 

 Figure A.2: Sketch of the Hole, Notch and the Precrack in Abaqus Program. 
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Figure A.3: Sketch of the Hole, Notch and the Crack in Abaqus Program.  

 

Figure A.4: The Whole Part of the Specimen in Abaqus Program with the Crack. 
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Figure A.5: A Closer Look to the Hole, Notch, and the Crack in Abaqus Program. 

 

Figure A.6: Assigning the Material Type which is Aluminum Alloy 7075-T6 to the 

Specimen. 
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Figure A.7: Specifying the Location and the Direction of the Crack-tip. 

 

 Figure A.8: Assigning the Masters’ and the Slaves’ Surfaces. 
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 Figure A.9: Specifying the Loads to the Arms of the Specimen. 

 

Figure A.10: Generating Partition for High Density Mesh in Order to Improve the 

Accuracy of the Results.  
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Figure A.11: Mesh of the Specimen in Abaqus Program. 

 

Figure A.12: A Closer View of the Mesh at the Crack-Tip. 
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Figure A.13: Creating a Job for Submition in Abaqus Program. 

 

Figure A.14: Undeformed Shape of the Specimen After Job Submittion. 
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Figure A.15: The Stresses at the Crack-tip After Simulation.  

 

 

Figure A.16: Results After Finishing the Calculations in Abaqus Program. 
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Table A.1: ΔK for all biaxial ratios at 10 mm crack length. 

Biaxial Ratio (λ) stress intensity factor (ΔK) 

(MPa*m^0.5) 

0.5 4.6 

0 5.17 

-0.5 5.72 

-1 6.3 
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Appendix B: Pictures of the Cracks at Different Biaxiality ratio, Conditions and 

Environments.  

 
Figure B.1: Crack Shape for λ=0 at 220,000 Cycles in Air Environment. 

 

Figure B.2: Crack Shape for λ=0 at 160,000 Cycles in Saltwater Environment. 
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Figure B.3: Crack Shape for λ=0.5 at 600,000 Cycles in Air Environment. 

 

Figure B.4: Crack Shape for λ=0.5 at 120,000 Cycles in Saltwater Environment. 
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Figure B.5: Crack Shape for λ=-0.5 at 75,000 Cycles in Air Environment. 

 

Figure B.6: Crack Shape for λ=-0.5 at 100,000 Cycles in Saltwater Environment. 
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Figure B.7: Crack Shape for λ=-1 at 85,000 Cycles in Air Environment. 

 

Figure B.8: Crack Shape for λ=-1 at 40,000 Cycles in Saltwater Environment. 
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Appendix C: SEM Images of the Fracture Surfaces 

 

Figure C.1: SEM Image of Fracture Surface for Uniaxial Case in Air Environment.  

 

Figure C.2: SEM Image of Fracture Surface for Biaxial Case (λ= 0.5) in Air 

Environment.  
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Figure C.3: SEM Image of Fracture Surface for Biaxial Case (λ= -0.5) in Air 

Environment.  

 

Figure C.4: SEM Image of Fracture Surface for Biaxial Case (λ= -1) in Air Environment.  
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Figure C.5: SEM Image of Fracture Surface for Uniaxial Case in Saltwater Environment.  

 

Figure C.6: SEM Image of Fracture Surface for Biaxial Case (λ= 0.5) in Saltwater 

Environment.  
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Figure C.7: SEM Image of Fracture Surface for Biaxial Case (λ= -0.5) in Saltwater 

Environment.  

 

Figure C.8: SEM Image of Fracture Surface for Biaxial Case (λ= -1) in Saltwater 

Environment.  
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Figure C.9: SEM Images of Fracture Surfaces for Different Biaxial Cases in Saltwater 

Environment: (a) biaxial (λ= 0.5), (b) uniaxial (λ= 0), (c) biaxial (λ= -0.5),  

(d) biaxial (λ= -1).  

 

 

 

 

 

(a) (b) 

(c) (d) 

Precrack Precrack 

Precrack 
Precrack 
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