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Abstract

Truly autonomous operation for any field robot relies on a well-defined pyramid

of technical competencies. Consider the case of an autonomous car - we require

the vehicle to be able to perceive its environment through noisy sensors, robustly

fuse this information into an accurate representation of the world, and use this

representation to plan and execute complex tasks - all the while dealing with the

uncertainties inherent in real world operation.

Of fundamental importance to all these capabilities is localisation - we always

need to know where we are, if we are to be able to plan where we are going (or how to

get there). As road vehicles make the push towards becoming truly autonomous, the

system’s ability to stay accurately localised over its operating lifetime is of crucial

importance - this is the core issue of lifelong localisation.

The goals in this thesis are threefold - to develop the hardware needed to reliably

acquire data over large scales, to build a localisation framework that is robust enough

to be used over the long-term, and to establish a method of adapting our framework

when necessary such that we can accommodate the inevitable di�culties present

when operating over city-scales.

We begin by developing the physical means to make large-scale localisation

achievable, and a↵ordable. This takes the form of a stand-alone, rugged sensor

payload - incorporating a number of sensing modalities - that can be deployed in

either a mapping or localisation role.

We then present a new technique for localisation in a prior map using an information-

theoretic framework. The core idea is to build a dense retrospective sensor history,

which is then matched statistically within a prior map. The underlying idea is to

leverage the persistent structure in the environment, and we show that by doing so,

it is possible to stay localised over the course of many months and kilometres.

The developed system relies on orthogonally-oriented ranging sensors, to infer

both velocity and pose. However, operating in a complex, dynamic, setting (like

a town centre) can often induce velocity errors, distorting our sensor history and

resulting in localisation failure. The insight into dealing with this failure is to learn

from sensor context - we learn a place-dependent sensor model and show that doing

so is vital to prevent such failures.

The integration of these three competencies gives us the means to make inex-

pensive, lifelong localisation an achievable goal.
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Chapter 1

Introduction

1.1 Where am I? Lifelong localisation

The focus of this thesis is accurately localising a road vehicle in a map over its

lifetime. Localisation is the keystone that supports the entire autonomous vehicle

architecture - planning, navigating, and exploring. Almost every task that we would

like an autonomous vehicle to accomplish will rely on these tasks, thus accurate

localisation is a vital competency.

One can imagine the scope of such an endeavour when we consider the variable

faces of the towns and cities we live in. Consider the stark di↵erences in appearance

between summer and winter, or the contrast between a previously empty lot and a

new building site. Can we be sure that our experiences navigating the world a year

ago will be just as relevant today?

The question of longevity in localisation is an important one to resolve if au-

tonomous vehicles are to become a widespread reality. We cannot be tasked with

repeatedly re-building a map of our surrounds; we require persistence.

The use of the Global Positioning System (GPS) has provided means for ac-

curate localisation in areas unencumbered by foliage, buildings, and other urban
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1.2 Large-scale urban localisation

infrastructure - in short, the areas we most want to operate in. Urban centres in-

duce multi-path errors, and in some cases cause complete signal drop-out. Should

the absence of a GPS signal preclude us from confidently navigating a parking struc-

ture, or an underground tunnel?

Much focus has been given to the problem of simultaneously exploring and navi-

gating - however, consider the usage profile of a typical driver. It is posited that the

time spent navigating around a known environment will far exceed the number of

times that it will be necessary to explore and map. We therefore make explicit the

assumption that we are provided with a prior map, and develop the hardware and

software to make localisation within this map - and within a budget - an achievable

goal.

1.2 Large-scale urban localisation

In this thesis, we develop the means - in hardware and software - to provide a vehicle

with the ability to stay accurately localised over the course of its operating life using

an inexpensive sensor suite. This thesis is comprised of three core components:

1. Building systems for data acquisition and synthesis.

2. Building the inference framework necessary to localise in a map over extended

periods.

3. Plastically adapting our sensor models given their surroundings, in order to

adapt to a fluid, dynamic world.

Our hope is to provide a compelling narrative for the use of simple, inexpensive

sensors for the express purpose of localisation within a map. Chapter 2 serves as a

introduction to localisation, and Chapter 3 details some of the hardware and software

requirements for operating on massive datasets - these can be skipped by readers
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1.3 Contributions

familiar with such concerns. The core of this thesis lies in the localisation strategy

Chapter 4, which is extensively validated in Chapter 5, and the context-driven sensor

adaptation in Chapter 6.

1.3 Contributions

The core contributions of this thesis are:

1. An information-theoretic localisation framework, validated extensively with

real-world data collected over more than a year, that

(a) is robust in the face of drastic scene change, and

(b) leverages a context-specific sensor model, allowing for localisation over

large scales.

2. A stand-alone localisation/mapping unit, complete with both hardware and

software.

3. An implementation of a city-scale simulator, capable of providing large-scale

realistic point cloud data from simulated ranging sensors.

Thesis Structure

This thesis opens with a review of vehicle localisation techniques, and a background

on localisation techniques for field robots. This chapter also includes a primer on

the registration of sensor data, which will be used extensively in later chapters as

part of a complete system.

The following chapter describes in depth the development of a simulator, which

leverages a powerful procedural model generator to build simulated datasets of ar-

bitrary cities, in real time. The synthesis of such data is useful for the exploration
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1.4 Publications

and validation of algorithms, alleviating some of the logistical burden of data col-

lection. This is followed by the description of the design and build of a stand-alone

dual-purpose localisation/surveying system, intended to leverage the algorithms and

concepts presented in this thesis.

Given the tools for rapidly acquiring (or synthesizing) sensor data over city scales,

Chapter 4 develops the core strategy for localisation within a prior map. We focus

here on the principles underlying the information-theoretic estimation approach,

and also develop fall-back localisation techniques that leverage the advantages of

the sensor modality chosen. The idea is to use a retrospective “swathe” of sensor

data - built by fusing the output of multiple sensor modalities into a coherent whole

- and matching the statistics of this sensor history with our prior map. This is then

validated extensively over real-world data, spanning over a year, and traversing more

than 100 kilometres.

Of course, operation over large scales has the potential to cause sensor degrada-

tion when confronted with highly dynamic scenarios, and we are not immune to this.

The core idea in dealing with these situations is by learning a spatially-dependent

sensor model that is capable of filtering the data such that the e↵ect of these errors

is drastically reduced, allowing for persistent localisation within a dynamic, complex

workspace.

We take the position that it is not enough to rely on a single privileged model over

the course of the vehicle operating life, and that doing so incorporates a brittleness

that is easily dealt with in the proposed approach.

1.4 Publications

Road vehicle localization with 2D push-broom LIDAR and 3D priors.

The core of Chapter 4 was published in the IEEE International Conference on
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Robotics and Automation (ICRA) in Minneapolis, Minnesota in May, 2012.

Laser-only road-vehicle localization with dual 2D pushbroom LIDARs

and 3D priors. This work was submitted, and accepted, for publication in the

IEEE/RSJ International Conference on Intelligent Robots and Systems in Vilam-

oura, Portugal.

The New College Vision and Laser Data Set. The New College dataset

was the first in a new track of data papers published in the International Journal of

Robotics Research (IJRR) in May, 2009. Both the dataset, and stand-alone software

tools for accessing and manipulating the data are available online 1.

1http://www.robots.ox.ac.uk/NewCollegeData/
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Chapter 2

Background

2.1 Introduction

The idea of truly autonomous road-vehicles is fast becoming a reality. Initiatives like

Google’s Car project and the Defense Advanced Research Projects Agency (DARPA)

Grand and Urban challenges have inspired great advances in autonomous driving

technology. Figure 2.1 shows the podium finishers of the 2005 Grand Challenge:

(a) 1 Stanley (b) 2 Sandstorm (c) 3 H1ghlander

Figure 2.1: Grand Challenge medallists. (a) Stanley, Stanford (b) Sandstorm,
CMU (c) H1ghlander, CMU.

The Grand Challenge was a showcase for the capabilities of some of the first

autonomous vehicles, with 5 vehicles completing the entirety of the 212km desert

course. The successor to the Grand Challenge was the 2007 Urban Challenge, in

which the contestants were required to navigate a simulated urban setting, com-
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2.1 Introduction

plying with the rules of the road and dealing with simulated tra�c, and other

competitors. Figure 2.2 shows the final podium finishers of the challenge:

(a) 1: Boss (b) 2: Junior (c) 3: Victor Tango

Figure 2.2: Urban Challenge medallists. (a) “Boss”, Tartan Racing, CMU (b)
“Junior”, Stanford (c) “Victor Tango”, Virginia Tech.

The “urban” nature of this challenge required teams to deal with other tra�c,

GPS dropout - mainly due to the “urban-canyon” e↵ect, and signal degradation

from overhanging foliage - and a host of other real-world di�culties.

The VisLab1 Intercontinental Autonomous Challenge was an autonomous vehicle

endurance-test, running from July to October of 2010. The challenge started in

Parma and terminated in Shanghai, and was designed to validate the concept of an

autonomously driven vehicle - albeit in a “follower” mode - over continental scales.

All of these challenges served to highlight the advancement in driverless technol-

ogy across a broad spectrum of competencies - including navigation, path-planning,

trajectory planning, and localisation. Localisation is of particular interest, as it

forms a lower-level element on the technology pyramid that is required for success-

ful autonomous operation. Consider Figure 2.3, a depiction of the information flow

for “Boss”:
1http://viac.vislab.it/
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2.1 Introduction

Figure 2.3: Information flow for an autonomous vehicle. The system diagram
for the autonomous vehicle, “Boss”. Note the core position of the estimation module
(emphasis added).

Note the location of the state-estimator module at the root of the hierarchy -

knowing the state of the vehicle is required for any higher-level behaviours.

In this thesis we are concerned with long-term, large-scale localisation of a road

vehicle in an expansive workspace. The ability to localise against a given map over

long periods of time is of considerable importance. We will make use of such a map

(the definition of which will be formalised in Chapter 4), and develop systems to

robustly estimate vehicle position across a range of conditions.

The vehicles in these challenges made use of a wide variety of sensor suites,

incorporating a host of di↵erent sensing modalities, from active sensing - RADAR,

LIDAR (light detection and ranging) - to passive sensors, predominantly vision-

based. In the following section we examine the current state-of-the-art in terms of

localisation for road vehicles, and the corresponding sensor modalities used.
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2.2 Localisation on the road: an overview

2.2 Localisation on the road: an overview

This thesis is concerned with long-term, large-scale road vehicle localisation across

weather conditions using low cost LIDAR. The core focus here is on providing robust

estimates of vehicle state in a previously surveyed workspace, to facilitate higher level

behaviours such as path and trajectory planning.

We do not consider the mapping problem - the number of times we will require

a vehicle to explore unknown territory will be dwarfed by the number of times the

vehicle will operate in a known environment. Therefore, we will assume that we have

access to a previously obtained map of the workspace, and focus on the accurate

localisation within this map over extended periods. The following sections partition

localisation solutions into those which are predominantly LIDAR-based, versus those

relying mainly on vision - although for any system, the final output will be a fused

combination of these estimates.

LIDAR-based Localisation

Road-vehicle localisation in this context has been explored by a number of authors

- and was crucial for all systems in the Urban Challenge. All of the challenge

teams made use of a heterogeneous mixture of LIDAR sensors, both 2D and 3D.

The dimensionality of the sensor here refers to how it perceives the world - if the

observations are a full characterization of the environment, i.e. sensor readings are

in R3, this is a 3D sensor. A statically mounted planar scanning-LIDAR sensor is a

2D sensor2.
2Note that depending on the frame of reference (i.e. global vs sensor) these could also be called

2D and 1D sensors.
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2.2 Localisation on the road: an overview

3D LIDAR

The Stanford entry - Junior - relied on a combination of reflectivity-based localisation

and curb-based landmark matching. This reflectivity-based localisation by Levinson

et. al [55],[56] is the most similar in spirit to this thesis. In terms of perception

the authors make use of a 3D ranging sensor - the Velodyne HDL-64E - to perform

both mapping and localisation [65]. The Velodyne is an actuated LIDAR sensor -

range-readings are obtained by rotating a bank of 64 laser diodes at 10Hz - and

was used extensively by teams during the challenge. Figure 2.4 shows the Velodyne

LIDAR, and a map built using this sensor around the city of Karlsruhe:

(a) HDL-64E (b) 3D dataset

Figure 2.4: Velodyne HDL-64E 3D LIDAR . The Velodyne was a core compo-
nent for mapping and localisation for many teams in the Urban challenge. (a) shows
the sensor, and (b) a map acquired by [66].

The mapping component for Junior requires an o✏ine relaxation step, which is

then used at run-time in conjunction with a Sequential Monte Carlo - or particle -

filter to estimate SE2 pose. A particle filter can be thought of as a discrete approxi-

mation to a continuous probabilistic quantity - more about this in Section 2.3.1. The

authors also made use of velocity data from the on-board INS during the prediction

step, as well as a “sensor-resetting” trick - as proposed by [54] - in which a small

number of particles are drawn from an “oracle”, in this case, a Global Positioning

System (GPS) sensor. Continually replenishing the particles in this fashion avoids
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2.2 Localisation on the road: an overview

particle depletion - a known issue with particle-filter methods - although it does

require access to a GPS.

While the results presented are impressive, the goal of this thesis is to develop

a system that has no reliance on velocity estimates from an INS, global pose esti-

mates, or an expensive 3D sensor like the Velodyne. We also seek to remove the

requirement for the expensive o✏ine relaxation step. The broad vision here is to

augment vehicles with sensor payloads that are inexpensive, do not require modifi-

cations to the vehicle itself, and can be used in environments that present di�culties

for GPS-based systems (urban canyons, high-latitudes, and so on).

In [51], the authors again make use of a Velodyne scanning LIDAR unit in a GPS-

attenuated environment (a parking structure) to perform mapping and localisation.

A representation of the workspace is built up by developing multi-level surface maps

- a 2.5 dimensional-representation of the environment. To localise, the authors again

make use of a particle filter to estimate the distribution over pose state. Particle

depletion is avoided by employing techniques from [31].

Although 3D sensors like the Velodyne are useful for many tasks (obstacle detec-

tion, mapping and so on) we restrict ourselves in this thesis to only consider planar

scanning LIDAR sensors. There are multiple reasons to eschew 3D sensors including

high cost, and calibration challenges (both extrinsic and intrinsic) amongst others.

In the next section, we consider localisation techniques that focus on 2D LIDAR.

2D LIDAR

The Carnegie Mellon Urban Challenge entry, [97] estimated vehicle position relative

to the known (or estimated) road shape. This is an interesting concept, and one

that will be pursued in this thesis; it is not necessary to have a globally metric map

for the purpose of localisation, when all that is needed is the relative position with

respect to some local representation of the world.
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2.2 Localisation on the road: an overview

The vehicle had access to GPS data through the on-board Applanix POS-LV

220 INS, and while the authors note that the precision of this particular INS is on

the order of 0.1m, disruptions of the GPS signal from overhanging vegetation cause

severe degeneracy - this is something that we encounter in this thesis, and is detailed

in Chapter 4. The authors utilise declined SICK LIDARs to detect the passage of

road markings, which are then used to register the perceived data within the map,

providing continuous vehicle estimates (although this system was not actually active

during the Challenge finals).

The Team Victor Tango entry [2] (a Hybrid Ford Escape) was equipped with

a NovAtel Propak LB+ INS with OmniStar HP corrections, and used a bank of

short-range SICK scanning LIDARs to perform curb-based localisation on the road-

network. The authors note explicitly the e↵ect of GPS “pop” - a noticeable change

in position estimates when the vehicle transitions between areas of poor and good

signal coverage - the resulting trajectory estimates are highly discontinuous (this

e↵ect is noticed in Chapter 4). To compensate for this behaviour, a separate “de-

coupled” state-estimate is computed, using solely inertial and odometric data, and

fused in a filtering framework.

Similar to the work presented in this thesis - in terms of sensing modality and

scope - is that of Bosse et al. [13]. In this work, the authors utilise a rooftop-

mounted 2D LIDAR for the purposes of large-scale outdoor mapping. Local maps

- built from performing Iterative Closest-Point (ICP) scan-matching over successive

LIDAR scans - are integrated into a global map by the Atlas framework [12]. ICP

is a widely used technique in robotics for both mapping and localisation, and is

detailed further in Section 2.3.2. The authors validate the system by mapping over

50 kilometres of urban road around Brisbane.

Whilst the scale of this endeavour is impressive, we eschew the use of 2D LIDAR

maps in this thesis - our experiences using solely 2D LIDAR to stay localised within
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2.2 Localisation on the road: an overview

a single map over the course of several months show that this is not a feasible repre-

sentation for robust, long-term localisation performance - this is shown in Chapter 4.

While we also make use of a 2D LIDAR, we will deploy it in such a way that we

acquire 3D maps. Such maps provide a much richer description of the world, and

are better suited to long-term localisation tasks - a fact that is quantified and made

explicit in section Chapter 4.

In the aerospace community, Carle et al. [19] make use of a prior in the form of

an elevation map - a realistic assumption for a planetary rover. The authors develop

a Multi-frame Odometry-compensated Global Alignment (MOGA) algorithm, that

matches 3D features from the 3D prior with similar features observed from an on-

board 3D LIDAR - this global alignment is typically conducted sparsely along the

trajectory, with the inter-scan trajectory estimates obtained through Visual Odom-

etry.

For completeness, we also consider work done in the field of Airborne Laser-

Swathe Mapping (ALSM). Swathe-mapping arises naturally from the ground-mapping

techniques employed by aerial vehicles, in which a powerful LIDAR is mounted per-

pendicular to the direction of travel of the aircraft, and “swathes” are built up from

the ego-motion of the vehicle and the observed LIDAR data. In [95] the authors

consider simulated LIDAR data taken of the ground from an aircraft overflight of a

target environment, with the inter-swathe registration providing an estimate of the

vehicle trajectory - however, as a proof of concept, no real-world experiments were

presented. In [41] the authors build an o✏ine post-processed database of planar

patches, extracted from previous traversals of the target environment. Run-time

data is then matched against this database by estimating the transformations be-

tween map and run-time planar surface estimates - this approach relies heavily on

the decomposition of the scene into identifiable planar patches.

In this section, we have outlined representative LIDAR-based localisation sys-

14



2.2 Localisation on the road: an overview

tems, for both 2D and 3D LIDAR. In this thesis, we make exclusive use of 2D

LIDARs - the active nature of the sensor, and its correspondingly robust, reliable

performance is the prime motivating factor. In the next section, we explore the use

of vision-based systems for localisation.

Vision-based Localisation

Visual Odometry has had possibly the most engaging success story of all the afore-

mentioned methods - the authors in [20] describe the VO system used aboard the

Mars Spirit rover, as shown in Figure 2.5:

Figure 2.5: Visual Odometry. Consecutive frames from the Mars rover Spirit,
detected features in red and inter-frame correspondences highlighted in blue - these
correspondences are used to determine the camera ego-motion.

VO uses features identified across multiple image frames - highlighted in red

in Figure 2.5 - and uses these correspondences to estimate the ego-motion of the

camera. This is of course an odometric measure, subject to long-term drift.

Badino, Huber and Kanade [3] develop a hybrid topological-metric, or “topo-

metric” vision-based localisation system that is capable of providing metric pose

estimates and resolving topological localisation queries. Similar to our approach, a

workspace is surveyed with a system equipped with a variety of sensors - cameras,

laser range-finders, and GPS. A database of visual and point features is then built

o✏ine, with runtime localisation performed by a means of a Bayesian filter.
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2.2 Localisation on the road: an overview

A localisation approach similar in spirit to the work in this thesis is known as

Visual Teach and Repeat (VTR)[37]. In this work, a stereo-camera is used to build

a manifold world representation consisting of previously-visited submaps (the teach

phase), which is then used in subsequent revisits for localisation (repeat). VTR has

been demonstrated to work robustly over large scales for path repetition. However,

due to the limited view of the stereo camera used, this approach can su↵er from

relatively small convergence basin - this is a problem that is not encountered with

our chosen sensing modality in this thesis.

The authors of “SeqSLAM” [62] present a method for dealing with vastly-varying

appearance change over a given route, using image sequences - as opposed to image

features - to perform topological localisation within a previous traversal.

In [85], the authors make use of a monocular camera as the sole means of gen-

erating full 6-DOF poses from a previously-surveyed workspace. In this approach,

Normalised Information Distance is used as the metric in a multi-modal image and

LIDAR framework to compare the run-time appearance of a scene with a prior map

captured by a survey vehicle.

In [21] the authors again make use of a well-equipped survey vehicle to perform

a survey run, recording landmark features from a stereo camera. Subsequent runs

through the same environment attempt to localise within this canonical “experience”

- a localisation failure prompts the system to save the run-time data as a new

experience. In this Experience-Based Navigation (EBN) framework, by building up

experiences over many traversals of a route, the authors show the system can remain

localised across greatly varying seasonal conditions - however, the system still su↵ers

from a fundamental limitation of stereo-cameras in that lateral deviations cause

near-field feature drop-out, which is not the case with the LIDAR-based approach

in this thesis.

In [68] the authors develop a real-time pose-estimation system for road-vehicles
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2.3 Localisation within a prior map

by incorporating priors from overhead imagery with a state-of-the-art Relative Bundle-

Adjustment (RBA) [82] approach to produce global pose estimates.

Although we do not make use of vision techniques for localisation in this thesis,

they are an important facet of the final system - this is articulated in Chapter 3.

Given that our focus is now exclusively on LIDAR, we turn to a brief synopsis of

LIDAR-based localisation in a probabilistic framework, followed by a comparison of

an alternate localisation approach - scan-based registration.

2.3 Localisation within a prior map

Localisation can be thought of as a process that explains the sensor observations of

a vehicle as a function of its position in the world. As the platform moves through

the environment, sensor readings are accumulated which we seek to explain through

the trajectory of the vehicle in its surrounds.

For our localisation problem, we are concerned with estimating the Special Eu-

clidean 2 (SE2) pose of the vehicle, consisting of Cartesian (x, y) position and orien-

tation (✓), relative to some fixed coordinate system. This representation is su�cient

for both path and trajectory planning for a road vehicle - i.e. we do not require the

full 6 degrees-of-freedom (DOF) pose (similar arguments are posited in [55],[51]).

Figure 2.6 shows an illustration of the coordinate conventions used throughout this

thesis:
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2.3 Localisation within a prior map

Figure 2.6: Coordinate systems. xG
t

is a pose at time t, consisting of both position
and orientation with respect to some global fixed coordinate frame, G. Vehicle-frame
x and y axes are shown in red and green, respectively.

The pose of the robot x
t

, consisting of Cartesian position [x y]T and orientation

[✓], is expressed relative to a global fixed coordinate system, G. We are particularly

concerned with estimating this transformation relative to a given map - the goal here

is to develop a localisation system for a road-vehicle that can be used robustly over

the long-term - we are not concerned with exploration, or mapping in an unknown

environment.

In the following section, we briefly outline the theoretical foundation of the scan-

ning LIDAR, followed by a brief synopsis of probabilistic vehicle localisation.

2.3.1 Probabilistic localisation with ranging sensors

LIDAR - the optical equivalent of RADAR - makes use of a collimated3, coherent4

beam of light to perform ranging measurements. The LIDAR can be thought of

as a time-of-flight sensor - a beam of light is emitted from a source, and the time

3Light in which the constituent rays have been made parallel
4Rays are in phase with each other

18



2.3 Localisation within a prior map

between emission and subsequent reception of the signal is used in conjunction with

the speed of light to estimate the distance.

However, this direct method requires clocks that are accurate to the order of

pico-seconds - therefore, most o↵-the-shelf ranging units estimate the distance by

examining the phase-shift [69] of the returned light. Most surfaces will induce di↵use

reflection of LIDAR light, with the notable exception of highly-polished (or retro-

reflective surfaces), and materials that are transparent (e.g. glass). The LIDAR

sensor emits light at a given frequency, and then measures the phase di↵erence

between the emission beam, and that returned by the target surface. Knowing this

phase di↵erence ! and the frequency of the beam f , the distance travelled by the

beam is given by:

d =
!

2⇡
� where � =

c

f

and c is the speed of light. Figure 2.7 shows a commercially available scanning-

LIDAR unit - manufactured by SICK - used extensively throughout this thesis:

Figure 2.7: SICK scanning LIDAR. An LMS-151 scanning-LIDAR unit, used
throughout this thesis. The unit in this image is mounted upside-down in a custom,
rapid-prototyped mount.
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2.3 Localisation within a prior map

Scanning LIDARs similar to Figure 2.7 have been used extensively in indoor

robotics for many years. An early success using 2D LIDAR for localisation and

mapping over long-term was Minerva [89], a museum tour-guide robot that oper-

ated for several weeks in the Smithsonian National Museum of American History.

The robot made use of both a horizontally-mounted scanning LIDAR and cameras

to localise itself within an occupancy-grid [34] representation of the world. An oc-

cupancy grid is a discretized world view, in which grid-cell values correspond to the

belief of occupancy:

Figure 2.8: 2D occupancy grid. A 2-dimensional occupancy grid of a toy envi-
ronment. Cell values correspond to the belief of occupancy (darker cells indicate a
higher belief). The occupancy grid is a discretized representation of a map, m. x

t

corresponds to the pose of the robot at time t. Also shown are individual sensor
measurements {z1

t

, · · · , zN
t

} from an on-board sensor.

The occupancy grid map, m = {m1, · · · ,m2} is a collection of cells, each with

a belief over the occupied state of the cell. Occupancy grids are simple, discrete

approximations of the underlying map, m, although they can be expensive to store

for large environments - a 100m x 100m grid representing an outdoor scene with

granularity .5m has 40k cells.

Visible in Figure 2.8 are sample measurements {z1
t

, · · · zN
t

} from an on-board

sensor, which for a LIDAR consist of range and bearing readings. For each reading,

we can construct an associated likelihood model, which is a conditional probability

distribution given what we know about the physical measurement process of the
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2.3 Localisation within a prior map

LIDAR, and the map in which we are operating. Figure 2.9 shows such a conditional

probability for an exemplar p(zi
t

| x
t

,m) 5 :

Figure 2.9: LIDAR beam model. A beam-model used in the measurement like-
lihood, inspired by a similar figure in [90]. The beam-model is comprised of a p

short

component, modelled by an exponential distribution, a p
hit

component (Gaussian),
a “random” component (Uniform) and a max-range component (Uniform).

This conditional probability model is a measurement likelihood - it is a princi-

pled way of expressing how likely the observed reading is given the current state

and the map. In Figure 2.9, zi
?

t

represents the expected reading from the sensor, ob-

tained from ray-casting through the scene. The beam-model is comprised of multiple

components - a “short” component p
short

, modelling the probability of a premature

return, p
hit

modelling the hit component, and two uniform components modelling

noise and a max-range occurrence. The measurement likelihood is now defined as a

product:

p(z
t

| x
t

,m) =
NY

i=1

P (zi
t

| x
t

,m) (2.1)

Section 2.3.1 amounts to a strong independence assumption amongst individual

beams that is typically not true in real-world LIDAR returns. However, an often-

5In a widely-accepted abuse of notation, we use p(X) to represent p(X = x) for legibility
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2.3 Localisation within a prior map

used practice is to employ a subset of the LIDAR beams - this sub-sampling in

beam-space makes this independence assumption more valid, and it tends to work

well in practice.

Localisation using a map is expressed in Bayesian fashion, where - for any pose

x
t

and associated sensor readings z
t

- we can formulate the resulting probability

distribution over state as:

p(x
t

| z
t

,m) =
p(z

t

| x
t

,m) · p(x
t

| m)R
p(z

t

| x0,m) · p(x0 | m) dx0 (2.2)

where p(x
t

| z
t

,m) is the posterior probability distribution over pose given the

observed sensor data and map, p(z
t

| x
t

,m) is the likelihood of the sensor data given

the pose and map - and p(x
t

| m) is a prior probability distribution over the pose

in the map.

Of course, a single observation z
t

will be insu�cient to perform localisation in

the map with any degree of certainty. We therefore consider the entire trajectory

of the robot, consisting of a chain of poses and measurements. Given a sequence of

poses, x0:t�1, and the associated measurements z1:t, the posterior distribution over

the current pose x
t

is:

p(x
t

| x0:t�1, z1:t,m) = ⌘ · p(z
t

| x0:t, z1:t�1,m) · p(x
t

| x0:t�1, z1:t�1,m) (2.3)

where ⌘ is a normalisation factor. An important realization - and one that makes

inference tractable - is that given our position in the world, the current sensor

data is conditionally independent of all previous sensor data. It is of course not
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2.3 Localisation within a prior map

completely independent, but all the information previously observed is encapsulated

by knowledge of the pose - it is a su�cient statistic [88]. Given this conditional-

independence assumption, We can rewrite the likelihood term as:

p(z
t

| x0:t, z1:t�1,m) = p(z
t

| x
t

,m) (2.4)

The right-most term in Section 2.3.1 is termed the transition - or motion model

- and can be expressed as:

p(x
t

| x0:t�1, z1:t�1,m) = p(x
t

| x
t�1,m) (2.5)

These conditional independence assumptions are at the core ofMarkovian localisation.

As a shorthand - following [88], we now represent the posterior distribution over state

as the belief :

bel(x
t

) = p(x
t

| z1:t,m) (2.6)

and the pre-measurement update (i.e. the distribution over x
t

before observing

z
t

) as:

bel(x
t

) = p(x
t

| z1:t�1,m) (2.7)

Given the independence assumptions, and our shorthand for the probability dis-

tributions over x
t

, we can write the localisation process as a Bayesian filter:

23



2.3 Localisation within a prior map

Algorithm 1 Bayesian Filter

1: procedure Filter(bel(x
t�1), zt,m)

2: bel(x
t

) 
R
p(x

t

| x
t�1,m) · bel(x

t�1)
3: bel(x

t

) ⌘ · p(z
t

| x
t

,m) · bel(x
t

)
4: return bel(x

t

)
5: end procedure

The filter takes, as input, the posterior distribution over the previous state, and

the current measurements, and computes the posterior distribution over the current

state. The recursive nature of this filter is a core part of probabilistic state inference

in robotics.

We can represent the probability distribution - over poses and measurements -

as a directed graphical model (also known as a Bayesian network):

Figure 2.10: Bayesian Network. The posterior probability (represented as a
graph) of the pose (and observation) chain of the robot as it moves through the
environment. Observed quantities are shaded, unobserved - or latent quantities are
not. Localisation consists of estimating the latent states x0:n from the observed data
z1:n and the map, m.

A graphical model can be thought of as a pictorial representation of a proba-

bility distribution - in this case, the joint probability distribution over poses and

measurements. This representation is useful as it allows us to visualise immediately

the conditional independence properties of the joint distribution.

Of course, this formulation makes no assumption on how to model these proba-
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2.3 Localisation within a prior map

bility distributions. If the observations and transitions are both linear functions of

the state, and system noise is normally distributed, then a Kalman Filter (KF) is a

provably optimal Minimum Mean Square Error (MMSE) estimator [84].

However, given that this linearity assumption is unrealistic in real systems, a

common approach is to perform linearisation of the system - this is the basis of

the Extended Kalman Filter (EKF) [26], which performs such a linearisation of the

non-linear observation and transition functions by means of a Taylor expansion. A

significant improvement to the EKF is the Unscented Kalman Filter, as formulated

by [46]. The Unscented Kalman Filter (UKF) relies on a deterministic sampling

strategy known as sigma points - a form of stochastic linearisation. It has been

proved to be a more robust, accurate estimator of the posterior distribution.

The underlying model of these filtering techniques is the Gaussian distribution,

which is unimodal - this is problematic if we would like the model to consider various

hypotheses over state. To remedy this, Multi-hypothesis Tracking (MHT) [76] uses

a Gaussian Mixture Model (GMM) [27] to model multiple hypotheses over state.

An alternative non-parametric6 approach is to approximate the posterior distri-

bution in a discrete way. This was originally proposed by [92], and has had great

success in the field of robotics. In this Sequential Monte-Carlo - or particle - filter,

the posterior distribution over pose is represented as a set of weighted particles, as

is conceptualised in Figure 2.11:

6It should be noted that non-parametric does not imply that the model is without parameters.
Rather, the model does not correspond to any parametric family.
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2.3 Localisation within a prior map

Figure 2.11: Particle Filter: Approximation. A weighted set of particles repre-
senting the underlying continuous probability distribution over pose.

At time t, these particles are then propagated using the transition model, giving

rise to a new set of uniformly-weighted particles over pose-space:

Figure 2.12: Particle Filter: Propagation. The set of propagated particles, using
the motion model.

This is the prediction step. When new data are observed, the sensor-likelihood

serves as a re-weighting function:

Figure 2.13: Particle Filter: Re-weighting through the measurement like-
lihood. Particle re-weighting through the observed data.

The above figure is a slight abuse of this pictorial representation, given the

di↵erent domains plotted - however it serves well for this illustration. Given the

relative weights assigned to each particle by the likelihood, we can now represent

the posterior distribution over particles at t+ 1:
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2.3 Localisation within a prior map

Figure 2.14: Particle Filter: Approximation. The new set of re-weighted parti-
cles now form the discrete approximation of the posterior distribution. The dashed
circle represents a state-estimate added through external means, e.g. via GPS.

This figure palette was inspired by a similar sequence in [9]. As mentioned in

the introductory sections, this approach can su↵er from particle-depletion, where -

due to a few unlucky random numbers - the posterior is not well approximated by

the samples. Various re-sampling techniques are used, or in the case of [54], samples

are drawn from an “oracle”, which usually consists of a GPS unit.

Underlying this entire approach is a static world assumption - at each stage we

are assuming sensor data is generated from static parts of the world, which is of

course not true in a real environment. For our purposes, the map m is fixed -

what is required is continual, robust estimates of the location of the vehicle within

this map over the long term and, crucially, dealing with changes that occur in the

real-world but are not reflected in the map.

Given that our target application is traversing a road-network, we do not expect

to have to recover the global pose of the robot with no prior - the “global” localisation

problem. We are explicitly focused on a tracking problem, and therefore it is not

unreasonable to expect a vehicle to have good knowledge of its position at system-

initialization.

We now turn to an overview of the use of point-based registration methods for

localisation.
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2.3 Localisation within a prior map

2.3.2 Localisation through registration

Given two sets of readings from a scanning LIDAR, the localisation problem can

alternatively be framed as a registration problem. By aligning - or registering - these

two sets of points (referred to as point clouds), we can estimate the inter-scan motion

of the sensor. In an odometric or open-loop case, these two readings will be successive

scans z
t

and z
t�1, but in the case of localisation will be z

t

and appropriate points

from the map, m. Scan-matching is often used in either open-loop or localisation

modes, although global localisation techniques have been implemented [94].

To be consistent with the literature, we define a transformation T as a 3⇥ 3 ho-

mogeneous transformation, comprised of a rotational and translational component:

T 2

8
><

>:

0

B@
R t

0 1

1

CA

�����R 2 SO(2), t 2 R2

9
>=

>;
(2.8)

where R is the Special-Orthogonal Group SO(2) representing the rotation, and

t is the Cartesian translational component - T is therefore a member of the Special

Euclidean Group, SE(2).

As an example of the registration problem, Figure 2.15 shows two consecutive

scans - separated by 1 second - from a SICK LMS-151 horizontally-mounted on a

vehicle, passing through a typical urban scene:
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2.3 Localisation within a prior map

Figure 2.15: Consecutive LIDAR scans: LIDAR frame. Two consecutive
sensor scans from a horizontally-mounted SICK LMS-151 rendered into the same
frame. These are annotated P and Q, which arise from projecting the range read-
ings z

t

and z
t�1 into a Cartesian frame. Visible in both scans are similar scene

elements - these will be used to estimate the intra-scan alignments. Visible also is
the maximum-range scanning outline of the SICK LIDAR - this is approximately
50m.

Note that we have replaced z
t

and z
t�1 with P and Q, which are the projections

from range and bearing readings to Cartesian space.

Visible in both scans are similarities arising from the spatial co-location of these

scans - a hedgerow (curved-section) is very visible in both LIDAR sweeps. The task

is now to estimate the inter-scan transformation T 0 2 SE2 that will align P with Q

- this resulting transformation will correspond to the motion of the sensor over the

intervening time period. Figure 2.16 shows the results of applying the known - or

ground-truth - transformation to scan P :
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2.3 Localisation within a prior map

Figure 2.16: Consecutive LIDAR scans: Global frame. The same two scans
as in Figure 2.15, with the corresponding inter-scan alignment transform applied.
As can be seen, common elements in the scene now align well.

Given the appropriate transform T 0, we see that the scans align well - salient

features in each scan match up well in the projection. This particular alignment of

scans was obtained by using the pose estimates supplied by a very capable Inertial

Navigation System (INS) - the capabilities, and in particular the shortcomings, of

this system are detailed further in Chapter 4. Of course, we would like to eliminate

our reliance on such a pose source and therefore must estimate T 0 through other

means.

Given the two point clouds P and Q, we seek a rigid transformation T that

will bring the data into alignment. We can define a distance-based error-function

between associated points in each scan in a least-squares sense as:
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2.3 Localisation within a prior map

E =
|Q|X

i=1

kp
i

� T · q
i

k2 (2.9)

where |Q| is the cardinality of Q, and p
i

is the point in P that is associated with

q
i

. The required transformation is a minimisation over this sum-of-squares error

function:

T̂ = argmin
T

E(T ) (2.10)

which can be done in closed form using quaternions, [42], or a Singular-Value

Decomposition (SVD) approach [1]. This formulation is closed-form if the corre-

spondences are known - unfortunately they are usually not. Figure 2.17 compares

the di↵erence in the error function for known and estimated (by means of a nearest-

neighbour approximation) correspondences for a set of gridded points:

(a) Cost surface: known correspon-
dences

(b) Cost surface: nearest-neighbour es-
timated correspondences

Figure 2.17: Cost surface: known vs. unknown correspondences. The dif-
ference in the cost-surface, comparing the squared-error of E(T ) with known (true)
correspondences (a), and correspondences estimated with a nearest-neighbour ap-
proximation. (Dark-blue corresponds to the lowest cost, red to the highest)
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2.3 Localisation within a prior map

As can be seen in Figure 2.17, the cost-surface - when using correspondences

estimated in a nearest-neighbour sense - exhibits multiple local minima, which is a

challenging optimisation problem. We can generalise Section 2.3.2 by introducing

an association function, w(·), which determines the appropriate weighting between

neighbouring points in P and Q:

E(T ) =
|P|X

j=1

|Q|X

i=1

w
ij

kp
j

� T · q
i

k2 q 2 Q, p 2 P (2.11)

The Iterative Closest Point (ICP) algorithm, as formulated by [7][100], has been

extensively used to solve Section 2.3.2 [77]. The original algorithm uses a “point-to-

point” metric - the distance function is defined over point-to-point distances, and

the weighting function is:

w
ij

=

8
>><

>>:

1, if p
j

= f
NN

(P , q
i

)

0, otherwise

(2.12)

where f
NN

(q
i

) is a search function that returns the nearest neighbour for an

input point cloud and point query. ICP alternates between an optimisation step

and a correspondence-estimation step, as is outlined in Algorithm 2.

It has been shown that using kd-trees - a tree-based spacial-decomposition tech-

nique - in the association step gives the complexity of ICP as O(M logN) where M

and N are the cardinalities of P and Q respectively.

Iterative Dual Correspondence, as formulated by [60] is a dual-step method where

the translational component is estimated via the Euclidean distance, with the ro-

tational component estimated through the polar distance. Polar Scan Matching
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Algorithm 2 IterativeClosestPoint

1: procedure EstimateTransformation(P ,Q, T̂ ,tol)

2: while � > tol do

3: Q ApplyTransform(Q, T̂ )

4: for q
i

= 1 to |Q| do . Nearest-neighbour association

5: p
i

 f
N

N(q
i

)

6: end for

7: T 0 = argmin
T

P|Q|
i=1 kpi � T · q

i

k2 . Minimisation

8: �  �(T 0, T )

9: T̂  T 0

10: end while

11: return T̂
12: end procedure

(PSM) [30] is another algorithm that utilizes a polar-representation of the scan

measurements in the registration step.

An improved version of ICP using a point-to-plane metric was proposed by [100],

in which the underlying surface for the target - or model - point cloud is approxi-

mated by estimating the surface normals at each point, and then minimising:

E(T ) =
|Q|X

i=1

w
i

k(p
i

� T · q
i

) · ~n
i

k2 (2.13)

where ~n
i

is the estimated normal to the surface, which will be referred to as

Iterative Closest Surface (ICS). This metric better approximates the relationship

between the candidate point-sets, and will be used later in Chapter 6 in an open-loop

fashion to robustly estimate vehicle velocity. A further generalisation is the plane-

to-plane metric, otherwise known as Generalised ICP [80]. This is a probabilistic

formulation of the ICP process, of which ICP and ICS can be shown to be special

cases.
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The core di�culty encountered by all of the aforementioned ICP-based methods

is the correspondence estimation. If we knew the exact correspondences for any

putative scan pair, we could easily evaluate the optimal alignment in one step - as

shown in Figure 2.17. In [74], the authors propose learning correspondences a-priori,

and use this learned model to better estimate correspondences matches at run-time.

This is accomplished by modelling successive LIDAR scans as a Conditional Random

Field, and inferring the marginal association probabilities of each LIDAR beam of

one scan with each of the beams in the successive scan - essentially learning the

weight vector w.

Although ICP methods have been used extensively for localisation, we show in

Chapter 4 how such methods are insu�ciently robust for truly long-term localisation.

We now turn to a brief overview of feature-based registration.

2.3.3 Feature-based methods

Registration methods, as discussed, make use of the entirety of each of the scans. The

alternative is to develop methods that look for salient regions in each of the point

clouds - this greatly alleviates the correspondence problem, at a cost of developing

feature detectors that are su�ciently robust and descriptive enough to model the

salient properties of all the possible data that is expected to be seen.

For example, a corner-detector will work well in an indoor setting, but will be

of no use when navigating outdoors in unstructured environments. Although we

do not make use of feature-based registration in this thesis, the following sections

outline some well-known 2D and 3D interest-region detectors:

Spin-images

Spin-images [44] were originally developed for surface-modelling, but have been used

extensively on point clouds. The starting assumption is that each point in the cloud
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2.3 Localisation within a prior map

is oriented - i.e. has both position and surface normal. To generate a spin-image,

the plane containing the normal vector is spun about the normal axis - all the surface

points that intersect with this plane are binned, forming the image. Spin images are

particularly useful in registration tasks as they are rotation, scale and pose invariant

[29].

Integral Volume Descriptors

In [38], the authors develop the Integral Volume Descriptor (IVD), a local descriptor

that is computed from the volume integral of the point cloud, for a given radius, at

each point. Registration is done through a branch-and-bound search for correspon-

dences, which provides an initial coarse alignment.

Feature histograms

In [78], the authors develop persistent feature histograms, using a 16-dimensional

feature vector to represent the geometry of each individual point, using a number of

heuristics. The algorithm then uses the resulting features to register a good initial

guess, that can subsequently be used by ICP-based methods for a refined alignment.

Robust corner-detection

In [57] the authors develop a general purpose feature-detector by adapting the well-

known Kanade-Tomasi corner-detection algorithm, and show repeatability experi-

ments over the “Intel” dataset, and sections of the MIT DARPA dataset.

2D Interest-region detectors

In [93] the authors develop a multi-scale interest-region detector explicitly for the

purpose of 2D scan-matching, citing the lack of equivalent 2D feature descriptors.

The descriptor incorporates a number of detectors and encodes the scan structure
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in an area proportional to the scale of the detected feature. Specific to planar point

clouds, the authors in [58] isolate pertinent features in the polar-space of incoming

scans, and compute the optimal alignment between identified features in a least-

squares sense.

To employ feature-based registration techniques as the prime means of data-

registration (and therefore, localisation within a map), we are required to make two

assumptions:

1. The descriptors are rich - and robust - enough to identify interest regions that

exist throughout the operating environment of an autonomous vehicle - an

exceptionally broad range.

2. These features are persistent enough to allow for long-term localisation.

Although (1) is di�cult to guarantee, (2) is more so given the fluid, dynamic

nature of the real-world. Therefore when we make use of registration techniques in

this thesis it will be exclusively done through the ICS framework - this is discussed

at length in Chapter 6.

2.4 Summary

This section has presented a background of the fundamentals of localisation within

a given map, using probabilistic and geometric approaches. The concept of scan-

registration has been introduced, along with the complexities inherent in correspondence-

estimation and feature-robustness.

In Chapter 4 we develop an information-theoretic approach to registration with

a particular focus on the task of vehicle localisation, and show that by doing so we

are not subject to the constraints outlined in this section.
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As a precursor to this, in the following chapter we establish means - both simu-

lated and in hardware - to capture high-fidelity point cloud data in both real-world

and simulated conditions.
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Chapter 3

Development and Testing Tools

3.1 Introduction

For the robotics research tasks that we are concerned with, we will require both

simulated and real-world data. In this chapter, we explore both the synthesis of

simulated city-scale sensor data, as well the design and build of a stand-alone sensor

suite. The following section details the generation of artificial point cloud data,

followed by a description of the design process and subsequent deployment of a

stand-alone surveying unit.

3.2 Simulating 3D surveys

Given the complex nature of robotic platforms and the logistical e↵ort required to

collect data, it is often easier to design and validate algorithms on synthetic data

before field trials. This can be problematic, as we would like this data to mimic the

real-world arbitrarily closely; however, such realism is often di�cult to obtain. In

the following section we review some of the existing open-source solutions, followed

by a description of the implemented approach.
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3.2 Simulating 3D surveys

3.2.1 Existing simulators

Various open-source solutions exist for representing robotic vehicles, and environ-

ments, for varying degrees of accuracy and modelling e↵ort. Figure 3.1 shows screen-

shots of some of the more widely-known implementations:

(a) Gazebo (b) Morse

(c) OpenSim (d) Microsoft Robotics Studio

Figure 3.1: Existing simulation software. (a) Gazebo, (b) Morse, (c) OpenSim,
and (d) Microsoft Robotics Studio.

Gazebo1 is an open-source software suite (formerly under the umbrella of the

Player/Stage2 software library), and is capable of simulating a variety of platforms

and sensors. Morse3 is an open-source library that allows for single and multi-

robot interaction with a variety of indoor and outdoor environments. OpenSim and

Microsoft Robotics Studio are both Windows-centric frameworks, with similar goals

1http://gazebosim.org/
2playerstage.sourceforge.net/
3http://www.openrobots.org/wiki/morse/
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3.2 Simulating 3D surveys

as Gazebo and Morse. However, none of these platforms provide the means to easily

generate and investigate the arbitrarily complex, expansive scenes that we require -

specifically, surveys of realistic urban environments.

3.2.2 Obtaining realistic world models

A key goal of our simulator is to provide as rich a world representation as possi-

ble, without requiring large pre-processing phases, or inducing degenerate run-time

performance. We would like to have access to expansive, realistic terrain and city

models, while still being able to load the model into the memory of a typical work-

station. CityEngine4 is a software package that is capable of providing such models.

CityEngine

CityEngine is developed specifically for the generation of arbitrarily complex urban

scenarios. Figure 3.2 shows a few examples of cities generated by CityEngine and

subsequently rendered post-hoc:

(a) (b)

Figure 3.2: Example CityEngine cities. (a) A city-centre, and (b) A town street.

CityEngine is a powerful rule-based procedural model generator, that is capable

of constructing highly complex environments with very realistic terrain and building

4http://www.esri.com/software/cityengine/index.html
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models. Figure 3.3 shows an example CityEngine model, both textured and showing

the constituent model primitives:

(a) A textured virtual city (b) The polygon mesh of the same city

Figure 3.3: Example city and mesh. An example of one of the cities created by
CityEngine that will be used to produce 3D surveys. (a) Shows the basic textured
city, and (b) the constituent triangle mesh.

Figure 3.3 constitutes an example city that we may wish to survey. The geometry

of the environment is represented as a “polygon soup” - many thousands of triangles

mapped with predefined textures. In our surveying task, we would like to produce

3D point clouds that capture the underlying complexity of this model.

In this thesis, we are primarily concerned with LIDAR ranging sensors. Fig-

ure 3.4 shows the outline of a simulated scanning LIDAR (with a 270� field-of-view)

in an environment consisting of simple polygons:
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Figure 3.4: Scanning LIDAR in a simple environment. A simple scene, show-
ing a planar view of a 2D LIDAR in an environment consisting of simple polygons.
Producing point clouds requires calculating the intersection of the sensor beams
with the world geometry.

Given the current transformation of the sensor in some reference frame, denoted

here by T G
0 , we would like to establish the point-of-impact of each beam r 2 r in the

world - the general terminology for this is ray-casting. Then, by moving the sensor

through the world, we will obtain a representative sample point cloud of the scene.

We define a ray x(t) with origin x0 and direction ~n to be:

x(t) = x0 + t · ~n x,~n 2 R3, t 2 R (3.1)

where (t) parameterises distance along the ray from a given start-point. Given

an arbitrary plane in the model we can solve for t, fully specifying the intersection

in world-coordinates. With a plane described by normal ~n
p

and point p0, t is:

t =
p0 � (x0 · ~nP

)

(~n · ~n
P

)
(3.2)
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where (a · b) denotes the dot-product of two vectors a and b. Of course it is not

enough to determine the planar intersection - we also need to know if the resulting

point lies within the polygon vertices (in the models we explore, these are composed

exclusively of triangles). A natural way of parameterizing this constraint is by using

the barycentric co-ordinates, shown in Figure 3.5:

Figure 3.5: Ray/triangle intersection using barycentric co-ordinates. The
barycentric co-ordinates (u, v) are a weighted sum of the polygon vertices P, and
have natural constraints when considering the putative intersection of ray x(t).

The barycentric representation is a linear combination of reference vertices, and

provides a convenient representation for the intersection test. Using this parametric

representation, the coordinates must obey the following constraints:

u >= 0, v >= 0, u+ v <= 1

if the ray x(t) has an intersection with the triangle formed by P. The location

of the intersection is expressed with respect to the vertices:

x
u,v

= (1� u� v) · p0 + u · p1 + v · p2 (3.3)
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A useful property of this formulation is that the barycentric representation is

analogous to the co-ordinate system used in texture mapping - therefore, solving

for (u, v) will be informative both geometrically and appearance-wise. For example,

if the underlying texture of a triangle is known, it is possible to index into a pre-

computed remission table to determine the reflectiveness of the underlying surface.

A well-established method of solving for this intersection is through the Möller-

Trumbore [64] ray intersection test. Setting Equation (3.1) to be equal to Equa-

tion (3.3) gives rise to a system of linear equations that can be solved e�ciently:

[�~n, p1 � p0, p2 � p0]

2

66664

t

u

v

3

77775
= x0 � p0 (3.4)

There are a multitude of algorithms for calculating such an intersection, as noted

by [59], although the Möller-Trumbore and Badoeul [4] are most often employed due

to their ease of implementation. The algorithm in [4] also works in a barycentric

coordinate system, but requires the computation of the normals - however, given

that the majority of the scene is static, it would be possible to pre-compute these

in a pre-processing phase.

By applying Cramer’s rule that, for any Ax = b where A has a non-zero determi-

nant and a unique solution, we can solve for the individual unknowns in Section 3.2.2

as follows:

x
i

=
| A

i

|
| A | (3.5)

where A
i

is formed by replacing column i with b. Section 3.2.2 can now be
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rewritten as:

2

66664

t

u

v

3

77775
=

1

| �~n, p1 � p0, p2 � p0 |

2

66664

| x0 � p0, p1 � p0, p2 � p0 |

| �~n, x0 � p0, p2 � p0 |

| �~n, p1 � p0, x0 � p0 |

3

77775
(3.6)

which we can use to solve for [t, u, v]T directly. With the advent of more powerful

instruction sets, such as Streaming SIMD5 Extensions 4 (SSE4) [43], fundamental

native geometric operations (such as the dot-product) allow for correspondingly

faster ray-queries [40]. Figure 3.6 shows an example scan using this ray query test

in a complex city scenario:

Figure 3.6: Synthetic LIDAR scan. A synthetic LIDAR scan in a virtual city,
generated by CityEngine. Triangle-intersections for several hundred ray-queries were
established exhaustively using the Möller-Trumbore method.

5Single instruction, multiple data
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Visible in Figure 3.6 is the scan-centre (in the lower-left) and the corresponding

beams - simulating a planar LIDAR scanner - traced to their intersection in the

world. This figure was generated in a naive fashion - each of the triangles in this

scene (approximately 700, 000) was checked for an intersection with each of the rays

launched from the simulated sensor.

Although easy to implement, the overall approach is linear - O(n) - in terms of

number of triangles in the scene. Whilst this is not problematic for smaller models,

it becomes a limitation for scenes of any useful size.

It should be noted that this does not preclude the use of such a method in an

o✏ine mode - however, we seek a representation that will allow us to perform real-

time ranging queries in an arbitrary model. For our task - generating point cloud

surveys - we have a number of sensors we would like to simulate. Table 3.1 compares

the theoretical range-query requirements for di↵erent sensor types.

Table 3.1: Sensor queries per second

Sensor LMS-151 Flash-LIDAR Velodyne

Queries/second 50 500k 1.3M

From Table 3.1 it is apparent that the Velodyne LIDAR is the most taxing in

terms of query requirements6 (although the performance gap to flash-LIDAR7 is clos-

ing). Although we may not be able to simulate the full capabilities of the Velodyne

in software (and real-time), we require performance such that we can realistically

model 3D ranging sensors that produce comparable point clouds. Fortunately, there

are well-known data-structures we can leverage to make real-time sensor simulation

tractable - these are outlined in the following section.

6http://velodynelidar.com/lidar/products/brochure/HDL-64E%20S2%20datasheet_

2010_lowres.pdf
7http://www.advancedscientificconcepts.com/products/tigereye.html
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3.2.3 Scalable range-sensor models

The approach taken in complex rendering or intersection/query tasks is to sepa-

rate the problem into two phases. There is a pre-processing phase, followed by a

subsequent query (or set of queries).

The query operation is similarly split into separate phases - there is a broad

phase, which restricts - at a high-level - the search space to be explored, followed

by a narrow phase, which consists of the low-level search (or intersection test) over

geometry primitives. This is a form of the general divide-and-conquer strategy,

where a complex problem is broken down into constituent sub-problems and solved.

The core idea in any intersection problem is to exploit the underlying spatial

relationships of the geometry in the scene - there is no need to test triangles for

intersection that are distantly removed from the final query site - therefore, we seek

a spatial decomposition that will allow us to discard regions of the search space

early-on that will be uninformative. The most coarse representation of this spatial

decomposition would be a discrete voxelisation approach, where the environment is

decomposed into voxels (or volume pixels).

A more sophisticated approach would be to build a hierarchical model of the scene

- this partitioning approach is known as a bounding hierarchical volume, where sub-

regions are encapsulated in so called bounding volumes. Figure 3.7 shows di↵erent

approaches for generating bounding volumes:
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Figure 3.7: Bounding volume construction. Di↵erent ways of generating bound-
ing volumes for arbitrary geometry: (a) spherical, (b) axis-aligned bounding box
(AABB), (c) oriented bounding box (OBB), and (d) convex-hull. The more com-
plex the bounding volume (i.e. the more representative of the underlying geometry),
the fewer high-level queries have to be performed, at a cost of significant increases
in memory requirements.

Axis-Aligned Bounding-Box (AABB) trees provide a good trade-o↵ between

model-processing and query times, and are described further in the following section.

AABB trees

Simply bounding elements in the scene by a volume (an axis-aligned box, in this

case), will not result in a speed increase. The core idea is to organise these boxes into

a tree-structure - this will reduce the linear behaviour exhibited by the exhaustive

search, to logarithmic (O(log(N))) as a function of polygon count. The tree will

provide a “bail-out” capability - it is not necessary to test child nodes if there is no

intersection of the query ray with the parent node.

Figure 3.8 shows an example scene with arbitrary primitives, and an associated

AABB tree:
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Figure 3.8: Example AABB tree. Shown are example primitives (left) along
with their associated bounding boxes (grey, dashed), and the resulting AABB tree
(right). The node colours in the tree correspond to the bounding-box colours in the
spatial layout.

Note that in Figure 3.8, some of the bounding-boxes overlap when the underlying

geometry does not - this is a disadvantage of using such a simplified representation.

Building an AABB tree over n primitives results in a tree with n � 1 internal

splits, if the tree is binary. Although there is no requirement for the tree to have a

branching degree of 2, binary trees are easy to build and traverse [35, p.239].

Given that the final tree representation is only one of a number of possible

tree combinations (this number is exponential in the number of input entities),

heuristics are used to construct the tree. There are three commonly used methods

of tree construction - top-down (nodes are constructed recursively from a root node),

bottom-up (the tree is constructed from aggregating leaf-nodes and sub-trees) and

insertion, where nodes are inserted one-at-a-time into the tree. In the top-down

approach, each step consists of partitioning the input set into subsets, encapsulating

the subsets with the chosen bounding strategy, and recursing - top-down methods

are generally easier to implement.

Shown in Figure 3.9 is an AABB tree built over an example 3D model, with

boxes encapsulating the individual model triangles:
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Figure 3.9: AABB tree representation of a CAD model. A representation of
an Axis-Aligned Bounding Box tree (left) over the adjacent model. The AABB tree
allows for rapid ray-intersection queries, which is a requirement for any simulated
ranging sensor. Image courtesy of [87].

Tree construction is done as a pre-processing step - however, if the scene contains

dynamic components, the tree nodes will have to be updated as the geometry in the

scene changes. Given the very simple box representation, updating the box is very

easy - the disadvantage (as compared to a more descriptive bounding volume, like

convex hulls) is that more low-level checks will be required, as the box volumes will

often intersect, even if the underlying geometry does not. Given the AABB tree, it

is relatively simple to calculate the mesh intersection for any given ray. Figure 3.10

shows an example in 2-d:

Figure 3.10: Computing the ray/AABB intersection. Computing the inter-
section of a ray is a matter of examining the point-plane intersections with the
constituent slabs of the box (shown in shaded grey). Slabs are axis-aligned planes,
the intersection of which form the bounding-box. Overlapping entry/exit points for
slabs indicates a potential collision.
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Figure 3.10 was inspired by a similar figure in [35, p.180]. To establish whether

a ray intersects a bounding box, all that is required is to calculate the ray/plane

intersections with each of the constituent slabs (axis-aligned planes) defining the box.

The entry/exit parameter values for aligned planes {x,y} are denoted as {t0, t00},

respectively. Any ray that intersects with the bounding box must have entry/exit

t values that overlap - for example, x2(t0
y

) 2 [x2(t0
x

), x2(t00
x

)]. Any ray that does

not obey this condition cannot be an intersection candidate. Once we have queried

down to a leaf-node of the AABB tree, we can solve for the intersection of the ray

with the underlying polygon using the Möller-Trumbore triangle-intersection test.

We now turn to a comparison of the AABB tree with the exhaustive-search, and

show the huge performance gain with this hierarchical method.

3.2.4 Query comparison

To illustrate the performance of the AABB tree over the naive linear search, we

present the following experiment. Figure 3.11 shows an environment with a small

number of box meshes in a flat grid-world:

Figure 3.11: Small mesh query. The synthetic environment used for a simulated
LIDAR query against a small number of box meshes. Visible in the figure is the
scanning outline of a hypothetical SICK LMS-151.

Visible in Figure 3.11 is the LIDAR outline (a simulated LMS-151 in this case),
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as well as the meshes used in the experiment. Given the small number of meshes, it

is reasonable to expect that the exhaustive search will be comparable to the AABB

tree. Figure 3.12, however, shows a more testing situation with many thousands of

obstacles:

Figure 3.12: Large mesh query. A similar scene to Figure 3.11, with substantially
more meshes. Building a hierarchical spatial representation of the scene allows for
ray queries in the order of O(log(N)).

Given the massive increase in polygon count, we expect the AABB tree to sub-

stantially outperform the exhaustive search. To quantify this performance, each

approach was instantiated in an environment with increasingly more meshes, and

timed across one full scan of the hypothetical LIDAR (541 individual beams). Fig-

ure 3.13 shows the comparison of these sensor query times:

Figure 3.13: Ray query comparisons. A comparison of the query times for both
the exhaustive approach (shown in red), and the AABB tree queries (shown in blue).
Very apparent in this figure is the logarithmic performance of the AABB tree - this
is a necessary property for large models.
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Very apparent in Figure 3.13 is the linear behaviour of the naive approach,

against the logarithmic performance of the hierarchical tree. Given this method of

rapidly evaluating intersections, we can now explore expansive, complex environ-

ments and generate realistic point clouds in real-time. Figure 3.14 is an example of

such a model generated by CityEngine:

Figure 3.14: 18th century Paris. A model generated by CityEngine, correspond-
ing to a hypothesized 18th century Paris, with approximately 700k texture-mapped
polygons.

Figure 3.15 shows the resulting point cloud X = {x, y, z}N
i=1 obtained by arbi-

trary motion of a hypothetical LMS-151 through the scene:
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Figure 3.15: Paris point cloud. The point cloud representation of the scene illus-
trated in Figure 3.14. The interleaved scan-lines visible in the figure arise through
the arbitrary motion induced through the scene in order to capture the data (points
are coloured by height above ground).

The cardinality N of this cloud X is approximately 1.2M, sampled at frame-rate

(60Hz). The point cloud does not incorporate any noise model, giving rise to the

very regular structure - such a model can of course be incorporated into the ray-

casting process trivially. Given the point cloud, we can perform the reverse process

- i.e. perform triangulation on this point cloud to recover a mesh. This is done

through the ball-pivoting algorithm, and is shown in Figure 3.16:

Figure 3.16: Paris re-meshing. A mesh generated from the point cloud data
shown in Figure 3.15. This mesh was generate by sub-sampling the point data and
then producing facets with the ball-pivoting algorithm.
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Ball-pivoting [5] is a relatively simple algorithm that produces a surface mesh

from an unstructured point cloud. The central idea of the algorithm is - given a

point cloud with estimated normals, and a “seed” triangle - to roll a d-dimensional

ball of a pre-specified diameter ⇢ around the edges of the mesh, incorporating points

that fall within the diameter. A realisation of the algorithm over a cross-section of

a 3-dimensional (d = 3) point-set is shown in Figure 3.17:

Figure 3.17: Ball-pivot mesh construction. The ball-pivoting algorithm is given
a set of unordered points, X and their associated normals, ~n. The algorithm then
estimates a seed face (V

s

) and pivots on a facet edge, incorporating a point if it
falls within the predefined radius ⇢. When the inter-point distance exceeds ⇢, the
algorithm is re-initialised.

The ball-pivoting algorithm provides a simple, robust method for generating

a triangulated mesh from the point clouds obtained from either the simulator, or

real LIDAR data. As further illustration, Figure 3.18 shows another example city,

generated via CityEngine:
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Figure 3.18: 12th century Medieval city. An unlikely scenario for any robot -
a 12th century village. The point illustrated here is that we are unrestricted - in
terms of input meshes - that we can generate realistic LIDAR data from. The mesh
extracted from a point cloud sampling of this city is shown in Figure 3.19.

Figure 3.19: 12th century Medieval city (mesh). The triangulated mesh, ob-
tained from point cloud data generated from sweeping a simulated LIDAR sensor
through the environment shown in Figure 3.18. Again, the mesh is a faithful repre-
sentation of our initial model.

In both cases, the resulting mesh corresponds very well to the original model
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- as should be expected. This ray-casting approach, combined with the modelling

powers of CityEngine and incorporating various other well-known approaches for

dealing with expansive terrains (paging scene managers, for instance, allowing for

theoretically infinite worlds) allows for the rapid synthesis of realistic training data,

a very useful tool for robotics research.

We now present an interesting consequence of this - leveraging large Computer-

Aided Design (CAD) databases online to further expand our simulator capabilities.

3.2.5 Leveraging the web

The web is replete with 3D CAD models, ranging from professional to purely ama-

teur8 (Trimble’s SketchUp Warehouse, for instance9). We would like to incorporate

this vast repository of high-fidelity models into a simulation environment, to gener-

ate sensor data that is more like its real-world counterpart.

The quality of these models is often good enough - when sampled using our

virtual LIDAR - to faithfully represent what is observed in real-world data. Fig-

ure 3.20 shows an illustration of various makes of cars observed around Woodstock

in Oxfordshire, and correspondingly matched with CAD models on Sketchup:

8“Amateur” in this sense meaning unpaid, as opposed to lacking in quality.
9http://sketchup.google.com/3dwarehouse/
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(a) Volvo X90 (b) Volvo X90: CAD

(c) Ford Focus (d) Ford Focus: CAD

(e) Smart Car (f) Smart Car: CAD

(g) Mercedes-Benz (h) Mercedes-Benz: CAD

Figure 3.20: A sampling of vehicles around Woodstock, Oxfordshire. A
collection of cars encountered on a typical run around Woodstock - (a) a Volvo X90,
(c) a Ford Focus, (e) a Smart Car, and (g) a Mercedes-Benz SL class.

We can easily incorporate these models into our simulation framework, and the

following images contrast the real-world data with the data generated by the simu-

lator (using similar sensor configurations and orientations):
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(a) Volvo X90: real (b) Volvo X90: simulated

(c) Ford Focus: real (d) Ford Focus: simulated

(e) Smart Car: real (f) Smart Car: simulated

(g) Mercedes: real (h) Mercedes: simulated

Figure 3.21: A comparison of LIDAR data. Real LIDAR data (left-column)
compared against simulated LIDAR data (right-column) for the vehicles in Fig-
ure 3.20: (a) Volvo X90, (c) Ford Focus, (e) the Smart Car, and the (g) Mercedes.

Figure 3.21 illustrates the similarity between the real and simulated LIDAR data

- in fact, the ground-plane was explicitly kept in the real LIDAR data, to provide

some measure of di↵erentiation.

Cars are of course the most obvious example - people tend to spend large amounts

of time faithfully recreating their favourite vehicles. However the Google/Trimble

warehouse exhibits a broad range of object classes - Figure 3.22 through Figure 3.24

show several commonly-encountered features of small-town England, along with

their digital counterparts:
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Figure 3.22: Commonly encountered: Tra�c cameras. A tra�c camera in
Woodstock (a), its corresponding CAD model (b), the real-world LIDAR data (c),
and the corresponding simulated data (d).

Figure 3.23: Commonly encountered: Cyclists. A cyclist in Woodstock (a), a
somewhat similar CAD model (b), the real-world LIDAR data (c), and the simulated
data (d). In some sense the CAD model is too accurate - however, this data does
not incorporate a noise model, nor has it been dithered.

Figure 3.24: Commonly encountered: Postboxes. A regular sighting around
English towns - free-standing postboxes (a), the CAD model (b), the real-world
LIDAR data (c), and the simulated data (d).

As is evident from Figure 3.22 through Figure 3.24, objects that are not articu-

lated or deformable have real and simulated point clouds that correspond to a much
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greater degree than those that are - the cyclist, for instance, is not particularly

well-represented.

An interesting point to note is that the cyclist point cloud - as extracted from a

vertically-oriented planar LIDAR sweeping through the environment - has artificially

elongated the point cloud along the direction of motion - a natural consequence of

the relative velocities of the cyclist and the capture vehicle - these problems will

arise again in Chapter 6 in a di↵erent context - vehicle localisation.

The entire framework is approximately 18k Lines-Of-Code (LOC), and makes

use of the open-source rendering engine, OGRE in addition to components from

the physics Engine, Bullet. Given that we now have the tools to generate arbitrary

synthetic data, we move on to the description of the design and build of a sensor-

package intended for producing the real-world equivalent cheaply, and reliably.

3.3 Producing real-world 3D surveys

We now turn our attention to producing equivalent, high-quality real-world surveys

using inexpensive sensors. The grand vision here is to develop a stand-alone unit

that could be employed in either a mapping, or localisation role. Given that the

primary focus of this thesis is localisation, the following section articulates the design

and build of the Navigation Base Unit (NABU).

3.3.1 Navigation Base Unit (“NABU”)

The NABU is a first-generation sensor payload that is designed to be used in either a

data-gathering (“mapping”) or exploration (“localisation”) role. Figure 3.25 shows

a rendering of the NABU:
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Figure 3.25: NABU: CAD rendering. A Computer-Aided Drawing (CAD) of the
NABU. The NABU is a vehicle-agnostic stand-alone sensor suite that is designed to
be used for mapping and/or localisation tasks.

The NABU was designed to incorporate a variety of sensing modalities - from

vision (PointGrey Bumblebee2 and Firefly cameras) to scanning-LIDAR sensors (the

SICK LMS-151) and a Trimble Global Positioning System (GPS) unit. Figure 3.26

shows an overview of the general payload proportions:
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Figure 3.26: NABU: Top, front and right-side views. The top, front, and right
views of the NABU. The unit was designed to be easily handled and mounted, and
to allow for simple sensor re-configuration.

The NABU was designed to be easily transported, mounted, and interfaced with.

The unit is mostly comprised of a 6061-grade aluminium, with supporting mounts

and brackets manufactured through rapid-prototyping - these are rendered as yellow

in all the CAD figures.

The design comprises of two major sub-assemblies, as is shown in Figure 3.27:
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(a) NABU: Upper sub-assembly (b) NABU: Lower sub-assembly

Figure 3.27: NABU: Sub-assemblies. The two major sub-assemblies of the
NABU. (a) Shows the upper sub-assembly (shaded) which contains the majority
of the sensors, while (b) is the lower sub-assembly (shaded), which contains the
computing and power-management components.

The upper sub-assembly in Figure 3.27 houses two SICK LIDARS, a Trimble R8

GPS unit, four PointGrey FireFly cameras, and a MicroStrain IMU. Each of the

LIDARS has configurable mounts, allowing for either a declined, or inclined attitude

(all of these images render the front LIDAR at an 8� incline, with the rear LIDAR

at an 8� decline). The Firefly cameras are oriented around the periphery of the unit

to cover as much of the surrounds as possible - however, the mount locations allow

for rapid re-configuration if desired.

The bottom sub-assembly houses the on-board PC, a PointGrey Bumblebee2

camera, and the supporting electronics and cooling mechanisms to ensure reliable

operation. The following sections detail the technical characteristics of each of the

sensors.
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(a) Trimble R8 (b) LMS-151

Figure 3.28: NABU sensors: GPS and LIDAR. Two of the sensor modalities of
the NABU: (a) a Trimble R8 GPS, and (b) dual SICK LMS-151 scanning LIDARs.

GPS The Trimble R8 is a GPS/GLONASS compatible system that features a

built-in UHF radio, allowing for either rover (mobile) or base-station (stationary)

operation. Specifications from the Trimble Site10 state that the accuracy of the

unit is typically less than 5m Distance Root Mean Squared (DRMS), depending

on ionospheric and multi-path conditions - multi-path conditions typically arise

from “urban-canyon” environments, where the signal is reflected o↵ of buildings,

introducing error into the timing information.

LIDAR SICK manufacture a large number of scanning LIDAR devices - in this

thesis we utilize the SICK LMS-151 series exclusively, which has a scanning range

of up to 50m if the target has a remission value of 75% or greater. 100% remission

10http://trl.trimble.com/docushare/dsweb/Get/Document-449956/

R8-R6-5800Receivers_4A_UG_7440.pdf
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is defined to be the return from a di↵use reflecting white surface - therefore retro-

reflective surfaces can have a remission value greater than 100%.

(a) Point Grey Firefly (b) Microstrain IMU

Figure 3.29: NABU sensors: Firefly cameras, and IMU. The remaining sensor
packages on the top sub-assembly are the (a) four Point Grey Firefly monocular
cameras, and (b) a MicroStrain Inertial Measurement Unit (IMU).

Firefly cameras The NABU has mount-points for four Firefly FireWire cameras

from Point Grey (rendered in solid in Figure 3.29(a)) - these are monocular cameras,

producing 752x480 images at 60 frames-per-second (fps).

IMU The Inertial Measurement Unit (IMU) is a MicroStrain 3DM-GX3-25, a

Micro-Electro Mechanical System (MEMS)-based sensor that is capable of providing

tri-axial angular rate and acceleration data at 100Hz (in addition to magnetometer

and temperature readings).

The upper sub-assembly contains the majority of the sensor hardware, while

the base sub-assembly contains the on-board computer, networking equipment and
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power electronics as detailed in the following sections.

(a) Onboard PC (b) Bumblebee2

Figure 3.30: NABU: On-board PC and Bumblebee2 camera. Shown in (a) is
the combined PC/Networking stack, consisting of a fan-less low-power PC, a router,
and a wireless access point (WAP). (b) is a Point Grey Bumblebee2 stereo camera.

Computing and Networking The on-board PC consists of a fan-less dual-core

Atom-based computer with 2GB of RAM, and a variety of I/O connections. Given

the requirement of being able to connect to the unit wirelessly, the NABU also has

a full networking stack with a dedicated Netgear access point. Also incorporated

is a router, both for interfacing with the SICK LIDARs and to provide a gigabit

external connection for rapid data o✏oad.

Bumblebee2 The PointGrey Bumblebee2 is a stereo-vision camera that is widely

used for vision tasks - for example, Visual Odometry and Dense stereo - this is

discussed further in section Chapter 4. The Bumblebee2 used in the NABU produces

a 512x384 stereo pair at 20Hz.
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3.3 Producing real-world 3D surveys

(a) Electronics (b) Cooling

Figure 3.31: NABU: Power electronics and cooling units. The electronics
shown in (a) provide the necessary voltage rails and power-regulation for the di↵erent
sensor types. (b) shows the fans (blue) and air ducts (yellow) responsible for cooling
the unit when stationary and moving, respectively.

Electronics and cooling The heterogeneous mixture of sensors on the NABU

require dual voltage rails. The NABU takes - as sole power input - a 12V source,

which is then transformed (by means of a DC-DC converter) to 24V to provide

power for the LIDARs. The PC and fans all run o↵ of the 12V rail - total power

consumption for the NABU in logging mode is less than 60W - and can run easily

o↵ of a typical cigarette-lighter or auxiliary power-source.

As the PC is of the fan-less variety, ensuring an active airflow over the cooling fins

is paramount. When the unit is stationary, cooling is provided for by two 12V PC

fans, mounted in opposing directions (see Figure 3.31(b)). This allows for cooling

of both the PC and the electronics, by ensuring a constantly circulating air mass.

When in motion, the front air-scoops and rear-vents ensure a consistent airflow over
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3.3 Producing real-world 3D surveys

the PC and electronics.

Given the wide array of sensing modalities, the NABU can be used for a num-

ber of tasks, including localisation via scan-matching (using the LIDARs), Visual-

Odometry (Bumblebee2 camera), metric mapping (using the LIDARs in conjunction

with the VO), and appearance-based topological mapping (with the FireFly cam-

eras). In the following section, the build and deployment of the NABU into its

target role is discussed.

3.3.2 Construction and deployment

Figure 3.32 shows the NABU during construction. Highlighted are the locations of

the IMU, the Bumblebee2 and the on-board PC. Visible in the front are air-scoops

to ensure cooling from the oncoming air-flow when mounted on top of a vehicle.

Figure 3.32: NABU: Construction. Visible in this image is the Bumblebee2
stereo camera from PointGrey (left side of the image), the MicroStrain IMU (top)
and the air-scoops and fans for cooling.
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Clearly visible in this image is the IMU (mounted centrally on the top subassem-

bly), the FireWire relay-box, necessary for running multiple cameras o↵ of one bus

(adjacent), the aerial of the WAP of the networking stack (lower-left), and the input

ports and control switches (right-hand side). Figure 3.33 shows the NABU fully

assembled and mounted atop the Wildcat:

Figure 3.33: NABU: Mounted on the Wildcat. The NABU mounted on the
MRG Wildcat. Visible are the PointGrey FireFly cameras (front-left, front-right),
the SICK LIDARs (both inclined and declined) and the Trimble R8 GPS unit.

Figure 3.34: NABU: Dataset collection. The NABU mounted on a Ford Focus,
about to collect data around Piccadilly, London.
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The ad-hoc mounting system visible in Figure 3.34 is not the preferred state

- the unit is designed to interface with 80/20 vehicle-mounting brackets, however

these were not available at the time of this particular mission. To date, the unit has

collected in excess of 600GB of data, over more than 80 km of trajectory around

Begbroke and London.

3.4 Summary

This chapter has detailed the design and development of systems to aid the goal

of outdoor vehicle localisation. Tools for both the modelling and simulation of

real-world environments and the means to capture - easily and reliably - such rep-

resentations using real-hardware have been developed.

In the following chapter, we explore the theory and application necessary to

perform long-term, large scale localisation using simple sensors.

Figure 3.35: NABU dataset: Centre of London. An exemplar dataset collected
by the NABU, driving past the Houses of Parliament - note the excellent reflectivity
map. (Thanks to Ashley Napier for the point cloud data from this run)
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Chapter 4

Large-Scale Urban Localisation

with a Pushbroom LIDAR

4.1 Introduction

As discussed in Chapter 2, a core competency for any autonomous vehicle is the

ability to stay localised in a prior map over the long term. The goal of this thesis

is to produce a system that is capable of providing such estimates relying solely on

cheap, readily available, 2D LIDAR sensors.

In contrast to SLAM - where the robot has no a-priori information about its

surrounds - we utilise a heavily-instrumented survey vehicle which is responsible for

collecting data in the target workspace (a town center, for instance).

We will refer to this survey as an “experience”, consisting of laser-sweeps, poses,

and velocities (both angular and linear). We adopt this terminology to emphasize

that we do not need a globally correct metric map for our road localisation task. The

end-goal is then to have fleets of vehicles leveraging this data utilising inexpensive

sensor suites, such as the “NABU”, described in Chapter 3.

Given the constraints of our proposed sensor payload, we require our localisation
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scheme to have no reliance on 3D laser, di↵erential GPS or integrated inertial sys-

tems. Figure 4.1 shows an exemplar survey vehicle, the MRG “Wildcat”:

Figure 4.1: The MRG “Wildcat”. The Wildcat is a heavily-instrumented plat-
form initially developed by BAE systems. The vehicle is equipped with an Oxford
Technical Solutions Inertial Navigation System and a host of sensing modalities
including LIDAR and camera units.

This heavily modified Bowler Wildcat was developed by BAE systems, and has

powerful on-board processing capabilities in addition to an Oxford Technical Solu-

tions RT3000 Inertial Navigation System (INS). Visible in front of both headlights

are rigidly mounted SICK scanning LIDARS for the express purpose of localisation.

As an illustration of a typical target environment, consider Figure 4.2. This

shows the Begbroke Science Park in Oxford overlaid with 26 km of INS trajectory

data collected around the road network over a 3 month period:
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Figure 4.2: 26 kilometres of trajectory data around the Begbroke Science
Park. A substantial dataset comprising of 3 months of INS data (26km total dis-
tance) around the Begbroke site in Oxford, contrasting areas of good GPS reception
with poorer areas (predominantly the northern and southern sections). As can be
seen in the lower section of the image, the trajectories exhibit a large variation,
caused mainly by GPS signal degeneracy due to foliage. The majority of the trajec-
tories (black, solid) are counter-clockwise, with a single clockwise loop (red, dotted).

Shown in Figure 4.2 are the indicated trajectories from the Wildcat INS as it

traverses the science park. Note that in the sections unobstructed by foliage and

buildings (predominantly the north-east and western sections), the performance is

consistent and the estimated vehicle path follows the road shape - however in the

southern section a small copse of trees inhibits DGPS corrections and the INS-

estimated path diverges wildly from the road. This e↵ect, noted in Chapter 2
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amongst the DARPA teams, is highly detrimental to any form of autonomous vehicle

operation. Relying on these erroneous INS pose estimates for higher-level tasks (such

as trajectory planning) will result in system failure.

Given that we are restricted to a 2D LIDAR, an initial attempt at resolving the

trajectory ambiguities in Figure 4.2 might be to mount the LIDAR horizontally and

build a 2D representation of the Begbroke site - similar to the approach in [13] - this

would then be used subsequently to localise against.

To validate whether this concept is feasible, a single map instance was generated

around Begbroke and then subsequently revisited over several months, using an ICS

scan-matcher to localise the run-time data with the pre-recorded map. Figure 4.3

shows the results of the ICS-matcher running in both open-loop and localisation

mode:

(a) ICS: Open-loop performance (b) ICS: Localisation performance

Figure 4.3: Scan-matching comparison: Open-loop vs. Localisation. The
left image is the open-loop (no map) performance of the scan-matching algorithm,
and the right image is the localisation performance of the algorithm - with the same
data - given a reference map, around a single loop of the Begbroke Science Park.
The INS trajectory is shown in grey, the (sub-sampled) ICS pose estimates in colour.

The left plot of Figure 4.3 - and the following figures - serve as control experi-

ments; we want to know if (or when) the scan-matcher fails, whether the failure is

due to the run-time data, or degeneracies in the map. The reference map - used
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during localisation in Figure 4.3(b) - was from a loop earlier on the same day, and

as expected the localisation works well.

Figure 4.4 shows a similar plot for data collected 63 days after the map was

collected, but using the same map as Figure 4.3(b):

(a) ICS: Open-loop performance (b) ICS: Localisation performance

Figure 4.4: Scan-matching comparison: Open-loop vs. Localisation, 63
days later. Open-loop (a) and localisation (b) performance for an ICS scan-
matcher, using a map from 63 days prior. Notice the localisation failure at
(x = 0, y = 120) - this is due to distinct scene change in the intervening months.

Very apparent from Figure 4.3(a) and Figure 4.4(a) is that the open-loop per-

formance is consistent; however, we notice failures occurring at grid coordinates

{x = 0, y = 120}. The following image sequence is a comparison of images acquired

from a bumper-mounted camera for these datasets:
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(a) Map Acquisition (b) Acquisition+63

Figure 4.5: Scene change over 63 days. Distinct scene change over a 63 day
period, both in terms of weather and geometry. Noticeable in (a) but missing in (b)
are fence-boards, whose absence causes a distinct change in appearance (in LIDAR
space) of the run-time vs. map data.

To verify that this performance was consistent, a similar experiment was run for

data collected 64 days after map acquisition:

(a) ICS: Open-loop performance (b) ICS: Localisation performance

Figure 4.6: Scan-matching with a fixed-map over the long-term, 64 days
later. Open-loop (a) and localisation (b) performance for the ICS matcher for a
dataset taken 64 days after map acquisition. Notice the similar failure location to
Figure 4.4(b).

As a final check, we can compare a map from +63 days with runtime data from

+64 days:
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(a) ICS: Open-loop performance (b) ICS: Localisation performance

Figure 4.7: Scan-matching comparison: Open-loop vs. Localisation, 1 day
di↵erence. With 1 day separating the “map” and runtime data, we can see that
the open-loop performance is consistent (a), and that the localisation performance
is consistent (b).

In Figure 4.7, we can see the consistent performance of the scan-matching algo-

rithm in open-loop and localisation mode - there has not been much scene change

in the intervening day, and therefore localisation works as expected.

The underlying issue here is that there is noticeable scene change - from the point

of view of the horizontal 2D LIDAR - from map acquisition to runtime, 63 days later.

Of course the majority of the scene has not changed, which is reflected in a cursory

visual appraisal of the scene - building walls are still in the same place. Given that

the perception of the world consists solely of a 2D “slice”, it is understandable that

failures occur when the world changes.

It is worth pausing here to reflect on what these graphs represent. Begbroke is

a benign, constrained environment in terms of both tra�c (vehicle and pedestrian)

and scene change (one slowly changing building site). Given that - even in this

constrained environment - we cannot rely on 2D localisation as a basis for long-term

localisation, we seek to develop a system that is robust to scene-change, both in the

long, and short, term.

The core idea is to use the 2D LIDAR to acquire 3D data - this is done by
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deploying the LIDAR in a “pushbroom ” configuration, and this is detailed in the

following sections.

4.2 Synthesising 3D data with a pushbroom LIDAR

In this section, we develop the notion of the run-time exploitation of prior 3D maps

using a single 2D pushbroom laser - a fixed scanning LIDAR sensor which gener-

ates data from being “pushed” through the world by a vehicle, as illustrated by

Figure 4.8:

Figure 4.8: Pushbroom LIDAR. An illustration of the “pushbroom” LIDAR ap-
proach. 3D maps are acquired from a 2D LIDAR by inducing out-of-plane motion
through the LIDAR fan. Shown here are two consecutive poses, x

t�1:t and their
associated measurements, z

t�1:t.

Conventional approaches for generating 3D point data from a scanning planar

LIDAR are shown in Figure 4.9, including a static “angel-wing” configuration (a),

mounting the unit on a mechanism rotating about the primary axis (b), or oscillating

the LIDAR on its secondary axis (c). In the actuated configurations, very accurate

timing is needed between the LIDAR timestamps and the rotation encoder in order

to ensure accurate point projection. (In all cases, accurate timing correspondences

between the on-board data-logging machine and the LIDAR are required).
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(a) Lisa (b) Bobcat (c) Homer

Figure 4.9: Generating 3D point clouds from 2D LIDARs. (a) The Lisa
platform, based on a Segway RMP. (b) A Bobcat vehicle, with a rotating 2D LIDAR,
as developed by [14] (c) The Homer research platform with a “nodding” LIDAR.

In the proposed system, we intentionally orient our single laser downwards -

seeking out ground strike. In this way, we convert our 2D LIDAR sensor into an

intrinsically 3D sensor, by inducing out-of-plane motion through the sensor fan.

Unfortunately, we can no longer directly infer translational and rotational changes

through 2D scan-matching.

However, by integrating velocity estimates of the vehicle motion over a window,

we can generate a retrospective swathe of 3D laser data. This dense 3D “recent

history” can then be continually aligned within our survey 3D point cloud by con-

sidering and matching the population statistics of the swathe and survey patch. We

now consider in detail this generative process and various methods for estimating

the vehicle velocities.
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4.3 Localisation with a pushbroom LIDAR

Figure 4.10: Coordinate frames and conventions. The coordinate frames of the
Wildcat and the constituent sensor systems: TL1

INS

from the INS to the horizontal
LIDAR, and TL2

INS

to the declined LIDAR. All coordinate systems are right-handed,
and the X, Y and Z axes are in red, green, and blue respectively.

Figure 4.10 shows the coordinate conventions used throughout this section. Fig-

ure 4.11 illustrates an example swathe obtained from the declined LIDAR mounted

on the Wildcat (Figure 4.10). Indicated in the figure is the motion of the vehicle

through the scene:

Figure 4.11: Example 3D data from a 2D pushbroom LIDAR. The process of
generating 3D point clouds from the egomotion of the declined LIDAR through the
scene, highlighted by the arrow. If we observe the rotational and linear velocities of
the sensor, we can integrate these to produce this 3D cloud. Particularly visible are
the retro-reflective road-markings and lane demarcations.
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4.3 Localisation with a pushbroom LIDAR

We define the generation of a run-time point cloud Q as:

Q �(Z
t�N :t, xt�N :t) (4.1)

where Z
t�N :t are raw LIDAR scans, x

t�N :t is a retrospective relative Special

Euclidean 2 (SE2) rigid pose chain, N is the window length in seconds, and � is a

function that projects LIDAR scans into R3. A laser-scan at time t is defined as:

Z
t

= {r1, . . . , r541, i1 . . . i541} (4.2)

where r
n

denotes the laser range reading (in meters) for beam n of scan Z
t

and

i
n

is the intensity of each of the 541 beams in the SICK LMS-151. To obtain the

relative pose-chain, we utilise both the observed rotational velocities ⌦(t) around

the three ordinate axes of the vehicle (roll, pitch, yaw), and the linear velocities

given by some extrinsic source. Given these velocities, we can integrate the state

equation:
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to produce the SE2 pose-chain, x
t�N :t (consisting of Cartesian position, and

orientation). We can then project the LIDAR ranges using �(·) thereby generating

the swathe Q. Figure 4.12 shows an overhead view of the 3D point cloud P - the

survey point cloud - with an exemplar swathe, Q:
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Figure 4.12: Run-time swathe and 3D prior. Overhead view of the 3D point
cloud P developed during the original experience (outer image), coloured by re-
flectance. Shown in the centre is an example swathe, Q. Our task is to determine
the transformation T̂ that best aligns Q with P . Note that the scales across these
images di↵er for the purposes of illustration.

The tracking problem is - given the survey point cloud P , and the swathe de-

veloped during runtime, Q - to establish a transformation T̂ that best aligns the

clouds. We restrict the transformation space to be contained within the Special Eu-

clidean 2 group (SE2) - again we posit that for a large number of the tasks required

of an autonomous vehicle (path and trajectory planning) the SE2 pose is su�ciently

descriptive. However, we have assumed so far that the velocities over the window

are given - a valid question now is how we obtain these estimates from sensor data.
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4.3 Localisation with a pushbroom LIDAR

4.3.1 Ego-motion estimators

The Wildcat has access to velocity estimates through the INS - an Oxford Technical

Solutions RT3000 unit. This system is equipped with a Satellite-Based Augmenta-

tion System (SBAS), which - in the case of the UK - is supplied by the European

Geostationary Navigation Overlay Service (EGNOS). The unit is quoted as hav-

ing .2 metre Circular Error Probable (CEP), although as shown by Figure 4.2, we

can see that this value is regularly violated with adversarial satellite locations and

ionospheric conditions, and the presence of buildings and foliage.

The INS provides pose estimates, velocity estimates (both linear and angular)

as well as tri-axial accelerations. We cannot, of course, expect fleets of vehicles to

have access to such a system - although we will utilise the INS velocities estimates

as a baseline for performance when comparing other methods. Two other methods

for estimating velocity are LIDAR Odometry (LO) and Visual Odometry (VO).

Visual Odometry

We discussed the use of VO previously in Chapter 2 as a state-estimator - we now

seek to make use of it for velocity estimation. (We are not interested in matching

features of the visual system into a pre-defined map for localisation purposes - rather,

we seek to use the relative pose estimates to generate both linear and angular velocity

feeds to generate our LIDAR swathe)

Figure 4.13 and Figure 4.14 shows the linear and rotational velocities obtained

from the numerical di↵erentiation of pose estimates from a VO system (implemented

by Winston Churchill of the Mobile Robotics Group [21]) over 80 seconds of data in

the Woodstock area of Oxfordshire:
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4.3 Localisation with a pushbroom LIDAR

Figure 4.13: Visual Odometry: Linear velocity estimates. Linear velocity
estimates over 80 seconds around Woodstock in Oxfordshire, using the VO system.
The ground-truth (INS) velocity is shown in red, with the instantaneous VO velocity
estimates shown in blue.

Figure 4.14: Visual Odometry: Rotational velocity estimates. Rotational
velocity estimates (yaw) over the same 80 seconds using the VO system. The ground-
truth (INS) yaw is shown in red.

As can be seen from the figures, the rotational velocity tracks the INS estimates

particularly well. However the linear velocity estimates exhibit a slight bias, which

is particularly detrimental to our swathe generation process - the consistent under-

estimate leads to “compressed” point clouds and correspondingly erroneous pose

estimates. This stereo-bias is a known issue when estimating motion from far-field

features - as is detailed in [75] - and as such, we move on to estimating relative

motion using LIDAR.
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LIDAR odometry

LIDAR Odometry (LO) utilises a horizontally-mounted 2D LIDAR scanner and

scan-matching to produce pose-estimates in an open-loop fashion, as discussed in

Chapter 2, and earlier in this chapter.

LO makes assumptions about the planarity of the world and is subject to error

induced by real-world factors such as ground-strike, dynamic obstacles in the scene,

and so on. However, as can be seen from Figure 4.15 and Figure 4.16 - which are the

corresponding LO estimates of the linear and rotational velocity of the data shown

in Figure 4.13 and Figure 4.14 - LO serves as a good (if noisy) estimator of both

linear and rotational velocities:

Figure 4.15: LIDAR Odometry: Linear velocity estimates. Linear velocity
estimates over the same 80 seconds as Figure 4.13 using the LO system. The ground-
truth (INS) velocity is shown in red, with the instantaneous LO velocity estimates
shown in blue.

Figure 4.16: LIDAR Odometry: Rotational velocity estimates. Rotational
velocity estimates over the same 80 seconds as Figure 4.14 using the LO system.
The ground-truth (INS) yaw is shown in red.
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If we measure the Root Mean Square (RMS) error for each of the two odometry

systems (as measured against the INS estimates), we see that on average the LIDAR

has a lower RMS value (0.48m/s vs 1.74m/s for LO vs. VO in the above example).

This motivates us to make use of LIDAR as the source of rotational and linear

velocity estimates.

However, due to the numerical di↵erentiation and corresponding noise increase,

we require some form of smoothing over the velocities. Figure 4.17 through Fig-

ure 4.19 show the e↵ects of di↵erent smoothing algorithms over scan-match velocity

estimates around the Begbroke site:

Figure 4.17: Velocity Filtering: Savitzky-Golay. Velocity filtering using the
Savitzky-Golay algorithm for varying window sizes over scan-match velocity esti-
mates.

Figure 4.18: Velocity Filtering: Moving-average. Velocity filtering using a
moving-average filter of varying window sizes over scan-match velocity estimates.
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4.3 Localisation with a pushbroom LIDAR

Figure 4.19: Velocity Filtering: Kernel-smoothing. Velocity filtering using
a Gaussian kernel-based smoothing algorithm of varying kernel-widths over scan-
match velocity estimates.

From these comparisons, it can be seen that the best performing algorithm is

the moving-average filter - this approach makes minimal assumptions about the

underlying signal and works well for damping the velocity oscillations (visible in

Figure 4.17 through Figure 4.19).

Using LO to estimate for velocity estimation works particularly well in scenes

which are mostly static. However, as can be seen from Figure 4.17 through Fig-

ure 4.19, there are certain areas that are sources of systemic error. This e↵ect, and

its resolution, is more challenging and is discussed at length in Chapter 6.

Given that we now have a method to estimate the vehicle velocity over a given

window period, we now are able to fully generate the retrospective swathe. The

focus, given this swathe, is to produce localisation estimates by matching it within

the 3D prior. We seek to minimize some objective function:

T̂ = argmin
T

f(P ,Z
t�N :t,xt�N :t, T ) (4.4)

which is a function of our prior experience, observed LIDAR data, and the inte-

grated pose chain. We now turn our attention to ways of accomplishing this.
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4.4 Existing methods for 3D point cloud alignment

The localisation problem is fundamentally one of point cloud registration; if we can

accurately register a run-time cloud to a prior, this will give us an accurate estimate

of the current vehicle location.

As outlined in Chapter 2, many methods exist for the alignment of point cloud

data, which can be broadly separated into those that perform alignment on the entire

point clouds and those which identify salient regions or features. We now contrast

the performance of two widely-used registration algorithms using our “swathe” data

- Generalised ICP and the Normals Distribution Transform.

Generalised ICP

Generalised ICP was discussed previously in Chapter 2 as a principled generalisation

of both ICP and ICS. Generalised ICP (GICP) [80] utilises a probabilistic plane-to-

plane matching approach, as opposed to the point-to-point or point-to-plane metrics

used by ICP and ICS, respectively. GICP assumes the underlying points P and Q

generate observations P̂
i

⇠ N (P
i

, CP

i

) and Q̂
i

⇠ N (Q
i

, CQ

i

) , and then optimises:

T̂ = argmax
T

X

i

log(p(dT
i

)) (4.5)

where dT
i

corresponds to the distribution of the transformed points as a function

of T :

dT
i

⇠ N (P̂
i

� T · Q̂
i

, CP

i

+ T · CQ̂

i

· T T ) (4.6)

This is fully detailed in [80]. Figure 4.20 and Figure 4.21 show examples of both
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4.4 Existing methods for 3D point cloud alignment

good and failure cases of the GICP algorithm over real-world data acquired by the

2D LIDARs on the Wildcat:

Figure 4.20: GICP: Good match. A successful match of a run-time swathe (blue)
against the survey (grey), using velocities from the INS. This location in Begbroke
(along the western section) is used as a control point as there exists substantial
planar-structure visible from the LIDAR, which is highly beneficial for point-based
registration algorithms. (Swathe data is in blue, the map in grey).

As expected, GICP works well when we have good estimates for the velocities

(obtained from the INS). However, when we substitute velocities inferred from the

horizontal LIDAR, the resulting point cloud becomes “warped”, leading to mis-

alignments. Figure 4.21 highlights a particular example of this in the town centre

of nearby Woodstock:

Figure 4.21: GICP: Matching failure. A location in the nearby town of Wood-
stock that causes GICP to fail to find a good match. This swathe data was gener-
ated using the velocities inferred from scan-matching through the horizontal LIDAR.
Point-to-point matching algorithms (and their variants) perform worse when the ve-
locity estimates exhibit any degree of compression/expansion. A comparison of the
trajectories obtained using GICP is shown in Chapter 5.
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The Normals Distribution Transform

Biber in [8] utilises a novel approach to 2D scan registration based on Gaussian

mixtures, which was subsequently extended to 3D [86]. The input space is discretized

into cells - or voxels - with the density of points P falling into each voxel modelled

by a Gaussian distribution. The advantage is a di↵erentiable probability density,

which is useful for gradient-based optimisation routines. Then, given a point cloud

Q, NDT optimises the score function:

T̂ = argmin
T

8
<

:�
|Q|X

i=1

log f(�(T ,Q
i

))

9
=

; (4.7)

where � is a transformation operation that transforms Q
i

by T and f(·) for a

given point is defined as:
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�

(4.8)

where µ
k

and ⌃
k

denote the mean and covariance of the Gaussian approxima-

tion for the corresponding voxel. Similarly to the GICP results, Figure 4.22 and

Figure 4.23 show a successful match at the “control” point, as well as a failure in

Woodstock centre:
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Figure 4.22: NDT: Good match. A successful match from a run-time point cloud
(coloured red) against the survey (grey).

Figure 4.23: NDT: Matching failure. A matching failure for a similar point
cloud, in the same location as in Figure 4.21.

Notice the similar failure location of Figure 4.23 to Figure 4.21 - this is at-

tributable to the “warping” introduced into the swathe by degenerate velocity read-

ings at this location arising from ground-strike, tra�c and so on. In Chapter 5 we

illustrate the degenerate e↵ects that these mis-registrations have on the resulting

trajectory estimates.

In the following sections, we build up the concept of information-theoretic alignment

in the case of 3D swathes and in Chapter 5 show how this formulation results in

superior localisation performance.
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4.5 Point cloud alignment by Maximum Likelihood

4.5 Point cloud alignment by Maximum Likelihood

The underlying assumption made here is that the true pose of the vehicle will be

the transformation that best aligns the swathe and prior point cloud. Given that

we have a model of the environment - in the form of the prior, P - we can estimate

the SE2 alignment in a maximum-likelihood setting as a function of pose and this

prior:

T̂ = argmax
T

p(Z | T ,P) (4.9)

where Z are the observations and T is the vehicle pose. We define another

projection function  :

Q0 =  (�(Z
t�N :t,xt�N :t), T ) (4.10)

which projects a relative point cloud into the global frame as a function of pose

T . Through this projection we can generate a likelihood-field of our observed data

with respect to a model, which we can use for sequential pose estimation - the

question now concerns the choice, and form, of such a model.

If we perform a histogramming operation such that we obtain bin counts z
i

corresponding to the counts of the points of Q0 falling into bin i of a 2D grid on

the XY plane, then we can formulate the measurement model as a multinomial

distribution:

Mult(z1, . . . , zk | µ,N) =
N !

z1!, . . . , zk!

KY

k=1

µzk
k

(4.11)
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4.5 Point cloud alignment by Maximum Likelihood

which is parameterized by observations of cardinality N , with cell probabilities

µ and observed counts z = {z1, · · · , zk}, so that N =
P

K

i=1 zi. The multinomial

distribution expresses the likelihood of seeing the bin-counts z under the model of

cell probabilities µ. As noted in [63], the samples observed are not equal to their

counts as the sampling appeared in a particular order - however, we do not sum

over orderings as the data had one ordering (the ordering observed). Therefore,

Section 4.5 is equivalent to:

Mult(z1, . . . , zk | µ) =
KY

k=1

µzk
k

(4.12)

Of course, this assumes that the variables are independent and identically dis-

tributed (i.i.d), despite the spatial dependencies that will exist in the data - this is

a common assumption [102] and is used here with no adverse e↵ect.

We perform this histogramming operation by projecting the observed points onto

the XY plane. In this fashion, regular prismatic structure manifests as higher bin

counts; this makes sense as if we see a high wall during the survey, we have high

expectations of seeing it in subsequent runs. Points on the ground have a naturally

lower density, but are still informative about the shape and structure of the road.

Therefore, representing the point clouds by their projected probability distributions

is a natural way of capturing the structure of the environment. An illustration of

this process is shown in Figure 4.24:
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4.5 Point cloud alignment by Maximum Likelihood

(a) Observations at T 0 (b) Observations at T 0 + �

Figure 4.24: Observations as a function of pose. Figure (a) shows the distribu-
tion of observations at global pose T 0, with rigid pose-chain x

t�N :t obtained from the
linear and rotational velocity estimates, while figure (b) shows the distribution of
the same observations and pose-chain, at a di↵erent global-pose T 0+� (Blue-squares
represent observations, triangles represent poses).

Of vital concern is how to estimate the cell probabilities of the model, µ. These

values will obviously correlate with the data from our prior, P , and we could there-

fore build an empirical estimate of µ by counts obtained from this prior - which we

will term zm (Note that this corresponds to a similar histogramming operation on

the prior point cloud).

However, this empirical estimate of zm would likely give zero-probability to com-

binations of run-time data not observed in the map. As such, we require some form

of smoothing over µ, which we achieve by adding a di↵use prior to the multinomial

in the form of its natural conjugate - the Dirichlet distribution:

Dir(µ1, . . . , µk

| ↵1, . . . ,↵k

) =
1

B(↵)

KY

k=1

µ↵k�1
k

(4.13)

The Dirichlet distribution is a multivariate distribution over K categories, pa-

rameterized by “shape” parameters ↵ - the Dirichlet is known as a “distribution over
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4.5 Point cloud alignment by Maximum Likelihood

distributions” as the µ variables are constrained to sum to unity, and is therefore a

natural prior for the cell probabilities of the multinomial.

The ↵ parameters also have a natural interpretation in terms of pseudo-counts

or “virtual observations”. An illustration of the e↵ect of increasing these alpha

parameters over a tri-variate distribution are shown in Figure 4.25:

Figure 4.25: Dirichlet “shape” parameters. An illustration of the growth of a
trivariate Dirichlet distribution with increasing variable counts. On the left, the ↵
parameters are equal and unary - each variable has equal probability. As we observe
more “counts” of one variable, the posterior mass begins to shift - with a corre-
sponding shrink in variance - to that variable (Red corresponds to high probability,
blue to low probability).

Figure 4.25 shows how increasing the observations of a variable biases the pos-

terior distribution, but crucially still maintains some probability mass on the re-

maining variables. We require - for the probability parameters of the multinomial

distribution - a posterior distribution over the cell probabilities. Applying Bayes

rule, we have:

p(µ | zm,↵) / p(zm | µ) p(µ | ↵) (4.14)

where the posterior over parameters µ is proportional to the likelihood of the

data, multiplied by a prior over said parameters, given by the Dirichlet. The conju-
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4.5 Point cloud alignment by Maximum Likelihood

gacy property of the Dirichlet provides a simple update rule:

p(µ | zm,↵) =
KY

k=1

µ
z

m
k

k

KY

k=1

µ↵k�1
k

(4.15)

/
KY

k=1

µ
↵k+z

m
k �1

k

p(µ | zm,↵) = Dir(µ | ↵ + zm) (4.16)

We can see that the resulting distribution is a Dirichlet, smoothed by our initial

prior counts. A common approach is to set all ↵ values to be 1 as an uninformative

prior - this is shown as the leftmost image in Figure 4.25. This is often referred to

as Add-One smoothing [83], or Laplacian smoothing. Je↵reys forwards a di↵erent

interpretation - the Je↵reys prior is the square root of the determinant of the Fisher

Information matrix and for the Dirichlet takes the value of 1/2 [101]. In the following

experiments, we make use of the uniform prior.

This model now gives us the likelihood of a certain configuration of bin counts,

given the pseudo-counts combined with the data from our prior - these are the

parameters of our multinomial model. Our goal now is to estimate the pose that

maximizes the likelihood of the binned points of the run-time swathe, given our

prior:

T̂ = argmax
T

p(z | T , µ) (4.17)

To investigate the properties of this likelihood, we can generate the “objective”

volume in SE2 space around some known ground-truth value, and then measure the

likelihood as a function of induced error. An important parameter in this approach
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4.5 Point cloud alignment by Maximum Likelihood

is the histogramming parameter - Figure 4.26 shows the evolution of this likelihood

for increasing granularity:

(a) Granularity: low

(b) Granularity: medium

(c) Granularity: high

Figure 4.26: Likelihood sensitivity as a function of histogram granular-
ity. These figures show the evolution of the objective (i.e. likelihood) surface for
increasing histogram granularity, from smallest granularity (a), to largest (c).
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4.5 Point cloud alignment by Maximum Likelihood

How to interpret volume plots: Figure 4.26 shows the evolution of the likelihood

as a function of increasing histogram granularity - i.e. decreasing bin size. These iso-

surface plots represent surfaces of equal-likelihood in the objective volume. Darker,

redder colours correspond to a lower objective; lighter, yellow ones to a higher value.

Objective, in this sense is the negative log-likelihood - this is to frame the objective

as a minimisation problem, which we work with exclusively in the following sections.

The following figures show how the likelihood changes along the cardinal axes:

(a) Likelihood sensitivity: X (b) Likelihood sensitivity: Y (c) Likelihood sensitivity: ⇥

Figure 4.27: Likelihood sensitivity over SE2. An enumeration of the objective
function (likelihood) along the cardinal axes of SE2 space: (a) X-axis, (b) Y-axis
and ⇥-axis, (c) for various histogram granularities.

How to interpret axes plots: Figure 4.27 shows the evolution - along each

of the cardinal axes - of the objective function around some known “ground-truth”

alignment. The grey plots beneath the coloured plots show the objective function for

previous histogram values - in the case of the likelihood, with increasing granularity

we see a corresponding increase in the negative log-likelihood; i.e. a decrease in the

log-likelihood. This is intuitive - as we add more bins, correspondingly fewer points

fall into each bin, and the model expresses a lower likelihood.

Note in particular that the minimum is invariant, despite changing granularity.

We can also see that the likelihood is sensitive to errors in rotation and lateral

deviation, but not particularly to those in the forward direction. This is an artefact

of using the out-of-plane LIDAR data to estimate forward motion - however, this
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4.5 Point cloud alignment by Maximum Likelihood

was not a limiting factor in the data evaluated in this thesis, which is demonstrated

over more than 100km in Chapter 5.

Also, given the multiplicative nature of the multinomial likelihood, the resulting

numeric value becomes rapidly smaller given more observed data1. This becomes

an issue for example when we observe a large amount of LIDAR data in our swathe

- we would like our model to be invariant to the cardinality of the run-time data

observed.

An answer to this is to make use of the average likelihood - a value that is

invariant to the sample size. This proof is given in [81] and is outlined here for

continuity. The average log-likelihood is defined as:

L̄ = logL(z | µ)|z|�1

(4.18)

where L is shorthand for likelihood. For ease of notation, we let N = |z|. Sub-

stituting the form of the multinomial (Section 4.5), we obtain:

L̄ =
1

N
log

N !Q
i

z
i

!

Y

i

µzi
i

=
1

N
logN !� 1

N

X

i

log z
i

! +
X

i

z
i

N
logµ

i

(4.19)

It is then possible to make use of Stirling’s approximation for large factorials:

logn! ⇡ n logn� n

By plugging this approximation into Equation (4.19) and collecting terms, we

1Although we evaluate the log-likelihood, it is still an issue with increasing bin number.
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obtain:

L̄ = �
X

i

z
i

N
log

z
i

N
+
X

i

z
i

N
logµ

i

(4.20)

As n!1, the normalized histogram is interpreted as a probability distribution

itself, and substituted into Equation (4.20):

�
i

=
z
i

N

L̂ = �
X

i

�
i

log �
i

+
X

i

�
i

logµ
i

(4.21)

where Equation (4.21) is known as the Kullback-Leibler divergence [49]. This

divergence, also known as the relative entropy, is therefore the negative logarithm

of the average multinomial log-likelihood:

D
KL

(PkQ) = lim
N!1

� 1

N
log L̄(z | µ)

hence, identical distributions will have zero-divergence or unity average likelihood

as we observe infinite data. Motivated by this relationship, in the next section we

explore the use of the KL divergence as an objective function.

4.6 Point cloud alignment using Relative Entropy

The Kullback-Leibler divergence belongs to the family of f-divergences. If we de-

fine a function f(t) to be convex for t > 0, the divergence of distribution P from

distribution Q is:
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4.6 Point cloud alignment using Relative Entropy

D
f

(P ||Q) =

Z

x

Q(x) f

✓
P (x)

Q(x)

◆
dx (4.22)

over the domain x. Various well-known distance measures are defined for various

choices of f(·) [24], and these are listed in Table 4.1. These include non-parametric

measures such as the �2 divergence, and also information-theoretic distances - such

as the KL divergence:

Table 4.1: Common f-divergence functions

Function Measure

t log t Kullback-Liebler
(t� 1)2 �2

2(1�
p
t) Hellinger

| t� 1 | Variational

We now focus on the use of the Kullback-Liebler divergence or relative entropy of

the two distributions (as a function of pose) as an objective function to be minimized.

The KL-divergence for any two distributions P and Q is:

D
KL

(PkQ) =

Z 1

�1
P(x) ln

P(x)

Q(x)
dx

This integral becomes the following summation:

D
KL

(PkQ) =
X

i

P(x
i

) ln
P(x

i

)

Q(x
i

)

for the discrete case. The KL divergence is an e↵ective representation of the

information-distance between these distributions, provided that they are well defined

- and this is a detail that we now must consider. Consider Figure 4.28, which shows
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4.6 Point cloud alignment using Relative Entropy

estimates of two (very similar) probability distributions obtained by counts:

Figure 4.28: Estimating the KL-divergence from histograms. An issue aris-
ing from estimating the KL-divergence for probability distributions obtained from
counts.

In the indicated bin, we have a non-zero number of counts under distribution p̂
a

,

but zero counts under p̂
b

. Technically, the divergence between these two distributions

is infinite - which is clearly only a symptom of limited data, rather than the true

probabilistic distance.

We could perform a similar technique as in Section 4.5 by adding a non-informative

(Dirichlet) prior to these distributions - however, the Dirichlet ignores correlations

in the dataset - we know that a large bin count in bin k should admit the possibility

of larger counts in the neighbourhood k 2 Ne(k).

Driven by our experience in optimizing this objective function, we apply a dis-

crete Gaussian convolution to the raw bin counts observed for both the prior P

and swathe Q. If we denote the counts observed in bin (ij) for P as P
ij

, then the

convolution is:
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4.6 Point cloud alignment using Relative Entropy

(P 0 ? f)(i, j) =
X

(a,b)2A
f(a, b) P (i+ a, j + b) {8(a, b) | f(a, b) 6= 0} (4.23)

where ? denotes the convolution operator of the observed bin counts with a

function f(·) - in this case a discrete Gaussian kernel, N (0, �). This operation

contributes significantly to the smooth nature of the objective function and captures

the correlations of the data.

As a final step, to prevent infinite divergences, we apply absolute discounting

to the probability distributions as follows. For any two probability distributions P

and Q obtained by counts, with the sets of non-zero bins defined as S
P

and S
Q

respectively, we define the smoothed probability distribution Q to be:

Q(i) =

(
Q(i)� ✏ if i 2 S

Q

\ S
P

(4.24)

✏ f i 2 S
P

\ S
Q

(4.25)

Absolute discounting reduces the probability mass in distribution Q in all the

non-zero bins that do not intersect with P, and this mass is reapportioned into

bins that have mass under P but not Q (which is a set di↵erence, denoted by the

\ operator). This is necessary in order for the divergence measure to be properly

defined. Figure 4.29 shows a representative objective function, using the same data

as shown in Figure 4.26:

104



4.6 Point cloud alignment using Relative Entropy

Figure 4.29: Relative Entropy objective “volume”. Representative iso-surfaces
of the relative entropy, exhaustively evaluated over the input domain using the same
data as shown in Figure 4.26.

Similarly, Figure 4.30 shows the enumeration along the cardinal axes of SE2

space:
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Figure 4.30: Relative Entropy sensitivity over SE2. An enumeration of the
objective function along the cardinal axes of SE2 space: (a) X-axis, (b) Y-axis and
⇥-axis, (c).

After the smoothing process, we see that the KL divergence is now more sensitive

to changes along the cardinal axes. This is necessary for the estimation process to

prevent accrued pose error (and ultimately tracking failure). The relative lack of

sensitivity along the direction of travel (as compared to the transverse direction) is
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both a function of the environment and the motion of the vehicle - similar concerns

are discussed in [91]. However, we have not found this to be a limiting concern in

the data - over a year and 100km collected in widely varying environments - that

has been evaluated.

4.6.1 Objective function optimisation

There are many di↵erent optimisation approaches for any given objective function,

both gradient-based and derivative free. We propose Algorithm 3, which exhibits

good performance across all the data acquired:

Algorithm 3 Objective function optimisation

1: procedure EstimateTransformation(P ,Q, T̂ , TOL)

2: g g
init

. Initialise histogram granularity

3: �  1 . Initialise objective function change

4: P H(P , g) . Histogram

5: P0  P ?N (0, �) . Apply convolution

6: while � > TOL do

7: T  T̂
8: T̂(x,y)  argmin

(x,y)2XY

F(⇧(x, y, T̂
✓

),Q, g,P0) . Grid search

9: T̂
✓

 argmin
✓

F(⇧(T̂(x,y), ✓),Q, g,P0) . Line-search

10: �  �(T̂ � T )

11: g g + g
delta

12: end while

13: return(T̂ )

14: end procedure

15: procedure F(T ,Q, g,P)

16: return D
kl

(H( (Q, T ), g),P) . Objective function

17: end procedure

The algorithm takes, as input, the survey experience point cloud data, a candi-

date swathe, an initial estimate of the desired transformation T̂ (an SE2 pose), and
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the desired exit tolerance.

In Line 2, the histogram granularity, g, is initialized to a default value, and the

objective function change value set to infinity in Line 3.

In Line 4 we define the operator H(.) to represent the histogramming operation

that produces a discrete probability density function (pdf) of the input point cloud

data, with the number of bins determined by the second parameter.

Algorithm 3 works in two stages - discrete grid search over XY , followed by

a line-search for minima using Brent’s method [17] over ⇥. Line 16 defines the

objective function used in the optimisation procedure, which takes as input a pose,

the swathe, histogram granularity, and the prior distribution and returns the KL-

divergence between them. Again,  is a projection operator, transforming an input

point cloud Q by a transformation T . The ⇧ operator (Line 8 and Line 9) takes a

{x, y, ✓} tuple and returns a transform, T .

The granularity is increased by a quantity g
delta

at every iteration (Line 11), to

provide the annealing e↵ect visible in Figure 4.30. Simultaneously, the domains for

both the grid and line searches are contracted, providing increasingly finer estimates.

The halting measure, �, is the di↵erence between the previous SE2 estimate and

the current estimate, and the optimisation halts once this measure has reached a

predefined value. The di↵erence between the two SE2 poses is measured as given

by the metric in [53], in which the orientation in a SE2 pose is expressed with a

complex number representation, giving:

T ! (x
t

, y
t

, a, b) 2 R4 (4.26)

where a and b are the complex components of the angle - the euclidean metric

is now valid for comparing two poses in SE2. At the next discrete interval, we will
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have observed more rotational and linear velocity data, and require a pose seed for

Algorithm 3 to initiate the search procedure.

To evaluate the convergence of this algorithm, Figure 4.31 shows the distribu-

tions over pose-estimates around some known ground-truth registration that were

provided to the algorithm:
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Figure 4.31: Algorithm convergence test. The input distributions over pose for
X (a), Y (b), and ⇥(c) provided to the algorithm.

Given these initial estimates, we would hope to see the final residual errors cluster

close to 0. Given that Algorithm 3 is iterative, we can plot the residuals as a function

of iteration number - Figure 4.32 shows this distribution for 1 iteration:

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30

35

∆X (m)

P
e

rc
e

n
ta

g
e

 o
f 

sa
m

p
le

s 
(%

)

(a) �X

−2 −1 0 1 2
0

10

20

30

40

∆Y (m)

P
e

rc
e

n
ta

g
e

 o
f 

sa
m

p
le

s 
(%

)

(b) �Y

−0.05 0 0.05
0

5

10

15

20

25

∆Θ (rads)

P
e

rc
e

n
ta

g
e

 o
f 

sa
m

p
le

s 
(%

)

(c) �⇥

Figure 4.32: Relative Entropy optimisation: 1 iteration. Residual error after
running Algorithm 3 for 1 iteration: (a) X, (b) Y , (c) ⇥.

Figure 4.33 through Figure 4.35 show the evolution of the residuals for increasing

iteration number:
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Figure 4.33: Relative Entropy optimisation: 2 iterations. Residual errors
after 2 iterations of Algorithm 3 over: (a) X, (b) Y and (c) ⇥.
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Figure 4.34: Relative Entropy optimisation: 3 iterations. Residual errors
after 3 iterations of Algorithm 3 over: (a) X, (b) Y and (c) ⇥.
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Figure 4.35: Relative Entropy optimisation: 4 iterations. The final residual
errors, after 4 iterations of Algorithm 3 over: (a) X, (b) Y and (c) ⇥.

As can be seen from the residual plots, this approach performs well for this

optimisation task. This algorithm, using Relative Entropy as an objective function,
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4.7 Leveraging remission structure

has been tested extensively with real-world data, which is discussed in Chapter 5,

however there exist cases where the performance is degenerate - particularly in areas

devoid of structure. We now turn to means of addressing this deficiency.

4.7 Leveraging remission structure

Figure 4.36: Featureless road section. A relatively featureless section near the
Begbroke Science Park. The lack of informative structure in this region requires us
to utilise the reflective properties of the LIDAR data.

An important requirement of this approach (as with all 3D point cloud registration

methods) is the presence of distinct structure - it is unlikely, in any given urban sce-

nario, to have a completely featureless expanse. However, as is shown in Figure 4.36,

there are sections (highway, mostly) that are largely featureless.

We therefore seek to leverage alternate sources of information. Given that the

LIDAR sensor can report reflectance, we can match run-time swathes and survey

patches by maximizing the mutual information (MI) between the distributions over

reflectance.

Using MI as an alignment criterion, proposed initially by [98], has a long history
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4.7 Leveraging remission structure

in multi-modal medical image registration [22], and image-registration in general

[72][98]. The idea is to estimate the joint-probability of remission occurrences for

two images A and B - that is induced by transformation T - and therefore estimate

the MI by:

I(A,B) = H(A) +H(B)�H(A,B) (4.27)

where H(·) denotes the Shannon entropy. Consider the following example, show-

ing an image of the Wildcat rotated about the centre axis of the image:

(a) Wildcat : reference
image

(b) Wildcat : 10� (c) Wildcat : 40�

Figure 4.37: Using Mutual Information for alignment. Shown in (a) is a
reference image, corrupted by varying degrees of rotation - (b )10� and (c) 40�.

We would like, given the original Wildcat image I and a rotated version R, to

estimate the rotation that best re-aligns the two. For the image rotations shown in

Figure 4.37, the corresponding joint probabilities over intensity are plotted:
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4.7 Leveraging remission structure

(a) p(I,R0) (b) p(I,R10) (c) p(I,R40)

Figure 4.38: Estimating the joint distribution over intensity. The joint dis-
tribution over intensity, p(I,R

↵

), for the images shown in Figure 4.37. Note in
(a) the strong diagonal, indicating exact alignment (this is expected, they are the
same images). For increasing rotation, the distribution becomes more di↵use, with
a correspondingly higher entropy, resulting in a lower mutual information.

The mutual information for varying degrees of rotation (↵) is shown in Fig-

ure 4.39:

Figure 4.39: Mutual Information: Registration example. The MI for varying
degrees of rotation (↵). Note the sharp peak at 0�, which is to be expected - these
images are maximally informative about each other at this angle. As the rotation
is increased, the probability mass of the joint distribution becomes more di↵use,
meaning the two distributions are progressively less informative. Highlighted are
the rotation values for the images shown.

Figure 4.40 shows an example reflectivity map for one of the locations in Fig-

ure 4.36:
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4.7 Leveraging remission structure

Figure 4.40: Road reflectance from the declined 2D LIDAR. Road reflectance
from the 2D LIDAR over the area shown in Figure 4.36. Clearly visible are the lane
dividers.

We seek to perform a similar registration of such a run-time reflectivity swathe

with our prior. Of course, the registration problem for the swathe is slightly di↵erent

from that of the image-registration case. For images, there is a discrete grid specified

a-priori - the image pixel locations. Also, when aligning images, there is only one

sample per grid-point, given by the intensity of the pixel at that location. For our

registration problem, depending on the histogramming parameters chosen, we may

have many points - and their associated reflectances - to evaluate at each location.

As a simplifying assumption, for all points in a bin, we take the resulting reflectivity

to be the average of these points.

Consider Figure 4.41, which again shows the objective function, but using a MI

metric over joint reflectance data of the swathe and point clouds:
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4.7 Leveraging remission structure

Figure 4.41: Localisation through reflectance matching. The objective func-
tion over SE2, using the mutual-information over the joint reflectances of the swathe
and map.

Note the colour variation of Figure 4.41 as compared to Figure 4.29 - the lower

cost is much more “concentrated” in this objective function.

In the image-registration literature, optimisation of such an objective function

is often done with derivative-free optimisation functions, such as the Nelder-Mead

Simplex algorithm, or a direction-set algorithm, such as Powell’s method [36].

Nelder-Mead [70] evaluates the objective function over a simplex of points - in

the case of the 2D example shown in Figure 4.42, this is a triangle - and evaluates the

descent direction based on the gradient information obtained by these evaluations:
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4.7 Leveraging remission structure

Figure 4.42: Optimisation illustration: Simplex algorithm. The Nelder-Mead
simplex method over an example objective function (Himmelblau’s function). Sim-
plex evaluations - and their associated centroid - are shown in grey and black,
respectively.

Direction-set methods use a set of search vectors, and minimise the objective

function by means of a bi-directional search along the direction of these vectors.

These vectors are updated at each step depending on their contribution to the

overall decrease of the objective function. This is a generalisation of “taxi-cab”

search, or coordinate descent, another direction-set method:

Figure 4.43: Optimisation illustration: Co-ordinate descent. Optimisation
(function minimisation) using repeated application of coordinate descent, with min-
ima found using Brent’s method.

For coordinate descent, no modification is made to the search directions, and the

objective function is minimised along each in turn until some halting criteria is met.

Although simple, coordinate-descent - with minimisation along each search coordi-

nate done using Brent’s method - works well for optimising the mutual-information

115



4.7 Leveraging remission structure

objective function. Figure 4.44 shows the resulting distribution of the residual error

after termination of the optimisation:
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Figure 4.44: Mutual Information optimisation: Residual error. The residual
error distribution at termination of the optimisation over (a) X, (b) Y , and (c) ⇥.

Again, the residual plots give a good indication that this algorithm - in con-

junction with the MI objective function - will lead to robust localisation estimates

- results demonstrating the validity of this localisation strategy are given in Chap-

ter 5. Of course, there are parallels between the optimisation based on perceived

reflectance, and that based on projected point density. In fact, we can consider the

projected data to be an intensity plot of point density, and then optimise:

I(z, zm) = H(z) +H(zm)�H(z, zm) where (4.28)

z = H( (Q, T ))

zm = H(P)
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4.8 The importance of timing

The advantage here is that the MI is not as sensitive to the choice of smoothing

(as compared to the KL divergence), and we can easily incorporate this as a new

objective function into Algorithm 3.

A crucial aspect to the entire system, and to the localisation approaches outlined,

is an accurate time mapping between individual sensors - this is something we must

address.

4.8 The importance of timing

Of vital importance is the timing calibration between the time as perceived by the

sensor clocks and those of the on-board computer. Disagreement between these

clocks will result in point clouds that exhibit “smear”. Thinking of the information

content of Q, this smearing or blurring will flatten the objective function making

optimisation harder.

We employ the TICSync [39] timing algorithm which learns a probabilistic map-

ping between clocks, and is able to recover both skew and o↵set. Shown in Fig-

ure 4.45 are the TICSync-corrected data (left), and the same data with a normally

distributed 50ms error in timing (right). Visible in the right figure is the ghosting

in laser-space that increases with increased timing error:
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Figure 4.45: Timing illustration. Overhead view of a set of road markings around
the Begbroke site. The point cloud generated with TICSync-corrected timings
is shown on the left, as compared against a similar point cloud with normally-
distributed 50ms error. The corrected point cloud does not exhibit the ghosting
(visible in the right image).

Use of TICSync is important in any multi-sensor payload, and we use it exten-

sively through this thesis.

4.9 Summary

This section has presented and analysed methods for point cloud alignment from

2D-LIDAR for localising a road vehicle within a prior map. Various information-

theoretic approaches for estimating pose were formulated using both the geometric

and intensity appearance of a scene, and the following chapter presents results using

these techniques over extensive real-world data, spanning the course of a year and

over 100km of driven distance.
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Chapter 5

Validation

5.1 Introduction

In this chapter we establish a method for comparing the performance of our map-

based localisation procedure - which we call Lifelong Localisation with LIDAR ( or

L3) for short - with the estimates from the INS. Establishing that the performance

of this approach is comparable to the state-of-the-art INS will validate the concept

of inexpensive, LIDAR-based, stand-alone localisation systems.

5.2 Performance comparison

As a first step towards this validation, recall Figure 4.3 through Figure 4.6 from

Chapter 4 that showed the failure cases using scan-matching over the long-term -

and were a motivating factor for the algorithms developed in this thesis. In these

figures, we showed that using a simple 2D map is insu�cient for robust long-term

localisation performance. These localisation failures are repeated here in Figure 5.1:
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5.2 Performance comparison

(a) Localisation performance: +63 days (b) Localisation performance: +64 days

Figure 5.1: ICS-localisation failures. The failures using a scan-matching ap-
proach with a static map from two months prior. These are the same figures as
shown in Chapter 4, repeated here for continuity.

Now consider Figure 5.2, which shows the trajectory estimates using the same

data with L3:

Figure 5.2: L3 vs. ICS over 1.5km (and 2 months). The same run-time data -
as used in Figure 5.1 - with the same map, captured two months prior. This figure
shows that the localisation performance of L3 - which is explicitly leveraging the
persistent 3D structure of the environment - is superior to that of scan-matching.
(Note: Trajectory estimates have been down-sampled and plotted as points for easier
visible di↵erentiation.)

As can be seen from Figure 5.2, thanks to the persistence of the 3D structure in

the environment, L3 does not su↵er from the same brittleness as the conventional ICS
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5.2 Performance comparison

localisation approach does. Note that although these are only two examples, they

are representative of a broader catalogue of failures and serve well as an illustration.

As further validation, Figure 5.3 contrasts the trajectories obtained from the INS

against the estimated trajectories using L3 for the 26km dataset collection (originally

shown in Chapter 4, Figure 4.2)

Figure 5.3: L3 vs. INS over 26km (and 3 months). A comparison of the INS
trajectories (grey, dotted) vs. the L3 trajectories (red, solid). As is very apparent
from the image, the INS data drifts substantially in areas of poor reception (pre-
dominantly the northern and southern sections), while L3 does not exhibit the same
degenerate performance.

Table 5.1: L3 performance

Time To Map Distance Cumulative Distance
(TTM) (days) (km) (km)

91 26 26

Table 5.1 highlights the important statistics of the performance over this dataset.
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5.2 Performance comparison

The Time To Map is the time that elapsed between map acquisition and the run-

time data. As the datasets in Figure 5.3 were recorded over a 3 month period, the

maximum time di↵erence between the canonical map, and the final traversal is 3

months. We will also keep a tally on the total cumulative distance that the algorithm

has successfully traversed - this is the cumulative distance column. However, aside

from the striking visual contrast of Figure 5.3, we would like some quantifiable way

of comparing the trajectory performance.

Given that we are localizing relative to a given map - and we know the trajectory

that it was generated from - one method to compare the di↵erent estimators would

be to measure the relative displacement to this canonical trajectory for both the

INS and L3.

We show that - using this metric - we can outperform the INS over long-term,

large-scale localisation tasks. An illustration of this displacement metric is shown

in Figure 5.4 below:

Figure 5.4: Relative displacement illustration. The distance between each pose
(in the test trajectory, estimated using either INS, or L3) to the closest pose in the
reference trajectory is accumulated as a function of arc length. Better performance
means a lower total displacement to the reference trajectory.

122



5.2 Performance comparison

The distance from each pose in each trajectory is measured to the closest pose

in the reference trajectory, and accumulated as a function of arc-length along the

trajectory. We define this displacement measure, which - for pose x
⌧

- is:

E
⌧

:= kx
⌧

� x̂S
⌧

k (5.1)

where x
⌧

is the SE2 pose at arc length ⌧ along the trajectory curve, as given

by either the INS or L3, and x̂S
⌧

is the closest pose in the survey trajectory to x
⌧

.

Note that the representation of the angle in each SE2 pose here is actually complex

- using this formulation means that the Euclidean distance is a metric over SE2 [53].

It must be emphasised that the relative aspect of this metric is in reference to

the trajectory used to build the original map. Other relative error metrics compare

the ratio of pose deltas in successive links of a pose chain - we explicitly do not

use this formulation, as we are more interested in the performance relative to the

trajectory used to construct the map, rather than the relative error of sequential

pose estimates.

Using this relative metric, we expect to do better - in terms of lower accumulated

distance to the reference trajectory - than the INS, where this accumulation is given

as the integral over the length of the trajectory:

E =

Z
⌧N

⌧0

E
⌧

d⌧

which is approximated by:
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E =
NX

i=1

kx
t

� x̂
t

Sk

for a trajectory consisting of N discrete poses. Figure 5.5 shows the mean and

standard deviation using this metric for the 26 kilometres of data collected around

Begbroke:

Figure 5.5: INS cumulative relative displacement over 26km. 26 kilometres of
accumulated relative displacement data - using the INS - around the Begbroke site.
By measuring the distance from any pose in a given trajectory to the closest pose
(in an Euclidean sense) in a reference trajectory, we obtain this graph. Indicated
are the mean (z-axis) and standard deviation (shaded,grey) for the entire set, as
well as an example histogram for a given pose. The degraded INS performance is
highly visible in the northern and southern sections.

Figure 5.5 was constructed by measuring the relative displacement - using Sec-

tion 5.2 - for all of the indicated INS trajectories of the 26km dataset, and then

performing a histogramming operation along a spline representation of the canoni-

cal route. Highly visible in the figure are the large deviations in the northern and

southern sections.

It is important to note that this displacement will capture both the true deviation
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from a trajectory to the reference trajectory in addition to the localisation error.

Hypothetically, if we had traversed exactly the same route as the survey vehicle, we

would expect this displacement to be zero. As we never traverse precisely the same

route twice, we expect this displacement measure to be governed by some bound.

Of course, there are constraints on this bound imposed by the way roads are

constructed. In Oxfordshire, for example, major access roads have a minimum

specified carriageway of 6.0m [23]. This means that we should observe a deviation

- using the displacement metric - substantially lower than this.

Figure 5.6 contrasts the displacement for the INS and L3 for one loop of the

Science park, as measured against a reference trajectory:

Figure 5.6: Relative displacement: L3 vs. INS over 700m. An example
relative displacement graph of both L3 (shown in red, dotted) and the INS (blue,
solid) as measured against a map of the Begbroke site. The INS exhibits a high
displacement in areas of poor GPS signal quality, whereas L3 is relatively constant.

As we can see from the Figure 5.6, the displacement for both the INS and

L3 are bounded - however, on average, the relative displacement over the route

is substantially lower for L3.

One of the reasons for this is the GPS signal-dropout experienced by the INS at
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various locations around the Begbroke site - this dropout is problematic if the system

is to be relied upon for any form of autonomous operation. Around Begbroke, the

areas in which the INS exhibits a particularly large deviation are the northern and

southern sections, which are characterized by tall buildings and foliage, respectively.

In contrast, the displacement of L3 is consistently lower over the site.

Figure 5.7 shows a comparison of the mean cumulative displacement per trajec-

tory, collected over all 26km. Depicted are the median, 25th and 75th percentiles of

the mean displacement per trajectory, for all the trajectories considered:

Figure 5.7: Cumulative relative displacement comparisons. A comparison of
the mean displacement from the experience map for both the INS and L3 over 26 km
worth of trajectory data spanning three months. The box plot shows the median,
25th and 75th percentiles, with outliers plotted individually as points. As can be seen
from the figure, the standard deviation of this displacement is substantially lower
for L3.

This plot was obtained by averaging the relative displacement for the INS and

for L3 (using the INS velocity estimates) for each loop of the 26km dataset (more

than 50). Not only is the median displacement distinctly lower for the L3 approach,

but outliers have been eliminated and the variance of the displacement substantially
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reduced. This is compelling evidence that localisation using this method is far more

reliable and repeatable over the long term than relying on estimates from the INS.

An advantage of the active sensing modality is that the system can often remain

localised in the face of drastic weather-induced scene change, which results in high

variability in appearance space. Consider Figure 5.8 which shows an image sequence

of three of the many appearances of the Science Park across the seasons:

(a) Snow (b) Rain (c) Sunshine

Figure 5.8: Appearance variation over the seasons. The northern road of
the Begbroke Science Park after a snow-storm, (a), a rain-shower (b) and in bright
sunshine (c). The active sensing modality is impervious to the drastic change in
appearance (although performance can be severely degraded during precipitation -
see Appendix A for an example).

Drastic scene change can be problematic for vision-based localisation systems.

However, Figure 5.9 through Figure 5.11 show the LIDAR data across the same

datasets as Figure 5.8:

Figure 5.9: LIDAR data: Snow. The 3D LIDAR data collected from the declined
LIDAR, corresponding to Figure 5.8(a).
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Notice particularly in Figure 5.8(a) the obstruction of the road surface by accu-

mulated snow - for this reason, road-reflectance matching (leveraged to good e↵ect

by [55]) is not reliable across seasons - whereas the prismatic structure of the en-

vironment is practically unchanged. Figure 5.10 and Figure 5.11 show the LIDAR

data over the remaining scenes of Figure 5.8:

Figure 5.10: LIDAR data: Rain. The dataset corresponding to Figure 5.8(b).
Note again that - although the road surface is di↵erent to both Figure 5.8(a) and
Figure 5.8(b), the prismatic structure of the environment - buildings, walls - is
unchanged.

Figure 5.11: LIDAR data: Sunshine. The dataset corresponding to Figure 5.8(c).

The same building is highlighted in each of the images to serve as a visual anchor.

This qualitative evaluation highlights the self-similarity of the scene - from the per-

spective of the declined 2D LIDAR - across the varying environmental conditions.

This is the core reason for leveraging LIDAR - the ability to provide robust ranging

measurements through seasonal short-term, and long-term, change.
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5.3 Map management

Given the scale of the maps evaluated in this section, it is not possible to store a

single monolithic map instance in the memory of a computer. The map is therefore

partitioned into a graph, using equally-spaced nodes in the reference trajectory.

Then, given the vehicles current location within the map, the next map-node can

be found by a simple traversal:

Figure 5.12: Graph-based map-management. Due to the sizes of the map
for large-scale localisation tasks, map retrieval is done by traversing a graph of
anchor nodes embedded in the map trajectory. This allows for sequential access,
and alleviates the need to load the entire map into memory. Shown here is the
current node n

k

, and the next and previous nodes, n
k+1 and n

k�1 respectively.

The map is sectioned into sub-maps by constructing the Voronoi tessellation -

another space-partitioning technique - of the map given equally-spaced poses in the

reference trajectory. The map-equivalent of Figure 5.12 is shown in Figure 5.13:

Figure 5.13: Map-management: Begbroke nodes. The partitioned map of
Begbroke, illustrated by Figure 5.12. The red section corresponds to the vehicles
current position, with the next and previous sections highlighted in green and blue,
respectively. (The background map is rendered grey).

Figure 5.13 shows the metric maps associated with the current, previous and
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next nodes in the graph. This representation is necessary to avoid attempting to

load entire city-scale maps into memory. The next section presents results obtained

over the nearby bustling town of Woodstock.

5.4 Large-scale urban localisation

The Science park is an ideal testing ground for LIDAR-based localisation - the site

has relatively low long- and short-term scene change. However, we would like the

system to be robust enough to use in testing real-world situations.

Further experiments were therefore conducted in and around the neighbouring

towns of Woodstock and Kidlington - both busy urban centres in Oxfordshire. Fig-

ure 5.14 shows an overhead view of both these towns, in relation to the Begbroke

Science Park:

Figure 5.14: Oxfordshire test sites. An overview of the target workspaces for
the L3 approach. Highlighted in green is the Begbroke site; in red, the town of
Woodstock, and in blue, Kidlington. (Overhead imagery courtesy of Google Maps).
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Woodstock

In order to establish a baseline around Woodstock, a dataset consisting of multiple-

loops in and around the town centre was taken at 8pm, ensuring minimal vehicle

and pedestrian tra�c - again we note the advantage of the LIDAR sensing modality,

allowing operation at all times of the day.

This dataset consists of 10 kilometres around Woodstock and surrounds. We

now compare the L3 estimator (using velocity estimates from both the INS and the

horizontal LIDAR via scan-matching) over this dataset to obtain baseline perfor-

mance. Figure 5.15 shows the estimated trajectory for this evening dataset using

two velocity sources - the INS, and the LO system:

Figure 5.15: Woodstock evening results. An overview of the Woodstock evening
dataset trajectory estimates. Two velocity sources are used: (1) INS velocity es-
timates as a control (blue), LO estimates (red). As can be seen from the figure,
they are indistinguishable. Also shown is an example image from the forward-facing
stereo camera - this is a testing situation for VO.

Figure 5.15 is a useful “control” experiment - with minimal activity around the
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town at 8pm, the results provide an excellent baseline for performance compari-

son. As can be seen from Figure 5.15, it is impossible to distinguish between the

localisation estimates using the INS as a velocity source, and the estimates using

LO.

Here we take a brief diversion to analyse other methods - in Chapter 4 we dis-

cussed the use of GICP and the Normal Distributions Transform for registration,

and hence localisation. However, as can be seen from Figure 5.16, these algorithms

have similar failure patterns when the LO is used as a velocity source:

(a) NDT Failure: Evening dataset (b) GICP failure: Evening dataset

Figure 5.16: NDT/GICP failure cases. NDT (a) and GICP (b) have similar
failure cases when using LO as a velocity source - slight velocity errors result in
matching (and subsequently tracking) failure. This catastrophic failure is not suf-
fered by L3. (These comparisons were made over the same data used by L3 in
Figure 5.15).

This is an issue if we are seeking to use LO as the source of our velocity estimates -

as such we discount the use of such approaches for localisation. The following image

sequences show an illustrative comparison between the L3 systems, and the INS.

Figure 5.17(a) shows an overview of the route, and (b) shows representative images

recorded during the run:
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Figure 5.17: Relative displacement: INS (16/04/2012). An overview of the
route taken around Woodstock (a), representative images from the dataset, (b).

In Figure 5.17(a), the L3 trajectories estimated using the INS velocity feed are

indicated in blue, with those using the LO velocity feed in red. The Woodstock

route is approximately 2.6km long, which is traversed multiple times in any given

dataset. We now compare the relative displacement histograms obtained from the

INS, with equivalent histograms from L3:
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(b) L3 (INS velocity)
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Figure 5.18: Relative displacement: L3 (16/04/2012). Histograms of the rela-
tive displacement of the INS (a) against: (b) L3 with INS velocity, and (c) L3 with
LO velocity.

As is clear from Figure 5.18, the relative displacement statistics are more consis-

tent - i.e. closer to the canonical trajectory - for L3 as compared to the INS, which

exhibits a broad range of displacements. Consider again the constraints imposed by

133



5.4 Large-scale urban localisation

the road network - an average lateral deviation of 2 metres is unlikely. Figure 5.19

shows a similar plot over the route, two weeks later:
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Figure 5.19: Relative displacement: INS (24/07/2012). A similar plot to
Figure 5.17, showing the route around Woodstock (a), and representative images
from the dataset, (b).

Consider the striking appearance change between Figure 5.17(b) and Figure 5.19(b)

- our active sensing modality again ensures we can stay localised irrespective of the

time of day. Figure 5.20 again shows the equivalent displacement statistics for L3

against the INS:
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(b) L3 (INS velocity)
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Figure 5.20: Relative displacement: L3 (24/07/2012). Histograms of the rela-
tive displacement for L3 over the trajectories shown in Figure 5.19(a), showing (a)
the INS performance, (b) L3 with INS velocity, and (c) L3 with LO velocity.

To illustrate that this comparison is a valid one, Figure 5.21 again shows the same
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5.4 Large-scale urban localisation

route, but with Di↵erential GPS (DGPS) corrections supplied by a base-station in

Begbroke:
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Figure 5.21: Relative displacement: L3 (23/08/2012). Histograms of the rel-
ative displacement using a DGPS base station, showing (a) the INS performance,
(b) L3 with INS velocity, and (c) L3 with LO velocity. Notice the substantially
improved INS estimate.

DGPS uses a fixed base-station, allowing the system to estimate, and correct for,

timing errors (typically from ionospheric e↵ects) [67]. This results in substantially

improved INS estimates, as is evidenced by Figure 5.21(a) - these similar deviation

statistics using the higher precision DGPS validate this comparison.

Note that the results shown are a subset of all of the data collected around

Woodstock, although they serve to highlight the salient points. We now consider a

di↵erent route around the nearby town of Kidlington.

Kidlington

As final validation of L3, we present results gathered around Kidlington. Figure 5.22

shows several loops around the 2.8km site:
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Figure 5.22: Relative displacement: INS (7/08/2012). The route around
the 2.7km test site (a), and a sampling of images (b). Kidlington provides a very
di↵erent scene as compared to Woodstock with longer, sparser sections (in the south,
predominantly).

The Kidlington route is very di↵erent to the Woodstock route - in particular,

the southern section is much “sparser” in terms of surrounding structure. Even so,

L3 works well as shown in Figure 5.23:
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Figure 5.23: Relative displacement: L3 (7/08/2012). Histograms of the relative
displacement for L3 over the trajectories shown in Figure 5.22(a), showing (a) the
INS performance, (b) L3 with INS velocity, and (c) L3 with LO velocity.

Again clearly visible is the superior performance of the L3 approaches (both LO

and INS-based). Figure 5.24 shows another Kidlington dataset, one week later:
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Figure 5.24: Relative displacement: INS (16/08/2012). The route around
Kidlington (a), and associated images from the dataset, (b).
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Figure 5.25: Relative displacement: L3 (16/08/2012). Histograms of the rela-
tive displacement for L3 over the trajectories shown in Figure 5.24(a), showing (a)
the INS performance, (b) L3 with INS velocity, and (c) L3 with LO velocity.

Given the similarity of the results produced - over Kidlington and Woodstock -

we can conclude that using L3 is a robust, reliable way of localising a vehicle over the

long term. The next section presents cumulative results for all the data analysed.

5.4.1 Cumulative results

The results for the entire localisation comparison are encapsulated by Figure 5.26:
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Figure 5.26: Average relative displacement over 50 kilometres. A plot show-
ing the average relative displacement - the average displacement to a reference tra-
jectory, averaged over more than 50km of trajectory data. This is shown for the INS
(left), the L3 approach with INS velocity estimates (centre), and (right) L3 with LO
velocity estimates.

This figure shows the average relative displacement to a constant reference

trajectory for each of the modalities considered, collected over more than 50km.

Figure 5.26(left) shows the estimates for the INS itself - note that over the Woodstock

site we don’t see quite the same variation as we do over Begbroke - this is because

the vast majority of the route is free of tall buildings and foliage.

Even so, we see that - using L3 with the INS velocity estimates - we are still

performing better (in terms of the distance to the reference trajectory) than the

INS. If we instead substitute the LO system as the velocity source, our performance

degrades - but crucially is still better than the INS.

An example route highlighting this deviation around Woodstock is shown in

Figure 5.27:
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Figure 5.27: Trajectory comparison around Woodstock: INS vs L3. Compar-
isons of estimated trajectories around the canonical Woodstock route (grey, dashed)
using L3 (blue) and the INS (black). Note the vertical shift present in the INS
estimate.

By plotting the relative displacements of these trajectories to the canonical route,

we obtain Figure 5.28:
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Figure 5.28: Displacement comparison around Woodstock: INS vs L3. The
displacement comparison for the trajectories shown in Figure 5.27, showing the
larger averaged displacement of the INS to the reference trajectory.

Figure 5.28 highlights why the INS often accrues larger error. Often, the INS

estimated trajectories are shifted vertically, increasing the average distance to the

reference trajectory - this is something we wish to avoid.

Table 5.2 shows the cumulative results accrued around Begbroke, Woodstock and
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5.4 Large-scale urban localisation

Kidlington over a period of more than a year using L3, and is o↵ered as compelling

evidence of the validity of this approach, and the seriousness with which we take

long-term operation:

TTM Distance Cumulative Location
(days) (km) L3 (INS) (km) L3 (LO) (km)

0-31 26.00 26.00 - Begbroke

0 10.56 36.56 10.56 Woodstock
49 10.47 47.03 21.03 Woodstock
114 5.22 52.25 X Woodstock
119 2.23 54.48 X Woodstock
136 10.05 64.53 31.08 Woodstock
141 12.93 77.46 44.01 Woodstock
148 4.91 82.37 48.92 Woodstock
178 5.51 87.88 X Woodstock

0 7.86 95.74 56.78 Kidlington
23 13.19 108.93 X Kidlington

Table 5.2: Over 100km of successful localisation around Oxfordshire, with 50km of
LO-only localisation.

Unfortunately, the rows marked X in Table 5.2 indicate that the LO-based L3

system failed - lost tracking - during the course of the dataset. This cuto↵ is a harsh

measure, as in some cases, the system had stayed localised for multiple previous

loops, only to fail on the last loop - in these cases, the entire dataset is marked as

a failure.

Given that we are inferring vehicle velocity from sensor data, it is unsurprising

that we encounter - over the course of a year - situations that cause our localisation

algorithm to fail. Figure 5.29 shows the location of 3 failures, on 3 separate loops

over the course of 6 months:
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Figure 5.29: Woodstock failure locations. Localisation failures for 3 loops from
3 di↵erent datasets over a 6 month period. In the next section, we develop means
for addressing the root cause of these failures.

Note that these are failures of LO-based L3 - using L3 with velocity estimates

from the INS does not su↵er from these degeneracies. Also note the locations of

these failures - all in close proximity to the town centre. The primary cause of

these failures are biased velocity data from the LO - this can come from a number

of sources, but the majority arises from tra�c. In Chapter 6 we explore means to

combat this degeneracy, but first we briefly address a previous concern - staying

localised in featureless sections.

5.5 Localisation on the open road

In Chapter 4, we discussed the use of Mutual Information as a criterion to match

run-time data against the map prior - this was to enable us to stay localised in the

event that the surrounds contained little distinct structure. Figure 5.30 again shows

the problematic section of Begbroke:

141



5.5 Localisation on the open road

Figure 5.30: Featureless road section. A relatively featureless road section out-
side of Begbroke, described in Chapter 4. We use remission-based matching to stay
localised in these areas.

Figure 5.31 shows the localisation results over this section, using MI with remis-

sion as an objective function:
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Figure 5.31: Featureless road section: Localisation results. Localisation re-
sults over the section shown in Figure 5.30 by matching remission using Mutual
Information.

As we can see from Figure 5.31, we are able to stay localised on the road by mak-

ing use of the reflective properties of the world. At any given location, we can have

a reasonable expectation of being able to use either remission-based or structure-

based localisation, and therefore have the means to stay localised regardless of the

environment, and across a wide range of weather conditions.

142



5.6 Summary

5.6 Summary

In this chapter, we have validated the L3 approach over more than 100km of real-

world mileage, accrued over a year across a wide variety of environments. We have

presented a relative metric for comparison, and show that - using this metric - we

can outperform the repeat capabilities of the $100, 000 INS.

We have also highlighted various points of failure in the system, and with this

in mind, turn to the next chapter where we characterise these failures, and develop

means of addressing them.
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Chapter 6

Leveraging Experience For Robust

Long-Term Localisation

6.1 Introduction

In the previous chapter, the L3 approach was validated over a large amount of

real-world data. However, we saw the deleterious e↵ect of using scan-matching for

velocity estimation in areas with heavy tra�c. This velocity error directly degraded

the performance of the localisation estimates, and must be removed - this is the

focus of this chapter.

In the following sections, we seek to demonstrate the viability of using 2D LIDAR

data as the sole means for accurate, robust, long-term road-vehicle localisation

within a prior map in a complex, dynamic real-world setting. Estimation errors

induced by passing vehicles, pedestrians, ground-strike etc., will be accommodated

by learning a positional-dependent sensor model - that is, a contextual sensor-model

that varies spatially - and it will be shown that learning such a model for LIDAR is

necessary to deal gracefully with the complexities of real-world ranging data - this

is explored in Section 6.3. Figure 6.1 shows the LIDAR configuration:
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6.1 Introduction

(a) Wildcat sensor payload (b) Dual LIDARs, and a Bumblebee2 camera

Figure 6.1: Wildcat sensor configuration. The dual-LIDAR setup on the Wild-
cat. Note the horizontally-oriented LIDAR adjacent to the Bumblebee camera, and
the vertically-oriented LIDAR on the front bumper. The velocity estimates from the
horizontal LIDAR and the range-data from the declined LIDAR allow us to build
the run-time swathe, as discussed in Chapter 4.

With this arrangement, it is possible to generate the run-time swathe (as dis-

cussed in Chapter 4), an example of which is shown in Figure 6.2:

Figure 6.2: Example point clouds and illustrative scans. A perspective view
of a typical run-time generated point cloud, with the vertical and horizontal lasers
highlighted in blue and green respectively. The motion of the vehicle - generating
the swathe data as it moves through the environment - is indicated by the arrow.
Clearly visible in the swathe are the window frames and building edges. The inset
image shows the view of the scene from a camera on the front bumper of the vehicle.

This chapter shows how probabilistically modelling the noisy velocity estimates

from the horizontal laser feed and fusing these estimates with data from the declined
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6.2 LIDAR-only localisation

LIDAR to form the dense 3D swathe will provide the means for long-term pose

estimation.

Crucially important to this method is the accommodation of velocity errors aris-

ing from transient objects in the horizontal LIDAR fan - to this end, a non-stationary

probabilistic filter for point-data is learned and we show that by doing so, we are

able to negate the velocity error induced from vehicles, ground-strike and so on.

The core thesis here is that the context of the sensor is greatly informative given

the observed data in the LIDAR fan. In the next section we examine some of the

di�culties incurred from estimating vehicle velocities from the horizontal LIDAR in

a testing real-world environment, and the need for such a filter.

6.2 LIDAR-only localisation

The high-level localisation procedure is again outlined in Algorithm 4 for continuity:

Algorithm 4 Localisation Procedure

1: procedure RunLocalisation(P , T )

2: T̂  T . Initialise pose
3: loop
4: {Z

h

,Z
v

} (rh1 , . . . , r
h

n

), (rv1 , . . . , r
v

n

) . Acquire LIDAR Data
5: V,⌦ EstimateVelocities(Z

h

)
6: Q BuildSubmap(V,⌦,Z

v

)
7: T 0  Predict(T̂ ,V,⌦) . Predict new pose
8: T̂  Update(P ,Q, T 0) . Optimise estimate using L3

9: end loop
10: end procedure

At run-time, the algorithm is seeded with an initial pose guess, T . It is then

run continuously, taking in new horizontal and vertical scan data (Z
h

,Z
v

) from the

dual-LIDAR system. The horizontal scan data is used to estimate the linear and

rotational velocities V and ⌦ by running an ICS-based scan-matcher, which are then

subsequently fed into the map-building procedure in order to construct the run-time

146



6.2 LIDAR-only localisation

swathe. Once the swathe has been generated, it is utilised in the pose estimation

step to solve for the current best pose estimate T̂ using L3.

This algorithm was shown to work well extensively over large amounts of real-

world data, as demonstrated in Chapter 5 - however, we noticed localisation failures

in areas with particularly high tra�c volumes, and this is something we seek to

address. Figure 6.3 shows an overhead view of the Woodstock route, decomposed

into various regions:

Figure 6.3: Woodstock, Oxfordshire. An overview of the route driven in
Woodstock, Oxfordshire. The route passes through a number of very di↵erent en-
vironments - suburban housing (highlighted in red, eastern section), a region with
dense foliage and steep gradients (green, north) and a town centre with a large
number of pedestrians and vehicles (blue, western and southern section). Accurate
localisation in these very di↵erent settings is a di�cult task. (Imagery courtesy of
Google Maps).

In addition to the error induced by tra�c (predominantly in the blue highlighted

section in Figure 6.3) the route around Woodstock has a large altitude gradient, as

is shown by Figure 6.4:
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Figure 6.4: Woodstock height map. A height plot of the trajectory around
Woodstock, obtained from the INS. The (x, y) projected trajectory is plotted in
grey. As can be seen, there is a large gradient change in the northern section of
Woodstock (corresponding to the green section in Figure 6.3.)

Visible in the figure is the large gradient change over Woodstock - as we can

see, a planar estimate of the world is a poor approximation. This altitude change

causes a large amount of ground-strike, which induces error into the pose estimates

through the erroneous velocity feed. Any system reliant on LIDAR scan-matching

will have to accommodate the estimation errors induced by these di↵erent testing

regions. In the following sections, we explore the root causes of such velocity errors,

and methods to account for them.

6.2.1 Sources of velocity error

Given that the Wildcat is fitted with a very capable Inertial Navigation System

(INS), it provides an excellent baseline with which to compare the velocity estimates

from the scan-matching algorithm using the feed from the horizontal LIDAR. The

following plots show the error of the scan-matching method measured against the

INS, as a function of position:
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6.2 LIDAR-only localisation

Figure 6.5: Velocity error: Woodstock. A plot of the error in linear velocity from
the scan-matching algorithm over the course of the Woodstock run, as compared to
the INS on the vehicle. In some locations, the error is in excess of 6m/s. Typical
causes of these errors are illustrated in Figure 6.7 through Figure 6.9.

Figure 6.6: Velocity error: Kidlington. A similar plot to Figure 6.5 around
Kidlington, Oxfordshire. Again we see the e↵ect of ground strike and tra�c on the
velocity estimates, highlighted in the north-east and west, respectively.

Visible in both Figure 6.5 and Figure 6.6 are a number of regions that cause the

scan-matching algorithm to perform poorly. Typical reasons for errors are ground-

strike arising from vehicle pitch/roll (Figure 6.7), relative errors from oncoming

vehicles (Figure 6.8) and relative errors from cars in front (Figure 6.9). In all these

figures, estimated velocity is in (solid) blue, and ground-truth velocity in (dashed)
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Figure 6.7: Velocity Type 1 errors. Velocity errors arising from ground-strike
after traversing a raised pedestrian crossing.
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Figure 6.8: Velocity Type 2 errors. Velocity errors arising from the relative
velocity of oncoming vehicles.
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Figure 6.9: Velocity Type 3 errors. Velocity errors arising from the relative
velocity of vehicles ahead.

Of all these errors, Figure 6.9 is particularly troublesome. For example, consider
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6.2 LIDAR-only localisation

the experiment depicted in Figure 6.10, which shows the actual velocity of the INS,

and a biased version of the same signal:

Figure 6.10: INS velocity and bias. The biased (blue, solid) vs the actual
(red, dashed) velocities used to generate the corresponding point clouds in Fig-
ure 6.11. Velocity under-estimates leads to “compressed” point clouds - shown in
Figure 6.11(b) - which degrade localisation performance.

These velocities were then used to generate point clouds from the same LIDAR

data, as shown in Figure 6.11:

(a) Unbiased cloud (b) Biased cloud

Figure 6.11: Comparison of biased vs. unbiased point clouds. (a) Shows an
overhead view of the point cloud from the downward-facing LIDAR (coloured by
height above the ground, blue being lowest and red highest) using the INS velocity
feed. (b) Shows the same LIDAR-data, but generated using the biased velocity
estimate (shown in Figure 6.10). This “compression” leads to point clouds that are
a poor representation of reality, resulting in localisation error. (In both cases, a
centre-swathe of points has been omitted in order to render the poses ).
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6.3 Context-dependent sensor models

Visible in Figure 6.11(b) is the “compression” arising from the velocity under-

estimate - this is very detrimental to the localisation process, as the statistics of the

data have changed significantly with this warping resulting in a biased pose estimate,

and ultimately tracking failure. A corresponding over-estimate in the velocity feed

will yield the reverse problem - an expansion of the point cloud. While both type 1

and type 2 errors are predominantly short in duration, type 1 errors can exist over

significant periods and are the main cause of localisation failure.

However, in all these pathological cases - (Figure 6.7 to Figure 6.9) - there is

distinct context. Ground-strike tend to occur in regions with sharp gradient change,

and errors arising from the relative motion of tra�c tends to occur predominantly in

the town centre. We leverage this property, and in the following sections develop a

context-dependent sensor model that categorically improves the velocity estimates,

resulting in robust localisation performance.

6.3 Context-dependent sensor models

The previous sections have highlighted the importance of context with respect to

the errors in inferred velocity from the horizontal LIDAR. This leads us to believe

that we require a spatially-varying sensor model that is capable of filtering out areas

of the environment that are in motion relative to the vehicle (tra�c, people, and

ground-strike as it appears in ranging data). In the next section we exploit the use

of vehicle context in order to generate a robust model for LIDAR scan filtering.

6.3.1 Sensor models as a function of location

To correct the aberrant behaviour shown in Figure 6.7 through Figure 6.9, we need

to learn a filter that will allow us to remove points from scans that degrade the

performance of the scan-matching algorithm. We seek a way of probabilistically
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6.3 Context-dependent sensor models

filtering points in scans that would be good match candidates, given where we are in

the world. We do not require a model for every transient obstacle that we encounter

- only a way of determining good vs. bad regions of incoming scans.

We therefore introduce the notion of a position-dependent sensor model. Con-

sider a function f that maps an input value � to some output space:

f(�) 7! , � 2 Rm,  2 Rn (6.1)

Given that we are traversing a road network, a natural representation of this

mapping is a cubic spline, which will map a floating-point value to a global Universal

Transverse Mercator (UTM) (x, y) position (R 7! R2).

A cubic spline is a piecewise, third-order polynomial that interpolates a set of

control points. For example, given a one-dimensional input interval over domain

x 2 R1 between two bounds, a and b, and its associated output y:

x
ab

= {x0 < x1 < · · · < x
n

}

y
ab

= {y0, · · · , yn}

an interpolating cubic-spline S [28] is defined to be a piecewise function that

satisfies the following conditions:

1. S
i

(x) is a cubic polynomial on the interval [x
i

, x
i+1] for xi

2 x

2. S(x
i

) = y
i

for x
i

2 x

3. S(x), S 0(x), S 00
(x) are continuous for x 2 x1

1This is known as C2 continuity
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By setting the first and second derivatives to match at each of the control-points,

and with the appropriate boundary conditions (in this case, we are using the “not-a-

knot” boundary conditions, where S 000
0 (x1) = S 000

1 (x1), and S 000
n�2(xn�1) = S 000

n�1(xn�1)),

it is possible to write the constraints on the system as a system of linear equations

and solve for the knot coe�cients.

This formulation requires a monotonically increasing x, which is not the case

with the trajectory in Figure 6.3. A common approach is then to construct two

splines, indexed by a common monotonically increasing parameter, �. So, for any

trajectory T = {x, y}N
i=1:

S
x

= {[�0, · · · ,�n

], [x0, · · · , xn

]}

S
y

= {[�0, · · · ,�n

], [y0, · · · , yn]}

(6.2)

This representation leads to a very natural, smooth, parametric interpolating

function that takes a single scalar input and maps to a position in R2 - an ideal

compact representation of the trajectory. A consequence of this parametric repre-

sentation is that the � parameter is not uniformly spaced (in terms of arc-length)

along the spline, as is shown in Figure 6.12[71]:

154



6.3 Context-dependent sensor models

(a) Parameter-
space

(b) Cartesian space

Figure 6.12: Parametric spline representation. A comparison of Cartesian
position of a spline parameter, �. Figure (a) shows equal parameter intervals, Figure
(b) shows equal arc-length intervals. Producing equal arc-length intervals requires
integrating the arc-distance along the spline. (Image courtesy of [71])

Partitioning the spline into equal arc-length segments requires integrating the

function:

L =

Z
�

00

�

0

��(S 0
x

(�),S 0
y

(�))
�� d� (6.3)

which can then be used to produce equidistant (as a function of arc-length) �

values. It should be noted that this representation is only suited to road-networks

- we would not employ the same technique for the general localisation problem.

However, this spline-based approach is just one realization of this indexing method

- instead of relying on a parameter indexing into the global location of the map,

we could instead rely on visual cues from an on-board camera to index into a topo-

logical representation of the workspace. If the intuition is correct that the physical

setting influences sensor characteristics, then the approach will be invariant under

the indexing method used.

The control points for the spline model are obtained by generating equidistant

INS poses in the reference data over the entire 2.6km route around Woodstock, as
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6.3 Context-dependent sensor models

shown in Figure 6.13:

Figure 6.13: Spline map of Woodstock. A cubic spline representation around
2.7km of Woodstock, with the inset image highlighting the 10 metre-spaced con-
trol points. Also highlighted is the start parameter �0, and a spline value that
corresponds to the town centre �

TC

.

Given this representation, it is now possible to index into the road network using

a single floating-point value, with the location of the vehicle along this manifold path

implicitly encoding information about the problematic sections of the LIDAR fan.

As an example of such a case, consider a typical pass through an area with heavy

tra�c, such as Woodstock town centre. To illustrate the problems arising from such

a traversal, we can make use of the various on-board cameras and project points

from the horizontal LIDAR into an image. Figure 6.14(b) shows an example LIDAR

fan (and the associated image) at the �
TC

value highlighted in Figure 6.13:
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(a) (b)

Figure 6.14: Woodstock town centre. (a) An example LIDAR sweep at the �
TC

position as viewed from an onboard camera, and (b) with the horizontal LIDAR
points overlaid. This fan corresponds to the scene shown in Figure 6.9. The points
falling on the vehicle in front (highlighted in red) must be filtered out to prevent
the velocity error highlighted in Figure 6.9.

Highlighted in red in Figure 6.14(b) are the LIDAR beams falling on a vehicle

ahead of the Wildcat. To see exactly why this situation leads to suppressed velocity

estimates, we can make use of the accurate pose-estimates from the INS, and project

consecutive sweeps from the horizontal LIDAR into a common frame to visualize the

point overlay2. Figure 6.15 shows two such scans - separated by one second - from

the horizontal LIDAR overlaid into a common frame using the INS pose estimates:

2In this fashion, we are relieved from having to estimate the pose transformation between scans
using point correspondences
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Figure 6.15: Consecutive LIDAR sweeps in Woodstock town centre. An
overhead view of the scenario depicted in Figure 6.9. Points from one-second sep-
arated scans (red and blue, respectively) are overlaid into a global frame using the
INS estimates, and correspondences for the van are highlighted in green. As the rel-
ative velocity between the van and Wildcat is less than the Wildcat’s true velocity,
the velocity estimates are correspondingly suppressed (as is visible in Figure 6.9).

As can be seen from the figure, the majority of the scene is static in the period

between the two LIDAR scans, and this is apparent from the point overlap. However,

the relative velocity of the van in front causes those LIDAR points impacting on it

to shift substantially in the interval - this discrepancy then manifests itself in the

underestimate of the true velocity, as shown in Figure 6.9.

One way of accounting for this situation is to develop a filter to remove those

points from the horizontal LIDAR that are likely to result in inferred velocity error.

In a probabilistic fashion, this filter should generate a probability - for every beam in

the LIDAR - as to whether the measurement should be incorporated into the scan-

matching engine, or filtered out. It should account for the case where all points

in the LIDAR should be discarded (for example, consider a bustling intersection
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with both vehicle and pedestrian tra�c - almost all of the incoming data should be

filtered).

In the following sections, we learn a probabilistic filter p(X | r,⇥,⌦) where

X = {X1, · · · , XN

} is a boolean-valued indicator variable corresponding to whether

beam i (with range r
i

and angle ✓
i

) is a good candidate to incorporate into the

scan-matching engine, and ⌦ corresponds to some model-specific parameters.

An important consideration here is the form of this filter - whether it is stationary,

with constant parameters ⌦ that are invariant to any environmental stimuli - or non-

stationary, with parameters - or form - that is intrinsically tied to some exogenous

cues. It is posited that the form of the filter will be directly influenced by the spatial

location - we expect very di↵erent filtering patterns on the highway, as opposed to

a T-junction.

As validation of this concept, the next section shows results from a variety of

classifiers (over range and angle data), and shows that taking into account context

leads to better classification performance (and hence filtering, and better velocity

estimates).

6.3.2 Stationary vs. Non-stationary models

The concept of contextual sensor models can be framed in terms of stationarity -

we seek to learn a non-stationary sensor model - i.e., one whose intrinsic character-

istics vary spatially. This approach is similar to the hierarchical mixtures-of-experts

approach [45]; a divide-and-conquer approach to classification [99].

The core HME idea is to partition the input space by means of a gating-function

into regions that are associated with a domain “expert”. Although this method

reduces the estimator bias, it tends to increase the variance. Bishop and Svensen

[10] present a fully-Bayesian treatment of the hierarchical mixture model, alleviating

the need for maximum-likelihood parameter estimation, which could lead to model
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over-fitting.

Although the HME and Bayesian-HME are useful tools for determining the num-

ber of experts (and appropriate gating networks), we show that using a more sim-

plistic hard-gating (constant arc-distance) function in this context works well.

To contrast the non-stationary and stationary approaches, we will consider a

particularly testing section of Woodstock - the town centre. The two models will take

a very di↵erent approach to classification - the stationary approach will try and learn

one monolithic classifier for the length of Woodstock town centre. In contrast, the

non-stationary model will consist of a bank of classifiers, each individually trained

on discretized sections of the trajectory. A visual contrast of the di↵erent approaches

is shown in Figure 6.16:

Figure 6.16: An illustration of the classification approach. A comparison of
the stationary (left), and non-stationary (right) classification approaches. For an
arbitrary classification task, we have a set of positive training instances (X+) and
a set of negative instances (X�). We seek to segment this input data such that
the classification error �S̄ for the non-stationary approach is lower than that of the
stationary model, �S .

If we consider one of the main sources of error to be vehicle tra�c, we require a

classification algorithm A which learns from a set of input data L = {x, y}N
i=1 and

produces a decision rule, f̂ . This decision rule maps data from the input domain
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x
i

2 X (consisting of range and angle data) to the output domain y
i

2 Y , [1,�1]

(corresponding to vehicle/not-vehicle), i.e. f̂ : x! y. At run-time, we then classify

all the incoming LIDAR points, and discard those that are likely to be from tra�c.

The non-stationary approach will consist of a bank of location-dependent classi-

fiers, with locations chosen uniformly over distance along a spline-representation of

the town centre - these locations are shown in Figure 6.17:

Figure 6.17: Contextual filters. Global positions of the [48] contextual filters over
Woodstock town centre. Training data for these models was obtained by traversing
this route in a north-south direction several times over the course of a 6 month
period.

In Figure 6.17, �
Ŝ0

is the first classifier of the non-stationary set and �
ŜN

the

last of N classifiers (48 in the following experiments). It could be argued that

the position of the filters should not be chosen solely on distance, but rather take

into account other cues - change in orientation, for example. However, it will be

shown that the uniform-distance representation is su�ciently descriptive to allow

for long-term localisation in this environment. It should also be noted here that
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this is primarily a pedagogical example - moving vehicles are not the only source of

scan-matching error, but they provide an illustrative test case.

The following sections compare the results of three standard forms of classifica-

tion, and show that the performance of the non-stationary representation is unequiv-

ocally better. For the following classification comparisons, training data spanning 6

months was obtained by hand-labelling 2731 scans in, and around, the Woodstock

town centre. Again, input data x consists of range and angle data, and target data y

is the boolean variable corresponding to whether this point corresponds to a vehicle

(y = 1), or not (y = �1).

Naive Bayes

Naive Bayes is a simple classification scheme that applies Bayes theorem to clas-

sification problems under strict independence assumptions. Given input random

variables x = {x1, · · · xN

}, the posterior distribution according to Bayes rule over

the classification output y is:

p(y | x1, · · · , xN

) =
p(y)P (x1, · · · , xN

| y)
p(x1, · · · , xN

)
(6.4)

Of course, obtaining an unbiased estimate of P (x | y) becomes intractable with

increasing problem size. The Naive Bayes algorithm makes the conditional indepen-

dence assumption:

p(x
i

| y, x
j

) = p(x
i

| y) 8(i, j) (6.5)

This assumption of conditional independence is often violated - however, despite

this, the performance of Naive Bayes is often comparable to more sophisticated
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algorithms. Applying the independence assumption to Equation (6.4) gives:

p(y | x) / p(y)
NY

i=1

p(x
i

| y) (6.6)

We then use the maximum a posteriori estimate (MAP) for the most likely class

as our learning function:

f̂ : x = argmax
y2Y

p(y | x) (6.7)

Estimating the conditional distributions p(x
i

| y) is done through kernel den-

sity estimation [33], where for a set of samples N from a random variable x
i

, the

estimated density is:

p̂(x) =
1

Z

NX

j=1

K

 
x� xj

i

h

!
(6.8)

where K(·) is the kernel-function (in this case, a Gaussian) and Z is an explicit

normalization term, ensuring that p̂(x) is a valid probability distribution. The

estimation of the bandwidth-parameter, h, is the subject of much research - see [96]

for an overview. Figure 6.18 highlights the e↵ect of the this bandwidth parameter

when estimating a multi-modal distribution:
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Figure 6.18: E↵ect of the bandwidth parameter on density estimation. Sam-
ples from a sum-of-Gaussians (SoG) distribution (black, dotted), with kernel density
estimates with various bandwidth parameters h shown. Bandwidth parameters that
are too large miss the multiple modes (red), while small parameters begin to over-fit
the data.

A solution to the estimation problem is to perform cross-validation on multiple

datasets, and is the method employed here. The use of this non-parametric 3 es-

timator ensures that the model can capture the multiple-modality inherent in the

data. Figure 6.19 and Figure 6.20 shows the probability distributions (both in the

probability mass function (pmf), and kernel density estimates) over the indicator

variables for the stationary case:

Figure 6.19: Stationary model conditionals: range. Conditional distributions
for the stationary sensor model over range for both classes. Note how the range mea-
surements are very uniformly distributed for both classes - this makes classification
di�cult.

3Non-parametric in this context does not mean that there are no parameters - rather, that the
distribution model does not belong to any parametric family.
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Figure 6.20: Stationary model conditionals: angle. A similar graph to Fig-
ure 6.19 over angle. For the data collected, vehicles tend to occur at ✓ 2 (0, 2) rads,
which corresponds to the front and right-hand side of the vehicle.

What is interesting to note is that - for the stationary approach - the occurrence

of vehicles seems to be uniform over range. This is problematic for any classification

scheme, as there is no obvious “decision boundary” - the positive and negative ex-

amples seem to fall uniformly over the input domain. This behaviour is contrasted

against the conditional distributions from a single model in the non-stationary clas-

sifier bank:

Figure 6.21: Non-stationary model conditionals: range. Conditional distribu-
tions over range for the non-stationary sensor model at a particular � value. Notice
how the form of the distributions (particularly over range) has changed - this gives
us an indication that conditioning on place will lead to better classification perfor-
mance - compare this image to Figure 6.19.
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Figure 6.22: Non-stationary model conditionals: angle. The conditional dis-
tributions over angle for the same model shown in Figure 6.21. The form is very
similar to the conditional distribution over angle from the stationary model (Fig-
ure 6.20), which implies that while tra�c appears uniformly over distance, the same
is not true for bearing.

It becomes clear from this data that we cannot - given that Naive-Bayes ignores

correlations - expect the same performance as a more “discriminative” learning

algorithm. Figure 6.23 shows an example of the Receiver Operating Characteristic

(ROC) curve for the stationary and one instance of the non-stationary classifier

bank. The ROC curve can be considered to be a rate curve, plotting the rate of

false-positives against true positives for a classification threshold:

(a) Stationary Model (b) Non-stationary instance

Figure 6.23: ROC curves. The Receiver-Operating-Characteristic (ROC) curves
for (a) the stationary-model, and (b) a single element of the non-stationary ensemble.
A larger area under the ROC curve indicates a better classifier.
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In a ROC curve, an ideal classifier would have a performance curve that produced

100% true-positives (TP) and 0% false-positives. As such performance is in practice

unattainable, we look for a classifier that is said to “dominate” other classifiers. A

classifier A1 dominates classifier A2 if:

A1 : fp > A2 : fp 8fp 2 FP (6.9)

where A : FP ! TP is a function that maps a False-Positive rate to a True Pos-

itive rate. This is one metric of comparison - another is to use the area-under-curve

(AUC) metric, which does not impose such stringent criteria (these are well reviewed

in [61]). In Figure 6.23, the non-stationary instance dominates the stationary model

- however, it must be emphasised that the non-stationary model is only valid over

the domain for which it is trained.

Bagged Decision Trees

“Bagging” or bootstrap aggregating [16] is an ensemble mechanism for improving

performance over a classification task. The underlying method is to create a bank

of classifiers from training sets that have been “bootstrapped” from the original

training data. The resultant classifier output is then averaged over all the models

in the ensemble.

“Bootstrapping” [32] is a method for generating training sets from a limited

data pool by sampling from the original training data with replacement - which will

generate training sets in proportion to their representation in the input training

data. The aggregated combination of bootstrapped learners tends to reduce the

variance of the ensemble - a desirable characteristic.

The learner type is chosen to be decision trees - generalised as Classification
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and Regression Trees (CART) in the statistical literature - which are simple rule

based binary trees, consisting of intermediate and terminal nodes. Intermediate

nodes represent decision boundaries for the input data, while terminal nodes assign

a classification prediction. An example is shown in Figure 6.24:

Figure 6.24: Toy decision tree. An example decision tree over range and angle
data, classifying over two classes. Once trained (i.e. once the intermediate nodes
have been built), classification of a new {r, ✓} datum is a simple traversal of this
tree.

Learning a decision tree corresponds to building the branching rules for the

intermediate nodes - one of the most commonly used algorithms is ID3 [73] which

uses information gain to determine which attribute - and the corresponding value

of the attribute - to assign to a split. An explicit enumeration over the input space

for both the stationary and a single element of the non-stationary classification

ensemble is shown in Figure 6.25:
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(a) Stationary (b) Non-stationary element

Figure 6.25: CART decision boundary. (a) The stationary-model decision
boundary, and (b) one (of N) example non-stationary decision boundaries. The
stationary model has to explain the variation across the entire region, whereas the
non-stationary element is only responsible for its domain.

Classification trees can exhibit high variance - the algorithm can perform very

di↵erently for di↵erent training sets, and therefore are a good subject for bagging -

an illustration of the bias/variance relationship is shown in Figure 6.26:

Figure 6.26: Bias-variance illustration. A pictorial representation of bias and
variance. Classification trees tend to su↵er from high variance, as the classification
boundary is data-dependent. Bagging and other ensemble training methods reduce
this e↵ect.

The bagging algorithm for an arbitrary learner is given in Algorithm 5. Input is

the set of labelled training data, the learner class (in this case, a decision tree), and
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the desired number of ensemble instances:

Algorithm 5 Bagging Algorithm

1: procedure LearnEnsemble({x, y}N
i=1,A, B)

2: f̂ = []

3: for b = 1 to B do

4: {x?, y?}M
i=1  SampleMWithReplacement({x, y}) . M  N

5: f̂
b

 A : {x?, y?}
6: end for

7: f̂ = 1
B

P
B

i=1 f̂i . Bagged estimator

8: end procedure

The bagging algorithm condenses to f̂ : x = E[̂f : x]. Bagging, as an ensemble

algorithm, tends to reduce the variance (at a cost of always increasing bias [18]) and

is most useful for algorithm classes that exhibit high variability as a function of the

input data (such as decision trees).

AdaBoost

In bagging, generating the learning ensemble is left to chance (through the boot-

strapping procedure). The alternative is to train the ensemble sequentially, at each

stage attempting to reduce the training error. This is known as adaptive-boosting

[79], and is highlighted in Algorithm 6.

Boosting makes use of an aggregating combination of so-called weak-learners - a

learner that can be only marginally better than random in predicting the output of a

class - into a resulting strong classifier that provides good classification performance.

In Line 2 a uniform prior weighting is placed over the training instances. The

algorithm then iterates, for a number of rounds, building weak learners over the

samples. The hypothesis error is then calculated for every input point, and the

samples re-weighted. I is the indicator function, and Z
t

is a normalization constant.

Again we can see that the final classifier output is a combination of the ensemble
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Algorithm 6 AdaptiveBoosting

1: procedure AdaptiveBoosting( {x, y}N
i=1, T )

2: D1 =
1
N

. Initialise weighting

3: f̂ = []

4: for t = 1 to T do

5: f̂
t

 A : D
t

, {x, y} . Train weak learner

6: H
t

 f̂
t

: x . Get classifier hypothesis

7: ✏
t

!
P

N

n=1 Dt

(i) IHt(xi) 6=yi . Hypothesis error

8: ↵
t

= 1
2 log 1�✏t

✏t

9: D
t+1(i) =

1
Zt
D

t

(i)exp�↵tyif̂t(xi) . Update

10: end for

11: f̂ = sign
⇣P

T

t=1 ↵t

H
t

⌘
. Final Hypothesis

12: end procedure

hypotheses.

AdaBoost can use any input of weak classifier, provided the classifier can do

better than random in predicting the correct output. There are many other boosting

variants - Gentle, Logit, Real, and so on - these are well reviewed in [25]. For this

experiment, decision trees were again used as the weak learner.

6.3.3 Model classification performance

The evaluation method for the stationary/non-stationary comparison proceeds in

an accumulative fashion, where the non-stationary models are built up sequentially

along the route �Ŝ0
: �ŜN

, and compared to the stationary model trained over the

accumulated data. This is outlined in Algorithm 7:

Algorithm 7 takes an aggregated set of training instances, a learning algorithm

type, and returns the associated stationary and non-stationary models. Once we

have these two models for the three algorithms mentioned, we can evaluate and

compare the classification performance of the di↵erent strategies. Figure 6.27 shows

the ROC comparison for both the non-stationary and stationary models using the
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Algorithm 7 Learning Strategy Comparison

1: procedure CompareLearningStrategies( {L}M
j=1,A)

2: for j = 1 to M do
3: MS  A : {{x

i

, y
i

}N
i=1}j1 . Learn stationary model

4: MS̄ = []
5: for k = 1 to j do
6: MS̄k

 A : {{x
i

, y
i

}N
i=1}k . Learn non-stationary model

7: end for
8: end for
9: return MS ,MS̄
10: end procedure

Naive-Bayes classifier:

Figure 6.27: Naive-Bayes stationary vs. non-stationary ROC. Naive-Bayes
ROC curves for di↵erent numbers of training instances - j corresponds to the index
of one of the 48 model positions shown in Figure 6.17. As we increase the amount
of data taken from di↵erent places in Figure 6.17, the performance of the stationary
model begins to degrade - although this is also true for the non-stationary approach,
the degradation is much less rapid.

Figure 6.27 plots the performance of the two classification approaches for in-

creasing context number (j in the above figure) along the route. When j = 1, the

performance of the two models are identical - this is to be expected, as they both
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take on exactly the same form using the same training data. However, as j increases,

the performance of the non-stationary approach begins to dominate the stationary

approach. This makes sense intuitively, as the non-stationary model has to explain

more variation across the route, whereas each stationary model only has to model

the data within its domain (as is explicitly illustrated in Figure 6.25).

Table 6.1 shows the Area-Under-Curve (AUC) metric for both the stationary

and non-stationary approaches for increasing model number. As can be seen from

the table, the non-stationary approach using Naive Bayes dominates the stationary

approach for all model values4:

Table 6.1: AUC Comparison: Naive Bayes

j = 2 j = 2 j = 3 j = 4 j = 5

AUC : Stationary 0.9863 0.9084 0.8638 0.8560 0.8401
AUC : Non-Stationary 0.9863 0.9734 0.9771 0.9654 0.9609

Figure 6.28 replicates the same experiment, using the same data, employing

bagged decision trees as the classification mechanism:

4A perfect classifier has an AUC of 1
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Figure 6.28: Bagged Decision Trees stationary vs. non-stationary ROC.
Bagged decision tree ROC curves, for the same training instances shown in Fig-
ure 6.27. Decision-trees are a more discriminative classifier than Naive-Bayes, and
this is reflected in the performance curves - although the non-stationary approach
still dominates the stationary approach for all M.

Again the performance of the non-stationary ensemble dominates that of the

stationary model, as is made explicit in the AUC comparison in Table 6.2.

Table 6.2: AUC Comparison: Bagged Decision Trees

j = 2 j = 2 j = 3 j = 4 j = 5

AUC : Stationary 0.9928 0.9613 0.9346 0.8803 0.8640
AUC : Non-Stationary 0.9915 0.9766 0.9758 0.9789 0.9757

Given that decision-trees are a discriminative classifier - i.e. it does not attempt

to model statistics about the observations - both the non-stationary and stationary

approaches exhibit better classification performance than the Naive Bayes approach.

However, the non-stationary model still outperforms the stationary version, for the

same reason as Naive Bayes - each model is only responsible for its domain in which

the space the data inhabits is more regular than when taken as a whole.
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As final validation, Figure 6.29 shows the performance for AdaBoost over the

same training data with the corresponding AUC comparison in Table 6.3:

Figure 6.29: Boosted Decision Trees stationary vs. non-stationary ROC.
Boosted decision trees (using the AdaBoostM1 algorithm) ROC curves, for the same
training instances shown in Figure 6.27 and Figure 6.28. The boosted trees again
outperform NaiveBayes, and are comparable to the bagged approach, but again
show that the non-stationary model is superior to the stationary model.

Table 6.3: AUC Comparison: Boosted Decision Trees

j = 2 j = 2 j = 3 j = 4 j = 5

AUC : Stationary 0.9968 0.9778 0.9459 0.9019 0.8890
AUC : Non-Stationary 0.9968 0.9941 0.9891 0.9807 0.9846

Again, the performance of the non-stationary approach dominates that of the

stationary model. In all cases, we can see that learning a contextual, non-stationary

ensemble results in better classification performance for the vehicle classification

task. We can say, conclusively based on the results shown, that learning a bank of

classifiers - as a function of location, which implicitly captures context - is a method

that will give better classification performance for our task (removing vehicles from

175



6.3 Context-dependent sensor models

the LIDAR fan) than an equivalent stationary approach.

Figure 6.30 is an interesting depiction of the decision boundaries for each of the

non-stationary models trained over the region highlighted in Figure 6.17:

Figure 6.30: Learned models. The decision boundaries for the bagged decision-
tree models for the locations depicted in Figure 6.17. Noticeable is the contrast
between models learned in areas with a large dynamic component (highlighted in
red are the models trained in the town centre, showing the variegated decision
boundary shapes), and models learned where the tra�c flow is more consistent (the
green-highlighted models show models mainly on the main road).

The caveat with this approach, is that any individual classifier is only valid

within its domain - i.e. we have access to the indicator function:

f̂(x) = I
x2⌦(f̂)f̂(x) forf̂ 2 f̂ (6.10)

where ⌦(f̂) denotes the domain of the classifier f̂ . The approach is therefore

predicated on the indicator function assigning the input data to the correct model.
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However, given that we are focused exclusively on a tracking problem and we expect

to know - with some confidence - our current position within the map, this is not a

limiting factor.

6.3.4 Filtered vs. Unfiltered velocity comparisons

Training data for the task was obtained from hand-labelling scans from 3 datasets

(spanning 6 months), and then testing on 3 datasets (totalling 10 km) over the

next two weeks. Figure 6.31 through Figure 6.34 show representative images from

problematic locations ( i.e. sections where, if the velocity is unfiltered, tracking

fails) over duration of these test datasets:

(a) 2012-07-12 (b) 2012-07-17 (c) 2012-07-24

Figure 6.31: Woodstock entry point. Images from the Woodstock “entry” point
(�S0) over 12 days. Figure (a) is from a Point-Grey Firefly roof-mounted camera,
(b) and (c) from a bumper-mounted Point-Grey Bumblebee camera. Visible in all
these figures are tra�c that leads to errors in the scan-matching velocity estimates
- these must be filtered in order to prevent tracking failure.
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(a) 2012-07-12 (b) 2012-07-17 (c) 2012-07-24

Figure 6.32: Woodstock town centre. An image sequence similar to Figure 6.31,
but for the town centre. Again, note the large trucks in (a) and (c) - both sources of
large velocity error. This compounded velocity error causes point cloud compression,
which subsequently results in tracking failure.

(a) 2012-07-12 (b) 2012-07-17 (c) 2012-07-24

Figure 6.33: Woodstock T-junction. Scenes from in and around a busy T-
junction in the centre of Woodstock. Tra�c joining the main road (a), large vehicles
on the main road (b) and vehicles leaving Woodstock (c) all contribute significantly
to velocity error.

(a) 2012-07-12 (b) 2012-07-17 (c) 2012-07-24

Figure 6.34: Woodstock exit. The final exemplar scene - the busy main road
leaving Woodstock. The regular presence of buses (a), garbage-trucks (b) and other
vans (c), all highly visible from the bumper-mounted LIDAR induce a large velocity
error.
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Given that there is substantial similarity - with respect to tra�c patterns -

across all of the datasets at each of the scenes (in Figure 6.31 through Figure 6.34,

we expect that a contextual scan-filter would be able to greatly reduce the e↵ect of

transient objects in the LIDAR fan. Figure 6.35 through Figure 6.37 show the raw

ICS-based scan-matching velocity estimates from the horizontal LIDAR for each of

the scenes over all of the datasets. In almost all cases, the e↵ect of tra�c on the

scan-matching velocity estimates are pronounced:

Figure 6.35: Velocity estimates: INS vs. ICS estimates (Woodstock entry).
A comparison of the velocity estimates (both INS (solid), and ICS (square markers))
for each of the three datasets at the Woodstock entry point. What is apparent is
that - due to tra�c - the ICS velocities are consistently under-estimated in each of
the datasets.
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Figure 6.36: Velocity estimates: INS vs. ICS estimates (Woodstock cen-
tre). Velocity estimates for the same datasets as in Figure 6.35 in the centre of
Woodstock, exhibiting similar behaviour. In some cases, on the 12th of July for
example, the ICS estimates are not unduly biased, due to the lack of tra�c at this
particular time.

Figure 6.37: Velocity estimates: INS vs. ICS estimates (Woodstock main-
road). Velocity estimates for the main road, leaving Woodstock. Again apparent
in each of the datasets is the bias inherent in the ICS velocity feed due to tra�c on
the road. This e↵ect is persistent enough to justify the e↵ort to develop a scan filter
that is able to correct this bias.

The persistent bias in the velocity estimates across the datasets causes compres-

sion (or expansion) of the point cloud (as illustrated in Figure 6.10). Given that the

non-stationary model provides a method of removing - from the LIDAR feed - points

that are likely to induce velocity errors, it is possible to compare the performance of
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the filtered/unfiltered approaches over the same data, which is shown in Figure 6.38:

Figure 6.38: Filtered velocity estimates. The corresponding filtered velocity
estimates (shown in green) against the unfiltered estimates (blue) over the scene
shown in Figure 6.35, as compared to the INS estimate (red).

For the period that the filter is active - i.e. the data falls into the domain of one

of the classifiers of the classifier bank, as determined by the indicator function - the

velocity estimates have been improved substantially.

Figure 6.39 contrasts the performance of each of the non-stationary classification

approaches for the problematic scene highlighted in Figure 6.35:

Figure 6.39: Filtered velocity estimates (Woodstock entry). A comparison of
each of the classification strategies (NaiveBayes, Boosting and Bagging) for the scene
shown in Figure 6.31(a). The ICS velocity estimates, due to tra�c, underestimate
the true velocity. However, filtering out points that are likely to be tra�c leads to
better velocity estimates for each of the classification schemes.

Figure 6.39 shows a comparison of the root mean square errors (RMSE) for each
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of the filtered velocity estimates shown in Figure 6.39. The RMSE is evaluated by

comparing the filtered velocity estimates, from each of the classifiers, against that

of the INS:

Table 6.4: RMSE Comparison: Woodstock entry

ICS Random (.2) Tree BaggedTrees NaiveBayes AdaBoost

2012-07-12 (m/s) 0.40 0.50 0.33 0.30 0.34 0.34
2012-07-17 (m/s) 0.56 0.69 0.15 0.15 0.45 0.42
2012-07-24 (m/s) 0.81 0.99 0.32 0.26 0.45 0.37

What is clear from Table 6.4 is that - for all of the datasets corresponding to

this particular location - the filtered approaches uniformly outperform the raw ICS

estimates, as measured by the RMSE. This confirms the hypothesis that by filtering

out points in the LIDAR fan that are statistically problematic, we can extract better

velocity estimates from the scan-matching algorithm. Figure 6.40 and Figure 6.41

replicate this comparison for each of the remaining scenes:

Figure 6.40: Filtered velocity estimates (Woodstock centre). Filtered veloc-
ity estimates using the various classification techniques over the Woodstock town
centre. Again apparent is the improved velocity estimate from the contextually-
filtered estimator. RMSE comparisons are shown in Table 6.5.
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Table 6.5: RMSE Comparison: Woodstock centre

ICS Random (.2) Tree BaggedTrees NaiveBayes AdaBoost

2012-07-12 (m/s) 0.29 0.33 0.40 0.40 0.34 0.27
2012-07-17 (m/s) 0.60 0.71 0.39 0.40 0.63 0.70
2012-07-24 (m/s) 0.43 0.47 0.31 0.40 0.43 0.43

Figure 6.41: Filtered velocity estimates (Woodstock T-junction). Filtered
velocity estimates using the various classification techniques over the Woodstock
T-junction. RMSE comparisons are shown in Table 6.6.

Table 6.6: RMSE Comparison: Woodstock T-junction

Method ICS Random (.2) Tree BaggedTrees NaiveBayes AdaBoost

2012-07-12 (m/s) 0.67 0.74 0.23 0.28 0.65 0.54
2012-07-17 (m/s) 0.93 1.08 0.62 0.56 0.90 0.87
2012-07-24 (m/s) 0.88 1.04 0.45 0.32 0.80 0.76
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Figure 6.42: Filtered velocity estimates (Woodstock exit). Filtered velocity
estimates using the various classification techniques over the Woodstock exit. In this
example, the ICS velocity error due to tra�c is highly visible. RMSE comparisons
are shown in Table 6.7.

Table 6.7: RMSE Comparison: Woodstock exit

ICS Random (.2) Tree BaggedTrees NaiveBayes AdaBoost

2012-07-12 (m/s) 1.00 1.20 0.39 0.36 1.25 0.61
2012-07-17 (m/s) 0.86 1.20 0.48 0.51 0.90 0.75
2012-07-24 (m/s) 1.51 2.13 0.39 0.38 0.95 0.38

In all of these cases, Figure 6.39 to Figure 6.40, the velocity estimates from the

non-stationary filters (Decision Tree, Bagged Decision Trees, Naive Bayes, Boosted

Decision Trees) are better - i.e. the RMSE is lower - than that of the raw ICS

approach.

An argument that could be levelled against the non-stationary classification ap-

proach is that one does not need to be so selective when filtering points - if enough

are removed from the LIDAR fan, the problematic points may be filtered out. As

a control-experiment, Figure 6.43 shows the ICS velocity filtered by randomly deci-

mating points from the LIDAR fan, for varying degrees of decimation:
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Figure 6.43: Filter comparisons : Randomized sub-sampling. Filtered ICS
estimates using a random decimation of the incoming points. This naive approach
merely increases the signal-to-noise ratio, and does little to compensate for the
accrued velocity bias.

Figure 6.43 explicitly shows that this hypothesis is not true - random input

decimation only serves to increase the signal-to-noise ratio, and does nothing to

compensate for the velocity bias from tra�c. Table 6.8 shows that the RMSE

increases proportionally with the rejection ratio:

Table 6.8: RMSE Comparison: Random decimation

Rejection ratio .1 .2 .3 .5

RMSE (m/s) 0.96 1.07 1.16 1.48

This section has explicitly shown how learning a place-dependant classifier leads

to improved velocity estimates for a number of testing locations in a dynamic real-

world setting. In the following section, the performance of the localisation engine is

contrasted with and without the contextual filter bank, and final trajectory estimates

are shown around the Woodstock site.
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6.3.5 Localisation improvements using contextual filters

The previous section has clearly articulated the need for contextual scan-filtering

to improve velocity estimates. We now explicitly demonstrate why this velocity

filtering leads to improved localisation performance. Figure 6.44 contrasts the e↵ect

on relative localisation error (as compared to the INS) both with and without the

filtered velocity feed:

Figure 6.44: The e↵ect of filtering on localisation. The di↵erence in sequential
pose estimates measured as a function of distance to the current INS pose estimate,
using the non-stationary filter (red) and the unfiltered approach (black). Using the
unfiltered velocity estimates, the estimate using L3 begins to diverge until failure.
However, by filtering the LIDAR points, the velocity estimate exhibits less error,
maintaining localisation.

This plot was obtained by measuring the displacement of the current pose es-

timate (using the L3 approach) to the current INS estimate, with velocities using

the bagged decision-tree non-stationary filter (red) against the unfiltered estimate

(black). Although the estimator disagrees with the global INS estimate by approx-

imately one metre, this is constant for the filtered approach, but divergent for the

non-filtered approach - this is due to the e↵ect of accrued velocity error.

Again we present Figure 6.45, which showed the original failure locations, and

provided the motivation for the contextual filter approach:
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Figure 6.45: Woodstock failure locations. Localisation points-of-failure over the
Woodstock route over three datasets spanning several months. Note how the failure
locations cluster in the town centre - typically due to the presence of tra�c.

As we have seen, by filtering the points going in to the scan-matching algorithm,

we can correct the velocity estimates such that we do not su↵er from a complete

system failure, as highlighted in Figure 6.45. Figure 6.46 shows the resulting trajec-

tories after using velocities that have been filtered with the contextual models:

Figure 6.46: The resulting trajectories using contextual scan-filtering. After
applying the contextual scan-filtering technique (in this case, bagged decision trees),
the points of failure have been eliminated and the system stays localised for each of
the datasets.

Given that - with the filtered velocity feeds - the system is more robust to failure
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induced by tra�c, we can again make use of the relative displacement metric for the

purposes of comparison. Figure 6.47 compares the performance using this metric

of the L3 system (red, using the contextually-filtered LO velocity) against the INS

(blue) for one loop around Woodstock:

Figure 6.47: Average relative displacement. The relative displacement compar-
ison of estimated trajectories from the INS (blue, solid) and the L3 system (red,
dashed) against a reference trajectory over 2.7km. As can be seen, the L3 approach
exhibits a lower displacement as compared to the INS over the course.

This is similar to the images shown in Chapter 5. To reiterate, in Figure 6.47

the displacement of the INS to the reference trajectory (blue) is shown against that

of the L3 system (red). On average we expect this displacement to be small, as the

vehicle is constrained by the road-network, and this is shown to be true in the figure.

Figure 6.48 again shows the averaged relative displacement of the trajectories

(INS, and L3 using scan-matching), for Woodstock as compared to Kidlington:
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Figure 6.48: Woodstock/Kidlington INS/L3 displacement comparison. Av-
eraged relative displacement for the data collected over Woodstock (INS and L3,
left), and Kidlington (INS and L3). The lower average relative displacement of L3

is visible in both of these locations.

Again we can see that the performance, in terms of repeat localisation, is superior

to that of the INS. Table 6.9 presents a performance summary of the entire system:

TTM Distance Cumulative Location
(days) (km) L3 (INS) (km) L3 (LO) (km)

0-31 26.00 26.00 - Begbroke

0 10.56 36.56 - Woodstock
49 10.47 47.03 - Woodstock
114 5.22 52.25 5.22 Woodstock
119 2.23 54.48 7.45 Woodstock
136 10.05 64.53 17.50 Woodstock
141 12.93 77.46 30.43 Woodstock
148 4.91 82.37 35.34 Woodstock
178 5.51 87.88 40.85 Woodstock

0 7.86 95.74 - Kidlington
23 13.19 108.93 54.04 Kidlington

Table 6.9: Localisation summary

189



6.3 Context-dependent sensor models

Table 6.9 summarises the localisation results, using the contextual-filter ap-

proach. This summary shows that - by learning a filter model predicated on our

position in the world - we can stay localised in areas that previously caused failure

(text in bold). The dashed datasets in Table 6.9 were omitted, as they were used to

train the filters.

However, the presence of vehicles on the road is not the only source of errors

for the scan-matching algorithm. Ground-strike in particular contributes greatly to

the signal-to-noise ratio of the estimated velocity feed, and cannot be filtered out

using the supervised training approach as outlined. Figure 6.49 replicates the results

shown in Figure 6.41 with the portion corresponding to ground-strike emphasised:

Figure 6.49: Velocity errors induced from ground-strike. The velocity error
arising from ground-strike in the LIDAR fan. Although the decision tree and bagged
decision tree models have reduced the signal-to-noise ratio by filtering out the tra�c,
both incorporate points corresponding to ground-strike, leading to velocity error.

Although we could envision leveraging the geometry of points in the LIDAR

fan to build a vehicle classifier, this becomes much more di�cult for ground-strike.

Therefore, we seek a method of learning a contextual filter that can accommodate the

errors accrued from both tra�c and ground-strike. In addition, we require a model

that can learn such a filter in an unsupervised fashion - it is too burdensome

to require hand-labelled scans for each new mission context. The approach for

achieving this is outlined in the following section.
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6.4 Learning unsupervised filters

Although vehicles and ground-strike can appear very di↵erently in the LIDAR fan,

both share a common trait - both result in substantial point discrepancy in sequential

LIDAR sweeps. As we saw in Figure 6.15, by using the INS to project sequential

LIDAR sweeps into a common frame, we can immediately identify regions where

there is little overlap - this corresponds to points in the LIDAR fan that will lead

to poor velocity estimates. Figure 6.50 shows two scans, separated by one second,

rendered into the same frame, i.e. TS1 = TS1 = T0:

(a) Relative (b) Global

Figure 6.50: LIDAR point-overlay comparison. (a) A comparison of two 1-
second separated LIDAR fans from the horizontally-mounted LIDAR, showing the
point-comparison when projected into the same frame. Visible on the right-hand
side are a wall and a roadside hedge. (b) The same fans, rendered into a global
frame using the INS. The wall and hedge are now well aligned - however, the points
on the left are not aligned, indicative of ground-strike.

What is apparent from Figure 6.50(a) is that in both fans, the LIDAR points

on the left-side of the fan seem to be good candidates for matching, i.e. they

represent some distinct feature in the world. However, if instead the LIDAR fans are

projected into a global frame (Figure 6.50(b)) the discrepancy becomes noticeable,

which intimates that the line-like feature is merely an artefact caused by ground-

strike. This is problematic when performing scan-matching through any of the ICP

variants, as the mass of points on the left will dominate, giving rise to erroneous
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estimates.

Given the mercurial nature of the ground-strike process, a new LIDAR filter

model is proposed - one that will take into account the context giving rise to ground-

strike, as well as relaxing the need for copious amounts of hand-labelled training

data.

6.4.1 Learning transiency from data

We observe - during training - noisy estimates of the transiency of scan cells by

overlaying points from consecutive scans using DGPS-corrected INS data. We then

generate point correspondences across scans using a nearest-neighbour search and

culling points closer than a certain threshold - this ensures the remaining points

have moved substantially between consecutive scans. The raw LIDAR points from

Woodstock centre are shown in Figure 6.51:
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Figure 6.51: Woodstock LIDAR transiency illustration: Raw LIDAR
points. The raw LIDAR points collected from the horizontally-mounted LIDAR,
projected into a global frame using the INS. Very apparent in this figure are the
“tracks” left by vehicles in front of the Wildcat; also visible are ground-strike points
arising from the pitching and rolling motion of the vehicle on the road.

Highly visible in Figure 6.51 is the band of points that correspond to tra�c. Also

visible are points arising from ground-strike (highlighted in green). Ground-strike

tends to appear as a moving wavefront in the LIDAR scan, and is to be removed

in order to prevent the type of errors shown in Figure 6.49. In both cases (tra�c

and ground-strike), there is substantial discrepancy in point-correspondence when

overlaid into a common frame (using the INS, as shown in Figure 6.50).

The following algorithm presents a simple way of determining these discrepancies.

It takes, as input, two LIDAR scans, their associated pose (given by the INS), a set

of parameters ✓, and returns points that exhibit a high degree of transience:
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Algorithm 8 Transiency estimation

1: procedure EstimateTransientPoints(S1,S2, T1, T2, ✓)
2: X1  Proj(S1, T1) . Project scans, given pose
3: X2  Proj(S2, T2)
4: F  []
5: for all x 2 X2 do . Inter-scan cluster
6: {x0, d} FindKNearestNeighbours( x,X1, k = 1)
7: if ✓

dL < d < ✓
dU then

8: append(F , x0)
9: end if
10: end for
11: O  []
12: for all x 2 F do . Secondary cluster
13: {d} FindKNearestNeighbours( x,F , k = ✓

nn

)
14: if E[d] > ✓

m

then
15: append(O, x0)
16: end if
17: end for
18: return O
19: end procedure

where the function FindKNearestNeighbours(·) returns K points and Euclidean

distances for an input datum against an array of data. The initial loop in Algorithm 8

is an inter-scan clustering, that calculates the distance from each point in the first

scan to each point in the second scan, with those points with the nearest neighbour

distance falling into the range specified by ✓
dL and ✓

dU being retained. This approach

produces a broad estimate of discrepancy between point clusters in consecutive scans,

but always incorporates outlier points.

To account for this, the second loop averages the distance of each point to ✓
nn

of its neighbours, which are retained if they fall above a distance specified by ✓
m

. If

a point has less than ✓
nn

neighbours, then the point is discarded - this ensures that

outlier points are not always incorporated.

Applying this filtering approach to the points in Figure 6.51 results in the fol-

lowing filtered transient points:
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Figure 6.52: Woodstock LIDAR transiency illustration: Transient obser-
vations. The filtered LIDAR points from Figure 6.51, filtered as per Algorithm 8.
By fusing INS and LIDAR data during the initial run and applying simple cluster-
ing methods, we can isolate areas in the environment that exhibit a high degree of
transience. In addition to vehicles, ground strike (top-right) is also detected - this
is to be expected, as ground-strike can be characterized as a fast-moving wavefront.
Some static structures are incorrectly observed as transients - however, the number
of these observations is small. Also shown are two example LIDAR fans rendered
at two successive � positions.

At this juncture, we move away from relying on a point-based classification ap-

proach toward a discretized model of scan-transiency that enables us to incorporate

prior knowledge as to how point-discrepancy appears in the LIDAR fan. The LIDAR

domain is now partitioned into discrete segments, as is shown in Figure 6.53:

195



6.4 Learning unsupervised filters

Figure 6.53: Discretized LIDAR model. A visualisation of the model used to
estimate the transience of areas in the LIDAR scan plane (given a location in the
world, indexed by �). The unobserved latent states, X, constitute the underlying
transience of a certain location in the beam plane of the LIDAR. The observed value
y are noisy estimates from training data, estimated by observing point misalignment
in consecutive laser scans.

The input domain (range and angle) is now partitioned into a grid of random

variables, X, where X
i

is a binary variable denoting the transiency of laser data ob-

served in a discrete {✓, r} cell in the scan plane. This measure captures how reliable

sensor data from a certain cell will be and allows us to determine, probabilistically,

how much we can trust LIDAR data from a particular point in the world.

The advantage of this representation is that we can fold in a prior intuition as

to the relationship of neighbouring cells in the LIDAR fan - for instance, if a certain

cell X
i

is marked as “transient”, the likelihood of its neighbours being transient is

higher. This probabilistic model, formulated as a graph, enables us to capture these

correlations. The approach is explored fully in the following section, beginning with

an overview of Markov Random Fields.
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Representing the filter as a Markov Random Field

We can consider the LIDAR segmentation in Figure 6.53 to be a graph G character-

ized by vertices V , with latent variables X
v2V connected by undirected edges E , each

taking on a label in the set L = {0, 1}. If we assume a strict positivity constraint,

such that:

P (X
i

) > 0 8 X
i

2 X (Positivity) (6.11)

and a neighbourhood constraint:

P (X
i

| X\{i}) = P (X
i

| XNi) (Markovianity) (6.12)

where X\i denotes the set-di↵erence operator, and XNi , are the neighbouring

sites of X
i

then the graph is said to represent a Markov Random Field. Then,

according to the Hammersley-Cli↵ord theorem [6], the MRF is equivalent to the

Gibbs distribution over G:

P (X) =
1

Z
Y

c2C(G)
exp {✓

c

{X
c

}} (6.13)

where Z is the partition function ensuring that P (X) is a valid probability distri-

bution, and ✓
c

{X
c

} are the potentials associated with the maximal cliques c 2 C(G).

Maximal cliques for 1� 4 variables are shown in Figure 6.54:
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Figure 6.54: Fully connected sub-graphs, or “cliques”. Fully connected cliques
for 1,2,3, and 4 variables. The pairwise cliques in the MRF model correspond to a
fully-connected graph of size 2.

Cliques are fully-connected subgraphs, which in the case of the MRF are pairwise

- higher order cliques can be specified depending on the task. Equation (6.13) can

be re-written as:

P (X) =
1

Z exp{E(X)} where (6.14)

E(X) =
X

c2C
✓
c

{X
c

} (6.15)

where E(X) is known as the energy function, which decomposes into unary and

pairwise terms:

E(X) =
X

i2V
�(X

i

)�
X

(i,j)2E
 (X

i

, X
j

) (6.16)

where �(·) is the node potential and  (·) is the pairwise potential. Given that

we are seeking a binary segmentation, a natural prior over the pairwise term is the

Ising model:
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 (X
i

, X
j

) = � | X
i

�X
j

| (6.17)

The Ising potential increases the contributed energy when spatially-adjacent vari-

ables have di↵ering values, enforcing spatial consistency5 . The MRF is now used

as the prior over X, which is then associated with a set of observations, y. Given

that this is a segmentation problem, i.e. X 2 {0, 1}, we would like to estimate the

most probable labellings for all the latent variables in the graph given the observed

data. In a Bayesian setting, this posterior distribution over latent variables is:

P (X | y) / P (y | X)P (X) (6.18)

The assumption made for tractability here is over the likelihood term:

P (y | X) =
Y

i2V
P (y

i

| x
i

) (6.19)

Note that only the prior has been specified to be a Markov Random Field -

however, given the conditional independence assumption, the resulting posterior is

also a MRF. Another important aspect here is that the label interactions here are

specified a-priori - they are not a function of the data.

The most probable setting for the latent configuration is themaximum a-posteriori

estimate, given by:

5The Ising prior is said to be homogeneous and isotropic - the interaction potential is stationary
across the field, and it is invariant to rotation.
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MAP = argmax
x2X

P (X | y) (6.20)

which corresponds to a minimisation of the energy function in Section 6.4.1.

For the pseudo-boolean6 function that corresponds to the Ising prior, the MAP

estimate can be computed in polynomial time using graph cuts [15], given that the

formulation obeys submodularity constraints [47].

The key advantage here is that, due to the explicit maximization, evaluation

of the partition function Z is not required - this is not true for computing the

marginals, for which we must resort to approximate methods such as sum-product

Belief Propagation (BP). A good overview of BP, and inference in graphs, is given

in [48]. However, for our scan-segmentation task, the MAP estimate is su�cient for

a “hard-masking” approach.

The Conditional Random Field [52] is a form of MRF that also models the

posterior distribution P (X | y) - however, the factorization into prior and likelihood

is not made explicit, as mentioned in [11]. Instead of modelling the data in a

generative fashion, we utilize a discriminative classifier as the unary potential, as

formulated by [50]. For the segmentation task, we make use of logistic regression:

P (X
i

| y
i

) =
1

exp�(�0+�1yi) + 1
(6.21)

where the observations y are histogram counts of per-cell transience given some

� index (as illustrated by the two example fans in Figure 6.52). Given the projec-

tion of the global points into the LIDAR fan, we apply a histogramming operation

to produce counts of per-cell transience. Figure 6.55 shows the e↵ect on the cell

6A function whose domain is boolean, but the range is real-valued
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transience probability for various � parameters as given by logistic regression:

(a) �1 = 10 (b) �1 = 100

(c) �1 = 200 (d) �1 = 500

Figure 6.55: Cell transiency probabilities for varying �. (a) �1 = 10, (b)
�1 = 100, (c) �1 = 200, (d) �1 = 500. Darker cells indicate higher probability.

Varying the �1 parameter adjusts the estimated probability of a cell being marked

“transient” as a function of the number of points in the cell. A value of �1 = 100

works well for this problem. Given this regression model, the posterior distribution

becomes:

P (X | y) = 1

Z exp�
 
⌘
X

i2V
�log(p(X

i

| y
i

)) + �
X

i,j2E
| X

i

�X
j

|
!

(6.22)

This representation, where we are no longer modelling the data in a generative

fashion is known as a Conditional Random Field - the model is conditioned on the

observed data. More specifically, the use of discriminative classifiers in the unary or
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pairwise terms is known as a Discriminative Random Field (DRF) [50].

This model has a number of parameters - ⌘ and � which trade o↵ the relative

contribution of the unary and pairwise potentials, with �0 and �1 modulating the

behaviour of the logistic function. In general, these parameters would be optimised

with respect to some training data - however, since we have no explicit labellings

for transiency given histogram value, we rely instead on hand-tuned parameters.

However, even with sub-optimal model parameters, we show that the resulting ve-

locity estimates (and therefore, localisation estimates) are comparable to supervised

classifiers.

Estimating the most probable filter state

Given a set of parameters for the model, we want to estimate the MAP labelling for

the latent states - this is termed decoding. Sophisticated methods based on graph

cuts allow for polynomial-time decoding (as a function of the number of latent states)

for pseudo-boolean graphs. For ease of implementation, we utilise a decoding scheme

from the family of move-making algorithms, known as Iterated Conditional Modes

(ICM) [9].

ICM starts with an initial configuration, and proposes moves in the configuration

space of X. Moves that decrease the energy are accepted with probability 1, and the

algorithm iterates until a convergence tolerance is reached. Given that any latent

state in the graph is conditionally independent of the rest of the graph given its

neighbourhood7, ICM can be formulated as the following minimisation:

X
i

= argmin
Xi2V

E({X
j

| j 6= i}, X
i

) (6.23)

7This is also known as the Markov blanket
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ICM works in a coordinate-descent fashion, proposing changes in the move space

of the random field, halting when no other change leads to a decreased energy.

For the data gathered over the location marked �00 in Figure 6.52 the most probable

labelling ofX given the observed data y and employing ICM is shown in Figure 6.56.

Figure 6.56: Iterated Conditional Modes (ICM). The resulting locally maxi-
mal X given by applying ICM to the observed data for the location �00 shown in
Figure 6.52 over the model depicted in Figure 6.53. Note how the road has been
learned to be an unreliable place for scan-matching, given the presence of vehicles.
Also, the entryway between two buildings has also been classified as transient - this
is due to repeated induced roll experienced by the vehicle at that particular point.

Note crucially that we have not explicitly encoded a vehicle model, but we have

learned that roads - due to cars - are poor places to utilize scan match data. We

have also simultaneously learned that ground strike is also undesirable - Figure 6.56

classifies a region between two buildings as a source of transient LIDAR data. This

is due to the repeatedly observed ground-strike arising from vehicle roll in that

particular area.

Figure 6.57 shows a side-by-side comparison of the supervised/unsupervised fil-

ters for equivalent locations in Woodstock:
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6.4 Learning unsupervised filters

(a) T-junction (b) Town centre (c) Exit

(d) T-junction (e) Town centre (f) Exit

Figure 6.57: Comparison of supervised/unsupervised filters. Top row is
the transiency-based estimation over the LIDAR model, bottom-row is the fully-
enumerated decision boundary for the equivalent non-stationary supervised classifier
at the same location (Decision Trees, in this example). (a)(d) are the Woodstock
T-junction, (b)(e) the town centre, and (c)(f) the Woodstock exit.

One aspect to note is that the forms of the filters are fundamentally di↵erent - in

the unsupervised case, we explicitly learn a filter over a discretized domain, whilst in

the supervised case the form of the filter shown is plotted by explicitly enumerating

the decision boundary for the entire input space.

We now can use this learned distribution at run-time to filter out LIDAR points

that have a high probability of originating from a transient object - be it a vehicle,

or ground-strike from the rolling/pitching motion of the vehicle. The key advantage

of this unsupervised method is that we can apply the same approach to new scenes,

without having to rely on hand-labelled training data.

Figure 6.58 shows two example filters learned at di↵erent locations around the

Kidlington test route, with the road boundaries highlighted:
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6.5 Contextual model parameters

(a) X (b) Z

Figure 6.58: Kidlington: Unsupervised filters. Unsupervised filters learned for
a (a) T-Junction, and (b) straight road section.

It is apparent that this method generalizes to new environments well, and re-

lieves the burden of having to obtain hand-labelled training data. We have focused

exclusively in the previous sections on varying the form of the filter - the following

brief section enumerates an interesting result of varying the intrinsic parameters of

the scan-matching engine, concluding this chapter.

6.5 Contextual model parameters

An equally valid approach to the problem is to vary some intrinsic properties of

the matching algorithm - for instance, the outlier threshold in the conventional ICP

formulation. Figure 6.59 shows a result of this experiment:

Figure 6.59: Comparison of ICP parameters in Woodstock centre. Velocity
estimates arising from di↵erent outlier thresholds in an ICP scan-matching engine.
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6.6 Summary

An interesting aspect of Figure 6.59 is the behaviour of the matching algorithm

when the outlier threshold is set to a value of 0.1. For t 2 [0, 6.5], the behaviour

of ICP is as poor as (if not worse) than other thresholds. However, from t = 6.5

onwards, the system recovers and begins to estimate the vehicle velocity well, despite

the relative velocity of the vehicle in front.

This intimates that the outlier threshold is successfully filtering out the beams

impacting on the vehicle, leading to better velocity estimates - however, this outlier

distance is dependent on the relative vehicle velocity (as compared to the Wildcat).

Given that we can augment the sensor suite, an interesting avenue of research would

be the servoing of this parameter value given some extrinsic cues about vehicles on

the road ahead.

6.6 Summary

This section has outlined methods and techniques for generating robust velocity

estimates over extensive real-world data from a horizontal LIDAR. The key focus

has been the development of a context-specific sensor model, that - when learned

in either a supervised or unsupervised fashion - serves to significantly reduce the

signal-to-noise ratio on the velocity signal, leading to robust long-term large-scale

pose estimates from the L3 system.
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Chapter 7

Conclusions

This section serves to summarise the previous chapters, providing a retrospective

view of the material covered, and providing an outline for future work.

7.1 Summary of contributions

This work has focused on the accurate, long-term localisation of a road vehicle with

an inexpensive sensor suite, centred around the use of 2D LIDARs. We observed at

the beginning of the thesis that accurate knowledge of the vehicle position within

the world is an absolute requirement for any of the higher-level tasks we would like

an autonomous car to perform.

Chapter 2 presented an overview of the current approaches for large-scale localisation

for road vehicles, with a high-level overview of the di↵erent sensing modalities.

This chapter highlighted the common thread that localisation within a given map -

whether it is obtained from a heavily instrumented survey vehicle or through other

means - is crucial for any extended higher-level tasks. This is implicit - how can we

know where to go if we don’t know where we are? We also articulated the need for

an active sensor, LIDAR, for its robust performance in a range of conditions and
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7.1 Summary of contributions

environments, and why it continues to be a vital component for field robots.

Reliable, e�cient data collection is a core competency in robotics, and Chapter 3

developed the means for both the synthesis and acquisition of large scale datasets.

We presented an integrated simulator that was capable of generating realistic city-

sized datasets in real-time, and showed how the proliferation of digital CAD data

has allowed for increased realism when building virtual representations of cities.

A stand-alone dual-purpose localisation/surveying unit - the NABU - was de-

signed and fabricated, allowing for seamless data collection in a platform-independent

way. The design of the NABU incorporated a variety of sensing modalities - from

LIDAR to vision - and was built to allow for the rapid re-configuration of the sen-

sor payload. The usefulness of this unit has been validated with many kilometres

travelled (and gigabytes logged) by members of the Mobile Robotics Group.

Given the ability to acquire large-scale datasets - and seamlessly synthesise ar-

bitrary ones of high realism if required - we moved on to the core application:

localisation within a prior map using inexpensive sensor suites (like the NABU)

over the long-term. This focus formed the core of Chapter 4. The motivation

behind this work - in particular the issues arising with conventional localisation

techniques due to scene change - were highlighted, and this provided the impetus

for the development of the retrospective swathe-based matching algorithm.

Framing the localisation process as an entropy-based optimisation problem served

to provide a robust way of localising the vehicle over extended durations (both tem-

poral and spatial). The techniques were designed and validated around Begbroke

Science Park, and subsequently extended into the nearby towns of Woodstock and

Kidlington in Chapter 5. The performance of the algorithm was validated exten-

sively over a wide variety of weather, conditions, and experiencing all the scene

change common to a typical bustling urban centre.

Of course, operating in these complex, highly dynamic environments provided a
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7.2 Future work

number challenges. Of vital importance to the estimation algorithm in Chapter 4 was

the accuracy with which the swathe could be built - this relied on unbiased sources of

velocity estimates, which proved to be di�cult to obtain in a fluid, dynamic setting

like the centre of a town.

The core insight to correcting this bias was that the context of the sensor data

was highly influential, and this was the focus of Chapter 6. By building a context-

specific model of dynamic parts of the scene, it became possible to filter out regions

that were known to induce velocity errors. This was validated extensively by using

hand-labelled training data, which - given the scales operated over in this thesis - be-

comes rapidly untenable. The solution to this was to recover these sensor models by

learning about the problematic areas from repeated passes through the workspace,

and this allowed for the unsupervised synthesis of these non-stationary models.

7.2 Future work

Some of the limitations and failure cases of the system have already been articulated.

Improvements and refinements can be broken down into three categories:

Improved ego-motion estimates

Having multiple sources of velocity data is of course highly beneficial. Utilizing

multiple modes is particularly useful, as often the failure cases for each sensor will

not overlap - see Appendix A. This is particularly pertinent if we consider the major

failure modes for the two odometric measures compared in this thesis - VO and LO

- whose prime failure conditions are darkness and falling rain, respectively.

Of course, for conditions falling in the spectrum between these two extremes, it

may not be possible to know how to weight the importance of each of these sensors.

Developing another contextual - and temporal - weighting parameter would allow
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7.3 Concluding remark

us to develop confidence regions for each sensor, leading to better overall velocity

estimates.

Cross-sensor integration

Although we have access to multiple sensor modalities on the NABU, information

is not shared about the scene as perceived by each of the individual sensors. For

example, if we know - with a high degree of confidence - that certain LIDAR points

in the fan should be filtered, these could be referenced - using the known extrinsic

calibration between the sensors - to pixels in imagery from the on-board cameras.

These would provide a strong prior that would allow us to filter features in the

camera image (using some form of segmentation for example) that would lead to

better VO estimates (for example).

Learning semantic regions

In the current approach, we learned a sensor model that was predicated only on the

distance around a canonical spline map of the environment. While this approach

proved to be satisfactory for all the data collected in this thesis, it does not answer

the interesting question of how these models relate to each other - for example, we

expect models on the highway to be self-similar to other highway models.

By identifying commonality between these models, we can identify regions with

semantic cohesion which will be necessary - when considering country-scale naviga-

tion - for the data-compression opportunities it will provide.

7.3 Concluding remark

In this thesis we have developed the means to bring reliable, inexpensive, robust

long-term localisation capabilities to vehicles of any configuration, and it is hoped
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7.3 Concluding remark

that the framework in its entirety will be beneficial to researchers going forward.
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Appendix A

Sensor failure modes

This section briefly illustrates the advantage of dual odometry-estimation modalities.

Figure A.1 illustrates some of the weather encountered at Begbroke Science Park

across the seasons:

(a) Sunshine (2011-12-05) (b) Snow (2012-02-06) (c) Snow and mist (2012-02-06)

Figure A.1: Sensor characteristics across seasons. A sequence of images show-
ing the varying faces of Begbroke Science Park. Shown in (a) is a dry, cloudless day
- ideal operating conditions for any sensor. Figure (b) is of a day with intermittent
snow storms, and (c) is during a mist/snow shower.

As can be seen from the image sequence, there is still noticeable structure, even

during the snow/light rain shower in Figure A.1(c). Now compare the performance

of the horizontal LIDAR over the same data:
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(a) Sunshine (2011-12-05) (b) Snow (2012-02-06) (c) Snow and mist (2012-02-06)

Figure A.2: LIDAR failure modes. A contrast of the LIDAR performance across
the same conditions. Figure (a) shows the LIDAR working as expected. In (b) we
begin to notice the LIDAR signal degradation, while finally in (c) the LIDAR has
degraded completely.

As can be seen from the LIDAR plots in Figure A.2, during the mist/show

shower, there are no valid range-returns - this is problematic if we are using LIDAR

to navigate during such an event. It should be stressed here though that Figure A.2

was an outlier, and only one of two instances of a rainy dataset collected over the

duration of this thesis.

We now examine the reverse of this situation - consider Figure A.3, showing

images from the same location (on successive loops) around the Woodstock test

site:

(a) 2012-04-16: Loop 1 (b) 2012-04-16: Loop 2 (c) 2012-04-16: Loop 3

Figure A.3: Camera failure modes. The vehicle lighting and evening conditions
combine to make this a very testing image sequence to perform VO on.

Contrast this with the performance of the LIDAR data, taken at the same loca-

tions:
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(a) 2012-04-16: Loop 1 (b) 2012-04-16: Loop 2

(c) 2012-04-16: Loop 3

Figure A.4: LIDAR evening data. LIDAR data corresponding to the images in
Figure A.3.

The obvious point here is that di↵erent sensor modalities are advantageous for

any autonomous system (or payload).

214



Bibliography

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d

point sets. IEEE Trans. Pattern Anal. Mach. Intell., 9(5):698–700, May 1987.

[2] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, C. Reinholtz,

D. Hong, A. Wicks, T. Alberi, D. Anderson, et al. Odin: Team victortango’s

entry in the darpa urban challenge. Journal of Field Robotics, 25(8):467–492,

2008.

[3] H. Badino, D. Huber, and T. Kanade. Real-time topometric localization. In

Robotics and Automation (ICRA), 2012 IEEE International Conference on,

pages 1635–1642. IEEE, 2012.

[4] D. Badouel. An e�cient ray-polygon intersection. In Graphics gems, pages

390–393. Academic Press Professional, Inc., 1990.

[5] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-

pivoting algorithm for surface reconstruction. Visualization and Computer

Graphics, IEEE Transactions on, 5(4):349–359, 1999.

[6] J. Besag. Statistical analysis of non-lattice data. The statistician, pages 179–

195, 1975.

[7] P. Besl and N. McKay. A method for registration of 3-d shapes. IEEE Trans-

actions on pattern analysis and machine intelligence, 14(2):239–256, 1992.

215



BIBLIOGRAPHY

[8] P. Biber and W. Straßer. The normal distributions transform: A new approach

to laser scan matching. In Intelligent Robots and Systems, 2003.(IROS 2003).

Proceedings. 2003 IEEE/RSJ International Conference on, volume 3, pages

2743–2748. Ieee, 2003.

[9] C. Bishop. Pattern recognition and machine learning, volume 4. Springer,

New York, 2006.

[10] C. Bishop and M. Svenskn. Bayesian hierarchical mixtures of experts. In Pro-

ceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence,

pages 57–64. Morgan Kaufmann Publishers Inc., 2002.

[11] A. Blake, P. Kohli, and C. Rother. Markov Random Fields for Vision and

Image Processing. Mit Pr, 2011.

[12] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller. An

atlas framework for scalable mapping. In Robotics and Automation, 2003.

Proceedings. ICRA’03. IEEE International Conference on, volume 2, pages

1899–1906. IEEE, 2003.

[13] M. Bosse and R. Zlot. Map matching and data association for large-scale

two-dimensional laser scan-based slam. The International Journal of Robotics

Research, 27(6):667–691, 2008.

[14] M. Bosse and R. Zlot. Continuous 3d scan-matching with a spinning 2d laser.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference

on, pages 4312–4319. IEEE, 2009.

[15] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization

via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 23(11):1222–1239, 2001.

216



BIBLIOGRAPHY

[16] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[17] R. Brent. Algorithms for minimization without derivatives. Dover Publica-

tions, 2002.

[18] A. Buja and W. Stuetzle. Bagging does not always decrease mean squared

error. Preprint, 2000.

[19] P. Carle, P. Furgale, and T. Barfoot. Long-range rover localization by matching

lidar scans to orbital elevation maps. Journal of Field Robotics, 27(3):344–370,

2010.

[20] Y. Cheng, M. Maimone, and L. Matthies. Visual odometry on the Mars ex-

ploration rovers. In Systems, Man and Cybernetics, 2005 IEEE International

Conference on, volume 1, pages 903–910. IEEE, 2005.

[21] W. Churchill and P. Newman. Practice Makes Perfect? Managing and Lever-

aging Visual Experiences for Lifelong Navigation. In Proc. IEEE International

Conference on Robotics and Automation (ICRA2012), Minnesota, USA, May

2012.

[22] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Mar-

chal. Automated multi-modality image registration based on information the-

ory. In Information processing in medical imaging, volume 3, pages 264–274,

1995.

[23] O. C. Council. Oxfordshire city council transport policies and plans. http:

//www.oxfordshire.gov.uk/cms/content/transport-new-developments.

Accessed: 13/08/2012.

[24] I. Csiszár and P. Shields. Information theory and statistics: A tutorial. Now

Publishers Inc, 2004.

217

http://www.oxfordshire.gov.uk/cms/content/transport-new-developments
http://www.oxfordshire.gov.uk/cms/content/transport-new-developments


BIBLIOGRAPHY

[25] M. Culp, K. Johnson, and G. Michailidis. ada: An r package for stochastic

boosting. Journal of Statistical Software, 17(2):9, 2006.

[26] F. Daum. Nonlinear filters: beyond the Kalman filter. Aerospace and Elec-

tronic Systems Magazine, IEEE, 20(8):57–69, 2005.

[27] S. Davey. Extensions to the probabilistic multi-hypothesis tracker for improved

data association. PhD thesis, The University of Adelaide, 2003.

[28] C. De Boor. A practical guide to splines, volume 27. Springer Verlag, 2001.

[29] H. Dinh and S. Kropac. Multi-resolution spin-images. In Computer Vision and

Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1,

pages 863–870. IEEE, 2006.

[30] A. Diosi and L. Kleeman. Fast laser scan matching using polar coordinates.

The International Journal of Robotics Research, 26(10):1125–1153, 2007.

[31] A. Doucet, N. De Freitas, and N. Gordon. Sequential Monte Carlo methods in

practice. Springer Verlag, 2001.

[32] B. Efron. Bootstrap methods: another look at the jackknife. The annals of

Statistics, 7(1):1–26, 1979.
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