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This thesis is about precise acquisition and inference of 3D range data. The

intended application domain is mobile robotics. We investigate a number of key

issues in the data gathering process, showing that a careful treatment of each stage

in the pipeline is vital for producing dense accurate representations. We describe a

low cost 3D laser system capable of generating high quality data from a continuously

moving platform. The hardware, data capture, calibration and processing techniques

we have developed allow us to produce remarkably detailed point clouds. Our laser

system’s rapid scanning of the environment enables the correction and augmentation

of the robot’s odometry system, by tracking planar features in consecutive sweeps of

the environment.

An essential part of the data acquisition pipeline is accurate timestamping of data

from different sources. We describe a new and very efficient algorithm for the rapid on

line synchronization of computer clocks distributed over a network. The algorithm,

known as TICSync+, is capable of achieving performance measured in Parts Per

Billion and deals naturally with common clock upset events.

We also contribute a method for fusing point clouds with camera images to produce

dense and accurate range maps of much higher resolution than the input range data.

We make use of structural similarities in range and intensity data. Our use of a 2nd-

Order smoothness prior allows the method to infer surfaces of arbitrary slope, as well

as to reconstruct curved surfaces where appropriate.
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Figure 1: The robot vehicle we use to gather laser and camera data, known as Marge. A
skid-steering system is used for directional control, with odometry obtained via encoders on
the wheels. A camera with pan-tilt unit is mounted at the top. Immediately beneath that
is the 3D laser scanner, which is the primary sensor discussed in this thesis. It covers a 70◦

elevation arc in around 0.6s, which allows it to rapidly acquire 3D range measurements of
the robot’s environment.
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Chapter 1

Introduction

Workspace mapping and reconstruction by mobile robots is an important and grow-

ing field. Robots need to understand their environment and being able to reconstruct

the 3D structure of their surroundings from raw sensor data is an important step in

achieving this goal. In this thesis, a data processing pipeline driven by laser and cam-

era data is proposed, with a view to producing and building quality 3D environment

representations. Contributions are made in a number of areas, in particular those

of calibration, point-cloud correction, laser and vision fusion and clock synchroniza-

tion. This last point, clock synchronisation, is perhaps at first surprising particularly

when one considers around 80 pages are given over to it. Robot perception is utterly

dependent on the interpretation of time series data and the timestamps attached to

data are no less important than the measurements themselves. Indeed we assert that

the time-value tuple is an atomic entity. The value of a measurement is limited by

the precision of its timestamp.

The contributions are put into context by first analyzing some existing work on

3D reconstruction from robot vehicles. It will be shown that the fidelity of recon-

struction achievable is, as one might expect, directly related to the quality of 3D

point cloud data used. Of vital importance to surface reconstruction techniques is a
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way of obtaining good surface normal estimates. Noise in the point cloud data can

significantly impact the normals.

This chapter will outline the structure of the thesis and provide a précis of our

contributions to the topics covered. The reader is also directed to section 9.1 in the

concluding chapter in which a perspective is given on the relationship between thesis

structure and research chronology.

1.1 Point Cloud Collection

A low cost 3D laser measurement system is used, based on the well-known SICK

LMS200 laser scanner. The LMS200 is placed in a nodding cradle (Figure 1) which

briskly sweeps the laser’s scanning plane over an elevation range of around 70◦. The

system enables us to gather dense and detailed point clouds, but demands that we

pay very close attention to data timestamping issues. Even errors as small as 1 ms

in the laser time stamps are significant, because it is vital to know the exact position

of the nodding cradle when any given laser measurement is taken. Chapter 3 will

describe the system in detail and show how very precise calibration is achieved using

a novel algorithm that exploits the dynamics of the nodding cradle.

Point cloud data is often used in 3D Simultaneous Localization and Mapping

(SLAM) systems, which aim to map unknown environments without recourse to in-

frastructure such as calibrated beacons or GPS sensors. The robot has only on-board

sensors with which to determine its trajectory through the environment. One way of

doing this involves using 3D point clouds to recover a full 6-DOF trajectory estimate.

Point cloud segments are registered together using a technique such as ICP [11] and

the transformation between them used to provide the SLAM engine with relative pose

estimates. ICP requires that the two point clouds are internally well registered so it

is common for the robot to follow a stop-scan-go paradigm for data gathering. A
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less time-consuming method would be to allow the robot to move continuously while

gathering data, but any odometry errors will cause the gathered point cloud segments

to be corrupted.

Chapter 4 presents a method for correcting point clouds corrupted by poor odom-

etry, by the use of architectural priors, such as the knowledge that urban environ-

ments often contain many vertical surfaces. By extracting and tracking planes in

sparse atomic point cloud units, the trajectory of the vehicle can be recovered and

the odometry corrected.

The next part explains the extrinsic calibration procedure for determining the

transformation between the nodding laser scanner and a camera mounted on the same

vehicle. Having the transformation allows laser measurements to be projected into

an RGB camera image so that the pixels may be augmented with range information.

From this, we can immediately produce coloured point clouds, with the colours coming

from the RGB image, but we also have the information needed for probabilistically

fusing laser and image data.

1.2 Image and Laser Fusion

One constraint on the speed at which a robot can gather point cloud data is the ac-

quisition rate of the laser scanning unit. If the robot travels too fast, the point clouds

will be too sparse to make high quality maps. On the other hand, high resolution

camera images can be gathered at a much greater rate, though they lack range infor-

mation. In Chapter 5 we will present a new method by which sparse laser data can be

combined with high resolution camera images to produce an equally high resolution

range image. The technique makes use of environmental priors such as that depth

discontinuities often correspond to changes in colour, and that smooth surfaces tend

to consist of smoothly varying colours. The contribution of a 2nd-order smoothness
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term to a Markov Random Field (MRF) based representation allows the reproduc-

tion of high quality surfaces from remarkably little data. It will be shown that the

algorithm compares favourably to other contemporary methods.

1.3 Clock Synchronization

The major contribution of this thesis is in the area of clock synchronization. Robotic

systems are often distributed over multiple computers on a network, or even over

the internet. High speed data gathering requires exceptional timing accuracy so that

data streams from different sources may be fused correctly. Figure 1.1 shows another

of the group’s robots, which is highly dynamic and has very high bandwidth data

gathering capabilities. A precise timestamping ability proved to be essential in the

task of fusing the data from multiple sensors.

The clocks on standard PCs are notoriously inaccurate due to their low cost,

temperature sensitive components. The traditional method of achieving clock syn-

chronization is to have the participating computers synchronize to a Network Time

Protocol (NTP) [70] server. NTP is an excellent, robust protocol, but it is designed

for long term stability and robustness rather than rapid and absolute synchronization.

In a robotics context where computers are often added or removed from a system at

short notice, it is not acceptable to wait the few hours required for NTP to achieve

synchronization.

Chapters 6, 7 and 8 introduce a new algorithm called TICSync, which uses two-

way exchanges to synchronize clocks over a network. Rather than modifying the

clocks, it learns the skew and offset parameters between them, so that knowledge of

one clock’s time will immediately allow recovery of the other’s time. The thesis shows

how the algorithm is able to naturally detect clock upsets and adjustments, such as

those caused by running NTP.
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TICSync is a very efficient algorithm, exhibiting constant time incremental up-

dates and a small memory footprint. Performance is more than adequate, with ms

accuracy being achieved after only a few seconds of message exchange. The perfor-

mance is independent of the skew and offset between clocks. It depends only on the

probabilistic network packet delay distribution. By modelling the distribution we are

able to obtain good quantitative estimates of the accuracy of the algorithm at any

point.
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Figure 1.1: Lisa is a robot built for rapidly mapping large spaces. It was during the
sensor integration phase of the build that the necessity of excellent time synchronization
was discovered. Lisa is a balancing robot, constantly making many small adjustments to
its pose, and therefore the sensors, which are rigidly attached. The sheer quantity of data
being gathered was too much for one computer, so Lisa has four networked computers on
board. Temporally matching the various sensor streams to produce consistent data proved
intractable until the TICSync algorithm was implemented. The author’s contribution in the
construction of ‘Lisa’ was to design and build the power distribution infrastructure and to
lead the hardware and software integration effort.
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Chapter 2

Background

This chapter discusses previous work in the field of surface reconstruction from point

clouds. A great deal of work has been done in the general area of surface recon-

struction so only a flavour of the different approaches is given here. Some general

techniques are described, as well as some which are specifically used for generating

surface models from a mobile robot platform. We begin with a discussion of different

environment representations and reconstruction methods.

2.1 Surface Reconstruction Methods

A non-mesh representation known as the evidence grid is described by Martin and

Moravec [66], and is specifically intended for use by mobile robots. The world is

represented by a uniform grid of voxels, with each one storing the probability of

its occupancy. Whenever a new measurement of the environment is taken, a sensor

model in the form of a probability density function (pdf) is used to update the oc-

cupancy probability of voxels in the vicinity of the measured target. As the robot

moves around and takes more measurements, the quality and confidence of the map

improves. The idea is elegant, but when applied in three dimensions the storage re-

quirements are unacceptably large, especially when using a fine grid. Furthermore,
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there is a requirement that the sensor’s (and therefore the robot’s) pose is accurately

known when the measurement was taken, so that the correct voxels may be updated.

In a general autonomous navigation setting, there is often uncertainty in the robot’s

current location

Many indoor environments consist of large, flat areas such as walls, floors, ceilings

and doors. Detecting these planes in the point cloud and representing them with

mesh elements can lead to significant storage reductions.

Nüchter, Surmann, Lingemann and Hertzberg [84] proceed by using RANSAC

[38] to detect the plane with greatest support in the point cloud. Points supporting

the plane are then projected in to the plane, and a quadtree technique is used to

construct a mesh spanning them. This is necessary to reproduce the correct shape of

the plane, including any holes it may have. The points are then removed from the

cloud and the RANSAC algorithm re-run to find the next plane. This continues until

no more planes of a suitable size are found. Triebel, Burgard and Dellaert [109] use

the Expectation Maximization (EM) algorithm [30] to obtain planes more robustly

and accurately, though it is a computationally expensive process.

Hähnel, Burgard and Thrun [45] propose another plane-extraction type algorithm

for reconstructing both indoor and outdoor models. 3D point data is obtained using

a 2D laser scanner, mounted pointing upwards such that it measures a complete ver-

tical slice of the environment, perpendicular to the forward movement of the vehicle.

Simple triangular meshing is performed by joining any three near neighbours, but

these meshes are particularly noisy. To smooth the meshes, random seed points are

chosen and a region growing method is used to find all neighbourhood points lying

in the same plane. Neighbouring polygons in the region are then successively merged

to produce a smooth plane.

Surface reconstruction from range images is a popular technique in the photogram-

metry community. Using very high resolution 3D laser scanners that sample over a
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regular grid, it is possible to generate a dense 2D image in which each pixel repre-

sents a depth measurement. This allows the application of standard image processing

techniques such as smoothing filters. By applying edge detection algorithms, or by

detecting other interesting features, a 2D Delaunay based triangulation can be ob-

tained. Popping the points back to their 3D locations yields a feature sensitive surface

mesh. Sequeira et al. [98, 99] use this for building indoor environment meshes. The

results presented in those papers were significantly affected by noise, but by applying

texture maps acquired from cameras, the eye can be fooled into believing that the

mesh quality is better than it really is.

Range images are used to very good effect by Huber and Vandapel [53] to map

underground mines. The high resolution laser scanner and relatively uncluttered

surfaces in the mines contribute to the high quality models produced. Point clouds

taken from a series of discrete poses are registered together and then the volumetric

method of Curless and Levoy [29] (described below) is used to produce triangle mesh

representations.

Schemes for reconstructing models of urban environments are often able to exploit

some structure in the data, or other information available. Bauer et al. [9] take dense

3D scans of building facades and use RANSAC techniques to extract planes. The

point clouds are further partitioned by using the knowledge that features such as

windows tend to be axis-aligned with the facade, making them easier to detect and

thus reconstruct and texture.

Früh and Zakhor [41] take vertical slice measurements of buildings as they drive

past in a vehicle. Aerial images of the environment being mapped are then used to

register the acquired point cloud correctly with the building fronts. From this, a

pseudo range image can be constructed which may then be triangulated easily.

Some early surface reconstruction algorithms used deformation of an existing mesh

to approximate the target surface. Miller and Breen [69] begin by embedding a
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spherical mesh within the point cloud and gradually relaxing it to fill the space around

it, until constrained by the point cloud. Where extra detail is required (determined

from the error between the point cloud and the approximating surface) the mesh is

subdivided and further relaxed. The method only works for closed surfaces which are

known to be homeomorphic to the starting mesh, because there is no easy way to

detect self intersections of the mesh. Consider inflating the mesh inside the ring of

a doughnut; the two ends of the mesh can expand indefinitely if there is no way to

detect when they meet.

Algorithms such as Cocone [1], Powercrust [2] and Eigencrust [58] create surfaces

which are piecewise interpolations of all or some of the data points. The idea is to

perform a Delaunay tetrahedralization of the point cloud (using [8] or similar) and

to pick a subset of the faces to be part of the reconstructed surface. The techniques

can be robust to outliers, but a noisy point cloud will result in a noisy surface.

Many algorithms work by first generating a signed distance function from the

point cloud, then applying a standard isosurfacing technique to triangulate the zero

set of the function, which interpolates the underlying surface. The method proposed

by Hoppe [50] estimates surface normals by analyzing the local neighbourhood of each

point in the cloud. The signed distance function at any query point is evaluated by

measuring the distance to the nearest estimated surface tangent plane. The method

is described in detail later.

Surfaces produced by the Hoppe method tend to be overly smoothed at sharp

features. Hoppe et al. use a Mesh Optimization [51] technique to improve the surface

fit to the point cloud. Using a combination of vertex perturbation, edge collapses,

edge splits and edge swaps, the mesh is iteratively adjusted to reduce the distance

between it and the point cloud. A useful side-effect is that the mesh is simplified in

areas of low complexity.

The Hoppe technique is sensitive to incorrectly estimated normals, so Carr et
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al. [17, 18] fit a smooth radial basis function (RBF) to the data, to diminish the

effect. RBFs are expensive to compute, so an approximate algorithm called FastRBF

is described, which speeds up evaluation and fitting. A similar technique is that of

Ohtake et al. [85], which fits smooth functions to local regions of data, then blends

them together in an Octree representation.

Volumetric methods are similar to the evidence grid method of Moravec. For

example Pulli et al. [92] use a space carving approach to subdivide a volume into

occupied and unoccupied voxels. Rays are traced from the sensor location, through a

range image and into the voxel grid. Assuming the range image is adequately dense,

if a voxel has a ray passing through it before hitting the surface, then the voxel is

marked as empty. Curless and Levoy [29] use range images and a sensor model to

build up a signed distance function for the surface, inside a voxel grid. They then

apply standard isosurfacing techniques to extract the surface.

This literature survey has discussed key papers in the field. The next section will

take what is considered to be the most promising approach (that of Hoppe [50]) and

discuss it and possible extensions in detail. Our choice of the Hoppe’s method is not

central to this thesis, but it does serve to illustrate and provide an understanding of

some of the issues involved in environment reconstruction.

2.2 Surface Reconstruction Overview

The surface reconstruction method of Hoppe, DeRose, Duchamp, McDonald and

Stuetzle [50] is now described in detail. The method will henceforth be referred to

as the Hoppe method. Many surface reconstruction techniques have been proposed

since, but they are often intended for reconstructing small objects where noise is low

and the surface sampling is always sufficiently dense. The Hoppe method is elegant

and imposes few restrictions on the data, making it a good candidate as a basis for
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a large-scale reconstruction algorithm. Some improvements are presented here, to

make it more applicable to vehicle gathered data.

The Hoppe method consists of three stages, which are described here in detail.

The algorithm takes as input a point cloud X = {x1, ...,xn} and a set of viewpoints

V = {v1, ...,vn} where X, V ⊂ R3 and vi is the location of the sensor when point xi

was sampled.

The technique begins by estimating a surface normal for every sample in X. These

normals can then be used to generate a smooth signed distance function f : R3 7→ R

which gives the shortest distance to the estimated surface from a given query point.

The zero set Z(f) is therefore an implicit representation of the sampled surface.

Finally, the zero set is extracted by an isosurfacing algorithm such as Marching Cubes

[62].

2.3 Tangent Plane Estimation

Each xi ∈ X represents a sample of a surface, S in the environment being scanned.

Even if the sample is noiseless, it tells us only that the surface passes through that

point. By considering the location of nearby points known to be on the same surface,

the local surface orientation can be estimated. The aim is to approximate S by a

collection of flat tangent planes; one for each sample, xi. Each tangent plane Tp(xi)

is parametrized by its centre oi and a normal direction n̂i. The planes are estimated

using an orthogonal least-squares regression, which is described in Appendix A. Fig-

ure 2.1 shows an example point cloud, with computed eigenvectors and the fitted

plane
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Figure 2.1: Fitting a plane to a set of points by minimizing the sum of squared distances
to the plane. The eigenvector with the smallest eigenvalue (the vertical axis in this example)
represents the plane’s normal.

2.3.1 Initial Plane Fit

Consider a point xi ⊂ X that lies on S, with the subset Ni ⊂ X being the k nearest

neighbours of xi. The assumption is made that the points in Ni also lie on S. It is

also assumed that the surface patch occupied by Ni is locally flat. The consequences

of these assumptions not being satisfied are discussed in Section 2.3.2.

Given the assumption of local surface flatness, the surface tangent at xi may be

estimated by performing a least squares plane fit to the neighbour set Ni. This will

provide a point oi which is the centroid of the neighbourhood and three orthogonal

vectors {û0, û1, û2}, with magnitudes λ0, λ1 and λ2 respectively, such that λ0 ≤ λ1 ≤

λ2.

The two longer vectors, û1, û2 lie inside the estimated plane, while the smallest

vector û0 is perpendicular to the plane and thus represents the plane normal, n̂i. If

all the points lie on the estimated plane then λ0 = 0 and the fit is well conditioned.

Pauly, Gross and Kobbelt [88] define a surface variation measure based on the relative

magnitudes of the orthogonal vectors,

σk(xi) =
λ0

λ0 + λ1 + λ2

(2.1)
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Figure 2.2: Variation of plane-fit conditioning across a point cloud sampled from a cube.
Light areas are well conditioned and dark areas are badly conditioned. (plane fitting neigh-
bourhood k = 40)

which gives an estimate of the deviation of the points from the fitted plane, or how

well conditioned the fit is.

Finding the neighbour set Ni for all points can be a time consuming O(n2) opera-

tion if implemented naïvely. We use an efficient search structure known as the kd-tree

[40] to reduce this to an O(nk log n) operation. Further details are in Appendix B.

2.3.2 Improving the Plane Fit

In areas of the point cloud affected by significant noise, the neighbourhood size1 k may

be insufficiently large to ensure a well conditioned plane fit. This is likely to be the

case if the magnitude of the noise is similar to the radius of the local neighbourhood

set Ni. It also happens if the point xi lies near a sharp feature on the surface. This

is demonstrated in Figure 2.2.

In the original work of Hoppe et al., this problem is mentioned but not explicitly
1Usually set to somewhere between 25 and 40
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addressed; the sensor noise in their data was low, and the scanned objects were topo-

logically simple. In processing data from a mobile robot, it is desirable to adaptively

choose the size of the k-neighbourhood to reduce the influence of noise. If the surface

variation measure is poor, then k is increased and the plane fit recalculated. This

process is repeated until the surface variation falls below a threshold or k exceeds a

predefined maximum. If at any step the surface variation measure increases then the

poor conditioning is assumed to be caused by local surface curvature, rather than

noise.

2.3.3 Consistent Normal Orientation

The surface S represents the outer boundary of solid objects in the environment, so

it is helpful to think of S as having a front and a back. The front is the side seen

from outside of the object and the back is the side seen from inside the object.

For illustrative purposes, Figure 2.3(a) shows a simple point cloud, sampled from

three faces of a cube. Figure 2.3(b) shows the normals generated by the least-squares

plane fit algorithm. Notice that they are all perpendicular to the surface, but are not

consistently oriented. Consistent orientation is vital to the success of the reconstruc-

tion algorithm, so it is necessary to make sure that the normals all point out from

the same side of the surface, whether that be the front or the back. This is achieved

by flipping the incorrectly oriented normals.

Using Viewpoint Information

Given that the viewing location vi is known for every sampled point xi, the obvi-

ous method of fixing incorrectly oriented normals would be to flip normals which

point away from the viewpoint. The following inequality tests for incorrectly oriented

normals:

n̂i · (vi − oi) < 0 (2.2)
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(a) Initial point cloud sampled from
three faces of a cube

(b) Incorrectly oriented normals output
from the plane fitting stage

(c) Neighbourhood graph edges defining
order of propagation. Dark edges join
vertices whose normals have greater dis-
parity. Light edges join vertices with sim-
ilar normals, indicating a smooth surface.

(d) Corrected normals after MST orien-
tation propagation. The colours give an
idea of the order of propagation; similar
colours denoting similar times

Figure 2.3: An illustrative problem: finding consistent normals from a point cloud.
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Figure 2.4: Using only viewpoint information to resolve normal orientation can result in
errors. Point p is sampled from Viewpoint 1, at an oblique angle. Near sharp corners, the
plane fit is ill conditioned, resulting in incorrect tangent plane estimates near sharp corners.
Viewpoint 1 now lies behind the estimated tangent plane, causing the normal to be flipped
in the wrong direction.

where ni is the tangent plane’s normal and oi is the tangent plane’s centre, obtained

from the centroid of the neighbourhood set Ni.

While this works in most cases, there are some situations when the tangent plane is

incorrectly estimated, causing some normals to be flipped unnecessarily (Figure 2.4).

In general, tangent planes on surfaces perpendicular to the viewing direction are

usually correctly orientated by the method. Where the surface is viewed obliquely,

an ill-conditioned plane fit can result in the viewpoint being behind the estimated

plane.

Hoppe proposed an interesting method based on Prim’s algorithm [26] for gen-

erating minimum spanning trees. An extension to the method allows viewpoint in-

formation to be included where possible. A brief discussion of graphs and minimum

spanning trees can be found in Appendix C.
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MST Based Normal Orientation Propagation

Consider a pair of geometrically close points xi,xj on a densely sampled surface, with

estimated normals n̂i, n̂j. Assuming that ni is correctly oriented to the front of the

surface, ni ·nj > 0 implies that nj is also correctly oriented. If ni ·nj < 0, then nj is

pointing from the back of the surface and must be flipped.

Once nj is correctly oriented, neighbours of xj can also be corrected. It is possible

to continue propagating normal consistency in this manner until all points in X have

been correctly oriented.

Hoppe et al. noticed that in practice, the order of propagation is very important.

Propagation of normal orientations over sharp edges, for instance is prone to error

and may result in inconsistencies. Further, the algorithm is greedy (decisions cannot

be undone after they are made) so one incorrectly oriented normal may cause bad

orientation to be propagated over large areas of the surface.

To improve the order of propagation, a graph G = (X,E) is constructed. That is,

the sampled points in X form the nodes of the graph and E is the set of (directed)

edges in the graph. The graph contains an edge 〈xi,xj〉 if xj belongs to the k-

neighbourhood of xi. Each edge is assigned a cost, cij = 1−|n̂i · n̂j|, so that 0 ≤ cij ≤

1. Therefore a pair of parallel normals would result in a cost of 0, but perpendicular

normals would result in a cost of 1.

This neighbourhood graph, G is known as the Riemannian graph. The Riemannian

graph for the point cloud from Figure 2.3a is shown in Figure 2.3c, where darker edges

denote a higher edge cost (ie. higher curvature).

The correct orientation of the normals is propagated by traversing a minimum

spanning tree of G, determined using Prim’s algorithm. This method has the effect

of propagating preferentially across areas of low curvature. Sharp edges are avoided

unless there is no other path available to reach a particular point. Figure 2.3d shows

the result of this process.
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In the work of Hoppe et al., there was no viewpoint information available, so the

propagation algorithm began by choosing a point at random and assuming that its

normal was pointing out from the front of the surface. All the other points would

then be made consistent with that.

Using Viewpoint Information to Improve Consistency

As discussed in section 2.3.3, using viewpoint information alone does not provide

consistent orientation. It may however be incorporated into the Riemannian graph

to improve results.

Given a set of viewpoints V = {v1, . . .vm}, each viewpoint is added as a pseudo-

node in G. Edges are added from each viewpoint node to every point ‘seen’ from that

viewpoint. The edge cost is assigned as

cij = 1−
∣∣∣∣

vj − xi
|vj − xi|

· n̂j
∣∣∣∣ (2.3)

Thus, where a surface is viewed obliquely the cost is high, ensuring that ‘unreliable’

viewpoint information is unlikely to be used.

2.4 The Signed Distance Function

Given a known surface, S and an arbitrary query point, q ∈ R3, the signed distance

f(q) is, as defined in [50], “the distance between q and the closest point z ∈ S,

multiplied by ±1”. The value is positive when the query point lies in front of the

surface, and negative when behind.

The signed distance can be shown to be an implicit representation of S, since

f(z) = 0 ⇐⇒ z ∈ S. Thus S forms the zero set Z(f). Figure 2.5 shows a cross

section of a surface, with associated signed distance function.

Using the tangent planes estimated in section 2.3, we can generate an approxima-
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Figure 2.5: A cross section of a surface and its signed distance function. Red represents
positive values and blue represents negative values. On the surface itself, the function always
takes a zero value. Beyond a certain threshold distance, the function returns +∞ in front
of the surface and −∞ behind the surface.

tion of the signed distance function of the surface, S, using an algorithm described

by Hoppe et al. [50]. To evaluate the function at an arbitrary location, q ∈ R3, their

method first finds the estimated tangent plane Tp(xi) whose centre oi is closest to q.

The distance is then calculated as

f(q) = (q− oi).n̂i (2.4)

which is the perpendicular distance to the tangent plane.

2.4.1 Isosurfacing

To visualize the implicit surface represented by a signed distance function requires a

technique known as isosurfacing. An isosurface is the set of points of a given value in a

scalar field - in our case we’re interested in the zero set in particular. An isosurfacing

algorithm extracts the surface into an explicit representation such as a polygonal

mesh, which is easy to render.

There are a number of isosurfacing algorithms available [81]. The method due
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to Bloomenthal [14] uses an adaptive subdivision scheme to converge on the implicit

surface, and then replaces the subdivisions with polygon sections, which join up to

form a mesh. In this work we have used a technique known as ‘Marching Cubes’, which

subdivides the space into a set of small cubes, which are then replaced by different

mesh sections, depending on the value of the implicit function at each vertex of the

cube. The method is described in more detail in Appendix D.

2.5 ρ-density and δ-noise

Two quantities which are useful in detecting surface boundaries are ρ-density and

δ-noise, described in [50].

We assume the noise model xi = yi + ei where yi ∈ S and ei is the noise in the

measurement. The point cloud can be described as δ-noisy if ‖ei‖ ≤ δ i = 1, . . . , n.

A similar measure can be derived for density. A set of noiseless samples, Y =

y1, . . . ,yn of the surface S are said to be ρ-dense if any sphere of radius ρ and centred

on S contains at least one sample in Y . Thus, any sphere of radius ρ which contains

no samples cannot intersect the surface S. The measure can be used to help decide

whether a lack of samples in a particular area is due to a hole in the surface, or

inadequate sensor coverage.

Because the signed distance function estimate considers only perpendicular dis-

tance to the nearest tangent plane, it can give misleading values at large lateral

distances from surface boundaries. The effect is of continuing the zero set indefi-

nitely beyond the boundary. If z is the projection of p onto Tp(xi), then using the

definitions of ρ-density and δ-noise (see 2.5), Hoppe et al make sure that the signed

distance is undefined when dist(z,oi) ≥ ρ+ δ.
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Figure 2.6: Fitting tangent planes to a neighbourhood of points acts like a Low Pass
Filter over the surface. The first column shows a set of point samples near a corner feature,
the lower set with noise added. The second and third columns show the effect of shifting
each point to the cetroid of its local neighbourhood, for different neighbourhood sizes, k.
With a sufficiently large neighbourhood size the noise is largely suppressed, at the cost of
significantly smoothing the corner feature.

2.5.1 The Effect of Neighbourhood Size

The signed distance function described in Section 2.4 has a piecewise linear zero set.

The surface extracted by the isosurfacing step can only be as smooth as the zero set

it is derived from. Thus it is important to have the zero set as smooth as possible.

Smoothness is controlled by the neighbourhood size used when fitting the tangent

planes, and acts like a low-pass filter over the data. Larger neighbourhoods give

greater smoothing, but also tend to round off sharp features, such as corners. There

is also the increase in computation time to consider. Figure 2.6 demonstrates the

effect of varying neighbourhood sizes on a simple 2D data set.

Using an adaptive growing approach can ensure that neighbourhoods are large

enough to get a well conditioned plane fit. A disadvantage of this is that as the
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neighbourhood size is increased, the centroid of the neighbourhood can move, along

with the estimated tangent plane. This would occur particularly in noisy or curved

areas. If the neighbourhood size changes rapidly across the surface, then the tangent

plane centres may not line up smoothly, and the zero set can contain large discon-

tinuities. The problem can be avoided to some extent by limiting the maximum

neighbourhood size to a relatively low value. Points that seem to require a larger

neighbourhood size should be removed or ignored if possible. As should points that

are too far away from the centroid of their neighbourhood; this usually indicates an

outlier.

2.5.2 Voronoi Regions and Pathological Cases

The signed distance function is estimated by finding the perpendicular distance to

the query point’s nearest tangent plane. This has the effect of limiting each tangent

plane’s influence to its Voronoi region (Figure 2.7). In the event that a poorly esti-

mated tangent plane has a large Voronoi region, the zero set in that region will have

large errors. Figure 2.7 shows the discontinuities well.

Insufficient Smoothing

Insufficiently large plane-fit neighbourhoods in a noisy area can have a disastrous

effect on the distance function. Figure 2.8 shows an exaggerated example where the

zero set is corrupted by noise.

Incorrect Normal Orientation

It should be apparent that consistency in normal orientation (Section 2.3.3) is vi-

tal. Figure 2.9 shows how one incorrectly oriented normal has the effect of flipping

the distance function within the Voronoi region of the estimated tangent plane. The

marching cubes algorithm relies on evaluating the signed distance function on a dis-
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Figure 2.7: A cross section of an estimated signed distance function (SDF) for the original
points shown as black crosses. Red denotes parts of the SDF deemed to be outside the
surface and blue are those parts inside the surface. The blue blobs show the new centroids,
computed from a neighbourhood size, k = 8. The arrows from each are the tangent plane
normals. The zero set is shown as a black line which is piecewise linear through each
centroid. The SDF is evaluated by measuring the perpendicular distance to the tangent
plane closest to the query location. Thus, tangent planes only influence the function values
inside their own Voronoi region (the boundaries of which are shown in yellow). The SDF
has discontinuities at every Voronoi boundary.

Figure 2.8: A cross section of an estimated SDF, with insufficiently large plane-fit neigh-
bourhoods for the magnitude of the noise. There are many discontinuities in the SDF, so
the zero set (in black) is also discontinuous and does not accurately represent the underlying
surface which produced the point samples.
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Figure 2.9: One normal has been intentionally flipped, to show the results of incorrect
propagation. The thick black lines represent the piecewise linear tangent planes passing
through each surface sample, with the surface normals shown as blue arrows. A given
surface sample point can only affect the signed distance function within its own Voronoi
region, as everywhere else is (by definition) closer to a different sample point. Flipping the
normal of a given sample point causes the signed distance function to have its sign reversed
in the local voronoi region. This results in a sign discontinuity along the boundaries of the
voronoi region. The sign discontinuities are interpreted by an isosurfacing algorithm to be
crossings of the zero set, thus producing spurious bits of surface in those areas. These are
represented by the thinner black lines. Note that any jaggedness in the black lines in this
image is caused by the sampling resolution of the signed distance function.
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crete grid of points. If the function is found to be negative on one side of a voxel,

and positive on the other, then the zero set is assumed to run through the middle

of the voxel. Magnitudes are not taken into account. A similar process was used

to generate the diagram of the signed distance function in Figure 2.9. The function

was evaluated on discrete grid points and then filled in by interpolation. Notice how

the zero set (represented by a black line) appears to separate from the surface and

follow the Voronoi boundaries between two inconsistently oriented tangent planes.

When marching cubes encounters a voxel which straddles the sign discontinuity in

the SDF, it makes the incorrect assumption that the change in sign implies a zero

crossing. If the Voronoi region is infinite, then the spurious surfaces at its boundaries

will continue indefinitely. This is one reason for making the SDF undefined beyond a

certain distance from the nearest tangent plane.

It is therefore vitally important to ensure consistency in normal orientation. The

minimum spanning tree method (Section 2.3.3 works well, but occasionally makes a

wrong decision. Its big disadvantage is that it is greedy and does not propagate any

uncertainty measure when it makes an orientation decision. If one wrong decision is

made, it is possible that it will be used as the basis for a series of later decisions,

which will also be wrong.

As an example, consider the case of running the MST algorithm on a slightly

noisy cube. The algorithm is correctly seeded at one point on the top face of the

cube. Because the top face of the cube is relatively flat, all the tangent planes have

almost parallel normals, so the correct orientation is readily spread. Once the entire

top face has been covered, there are no further directions to go which do not involve

propagating over a sharp corner. The algorithm will simply pick the least worst way

to get over a corner. Suppose the orientation is not correctly preserved over the

corner, because of noise. As soon as the corner has been negotiated, the algorithm

encounters one of the smooth side faces of the cube, and will go on to spread the
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incorrect normal orientation across the entire face.

The last example was somewhat contrived and the spread of these wrong decisions

is fortunately limited by the use of viewpoint information where possible, but there

can still be small ‘outbreaks’ of badly oriented normals, particularly in noisy regions.

The point is that with the MST algorithm, the best decision is not necessarily the

correct decision.

Insufficient Data

Figure 2.10 shows a typical outdoor laser scan and Figure 2.11 shows the estimated

surface normals and the surface reconstruction. Some areas such as the trees simply

do not have enough information to accurately reconstruct surface normals. As a

result, the zero set in these areas resembles a honey-comb surrounding the Voronoi

regions of the points. By making the signed distance function undefined beyond a

threshold distance from the closest point, the honeycomb effect is limited to the local

neighbourhood of the bad normals.

2.6 Chapter Summary

We have explored a number of existing environment reconstruction techniques and in

particular the method of Hoppe [50]–a method that was chosen because it imposes few

restrictions on the data. We have also touched on methods for efficient neighbourhood

searches within point clouds.

Our investigation demonstrates the importance of high quality and consistently

sampled point clouds for accurate surface reconstruction. The remaining chapters

will treat each part of the data gathering pipeline with a view to maximizing the

data quality.
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Figure 2.10: An outdoor location and the associated 3D laser data from a single pose.

30



(a) A subset of the calculated normals. Unsurprisingly, the normals in the trees are incorrect.

(b) The final marching cubes surface. Notice the honey-comb effect around the trees; neighbouring
tangent planes have inconsistent normals, so spurious surfaces are created at the interface between
their Voronoi regions.

Figure 2.11: Normals and final surface for the point cloud in Figure 2.10.
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Chapter 3

Laser Hardware and Calibration

In this chapter we describe a 3D laser measurement system that is used to gather point

cloud data from our robot. The system is based on a commercial off-the-shelf 2D laser

measurement unit, with bespoke nodding apparatus. To obtain high-quality data, the

unit must be well calibrated, and steps taken to ensure accurate timestamping of data.

We present the algorithms and procedures developed to achieve the calibration. Later

chapters will focus on methods to avoid relying on the bespoke hardware described

here to address timing issues but this chapter serves to illustrate the importance of

good timing.

3.1 Existing 3D measurement techniques

Laser measurement devices have become popular for use with mobile robotics plat-

forms. They offer accurate range measurements of the vehicle’s environment and

high data rates. Though computer vision techniques such as stereo vision [97, 47] are

increasing in popularity and performance, the 2D scanning laser range finder offers

a higher level of robustness and is not dependent on surface texture and lighting to

produce accurate results.

SICK LMS 2D Laser Measurement Systems are particularly favoured in robotics
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due to their low cost, high accuracy and robustness. Once primarily used as a 2D

sensor in mapping and sensing applications [63], they have more recently seen use in

3D data acquisition applications which sweep the scanning plane over the environ-

ment. Whilst custom optical solutions are possible [78], there are two more usual

techniques for generating 3D measurements. First, the device may be fixed on the

vehicle with a vertical scanning plane and the vehicle’s motion exploited to move the

scanning plane [104, 52, 106]. Alternatively the device may be coupled with an ap-

propriate actuator which permits the scanning plane to be controlled independently

of the vehicle’s attitude [121, 105, 44, 71]. Use in this mode allows the collection

of high-fidelity 3D measurements usually reserved for considerably more expensive

devices. But the vehicle is required to be stationary during the sweep to ensure good

coverage. We describe an actuated system capable of gathering accurate point clouds

with the vehicle either stationary, or moving at a useful velocity, by virtue of its rapid

sweeping.

For simplicity, the laser scanning system described here couples the SICK LMS200

with a low cost continuously nodding actuator rather than a servo. This does however

present further timing challenges, since the nodding rate can be up to 180◦/s.

3.1.1 The LMS200

Though capable of 0.25◦ resolution and 15mm accuracy, the LMS200 is designed

primarily to be operated as a fixed sensor in industrial settings, so its use in mobile

robotics can be problematic, particularly with regard to timing and data latency

issues. This can have a significant impact on the quality of the data obtained from

the device if not handled with care.

The SICK LMS200 operates by sending out infra-red laser pulses and measuring

the time taken for the reflected light to return. The measured range is proportional

to the time of flight of the pulse. Inside the LMS200, the laser beam is reflected by
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Figure 3.1: A typical point cloud generated from a stationary vehicle. The longer the
scanning period, the more dense the data becomes, by progressively filling in the gaps.

a rotating mirror, allowing measurements to be taken over a 180◦ horizontal fan in

front of the device. For the remaining 180◦ of the scan no useful measurements are

taken because the mirror directs the beam inside the casing of the device. The mirror

rotates at 75Hz and measurements are taken at 1◦ intervals, corresponding to a rate

of 13575 measurements per second.

Usually, the LMS200 begins taking measurements when the mirror is in the 0◦

position, stopping at the 180◦ position. Optionally scans may be successively offset

by 0◦, 0.25◦, 0.5◦ and 0.75◦, to allow higher resolution coverage of the field of view.

This mode therefore requires 4 scans to obtain full coverage. The LMS200 is capable

of a number of other measurement modes, but the work described here uses the 180◦

scan/0.25◦ angular resolution mode, with a maximum range of 32m, at 1mm precision.

When the vehicle is stationary this results in higher resolution point clouds, though

there is little benefit when the vehicle is moving.
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Figure 3.2: The nodding 3D laser range finder mounted on a mobile robot. In the middle
of the elevation range, the laser moves at 180 ◦/s.

3.2 Nodding Laser System

On our robot, the LMS200 is mounted in a nodding cradle with a mechanical quick

return mechanism and powered by a motor running from a fixed DC voltage source.

The nod elevation profile is roughly sinusoidal, with a period of 1.2s. The elevation

range is from +44◦ (upwards) to -26◦ (downwards), giving good, rapid coverage of

the environment ahead. The maximum angular velocity occurs in the middle of the

nod sweep and is around 180◦/s. The apparatus is shown in Fig. 3.2. The nodder

incorporates a rotary encoder for determination of the elevation angle.

The constant nodding scheme was chosen over a servoing scheme for simplicity,

though it does place further demands on the data processing implementation, to

ensure accurate timing.

3.2.1 Timing problems

The LMS200 communicates over an RS422 serial interface. While the mirror is in the

front half of its rotation, measurements are gathered in an internal buffer. Once the
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mirror reaches the back half of its rotation, the buffer contents are transmitted over

the serial interface. If the mirror reaches the 0◦ position before the buffer contents have

been fully transmitted then the following scan is discarded. In order for the device

to transmit all scans, communications must be at the maximum rate of 500kBaud.

This is a non-standard serial communications speed, requiring the use of either a

USB-to-serial converter, or a special serial interface with a modified oscillator.

It is vital that we have an accurate time stamp on the laser measurements so that

the nodder elevation angle may be determined with sufficient accuracy. The usual

method of determining data timestamps from the time of arrival in the serial buffer

is entirely insufficient for this task, since even a small timing error can produce gross

vertical position errors with the maximum angular velocity of around 180◦/s. The

error may be estimated as ζ ≈ r sin(τ dγ
dt

), where r is the measured range in metres, γ

is the nod angle and τ is the timing error. Thus a modest 10 ms delay could cause an

error of around 0.3m at 10m range. We shall describe a method of obtaining highly

accurate correlation between laser data and nodder elevation angles.

The LMS200 has a capability to be synchronized with a second LMS200 in order

that their mirrors are kept 180◦ out of phase, to eliminate laser interference [102]. The

‘master’ LMS200 outputs a 24V synchronization pulse whose falling edges coincide

with the 0◦ position of the mirror. We use this pulse to trigger sampling of the nodder

encoder, so that the precise elevation of the nodder is known at the beginning of each

mirror sweep.

The system described here requires a computer with analogue data acquisition

capabilities for sampling the nod angle encoder and a 500kBaud RS422 interface

for communication with the LMS200. The precise set-up is not critical, but in this

work we use a 1 GHz Kontron MOPS-lcd-VE based PC104 stack with 1GB RAM,

with a Diamond-MM-AT data acquisition module and a CSM PCMCIA RS422 serial

card (Figure 3.3). The operating system is a standard Linux installation; a real-time
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Figure 3.3: The data flow for data acquisition. The signal conditioning step takes the 24V
synchronization pulse from the LMS200 and converts it into a 5V logic signal that can be
used to trigger sampling on the data acquisition module

operating system is not required.

3.3 Calibration

Before use of the data, two calibrations must be performed – one for the mechanical

system (a one time off-line step) and the other for the data acquisition system (an

on-line step performed during start up). The software for data gathering, calibration

and production of point clouds is implemented in C++ and runs in real time on the

robot.

3.3.1 Mechanical calibration

The mechanical calibration is an interactive off-line step, which needs to be performed

only once. It is necessary to accurately determine the minimum and maximum eleva-
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Figure 3.4: The robot is placed in an environment with a flat floor and a flat wall (not
necessarily perpendicular to the floor). The middle range value from each scan is recorded,
so that the calibration is performed on a vertical stripe through the environment.

tion angles γmin, γmax of the nodder, so that they may be associated with minimum

and maximum nodder encoder voltage readings. If the correspondence is inaccurate

then vertical surfaces appear warped. Mechanical calibration of laser scanners is

usually performed by scanning a known environment and then adjusting calibration

parameters to minimize the error between the scan data and the environment model.

Weingarten [117] uses a small room with very simple geometry that can be accurately

measured. Underwood et al. [112] repeatedly drive past a known object and optimize

the sensor pose to ensure the object looks the same on each pass. For our case, we

are able to use a simpler environment.

We place the nodding apparatus upon a flat floor, facing a flat section of wall,

though the wall does not need to be perpendicular to the floor. We define flat in

this context to mean that the deviation due to curvature from a linear section is

comparable to the noise of the sensor. The calibration considers only the middle

range value of each laser scan; effectively a vertical slice in front of the sensor (see

Figure 3.4). The first step is for the user to identify a set of points lying on a flat

section of the wall, using a GUI. The task is then to optimize ∆ = γmax − γmin such
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that the wall points are as collinear as possible. Applying a common offset to both

values simply rotates the measured points about the nodding axis, so the absolute

values of γmin and γmax are not yet of interest.

The score for a given value of ∆ is computed by performing a least squares line

fit to the data points lying on the wall, and taking the sum of squared distances from

the data to the line. Standard optimization techniques are then applied to find the

minimum cost ∆ - we used a hierarchical search. Finally, γmin is chosen such that

a straight line lying through the floor points is made horizontal. Figure 3.5 shows a

few stages of the optimization.

3.3.2 Temporal Calibration

In order to convert laser scans to 3D Cartesian measurements, we must know the

angle of the nodder when the scan was taken. We sample from the nodder encoder

and laser at the same time (encoder sampling is driven by the laser synchronization

pulse), so each laser scan has a single encoder measurement to which it should be

paired. However the two streams of data arrive at the computer by two separate

paths (laser by RS422 serial and encoder data through the ISA bus) and there is no

identifying information by which they may be matched.

The obvious course of action is to use the timestamps attached to each measure-

ment to match up the temporally closest pairs. Unfortunately this is not successful,

because laser scans are taken at 13.33ms intervals and time stamping errors could be

as great as 30-40ms. So for every laser scan, there is a small finite set of around 5

encoder samples to which it could feasibly be paired. Figure 3.6 shows how even a

small timing error can cause significant corruption of the data.

A fact working in our favour is that both the encoder data and the laser scans

always arrive in the correct order. If we can determine the appropriate allocation for

just one pair of data points then we must also know the correct pairings for all future
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Figure 3.5: The calibration process to find the minimum and maximum nod angles. Data
from a vertical stripe through the environment is plotted for three different ranges of min-
imum and maximum angles. The thick line is fitted through the points identified by the
user as lying on the wall. The algorithm chooses the nod range which minimizes the sum
of squared distances between the data and the line. Figure (c) shows the final result. In
all three figures, the minimum nod angle was chosen such that the floor was horizontal, for
visualization purposes.
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Figure 3.6: Synthetic data showing the effect of timing errors on a vertical slice of data
produced by the nodding laser. Units are in m. The inclined lines are the nod limits, the
dashed line is the correct surface (representing floor, wall and ceiling as in Figure 3.4) and
the solid curve is the result for a given timing offset, for a complete cycle of the nodder unit.
Correcting the timing error is equivalent to minimizing the area enclosed by the curve.

data. The problem is therefore one of finding the right alignment between a list of

laser scans and a list of nodder elevation angles. Note that occasionally measurements

can get lost in events such as buffer overflows, so it is important to keep track by

taking note of scan IDs provided by the SICK laser. Using these, dropped messages

are quickly detected.

This temporal calibration is performed in the sensor initialization phase and is

designed to find the timing offset, τ between the two data streams. We begin by

taking laser and nod angle measurements for a period Tcal (long enough to ensure a

number of full nodder oscillations) with the vehicle stationary. We put no constraints

on the environment, except that it must be static for the duration of the calibration.

It is helpful to be in an environment with plenty of surfaces within the maximum

sensing range of the laser so that there are enough measurements for the calibration.

As with the mechanical calibration, we consider only the mid points of the 2D

laser scans; that is, a vertical slice directly in front of the sensor. If the y-axis is

body-frame forward and the z-axis is body-frame up we have a time series of points

lying in the Y-Z plane.
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For a given trial offset τ̂ , the measured points can be considered to be samples

drawn from a continuous closed curve, traversed once for each full oscillation of the

nodder. When τ̂ = τ the curve will have zero enclosed area; the parts of the curve

corresponding to upward and downward nod sweeps are coincident.

The curve may be parametrized in the Y-Z plane as (y(t), z(t)) where 0 < t < Tcal

and its enclosed area given by

A =

∣∣∣∣
∫ Tcal

0

y(t) · d
dt
z(t)dt

∣∣∣∣ (3.1)

Since y(t) and z(t) are functions of range r and nod angle γ they may be rewritten

as y(r(t), γ(t)) and z(r(t), γ(t)). Substituting these into (3.1) and noting that we wish

to minimize the area, we find that

τ̂ = argmin
τ

∣∣∣∣
∫ Tcal

0

y(r(t), γ(t+ τ))
d

dt
z(r(t), γ(t+ τ))dt

∣∣∣∣ (3.2)

In practice, the optimization to find τ̂ is straightforward. Assuming that timing

errors are bounded, we are left with only a small discrete set of values of τ which we

must test. Calculating the area enclosed by the curve can be achieved by approxi-

mating it as piecewise linear and joining up the sequence of measured points on the

curve. Every line segment contributes the area between it and the z-axis. If the line

segment is upward-going then the contribution is added, and if it is down-going then

the contribution is subtracted from the total area. This method will only yield the

correct area if the curve is closed: Tcal must be a multiple of the nod period, which

is easy to arrange by detecting turning points in the encoder data. The steps are

summarized in Algorithm 1.
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Algorithm 1 Calculate the area of a piecewise linear curve
procedure Calculate-Curve-Area({(y0, z0) . . (yN−1, zN−1)})

A← 0
for i = 1 to N − 1 do

A← A+ (zi − zi−1)
[yi+yi−1

2

]

end for
return |A|

end procedure

3.3.3 Transformations

Given an accurate elevation angle for every set of measurements received from the

LMS200 it is an easy task to project the points into the vehicle frame. We do find

it necessary to interpolate nod elevations across individual laser mirror sweeps, to

account for the fact that it takes almost 7ms for the LMS200 to sweep its beam

through 180◦.

3.4 Chapter Summary

We have described our system for gathering high-quality 3D data from a mobile robot.

We have shown that careful calibration procedures can greatly improve the quality of

the data produced by the device. Two separate calibration methods were discussed,

one to determine the mechanical limits of the nodding unit, and the other to recover

the unknown timing offset between two streams of data. The latter made novel use

of the dynamics of the sensor, resulting in an efficient algorithm that requires no

special infrastructure or modifications to the environment. All it requires is that

the environment remains static for the short duration of the calibration. The next

chapters will consider how the data produced can be exploited.
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Chapter 4

Data processing

Chapter 3 showed how accurate 3D data can be obtained from a rapidly nodding

2D laser scanner. With the robot stationary, the system is able to generate high

quality point clouds of its local environment. For building accurate 3D point clouds

over larger scales, the robot needs to move around to gather data, which requires

an accurate localization ability. When suitable localization infrastructure (GPS, cali-

brated beacons etc...) is unavailable, Simultaneous Localization and Mapping (SLAM)

[63] systems are required. SLAM provides a way for a robot to localize itself in an

unknown environment using vehicle-mounted sensor measurements alone. We will

describe a method of correcting odometry errors in point cloud segments so that they

are suitable for use with scan-matching SLAM algorithms.

We will also show how to obtain a precise extrinsic calibration between the laser

scanner and a camera also on the vehicle. This gives the ability to either augment the

3D point cloud with colour information from the camera images, or provide range in-

formation to pixels in the image. In the next chapter we will use the range-augmented

camera image to produce high resolution range images of environments.
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4.1 Point cloud correction

Nüchter et al. [83] employ an actuated nodding laser scanner to produce full 6-DOF

SLAM maps of complex environments. They use a stop-scan-start paradigm to pro-

duce a series of intermediate point clouds, which are then registered against each

other using the Iterative Closest Point (ICP) algorithm [11, 93, 39]. The relative

transformations between the point clouds provide the vehicle pose constraints re-

quired by the SLAM algorithm. Having the robot stationary during scans means

that the intermediate point clouds can be assumed to be well registered internally –

a vital requirement for the point cloud registration step.

With the laser system described in the previous chapter, the rapid rate of nodding

allows the environment in front of the vehicle to be scanned (albeit in relatively low

detail) once every 0.6s. Measurements over larger ranges are noisier than those at

short range. The faster the robot travels, the lower the sample density will be, which

will limit the ability to reconstruct smaller features in the environment. We find

experimentally that a speed of 0.5 m/s gives a good trade-off between data quality

and coverage. A system capable of doing full 6-DOF SLAM on the data acquired by

the moving robot is very attractive.

Cole and Newman [25] are able to produce 6-DOF SLAM maps using our nodding

laser system with the robot moving continuously. The incoming data is divided into

segments of a few seconds each, with the vehicle trajectory being recovered from

wheel odometry. On a skid-steer vehicle, wheel odometry can in some cases be very

poor - especially when changing direction on loose surfaces such as gravel. In order

to ensure that each segment is internally well registered, the segmentation scheme

used by Cole and Newman tries to ensure that a new segment is started whenever the

robot changes direction (determined from wheel odometry readings). The scheme is

successful provided that the robot’s trajectory is carefully controlled.

Fig. 4.1 shows a point cloud gathered over a 10 second period, while the robot
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Figure 4.1: A plan view of an uncorrected 3D point cloud gathered while the robot was
moving. The robot’s track is shown in blue. Notice that odometry errors (wheel slip) cause
gross alignment errors in the point cloud. Units are metres.

was moving without regard to producing good wheel odometry. There is significant

noise in the data, particularly on surfaces seen from a distance. Even relatively small

odometry errors can introduce gross misalignments over large ranges. Unmodelled

pitching and rolling movements can cause similar data misalignments about their

axes.

We now describe an algorithm which takes as input a point cloud with unknown

odometry errors and produces a cleaned up point cloud, where rotations in all three

principle axes have been corrected throughout the vehicle’s trajectory1. This al-

gorithm is implemented in Matlab and is an off-line step. Our prior is that most

man-made environments contain many vertical surfaces. Exploiting the knowledge

that almost vertical features in the point cloud almost certainly are vertical allows

us to infer useful information about roll and pitch, where the data would normally

be too sparse to perform operations such as point cloud registration.
1After this work was published, Bosse and Zlot [15] introduced a method of trajectory correction

using a spinning 2D laser and continuous 3D scan matching. This was enabled by the development
of a method for accurately registering sparse point clouds, despite the fact that surfaces are sampled
at different locations in each cloud. They are able to recover highly dynamic trajectories from a
vehicle moving at up to 6 m/s, with no wheel odometry, showing the power of the approach.
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X = {X1, X2, X3, . . . , XN}
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Figure 4.2: The point cloud X is subdivided into a set of smaller, temporally contiguous
point clouds. These are produced from either one up-nod or one down-nod of the laser
scanner. Note how sparse the points are in some areas.

4.1.1 Plane extraction

We start by splitting the point cloud, X , gathered over a period T (usually around

10s), into a set of smaller, temporally contiguous point clouds:

X = {X1, X2, . . . , XN} (4.1)

where Xi is a set of 3D points collected over a suitable period, TS. In our implemen-

tation, we choose TS to be half the nodding period - the time taken for the nodder
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(a)

Π̂i =
{

π̂i,1, π̂i,2, . . . , π̂i,p
}

(b)

Figure 4.3: Lines are extracted from each laser sweep and are then clustered into planes.

to transit between its elevation extents. A few of the segmented clouds are shown in

Figure 4.2.

From each cloud, Xi we first extract lines from 2D scans using a RANSAC based

technique [79, 38], then cluster the lines over successive 2D scans to find a set of

planes (Figure 4.3),

Π̂i = {π̂i,1, π̂i,2, . . . , π̂i,p} (4.2)

is the set of normals of the near-to-vertical planes extracted from Xi. For each Xi we

seek a rotation matrix R(φ, ψ) where φ and ψ are rotations about the x and y axes

such that

π̂.ẑ = 0 ∀ π̂ ∈ Π̂i (4.3)

We wish to make all the near-vertical planes as vertical as possible by applying a

single rotation to all of them. We do this by using the Matlab fminsearch function
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to minimize the cost function

F (Π̂i) =

∑p
j=1 Aj [R(φ, ψ)π̂i,j.ẑ]2∑p

j=1 Aj
+ w(φ, ψ) (4.4)

where Aj is the area of the plane whose normal is π̂j, such that

φi, ψi = argmin
φ,ψ

[
F (Π̂i)

]
(4.5)

The regularizer w(φ, ψ) penalizes deviations away from zero in φ and ψ when the

ensemble of planes in Π̂i inhibit robust estimation of φ or ψ. Consider a case where

all planes have equal normals, all pointing along the x axis. Here the value of φ can

have no effect on the value of F and may end up being set to an arbitrarily large

value in the optimization. Thus we wish to prevent the optimization scheme from

making unbounded modifications to φ or ψ. This motivates setting

w(φ, ψ) = (1− α)φ2 + αψ2 (4.6)

α =
2

π
arctan

∑p
j=1Aj |π̂i,j.ŷ|∑p
j=1 Aj |π̂i,j.x̂|

(4.7)

Figure 4.4 shows how the value of α varies with different plane configurations.

With plane normals all facing the robot, roll is not recoverable and with plane normals

all perpendicular to the robot’s forward vector the pitch is not recoverable. The larger

the plane, the greater the importance of its orientation. The area is hard to compute,

so our implementation uses an approximation based on the quantity and average

density of points supporting a plane.

4.1.2 Yaw slip estimation

We now introduce temporal groupings on planes, by searching for vertical planes which

are similar through a sequence of contiguous point clouds, Xk, Xk+1, . . . Xk+l and
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α = 0.0

α = 0.5

α = 1.0

Figure 4.4: On the left is a case where only roll is recoverable; pitch is unconstrained. The
right hand figure shows the values taken by the regularization term for various environment
configurations.

assuming them to correspond to a single real-world planar surface. Plane similarity

is determined by thresholding on angle between normals and distances to the origin

for planes in consecutive clouds.

With zero slip about the yaw axis, these planes should be exactly coincident.

In the presence of slip, the planes undergo rotational drift as shown in Figure 4.5.

Given a pair of normals πa, πb representing the same plane at consecutive times, the

instantaneous slip rate may be derived as

ω =
arccos

(
πTa πb

)

TS
(4.8)
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πa

πb

Figure 4.5: A plan view of grouped planes after vertical correction. The shading shows
how they move over time, representing accumulated error in yaw.

Figure 4.6: Yaw rate, pitch and roll adjustments throughout the time period of X . The
corrections are smoothed with polynomial fits of degree 4.
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4.1.3 Reconstructing Point Clouds

At this point we have a discrete set of values of φ, ψ and ω for discrete points in time.

By polynomial fitting we can obtain functions φ(t), ψ(t) and ω(t) which are valid

over the duration of the capture period T (Figure 4.6). Every individual 3D point

xi in X has a time stamp ti and so in principal we can now retrospectively apply a

correcting transformation T (φ(t), ψ(t), ω(t), x(t)). While the φ,ψ correction (which

renders points in a gravity down frame) is simply a matter of pre-multiplication by a

rotation matrix, R(φ(ti), ψ(ti)), the ω (angular slip) correction requires more effort.

For 0 < t < T we are in possession of the set of odometry measurements and thus

interpolation allows us to express the odometric vehicle trajectory as a continuous

function of time xv(t). The corrected trajectory, x̂v(t) is deduced by integrating the

yaw slip correction along the trajectory:

x̂v(t) =

∫ t

0

dxv(τ)

dτ
⊕




0

0

ω(τ)



dτ (4.9)

where ⊕ is the transformation composition operator. Now that we have corrected

vehicle pitch and roll over the duration of the point cloud capture period, for each

point xi we can perform a final rotation around the yaw axis of the vehicle at time ti

to yield the final corrected point cloud X ′.

Figure 4.8 shows before-and-after views of the point cloud in Figure 4.1. Figure

4.7 shows a collection of corrected clouds rendered together as part of a SLAM map.
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Figure 4.7: A collection of corrected point clouds fused together in a SLAM framework.

4.2 Extrinsic Calibration of Sensors

Now that we have access to more accurate laser data with the robot moving, we

look at a way of adding value to the data by fusing information from a camera also

located on board the robot. In order to fuse camera and laser data it is necessary

to accurately locate both sensors in each other’s frame of reference. This section

describes the calibration process which we employ to find the transformation between

the two frames.

Given a set of points XL = {x1, x2, . . . , xn} in the nodding laser’s coordinate

frame, we wish to find a rotation R ∈ SO(3) and a translation T ∈ R3 that transform

the points into the camera’s frame, so that:

XC = RXL + T, (4.10)

where XC are the points in the camera’s frame.

We assume here the that camera’s intrinsic calibration parameters are already

known, having been calibrated with standard techniques such as those of Tsai [110]

and Zhang [124]. We used the Matlab Camera Calibration toolbox [16] to calibrate

our camera. Having the intrinsic calibration allows us to project the points XL in to
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(a) (b)

(c) (d)

Figure 4.8: Figures 4.8a and 4.8c show a plan view and oblique view of an uncorrected
point cloud, first seen in Figure 4.1. Figures 4.8b and 4.8d show the corrected versions.
They are noticeably crisper, as the rotation errors have been greatly reduced.

the image, once we have first transformed them into the camera frame.

4.2.1 Existing Extrinsic Calibration methods

Unnikrishnan and Hebert [113] suggest a method involving a checkerboard style cal-

ibration target similar to that used in intrinsic camera calibration. The target is

imaged by both sensors in a variety of orientations and then the user manually iden-

tifies the corners of the target in all of the pictures and laser scans. A least-squares

procedure is then used to minimize the distance and orientation error between planes
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Figure 4.9: Mixed measurements occur when the laser beam is reflected from two targets
at different depths. The reported measurement lies somewhere between the two targets’
depths.

in the images and laser scans. Cobzas et al. [21] show how to perform an extrinsic

calibration when the laser points are visible to the camera. Scaramuzza et al. [95]

present a camera image and a range image to the user and have them manually se-

lect correspondences. They process the range image to enhance corners and edges to

make this task easier. The user must provide enough correspondences so that errors

introduced by the selection process can be averaged out. Zhao et al. [125] show how

to find extrinsic calibration parameters for a number of sensors on a vehicle, but again

they require manual selection of corresponding feature points from each sensor.

Posner et al. [90] employ a specially constructed calibration target which may

be robustly localized in both image and camera data. We use the same target here.

Figure 4.10 shows the target, which is a truncated pyramid shape with coloured front

and back planes to aid segmentation in the image. The target size and position is

chosen so that it is easily visible to both sensors when the robot is stationary. The laser

scanner is prone to producing so called mixed measurements at depth discontinuities

(see Figure 4.9), so the target is deliberately constructed to be continuous. Further,

all of the edges of the target lie at the intersection of a pair of planes so that the

edges may be recovered without explicitly searching for them. Because of this, the

procedure can be largely automated, and the user is not expected to perform any

tasks requiring high accuracy.
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(a) (b)

Figure 4.10: The calibration target as seen from the robot’s camera (a) and from a more
oblique angle (b), showing the truncated pyramid shape.

4.2.2 Our method

The calibration procedure we present now may be divided into two stages. First is to

accurately find the 8 corner points of the target in both the image and laser coordinate

frames. We do this for data from a number of different robot poses. We attempt to

locate the target in the laser data by first classifying the target plane to which each

data point belongs. We then iteratively fit a wireframe model of the calibration target

to those points. The second stage is to find the transformation R,T which minimizes

the reprojection error

min
R,T

n∑

i=1

‖ui − û(R,T,XL)‖2 (4.11)

where ui are image corner points and û(R,T,XL) are the laser points projected into

the image, via transformation R,T and the intrinsic calibration parameters.
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4.2.3 Segmenting the Target from 3D data

RANSAC plane fit

The calibration target is constructed entirely from planes, so after asking the user to

roughly crop the point cloud to only include the target, as a first step we iteratively

apply a RANSAC [38] plane extraction algorithm. It finds the plane with greatest

support from the points, then removes those supporting points from the dataset and

finds the next best supported plane, and so on. A point is said to support a plane if

its perpendicular distance to that plane is less than some threshold. The threshold

must be chosen to be large enough that it accounts for noise in the measurements,

but not so large that points from other planes are mistakenly thought to support the

current plane. Even with judicious choice of the threshold, there may still be points

belonging to another plane which happen to lie within the support threshold of the

current plane and will therefore be misclassified.

Figure 4.11 shows the result of applying the iterative RANSAC process to the

laser data. The front plane was not successfully extracted by the algorithm because

there were not deemed to be enough points to support a plane (many of them having

been removed with the larger planes). The RANSAC result does however give us

a good idea of the dominant plane directions in the dataset. The planes are more

robustly classified using a normal-clustering step described next.

Point classification

The final classification of points to specific planes on the target is based on surface

normals. The normals of the points are found by fitting a plane through the local

neighbourhood of each point, to determine the local orientation of the surface (see

Section 2.3). Using a large neighbourhood size ensures that noise is minimized. At

this stage, the computed normals may not all be pointing out of the front of the

57



Figure 4.11: Planes found by initial RANSAC extraction. Note how some points that
should be on the front plane have been classified as belonging to the inclined plane to the
right (red) because they lie within the acceptance threshold of the inclined plane hypothesis.
Once points classified as lying on the inclined planes were removed, there were too few points
remaining to successfully extract the front plane, which is why it does not appear in the
figure. The RANSAC result is however sufficient to give a good initialization to the normals
clustering algorithm that follows.

target; some will be pointing backwards. By taking the dot product of the normal

with the point to which it belongs, we determine whether the normal is pointing

towards or away from the origin. If the latter, then it has its direction reversed.

Figure 4.12 shows a subset of the computed point normals. Because there are 5

dominant plane directions, most normals will be pointing in those directions. The

normals of points in noisy areas or close to plane boundaries will be further from the

dominant directions.

We project the normals of the points onto the surface of a unit sphere. Figure 4.13

shows that the points are mainly clustered in 5 distinct directions, as expected. The

lower-density points forming paths between the clusters are due to laser measurements

lying near the boundary of two or more planes. It is these points that we wish

to discard. The centres of the 5 clusters are found using the Spherical k-means
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Figure 4.12: A subset of the computed normals of points on the target when viewed from
the left hand side. The figure has been rotated 90 degrees to save space.

(spkmeans) algorithm of Dhillon and Modha [31], which is detailed in Appendix E.

Given an initial guess of the positions of the cluster centres (which we provide from

the RANSAC plane fit in Section 4.2.3), the algorithm seeks to iteratively improve

the cluster centres until convergence.

The result of the spkmeans algorithm is that each point is classified to one of

the five cluster centres. We discard all points with normals lying outside of a small

threshold distance from their cluster centre – around 5◦ works well. The remaining

points are almost certain to be correctly classified, and will not lie close to plane

boundaries on the calibration target. Figure 4.13 shows the cluster centres and final

point classification.

Points lying on the four inclined planes of the target are trivially assigned to the

correct plane, based on their relative orientation. The front and back planes however

have the same orientation, so a further RANSAC plane fitting step is applied to

discriminate between the two.

Fitting the Target Model

The result of the previous steps is that for each plane on the target we have a set

of relatively noise-free points which belong to the plane. The final step for locating

the corner points of the calibration target is an optimization which seeks to best fit a

model of the calibration target to the classified point cloud, so that the corner points

may be recovered.
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Figure 4.13: Point normals projected on to the surface of a sphere. The 5 dominant
plane directions found by RANSAC are represented as small spheres. The normals are each
assigned to the closest dominant direction (in a cosine distance sense). Points lying further
than a threshold distance from each dominant direction are discarded.
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We measured the calibration target very accurately to determine the relative lo-

cations of each of the corners. From this, we produced a wireframe model containing

the corner locations P = {p1 . .p8} and the set of planes Π = {(c1, n̂1) . . (c1, n̂1)},

where ci is some point on the plane, and n̂i is the plane’s normal. The model is

defined relative to an arbitrary local coordinate frame.

From the previous steps, we have for the ith plane the set of laser measurements

Θi ∈ XL classified as belonging to that plane. We wish to find the rotation and

translation matrices Rt,Tt which minimize the expression

arg min
Rt,Tt

∑

πi∈Π

∑

xj∈Θi

[(Rtn̂i) · (xj −Rtci −Tt)]
2 (4.12)

which penalizes the sum of squared orthogonal distances of each measurement from

its assigned plane in the model. Because the point-to-plane correspondences are fixed,

standard non-linear optimization algorithms such as Levenberg Marquardt converge

rapidly to a solution. For the case of our wireframe model, the initial guess need not

be particularly close to the true answer because the problem is well conditioned and

the basin of convergence is very large.

Once the transformation matrices have been found, they are used to transform

the corner points of the wireframe model into the laser frame, giving the locations

we need for the extrinsic calibration. Figure 4.14 shows the wireframe model fitted

against the classified laser points.

4.2.4 Segmenting the Target in the Image Data

To locate the calibration target’s corner points in the camera image we apply the

method of Posner et al. [90]. First the image is rectified using the intrinsic calibration

parameters of the camera. This ensures that the edges of the calibration target

are straight lines in the image. The user is asked to roughly locate the differently
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Figure 4.14: The wireframe model of the calibration target is fitted to set of classified
laser points. The colour of each point denotes the plane to which it belongs.
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Figure 4.15: Labelled target corner points on the rectified image

shaded parts of the target in the image, and then edge detection is used to locate

the rectangles to sub-pixel accuracy. The corners are found at the intersection of

the edges, also with sub-pixel accuracy. Figure 4.15 shows a sample image and the

detected corners.

4.2.5 Obtaining the Extrinsic Calibration

With the calibration target’s corners now located both in the laser data and the

camera image, we have eight point correspondences with which to find the extrinsic
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Figure 4.16: We took laser data and camera images of the target from 18 different poses
around the target, of which this is a subset. With each pose giving 8 corner correspondences,
this resulted in 144 correspondences in total.

transformation matrices, R and T. Again, we use standard non-linear optimization

techniques to minimize the reprojection error in Equation 4.11. The optimization can

be seeded from rough measurements of the two sensor’s relative locations.

4.2.6 Results

Images and laser data of the target from 18 different poses around the target were

taken, to cover as much of the camera’s field of view as possible. Figure 4.16 shows

the camera images from a subset of the poses. Finding 8 corner correspondences for

each using the procedures described resulted in a total of 144 correspondences. We

divided the data into a training set of 14 poses (112 correspondences) and a test set of

4 poses (32 correspondences). After solving Equation 4.11 using only the training set,

we used the recovered extrinsic parameters to evaluate the errors on the test set. The

results are shown in Figure 4.17. The mean error on the test set was (−0.124, 0.003)

pixels in x and y. Though individual correspondences found in the data association

stages had errors of up to 3 pixels, with enough data the errors cancel each other out

63



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x (pixels)

y
 (

p
ix

e
ls

)

Corner Correspondence Errors

 

 

Training Set

Test Set

Training Cov

Test Cov

Figure 4.17: Final pixel errors for each of the 144 correspondences. We show both the
training set errors and the test set errors here, with their respective 1-sigma covariance
bounds. In this case, the mean error of the test set was (−0.124, 0.003) pixels in x and y.

and sub-pixel accuracy is achieved.

With the extrinsic calibration parameters available, it is a simple matter to pro-

duce coloured point clouds. The laser points are first transformed by the extrinsic

calibration matrices and then projected onto the camera’s image plane. The colour of

the corresponding pixel is then assigned to each laser measurement. Figure 4.18 shows

an example coloured point cloud produced after an extrinsic calibration experiment.

4.3 Chapter Summary

This chapter has described a new method for recovering vehicle trajectories from 3D

point cloud data, even when the vehicle’s odometry is in error. Basic 2D odometry can

be enriched with roll and pitch information which was previously unavailable. The

method uses architectural priors in order to overcome the problem of sparse data,

which makes standard point cloud registration methods difficult to use effectively.
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Figure 4.18: Extrinsic Calibration allows us to assign a colour to each point.

The resulting corrected point clouds are suitable for use with scan-matching SLAM

algorithms, making rapid map acquisition more feasible.

We have also described the techniques we use to find the extrinsic calibration

between a 3D laser scanner and a camera on the same vehicle. Using a specially con-

structed target, the usually time consuming procedure is largely automated. Robust

point classification in laser and image data ensures that the calibration result is of

high quality. What has not been addressed in this Chapter and the previous one is an

empirical development of a full and realistic sensor model for the laser. There would

be a benefit in future work that considers how range measurements are affected not

just by the geometry of the scene (angle of incidence), but the material qualities.

Indeed, one might consider a sophisticated model that leverages appearance informa-

tion gleaned from images to enable the construction of a time-varying sensor model.

Regretfully this topic is left for future derivative work.

The next chapter continues in a similar vein to this one in that it is about the

exploitation of laser range data. In particular it investigates how visual cues can be

used in conjunction with laser data to provide dense range images.
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Chapter 5

MRF point cloud enhancement

In this chapter we add vision to the mix. We describe a method for fusing low density

laser data with high-resolution camera images, to produce dense and accurate point

cloud representations of a scene. The motivation for this comes from the fact that

a robot can rapidly gather high-resolution images from a low-cost camera, but that

accurate range measurements from a laser range sensor tend to be either slow to

acquire, or sparse, as well as having no colour information. Note also that we aim

to recover the dense geometry of a scene over ranges which prohibit the use of other

direct methods such as stereo unless a large baseline is used.

5.1 Existing Work

The problem of inferring 3D surface models of a scene using laser or camera sensors

has been studied extensively over many years. However, limitations in hardware and a

requirement for expeditious data gathering in mobile robotics typically results either

in high resolution optical images only allowing inference of very basic 3D geometry, or,

alternatively, low resolution range images which often sample the scene too sparsely

to allow for faithful reconstruction.

Laser only techniques may be broadly split into three areas. In the first, the 3D
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points are used to estimate a signed distance function and then iso-surfacing tech-

niques are employed to extract the zero set of the function to yield the final surface

[50, 85]. There are ‘crust’ methods [2, 58] which compute a Delaunay tetrahedral-

ization of the data points and then attempt to label tetrahedra as lying inside or

outside the surface. The interface between the two sets of tetrahedra is the estimated

surface. Finally there are volumetric methods which build a surface representation

in a voxel grid using techniques such as space carving [29]. All of these methods rely

on the surface having been sampled sufficiently densely - usually that neighbouring

measurements can be assumed to lie on the same surface. The work described here

involves laser measurements an order of magnitude less dense, and somewhat below

the spatial Nyquist frequency for the scale of features we wish to reconstruct.

There are methods to estimate geometry or depth from a single image [94, 49, 27],

without any metric measurements. They achieve this by relying on strong priors and

complex visual cues. The results are compelling, but not yet adequate for accurate

dense reconstruction of arbitrary scenes.

Multiple view reconstruction provides an attractive alternative, leading to dense

scene reconstructions from image data alone [97, 47]. Unfortunately, stereo recon-

struction fidelity is limited in range by the baseline and the image resolution. This

impedes accurate reconstruction beyond a few metres from the camera. State-of-the-

art graphcut based techniques have until now been limited to using only first order

smoothness priors, due to the structure of the stereo reconstruction problem. First

order priors favour fronto-parallel surfaces with low curvature and therefore do not

accurately model real scenes. Second order priors are recognized to be a more appro-

priate model, since they allow surfaces of arbitrary orientation and penalize curvature

rather than steepness. The main contribution of [120] was the introduction of second

order smoothness priors to the stereo problem, but the method is computationally

intensive.
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(a) Intensity image (b) Range image

Figure 5.1: Range and intensity are different modalities, but the images share similar
structure. Edges in the intensity image often correspond to discontinuities in range, and
areas of similar intensity often correspond to smooth surfaces. (Data supplied by CESAR
lab, Oak Ridge National Laboratory, USA)

An alternative can be found in the exploitation of the complementary nature of

vision and range sensing. Only a relatively small body of work exists on the inference

of surfaces by fusing laser data and camera images. On first inspection, it may not be

obvious how colour or intensity information from an image can assist in the estimation

of depth1. Figure 5.1 shows both a greyscale intensity image and a range image of

the same scene. Though they are obtained through different sensor modalities, there

are obvious congruities between the two. In particular, edges in the intensity image

often correspond to depth discontinuities in the range image. Also, areas of similar

intensity tend to be smooth in range. The idea is to exploit these similarities to

interpolate intelligently between sparse range measurements.

Torres-Méndez and Dudek [108] employ a Markov Random Field technique to

infer range values for pixels in an image. Each pixel is represented as a node with a

range value attached. The technique is capable of filling relatively large gaps between
1We use ‘intensity’ and ‘colour’ interchangeably, depending on whether we are working on a

greyscale image or a colour image.
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known range data by using the notion that spatially close nodes sharing similar image

neighbourhoods are more likely to have similar ranges. The technique requires that

the supplied range measurements contain some high density areas from which to

seed the solution, and is unable to assign ranges outside of those already in the

measurements.

Yang et al. [122] take a filtering approach. First they up-sample a low resolution

range map to be the same resolution as the high resolution camera image. Then they

generate a ‘cost volume’ which is a function of pixel location and range. The cost

for a given range is a function of its distance from the up-sampled range map. The

authors then apply a series of bilateral filters [107] to each range slice of the cost

volume. These apply Gaussian smoothing to the cost map in areas which do not

correspond to image edges. A final high resolution range map is obtained by choosing

the range with lowest cost in the smoothed cost volume, for each pixel. This results

in visually pleasing results with smooth depth changes. The technique benefits from

regularly sampled range maps which keep the solution from being able to deviate too

much from the measurements, as it might in less densely sampled areas.

Andreason et al. [3] use colour information to help cluster 3D points in a scene, in

order to improve planar models fitted to the data. More recently, Andreasson et al. [4]

have proposed a series of greedy interpolation approaches based on Natural Neighbour

Interpolation [101]. We will investigate them shortly. The method of Diebel and

Thrun [32] is particularly relevant to our work and formed the motivation for our

early adoption of an MRF based approach (see Section 5.4). It employs an MRF

formulation with a first-order smoothness prior. The prior favours fronto-parallel

surfaces, but does not suffer too greatly from this because the range measurements

are sufficiently regular and dense, coming from a special range camera sensor. This

‘pins’ the estimates to lie near the true surface. We will analyze the technique in more

depth shortly. Wong et al. [119] apply 1st-Order MRF based super-resolution to the
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problem of mapping mines. Being able to control the lighting and having good priors

on the surface reflection properties allows them to reconstruct very high-resolution

and accurate surface models.

In our work, we use a similar framework to that of Diebel and Thrun. In contrast

to their work, the method presented here is targeted at any combination of commonly

available monocular camera and scanning laser. In particular, this requires inference

of range measurements based on sparse, inhomogeneous range data, so the smoothness

prior must be relied upon over larger areas. This motivates our use of an additional

second-order prior, which is novel in the context of image and range data fusion.

Unlike multi-view reconstruction approaches, the nature of our problem is such that

we are able to make use of high order smoothness terms without difficulty. We further

provide a new method of dealing with the non-linearities introduced by the diverging

rays of a wide-angle camera, which we are unaware of in other work.

5.2 Background

In this section, we develop the notation that will be used throughout the chapter.

The general problem of interpolation consists of estimating the underlying surface

that generated a set of sparse point measurements and generating extra samples on

that surface. This may be tackled in 3D Cartesian space, but the problem may be

more tractably formed for our purposes by posing it in image space.

We represent the problem using an augmented range image representation. Know-

ing the projection model of the camera and the extrinsic calibration between camera

and laser allows us to take a set of laser measurements of a scene and project them

into an image of the same scene. Snapping projected points on to the nearest pixel

allows those pixels to be augmented with a known range measurement.

Figure 5.2 shows how the augmentation occurs and Figure 5.3 shows a camera
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Known Extrinsic Calibration

Laser

Camera

Image, I

Workspace
Objects

Pixel, Pi

Inferred point at range r̂i

Figure 5.2: The scene reconstruction problem. The camera and laser image the same
objects. Some pixels in the image have an associated laser measurement, projected into the
image via a known extrinsic calibration. The task is to infer a range for every pixel using
information in the image and the point cloud.

image with laser points projected in to it. The heart of the problem is how to sensibly

infer ranges for pixels which are not near any laser measurements without introducing

intolerable distortions. Our method is general in that it is not tied to any particular

3D laser scanner mechanism or geometry.

We use similar notation to Andreasson et al. [4]. If I is a colour image of dimension

h × w, then each pixel may be represented as Pj = (Xj, Yj, Cj) for j = 1 . . N ,

where Cj = (CR
j , C

G
j , C

B
j ) is an RGB colour vector and N = h × w. Suppose we

have a set of laser range measurements, r, with a laser range measurement ri ∈ r

which projects onto pixel Pi then we can augment the pixel with the range to give

Ri = (Xi, Yi, ri, Ci). These augmented pixels are known as measured nodes. For a

pixel Pj which has no associated laser range, we must interpolate from measured

nodes. A node with an estimated range is written as R̂j = (Xj, Yj, r̂j, Cj) and called
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Figure 5.3: A rectified image with laser measurements superimposed. Note the sparseness
of the laser data, particularly on the floor, where the stripes are ∼ 0.5m apart.

an estimate node.

5.3 A closer look at some existing methods

In this section, we describe and analyze the approaches of Andreasson et al [4], and

of Diebel and Thrun [32]. We will use two synthetic problems to demonstrate the

general behaviour of each.

5.3.1 Greedy Linear Interpolation

Andreasson et al. [5] present five non-iterative linear interpolation algorithms to solve

the range data and image fusion problem. We have implemented all five, to use as

benchmarks for our own algorithm, so they are described here. All five operate by

looping through all estimate nodes and assigning them a range which is a function

of only the measured nodes. The algorithms are greedy because they never revisit a

range estimate once it has been assigned.
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(c) Dome Image (d) Dome Ground Truth

Figure 5.4: Synthetic data examples which highlight important aspects of each approach,
with ground truth surfaces. Each intersection in the mesh represents a single range node
projected out from the corresponding image pixel. The images for each of the two cases are
shown on the left. Sparse laser measurements are shown in red.
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Figure 5.5: Variation of the colour weighting term with pixel colour difference.

Nearest Range Reading (NR)

The first, known as Nearest Range Reading simply assigns to each estimate node the

range of the closest (in pixel distance) measured node. The effect of this is that the

Voronoi region around each measured node becomes a fronto-parallel planar patch.

The probabilistic interpretation is that range r̂j is chosen to maximize the likelihood

p(Pj,Ri) ∝ e
− (Xj−Xi)2+(Yj−Yi)2

σ2
d (5.1)

where σd is a variance for pixel distance and Ri is a measured range node. In this

algorithm it has no effect on the result.

Nearest Range Reading Considering Colour (NRC)

More interesting is a method which uses colour information in addition to distance.

Range r̂j is chosen to maximize the likelihood

p(Pj,Ri) ∝ e
− (Xj−Xi)2+(Yj−Yi)2

σ2
d

− ‖Cj−Ci‖
2

σ2c (5.2)

where σd is a variance for pixel distance and σc is a variance for colour difference. If the

closest measured node has a different colour than the estimate node being considered,

then the algorithm may assign the range of a different measured node a little further

away. The two variances are chosen to tune the behaviour of the algorithm. Figure
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Figure 5.6: The dashed lines show the original Voronoi diagram of nodes R1 . .R5. The
shaded area is the Voronoi region of estimate node R̂j after it is added. R1 . .R5 are said to
be Natural Neighbours of R̂j, because it ‘steals’ area from their Voronoi regions. In Natural
Neighbour Interpolation, the summation weight of each measured node Ri is proportional
to the area Ai stolen from it by R̂j

.

5.5 shows how the colour weight varies with pixel difference.

Multi-Linear Interpolation (MLI)

This uses the Natural Neighbours interpolation method of Sibson [101]. Consider

Figure 5.6, which shows measured nodes R1 . .R5, and their Voronoi diagram. When

the estimate node R̂j is added and the Voronoi diagram updated, the Voronoi regions

of R1 . .R5 all have to be truncated to make way for the new Voronoi region. This

makes the nodes R1 . .R5 the Natural Neighbours of R̂j.

Natural Neighbour Interpolation can be used to provide a range estimate for R̂j

by a weighted sum of measured ranges,

r̂j =
∑

i∈NN(R̂j)

wi(R̂j)ri (5.3)

where NN(r̂j) is an operator selecting all the Natural Neighbours of R̂j and wi is the
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weight of each measured range:

wi(R̂j) =
Ai
A

(5.4)

Ai is the area ‘stolen’ from the Voronoi region of Ri by R̂j, and A is the total area

stolen, so that A =
∑

iAi. Natural Neighbour Interpolation leads to smooth and

visually pleasing surfaces.

Multi-Linear Interpolation Considering Colour (LIC)

This is a method of fusing colour information into Natural Neighbour Interpolation.

Another weighting term is introduced, to represent the colour difference between an

estimate node and its Natural Neighbour measured nodes:

wci (R̂j) = e
− ‖Ci−Cj‖

2

σ2c (5.5)

The interpolated range becomes,

r̂j =
∑

i∈NN(R̂j)

wiw
c
i

W
ri (5.6)

with normalization factor W =
∑

iwiw
c
i .

Results on the synthetic datasets for the four methods described are shown in

Figure 5.7.

Parameter-Free Multi-Linear Interpolation Considering Colour (PLIC)

The final algorithm is an attempt to do away with the tuning parameter, σc in the

LIC algorithm. The range interpolation function is identical to that in LIC, except
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(a) Three Planes, NR (b) Dome, NR

(c) Three Planes, NRC (σc = 2.7) (d) Dome, NRC (σc = 2.7)

(e) Three Planes, MLI (f) Dome, MLI

(g) Three Planes, LIC (σc = 0.3) (h) Dome, LIC (σc = 0.3)

Figure 5.7: Results for the first four methods of Andreasson et al. when they are applied
to the synthetic cases of Figure 5.4. We have not shown the results for PLIC, because on
these examples they closely match LIC. LIC clearly out-performs the others, but it still
favours flat surfaces, as evidenced by the flat area at the bottom of the inclined plane. None
of the methods is able to correctly reconstruct the Dome.
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that σc is adaptively computed for each natural neighbour by the equation,

σ2
c =

1

ni − 1

∑

j∈Ai
‖µi − Cj‖2, (5.7)

which is the colour variance of the pixels inside the stolen area for Ri. ni is the

number of pixels inside Ai and µi = (1/ni)
∑

j∈Ai Cj is the mean colour in Ai. The

intuition is that natural neighbours having stolen regions with large colour variance

will cause the colour similarity term to have less effect on the weight in Equation 5.6.

In practice we have found that the PLIC method often does not choose a good

value for σc. Choosing the value well depends on the colour variance of a region in the

image. When measured nodes are close together, the number of pixels falling within

the stolen area may be very small - sometimes fewer than five. Calculating a variance

value for so few samples gives a very weak estimate, so the algorithm suffers. The

suprising side-effect of this is that to a certain extent the algorithm actually performs

better when the Measured Nodes are less dense in the image.

5.3.2 First-Order MRF Approach

We now turn our attention to the Markov Random Field (MRF) based method of

Diebel and Thrun [32]. Unlike the schemes of Andreasson et al., the output surface

does not pass through the known measurements. Instead the method seeks to infer a

range for every node such that a cost function is minimized. They define two energy

terms of the form:

Data Cost: Ψ = λdat
∑

i∈r

(r̂i − ri)2 (5.8)

1st-Order Smoothness Cost: Φ1st = λ1st

N∑

j=1

∑

i∈Nb(j)

wi,j(r̂i − r̂j)2, (5.9)
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Figure 5.8: The 1st-Order Smoothness cost penalizes neighbouring nodes having different
ranges. It tries to make all nodes have the same range.

where Nb(j) is a function selecting the immediate horizontal and vertical neighbours

of node R̂j and

wi,j = exp

(
−‖Ci − Cj‖

2

σ2
c

)
(5.10)

is a weighting term based on the colour difference between pixels Pi and Pj, much

like Equation 5.5 for Andreasson’s LIC method. λdat and λ1st are scalar parameters

representing the relative importance of the data cost and the smoothness cost2.

The Data Cost acts only on nodes that have a measured range attached to them.

It penalizes the distance between the measured range and the inferred range. The

Smoothness Cost tries to ensure that adjacent nodes have similar ranges by penalizing

differences between them (Figure 5.8). But crucially the weighting term wi,j is chosen

such that the contribution of a pair of nodes is reduced when they have dissimilar

pixel colours. This has the effect of explicitly allowing range discontinuities over edges

in the image. This is what gives the technique its power.

The two energy terms are combined into a conditional distribution over range
2Note we have changed Diebel and Thrun’s notation to bring it in line with our own notation

scheme.
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Laser Range Measurement, ri

Depth Discontinuity, w

Inferred Range, r̂j

Image Gradient, u

Image Pixel Colour, Ci

Figure 5.9: The MRF structure proposed by Diebel and Thrun. The Inferred Range nodes
are those which the MRF is attempting to infer from all of the other data. Laser range
measurements are sparse compared to pixels, so only some pixel nodes have an attached
range measurement node.

values, given the image I and the known range measurements, r:

p(r̂ | I, r) ∝ exp

[
−1

2
(Ψ + Φ1st)

]
(5.11)

The goal is to find the set of range values, r1 . . rN (one for each pixel node) which

maximize the posterior. This is equivalent to minimizing the expression Ψ + Φ1st,

which is a least-squares optimization problem that Diebel and Thrun solve using

the Conjugate Gradient method [91]. As an initial guess they simply use a linear

interpolation through the known range measurements, ignoring colour information.

The graphical representation of the problem is shown in Figure 5.9.

Applying the 1st-Order MRF to the Synthetic Cases

Figure 5.10 shows the results of applying the 1st-Order MRF method to the synthetic

cases, and the tradeoff between the data and smoothness terms. The Smoothness

term has a strong affinity for flat planes, as it strongly penalizes adjacent nodes with

different ranges. Note the ‘puckering’ effect near to the data points, where the Data
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(a) Three Planes, Mostly Data
λdat = 0.99, λ1st = 0.01

(b) Dome, Mostly Data
λdat = 0.99, λ1st = 0.01

(c) Three Planes, Equal Data and Smoothness
λdat = 0.42, λ1st = 0.58

(d) Dome, Equal Data and Smoothness
λdat = 0.57, λ1st = 0.43

(e) Three Planes, Mostly Smoothness
λdat = 0.05, λ1st = 0.95

(f) Dome, Mostly Smoothness
λdat = 0.05, λ1st = 0.95

Figure 5.10: Results on the synthetic datasets for the 1st-Order MRF technique of Diebel
and Thrun. The relative weighting between Data and Smoothness has been varied to show
their different effects. In all cases, we set the colour variance term σc = 1.0. When the
smoothness term greatly outweighs the data term, the surfaces become flat and pass through
the mean of the data points within regions of similar colour. The method still allows large
discontinuities across image edges.
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term is able to overcome the Smoothness term.

5.4 Adding a 2nd-Order Smoothness Term

We shall now describe our main contribution, which is the addition of a 2nd-Order

smoothness term to the MRF framework. In contrast to Diebel and Thrun [32] we

make the further assumption that in the absence of cues to the contrary, such as

discontinuities in appearance, the gradient of surfaces varies smoothly. This leads to

a method which does not favour fronto-parallel planes, because it no longer penalizes

adjacent nodes having different range values. It allows arbitrarily inclined planes

without extra penalty. Instead, this 2nd-Order term penalizes curvature. Data errors

are distributed across the surface, resulting in a minimum-energy curved surface, so

that cases such as our ‘Dome’ example are more faithfully reconstructed. We use the

same formulation as Diebel and Thrun, except that we add an extra energy term:

p(r | I, r) ∝ exp

[
−1

2
(Ψ + Φ1st + Φ2nd)

]
(5.12)

The rest of this section will be devoted to determining a suitable form for the

2nd-Order smoothness term which penalizes curvature rather than slope. For a given

node R̂i we require an expression which results in a scalar value quantifying the

curvature of the close neighbourhood of R̂i. In order to maintain the Linear Least-

Squares form of the cost function, the expression must be a linear combination of

neighbouring node values. For simplicity we consider a 1D case here, but the method

is perfectly applicable to both horizontal and vertical neighbourhoods.
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5.4.1 Curvature measurement

Consider Figure 5.11a, which shows R̂i and its horizontal 5-neighbourhood. The

general form of the curvature cost will be

Φ2nd = λ2nd

N∑

i=1

(r̂∗i − r̂i)2 (5.13)

with r̂∗i =
∑

j∈Nb(i)

wni,j r̂j (5.14)

where this time the Nb(i) function considers a slightly larger neighbourhood of node

R̂i. λ2nd is a scalar term which sets the relative weight of the 2nd-Order smoothness

and wni,j are the relative contributions of each neighbouring node to the curvature

measure. We will discuss how these are chosen next. Think of r̂∗i as being a prediction

of the minimum curvature location for the ith node, given only the location of its

neighbours.

There are three ways in which we choose to derive a curvature measure for the

neighbourhood; shown in Figure 5.11, they are:

Interpolation A line is fitted between the two closest neighbours of Ri and the

distance between the line and r̂i is penalized. In the 1D case,

r̂
∗(Interp)
i = 0.5r̂i−1 + 0.5r̂i+1 (5.15)

Left Extrapolation As before, but a line is fitted between the two left-hand neigh-

bours of Ri so that

r̂
∗(LExtrap)
i = −1.0r̂i−2 + 2.0r̂i−1 (5.16)
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Figure 5.11: The top-left figure shows an example 1D neighbourhood of a node Ri, posing
the question: “What is the range of the middle node that minimizes the curvature of the
neighbourhood?” The remaining figures show three possible ways of quantifying curvature,
by measuring the distance of the central node Ri to a line fitted between two neighbouring
nodes. Note that the three cases do not represent the same node configuration as the first
figure.

Right Extrapolation Mirror of Left Extrapolation, so that

r̂
∗(RExtrap)
i = 2.0r̂i+1 − 1.0r̂i+2 (5.17)

5.4.2 Choosing Which Curvature Measure to Use

The image I can be used to provide cues about the behaviour of the surface we hope

to reconstruct. Our basic assumption is as before — sharp changes in range tend

to appear as changes in appearance (edges) in an image. Figure 5.12 demonstrates

the idea, which uses the notion that information should not flow between nodes with
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dissimilar pixel colour. Broadly speaking, if a pixel is identical to its left and right

neighbours then pure interpolation will occur. If however there is a discontinuity in

pixel appearance then interpolation will be down weighted and either left or right

extrapolation emphasized. In the first case of Figure 5.12, only the Interpolation

Measure is valid, because no information can flow from the far left or right across

the sharp pixel edges. In the second case, softening the left hand edge allows some

information to flow, so that the Left Extrapolation Measure is able to contribute to

the prediction of where the ith node should be to minimize the local curvature.

The compound expression for the ith node’s prediction is therefore modified to

become

r̂∗i = wInterpi (0.5r̂i−1 + 0.5r̂i+1)

+wLExtrapi (−1.0r̂i−2 + 2.0r̂i−1)

+wRExtrapi (2.0r̂i+1 − 1.0r̂i+2), (5.18)

with each Curvature Measure weight based on the pixel colours of the neighbourhood.

Interpolation is preferable to extrapolation, so with this preference in mind and con-

sidering node Ri, we choose the importance weights of left / right extrapolation and

interpolation as

wInterpi = wi,i−1wi,i+1

wLExtrapi = wi+2,i+1wi+1,i(1− wInterpi )

wRExtrapi = wi−2,i−1wi−1,i(1− wInterpi ). (5.19)

with wi,j as defined as in Equation 5.10, and shown in Figure 5.13.

The above relationships can be understood by noting that if the pixel attached

to range node R̂i is identical to its neighbours (w(i−1,i) and w(i,i+1) are unity) then
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Figure 5.12: The colour of the underlying pixels influences how much weight each curvature
measure is given. Pixels with dissimilar colours do not allow information to flow. In the first
example no information flows from the two outer nodes, so only the Interpolation Measure
is used. In the second figure, information can only flow from the two left-hand nodes, so the
Left Extrapolation measure is used. In the third example, some information is able to flow
from the far left, so both the Interpolation Measure and the Left Extrapolation Measure are
used in equal quantities, but the Right Extrapolation still plays no part. The last example
shows a ‘softer’ case, where all three measures are combined, though there is bias towards
Right Extrapolation.

i i+ 2i− 2 i− 1 i+ 1

wi,i+1 wi+1,i+2wi−1,iwi−2,i−1

Figure 5.13: A 1D chain of range nodes and the edges between neighbours. Considering
the ith node, right extrapolation uses only nodes to the right and left extrapolation uses the
two left hand nodes. Interpolation uses the two immediate neighbours. The edges between
nodes are a function of the difference in pixel appearance between adjacent range nodes
(each range node is associated with a single pixel in the Image).
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wInterpi = 1 and wRExtrapi = wLExtrapi = 0 - interpolation has 100% of the weighting.

As the pixels at R̂i−1 and R̂i+1 become increasingly different, the left and right

extrapolations receive more weight. In the limit, if two pixels are entirely different,

the edge between them tends to zero and the attached range nodes will have no

direct link between them. From the perspective of the graphical model this is akin

to removing an edge between nodes. It does not make the two nodes independent -

there may be other dependencies via long circuitous routes through other nodes. It

does however mean that range discontinuities across this boundary are not penalized

because the range prediction is based on an extrapolation from one side and not an

interpolation across the discontinuity. This is a key point in this work.

5.4.3 A Matrix Representation Including 2nd-Order Terms

We now show how to write the cost function 5.12 in matrix form, so that the opti-

mization problem may be solved using modern sparse linear solve techniques. Recall

that the data cost is given by

Ψ = λdat
∑

i∈r

(r̂i − ri)2 (5.20)

where r̂i is an inferred range, and ri is a measured range. This may be written as

Ψ = λdat‖D(r̂− z)‖2 (5.21)

where z is a vector of length N , which contains non-zero range values, ri only for

those nodes that have a known measurement. The remaining elements are set to 0.

D is a Diagonal matrix, with element Di,i = 1 if ri has a valid range measurement

or 0 otherwise. Optionally, we may incorporate measurement uncertainty by setting

Di,i = σi, where σi is our confidence in measurement ri.
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The 1st-Order smoothness term can equally be written as

Φ1st = λ1st

N∑

j=1

∑

i∈Nb(j)

wi,j(r̂i − r̂j)2 (5.22)

= λ1st‖Fr̂‖2, (5.23)

with each row of F representing a weighted average of a pair of adjacent range nodes.

In the 1D case it has values on the diagonal and one off-diagonal. For 2D problems

the structure is more complex.

Finally, the 2nd-Order smoothness term is written as

Φ2nd = λ2nd

N∑

i=1

(r̂∗i − r̂i)2 (5.24)

= λ2nd‖r̂∗ − r‖2 (5.25)

= λ2nd‖(S− I)r̂‖2 (5.26)

because the r̂∗i are a linear combination of the ranges of other nodes. I is the identity

matrix, and the rows of S select and weight (based on image pixel colours) the 2nd-

Order neighbourhood of each node in turn. The matrix has a number of diagonal

bands.

The terms can be further expanded so that

Ψ = λdat
[
r̂TDTDr̂− 2zTDTDr̂ + zTDTDz

]
(5.27)

Φ1st = λ1st
[
r̂TFTFr̂

]
(5.28)

Φ2nd = λ2nd
[
r̂T(S− I)T(S− I)r̂

]
(5.29)

If the Energy function that must be minimized is given by E = Ψ + Φ1st + Φ2st then
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we can simplify to

E = r̂TAr̂− 2bTr̂ + zTb (5.30)

A = λ2nd
[
(S− I)T(S− I)

]
+ λ1st

[
FTF

]
+ λdat

[
DTD

]
(5.31)

b = λdat
[
DTDz

]
(5.32)

Taking the partial derivative of E with respect to r̂ gives,

∂E
∂r̂

= (AT + A)r̂− 2b (5.33)

= 2Ar̂− 2b (5.34)

since A must be symmetric, and setting it to zero to find the r̂ which minimizes E

yields the familiar form

Ar̂ = b (5.35)

Sparse linear systems such as this may be solved quickly by a number of standard

algorithms. We chose to use the ‘backslash’ operator in Matlab.

5.5 Synthetic Examples

In order to demonstrate the power of our 2nd-Order smoothness term, we apply it to

the two synthetic examples used earlier in this chapter. Figure 5.14 shows the results

of varying the relative power of the 1st and 2nd-Order terms. Significantly, the 2nd-

Order term is able to fully reconstruct the inclined plane in the ‘Three Planes’ dataset,

and it makes a very reasonable estimate of the curved dome. This is remarkable

given the sparsity of the known measurements. The generated curved surface is

the smoothest surface that can explain the existing measurements and minimize the
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(a) Three Planes, All 2nd-Order
λdat = 0.70, λ1st = 0.00, λ2nd = 60.00

(b) Dome, All 2nd-Order
λdat = 0.70, λ1st = 0.00, λ2nd = 60.00

(c) Three Planes, Midway
λdat = 0.70, λ1st = 0.13, λ2nd = 33.30

(d) Dome, Midway
λdat = 0.70, λ1st = 0.13, λ2nd = 33.30

(e) Three Planes, All 1st-Order
λdat = 0.70, λ1st = 0.30, λ2nd = 0.00

(f) Dome, All 1st-Order
λdat = 0.70, λ1st = 0.30, λ2nd = 0.00

Figure 5.14: Results on the synthetic datasets, varying the balance between 1st-Order and
2nd-Order terms. In all cases, we set the colour variance term σc = 1.0 and the strength
of the Data cost to be 0.3 times the sum of the Smoothness strengths. Our 2nd-Order
smoothness term does an excellent job both of reproducing the inclined plane (top left), but
also of inferring the curved surface of the Dome example (top right).
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Figure 5.15: If the geometry of the camera model is not taken into account undesirable
distortions arise in the reconstructed scene. Here the optimization using an affine model has
produced a cluster of range nodes (via interpolation in this case) of equal range: they all lie
on the same plane. Projecting the pixels attached to these nodes back into 3D results in a
distorted curved surface.

violation of the 2nd-Order prior.

5.5.1 Projective Case

So far, all the methods we have discussed have made the implicit assumption that the

camera rays through all the pixels are parallel - the camera has an affine projection

model. Real cameras do not behave like this, so for completeness we now address the

full projective case, and develop a model which can be incorporated into the exisitng

linear MRF framework. Figure 5.15 shows the problem: Surfaces that are planar

in the pixel-range representation are warped by the projection through the camera

model into Cartesian coordinates. In some cases an affine model may be sufficient

in which case our method will yield a direct solution for r̂ in one step. However a

complete analysis of the problem demands we examine the more general case of a

projective camera. For such a camera we need a way to handle the divergent nature

of rays from the camera centre and yet retain the benefits of the problem being in

a linear form. We do this by introducing an iterative scheme in which a sequence

of solutions of r̂ are obtained with each iteration further minimizing the overall cost

function.

Consider the interpolation case previously discussed as Equation 5.15. Figure 5.16
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r̂∗i
r̂i−1 r̂i+1

n̂i−1 n̂i+1

n̂i

Figure 5.16: Interpolation in the projective case is more complicated than the affine case.
It still uses a linear combination of the two neighbouring nodes, but the prediction for the
central node is now of the form r̂∗i = αi(n̂in̂i+1)ri+1 + (1 − αi)(n̂in̂i−1)ri−1. This can be
interpreted as projecting the two neighbour nodes onto the central ray before interpolating
between them. The interpolation value αi depends on the current ‘best guess’ of the node
ranges.

shows the projective case. To minimize local curvature, the ith node must be placed

such that it lies on a line drawn between its two neighbours. Unlike the affine case, the

neighbours are not equal distances away, so we cannot simply use equal interpolation

weights of 0.5. Calculating the range which puts the ith node on the line between its

neighbours gives:

r̂
∗(Interp)
i = αi(n̂i · n̂i+1)ri+1 + (1− αi)(n̂i · n̂i−1)ri−1 (5.36)

αi =
|r̂i−1n̂i−1 × n̂i|

|(r̂i−1n̂i−1 − r̂i+1n̂i+1)× n̂i|
(5.37)

where n̂i is the camera ray direction for the ith node. In effect, the two neighbouring

nodes are being projected onto the central ray, and then the interpolation can happen

in 1D.
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Similar expressions can be derived for the left and right extrapolation:

r̂
∗(LExtrap)
i = βi(n̂i−1 · n̂i)ri−1 + (1− βi)(n̂i−2 · n̂i)ri−2 (5.38)

βi =
|r̂i−2n̂i−2 × n̂i|

|(r̂i−1n̂i−1 − r̂i−2n̂i−2)× n̂i|
(5.39)

and

r̂
∗(RExtrap)
i = γi(n̂i+2 · n̂i)ri+2 + (1− γi)(n̂i+1 · n̂i)ri+1 (5.40)

γi =
|r̂i+2n̂i+2 × n̂i|

|(r̂i+1n̂i+1 − r̂i+2n̂i+2)× n̂i|
(5.41)

If we can assume that the interpolation coefficients αi, βi and γi are fixed, then

the expressions for r̂∗i are simply linear combinations of neighbouring node ranges,

as before. The dot products involving the ray normals will be constant because the

camera model does not change.

This suggests an iterative scheme, where we fix the γ values and find the ranges,

then recompute the γ values and so on. Equation 5.35 becomes

Am−1r̂m = b (5.42)

where m is the current timestep and

Am−1 = λ
[
(Sm−1 − I)T (Sm−1 − I) + FTF + kDTD

]
(5.43)

The matrix Sm−1 (See Equation 5.26) is constructed by making the linearizing as-

sumption that the iteration at time m will preserve the interpolation coefficients

αi, βi and γi. Without this assumption the non linear nature of the camera model

would make a linear form of the problem impossible. After each iteration step, the

interpolation coefficients are recalculated based on the current range estimates, r̂m.
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MRF Solution 3D Reconstruction

Figure 5.17: The MRF approach makes the assumption that the camera has an affine
projection model (ie. the rays are all parallel). This is not the case for real cameras.
When the pixel ranges are projected back out into 3D space, formerly flat surfaces come out
curved. What is needed is a way to cause the MRF to warp its output, such that the 3D
Reconstruction is correct.
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It is reasonable at this point to query the gains made by incorporating the pro-

jective model over the simple affine case. Figure 5.17 shows the results of applying

the iterative projective correction. It shows the warped surface created by the MRF,

which when projected through the camera model becomes a flat surface. We offer no

formal convergence guarantees, but empirically we find that the algorithm converges

very quickly, usually requiring only around 2 iterations - the curvature due to ray

divergence being small compared to the scale of the measurements.

5.6 Practical Considerations

When it comes to applying this approach to real data collected from a mobile robot,

several practical issues arise. Firstly we must address the effects of so called mixed

measurements (See Tuley et al. [111]) near range discontinuities. If the laser spot is

large enough to fall across two surfaces, the returned range is a weighted sum of the

two possible ranges and does not correspond to a measurement on any real surface,

as shown in Figure 4.9. Secondly we must consider how to handle the consequences

of an almost inevitably imperfect calibration between laser and camera coordinate

frames.

5.6.1 A Laser Sensor Model

Equation 5.21 introduced a weighting term σi expressing confidence in a particular

range measurement ri. As mixed measurements occur near range discontinuities and

we are using image appearance discontinuities as depth change cues, we propose the

following form for a model of confidence in the laser measurements:

σi(I) = 1− η exp

(
−ρ(i,5I)2

2σ2
l

)
(5.44)
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where σi is the confidence in the ith laser measurement, σl is a parameter controlling

the radius of influence of the downweighting effect, η ∈ [0, 1] is a scale factor3. affect-

ing the strength of the downweighting and ρ(i,5I) is the pixel distance between the

measured range node Ri and the nearest image edge. An advantage of this model

is that it goes some way to mitigating issues arising from camera-laser calibration

errors. It is at the range discontinuities that alignment errors have dramatic effects;

misaligned step changes in range and appearance can cause marked rippling effects

in the solution surface. By diluting the confidence in all laser points lying near im-

age edges we simultaneously account for mixed measurements and small calibration

errors.

5.7 Results

We now turn to processing some real data. We used a SICK LMS200 laser scanner

mounted on a robot to capture laser data as it was actuated in a nodding fash-

ion. Images were captured by a camera mounted above the laser with a wide angle

lens. The image used in this case was 518 by 259 pixels resulting in some 134,162

range nodes and is shown in Figure 5.18 with laser measurements projected into it.

The reconstructed model is shown alongside, which was produced with parameters:

σc = 100, λdat = 0.5, λ1st = 0.15, λ2nd = 70. Using second-order smoothness alone

provides reasonable results, but tends to introduce ‘rippling’ artifacts around noisy

measurements. A small amount of first-order smoothness is necessary to damp the

oscillations. We show an outdoor result of the same problem size and using the same

tuning parameters in Figure 5.19.

We now present some numerical analysis of the performance of our approach. It is

a hard task to obtain a ground truth geometry for the complete real scene. Instead of
3In this work, the parameters were set empirically. We chose η = 0.1, to almost completely

ignore laser measurements on image discontinuities, with a small σl = 1 pixel to limit the radius of
influence.
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Figure 5.18: Results from an indoor dataset. The original image and laser measurements
are shown in the top left, with a series close-ups of the reconstructed model following. Note
the detail of the smooth floor and inferred sharp range discontinuity between two walls.
The parameters used to produce this reconstruction were: σc = 100, λdat = 0.5, λ1st =
0.15, λ2nd = 70

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

Figure 5.19: Results from an outdoor dataset. On the left is the image with laser measure-
ments overlaid. On the right is the reconstructed model.The parameters used to produce
this reconstruction were: σc = 100, λdat = 0.5, λ1st = 0.15, λ2nd = 70
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Figure 5.20: The left image shows a comparison of range estimates to ground truth laser
data for the indoor case. Areas in yellow show deviation from ground truth, with higher
intensity representing larger errors. Laser measurements are shown in red. The graph
shows average error of the estimate relative to the mean density of range measurements,
when compared to hold out set laser measurements. The laser has a typical measurement
accuracy of ±15mm.

comparing pixel ranges to ground truth we compare them to laser measurements taken

of the scene over a long period of time and which are not used in the optimization.

Concretely, we collect a very dense cloud of laser data at the scene and draw from

that a small sparse test set with which we reconstruct the scene shown in Figure

5.18. The remaining laser data constitutes a dense hold out set. For each unused

laser measurement we can compare measured range to estimated range. Figure 5.20a

shows regions of the workspace which contain pixels with significant errors. These

tend to correspond to areas having large range discontinuity but relatively weak image

edges.

It is also instructive to consider how the accuracy of our approach depends on

the density of laser measurements. Figure 5.20b shows how the statistics (mean and

median) of the pixel range errors change as a function of measurement density. Note

that as expected, as measurement density increases the accuracy tends to that of the

laser itself (around ±15mm). The results given in Figures 5.18 and 5.19 are operating

in the 0.01 measurements/pixel2 region.
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5.8 Comparison With Other Methods

To give a fair comparison with the other methods described in Section 5.3 we used a

standard, readily available dataset. The ‘USF Range Image Database’ 4 is hosted by

the CESAR Lab at Oak Ridge National Laboratory, TN, USA. It consists of a number

of indoor range and reflectance images taken with an Odetics laser range finder. It has

the advantage over our own data of having range measurements for every pixel in the

image, which is much more convenient for measuring error statistics. The reflectance

images are monochrome, and the range measurement resolution is 0.03m.

First, we ‘trained’ each of the methods on the ‘engine.0’ range scan from the

database (Figure 5.21), with a measurement density of 0.01meas/pixel2. The training

was carried out by repeatedly running each method on the example and finding the

tuning parameters that minimized the Mean Squared Error over all range nodes.

Essentially we performed a grid search over the parameter space for each method. In

some cases the parameter space had too many dimensions for this to be tractable, so

some parameters were chosen heuristically. Crucially, once the parameters were tuned,

they were untouched for the rest of the experiment, and we did not use the ‘engine.0’

dataset to produce any results. The parameters used for all of the experiments are

summarized in Figure 5.21.

We ran each of the algorithms on three randomly chosen USF datasets, with three

different measured node densities. As well as the interpolation methods previously

discussed, we implemented a simple Bilinear Interpolation method to provide a base-

line of performance. In the results tables, it is referred to as ‘BILINEAR’. The results

of our experiments are shown in Tables 5.1, 5.2 and 5.3. The errors are measured in

metres; for each experiment we give the Mean Squared Errors (MSE), the Median

Error and the Variance of the error over the whole image.

4http://marathon.csee.usf.edu/range/DataBase.html
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(a) ‘engine.0’ image

Method σc σp λdat λ1st λ2nd

BILINEAR - - - - -

NR - - - - -

NRC 0.401 0.966 - - -

MLI - - - - -

LIC 0.306 - - - -

PLIC - - - - -

MRF 1st-Order 22.360 - 0.700 0.300 -

MRF 2nd-Order 22.360 - 0.700 0.075 45.000

Figure 5.21: Parameter settings used for the different interpolation methods. A dash
indicates that the method does not use a particular parameter. The values were obtained
by training on the ‘engine.0’ range scan from the USF Range Image Database. The known
measurements used in training are shown as dots on the image.
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The MRF with 2nd-Order smoothness term compares very favourably with our

implementations of the other methods. In almost all cases it has the lowest Mean

Squared Error scores and smallest error variance. The cases were it does not perform

so well generally correspond to surfaces with small area, and therefore have very few

samples lying on them. In these cases the MRF has large latitude to infer an incorrect

surface, whereas the greedy interpolation schemes must have their estimates bounded

by the ranges of nearby measurements - no extrapolation can ever occur. Nonetheless,

the MRF with 2nd-Order smoothness still performs well with sparse measurements.

Figure 5.22 shows the resulting 3D surface for the most sparse experiment on the

‘ashtray.0’ range scan.

5.9 Chapter Summary

We have introduced a novel technique for fusing sparse laser data and images to enable

a dense 3D scene reconstruction. Above and beyond existing prior work this technique

uses a second order smoothness term which allows it to extrapolate both planar and

curved surfaces. The problem is formulated as the solution of a sparse linear system,

which allows the use of fast optimization techniques. In particular, we have shown

that a judicious framing of the affine case leads to a linear problem. Furthermore, we

have described an iterative scheme which allows a more realistic projective camera

model to be folded into the overall framework. In order to account for step changes

in range commonly found in real environments, a laser sensor model was developed

that models the likelihood of mixed measurements commonly encountered in such

situations. The technique was applied to both illustrative synthetic cases as well as

real data recorded in indoor and outdoor scenes containing challenging geometry.

One might ask why we should stop at 2nd order smoothness terms. We declined

to consider higher order curvature terms due to issues of computational complexity.
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(a) Ground truth

(b) MRF with 2nd-Order Smoothness

Figure 5.22: 3D rendering of the range image for the ‘ashtray.0’ range scan. Even with
a particularly sparse measurement density of 0.0044 meas/pixel2, the MRF with 2nd-Order
smoothness is able to infer the unknown ranges with remarkable fidelity.
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In particular, the clique size would increase greatly, and the linear MRF framework

would not support the curvature models required.

Our results showed that with well-chosen tuning parameters, our method signif-

icantly out performed a number of contemporary algorithms. Nevertheless, there is

room for improvement. In particular we must consider how we can increase robust-

ness to erroneous laser measurements (away from image edges) and how we might

fuse multiple scenes in a principled way. The flip side of this problem is handling

bona-fide discontinuities in range when there is no change in image appearance and

vice versa.

This point marks the end of the direct exploitation of range data and the be-

ginning of a focus on high-precision timing. The motivation for this transition lies

in the observation that the intrinsic value of time series measurements is limited by

the precision and our confidence in the data’s time stamps. Better timestamping is

synonymous with better data. Improved timestamping yields improved data.
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Chapter 6

Clock Synchronization

“The only reason for time is so that everything doesn’t happen at once.”

Albert Einstein

6.1 Introduction

We now move on to describe work done to provide highly accurate time synchro-

nization between networked computers. We shall describe a system implemented for

the Mission Oriented Operating Suite (MOOS) [77] - robot middleware software for

communication between distributed processes. The techniques are however applicable

to clock synchronization in general, which is of vital importance in networking and

communication technologies.

The architecture of MOOS allows communication between multiple processes run-

ning on many different machines on a network. A fundamental requirement of MOOS

is that processes which provide time-stamped data have synchronized clocks. This

ensures that time stamps generated by one process are consistent with those of all

other processes.

A simple example would be that of a robot with the odometry system interfaced

to one physical computer, and sensors interfaced to another physical computer. In
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order to create a map from the sensor data, it is necessary to know exactly where the

robot was when an observation was taken. Given a timestamp for the observation, we

may query the odometry buffer to obtain the pose of the robot for that timestamp. A

discrepancy between the clocks of the two computers would cause an incorrect pose

to be returned.

A common approach to clock synchronization in a robotics context is to run an

NTP (Network Time Protocol) [70] server on one computer and have the others adjust

their clocks to it [59]. The clocks are brought slowly into alignment by varying their

frequencies by small amounts. This is undesirable in a robotics context because it

can take many hours to synchronize clocks via NTP, and the frequency changes can

cause inconsistencies in timestamps. It also requires manual configuration of all the

computers, independent of the middleware system. An incorrect configuration (ie.

synchronizing to the wrong server) could be disastrous and difficult to diagnose.

A variant of NTP, known as SNTP (Simple Network Time Protocol) which is the

default for synchronization in Microsoft Windows and some Linux distributions can

cause particular problems. Synchronization is performed periodically and involves

applying an offset to the client clock to immediately bring it in line with the server.

The greater the disparity in clock frequencies, the larger the offset jumps will be. In

some cases this can result in time appearing to go backwards.

What is needed is a system which operates transparently to the user, capable

of rapidly synchronizing clocks and able to adjust to clock upsets such as frequency

changes and instantaneous resets (offset jumps) which may be exhibited by clocks un-

der the control of NTP or SNTP. In other words, we require a system which maintains

synchronization despite the use of NTP.

We will first frame the problem and then discuss existing approaches to a solu-

tion. We will examine in depth two approaches proposed by other authors, and then

describe our own real-time network based clock synchronization algorithm which is
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capable of synchronizing clocks to arbitrary skew accuracy if given enough time. We

call our algorithm the Timestamp-based Incremental Clock Synchronization Scheme,

or TICSync for short. Our particular contributions are: An efficient incremental al-

gorithm, a method for deriving probabilistic convergence properties, and a method

for online detection of clock upsets, known as TICSync+.

6.2 How bad can clocks be?

Modern PCs use two methods for keeping track of time. On the motherboard is

the hardware clock, which has a quartz oscillator and a dedicated battery, so that

it may keep time while the computer is turned off. These devices are low cost and

temperature sensitive. Under normal conditions they should be expected to lose or

gain up to 15 seconds per day.

The other method is the software clock (aka. kernel clock), which produces time

interrupts used by the operating system for scheduling and time keeping. The software

clock only runs while the computer is turned on, and is synchronized to the hardware

clock at boot-up. Most Operating Systems have internal multipliers that allow the

rate of the software clock to be adjusted. Programs such as the linux utility adjtimex

attempt to set the rate to match that of the hardware clock.

Given the inaccuracies inherent in a regular PC’s clock infrastructure, the software

clocks on two computers cannot be expected to be without offset, or even running at

the same speed. Between computers of identical hardware specification and software

setup, we have observed clock skews of up to 170 ms per hour. In the context of an

experiment gathering time-stamped data, this can cause significant data corruption.
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6.3 Terminology and Assumptions

We now define the standard terminology that will be used throughout this chapter.

The nomenclature was first introduced by Mills [70]. A clock is defined as a piecewise

continuous monotonic function that may be differentiated twice everywhere except at

a finite number of points where it may be reset. A perfect clock runs at a constant

rate and always gives the ‘true’ time, C(t) = t. A clock is correct at some time

instant ti if C(ti) = ti and accurate if C ′(ti) = 1. A clock is stable at some instant if

it satisfies C ′′(ti) = 0. So a perfect clock is correct, accurate and stable at all times.

For comparing two clocks, we will adopt the standard definitions from the litera-

ture:

Offset The difference in reported time between two clocks. The offset of clock a

relative to clock b at time t is defined as Ca(t)− Cb(t)

Frequency The rate, C ′(t) at which a clock runs. This will always be a positive

quantity (enforcing that time does not run backwards), except at a finite number

of reset points.

Skew The difference in frequency of two clocks. The skew of clock a relative to clock

b at time t is C ′a(t)− Cb(t)

Drift The drift of clock a relative to clock b at time t is defined as C ′′a (t)− C ′′b (t)

Consistency Consistent clocks share the same frequency, but may have some con-

stant offset between their reported times: Ca(t) = Cb(t) + c

Computer clocks have limited resolution and may be seen as a piecewise continuous

step function with step height equal to the resolution of the counter. In the following

analysis, we shall treat the clock as a device which samples a continuous time function

at discrete intervals.
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We further assume that the clock resolution is smaller than the message trans-

mission delays between computers. Those delays are modelled as a random variable,

with each transmission delay being independent of adjacent delays.

6.4 Synchronization approaches

In the context of robotic middleware, there are many approaches to the problem of

ensuring that separate devices produce consistent time stamps:

6.4.1 Clock adjustment techniques

Single shot The clocks of the computers are synchronized on a single occasion, be-

fore the mission begins. The offset is corrected, but skew is not addressed. This

is successful only if the clocks are running at the same rate. If not, they will

diverge over time.

Active synchronization Techniques such as NTP (Network Time Protocol) [70]

bring clocks into alignment gradually over time by adjusting the rate of the

client clock. The process can take many hours, since NTP tries to avoid large

adjustments to the clock. If the clocks are fully synchronized before the mission

starts, then time stamps can be accurate down to on the order of 200µs, but

an incomplete synchronization will result in incorrect time stamps until con-

vergence. Running NTP may not be desirable in some cases, especially as it

is independent of the Middleware system and must be manually configured to

synchronize to the correct server.

Occasional synchronization SNTP (Simple Network Time Protocol), as imple-

mented in the Microsoft Windows Operating System, simply performs Single

Shot updates at regular intervals (typically every few minutes). It does not
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attempt to learn or adjust the frequency of the client clock. For clocks with

large relative skew this can lead to unacceptable clock jumps.

6.4.2 Offset measurement techniques

These attempt to learn a mapping from client times to server times, which may be

used to produce time stamps consistent with those at the server.

Single Shot The clock offset between client and server processes is measured once

when the communications link is established and then assumed to be constant.

The estimate will become progressively worse (depending on the skew) and may

soon lead to data corruption.

Skew estimation The clock divergence between client and server processes is con-

tinually measured, and the skew estimated. This may be handled automatically

and transparently to the user, since it does not rely on third party tools such

as NTP.

The technique we describe here is of the latter type; we aim to learn the mapping

between between two clock functions, so that knowing the time reported by one clock

allows the recovery of the (estimated) time reported at the other clock at the same

instant.

6.5 Message Timing Mechanism

Consider two computers communicating over a network: a client and a server. The

client prepares a data packet, timestamps it with the current local (client) time and

sends it to the server. If the clocks of the the two computers are perfectly synchronized

then the server will observe a difference between the time of transmission and the time

of receipt equal to the network propagation delay. If the clocks are consistent (equal
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Figure 6.1: Timestamping mechanism between two computers. The client and server
clocks are running at different frequencies, represented by the tick marks. When either
computer sends or receives a packet, it adds a local timestamp. Possession of all four local
timestamps allows a bounded offset estimate to be obtained. Note that propagation delays
may be asymmetric.

frequency but have a constant offset) then the server will observe a difference equal

to the sum of the offset and the network propagation delay. Crucially, the server is

unable to recover the offset between the two clocks without having knowledge of the

network delay.

We denote the server clock time as Cs(t) and the client clock time as Cc(t). It is

convenient to assume that the server clock is perfect, so that Cs(t) = t. We may do

this without loss of generality. We denote the true offset between the two clocks as

τ(t). The offset may be positive or negative and is expressed as

τ(t) = Cc(t)− Cs(t) (6.1)

= Cc(t)− t (6.2)

The offset may be estimated during the normal communications between the client

and server. Consider Figure 6.1 which shows a single packet communication in each

direction with local timestamps being stored at each send or receive event. We will

refer to a packet from the client to the server as a request and a packet from the

server to the client as a response.
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The delays between the transmission and receipt events for each packet may be

considered as random variabes, with distribution depending on network load, trip

length, and CPU load at the client and server. It can not even be assumed that the

delays are symmetric. Indeed, if the server is busy, it may not process and timestamp

the request packets immediately, meaning that the outbound journey often takes

longer than the return journey.

We now show that the difference between timestamps on the request packet gives

a lower bound on the true offset at the time of receipt, and that the difference between

timestamps on the response packet gives an upper bound on the true offset at the

time of transmission. Because it will always take a finite positive amount of time for

messages to travel through the system, we can state that,

t0 < t1 < t2 < t3 (6.3)

We now show that we may obtain a lower bound on the true offset at t1, τ(t1) as,

τLB(t1) = Cc(t0)− Cs(t1) (6.4)

Clocks always run forwards so Cc(t0) < Cc(t1) and

τLB(t1) < Cc(t1)− Cs(t1) (6.5)

= τ(t1) (6.6)

A similar argument may be used to show that an upper bound on the true offset is
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Figure 6.2: Typical offset measurements for a moderately loaded system running MOOS.
The bottom line shows offsets measured from the request packet, and the bottom line shows
offsets measured from the response packet. The two lines bound the true offset. Notice that
request packets typically have higher latency than responses, yet there are still a few low
latency request packets. This is a particular characteristic of the MOOS middleware and
relates to the fact that request packets tend to contain more data than response packets.
Also, if the server is busy it may not deal immediately with a request.

given by,

τUB(t2) = Cc(t3)− Cs(t2) (6.7)

> Cc(t2)− Cs(t2) (6.8)

= τ(t2) (6.9)

6.6 The Bounds Corridor

Figure 6.2 shows typical upper and lower bound offset values measured by the client

with a moderately loaded network. It can be seen that the upper and lower bound

lines form a corridor in which the true offset value must lie. At a particular instant, the

total Round Trip Time (RTT) is given by the difference between the upper bound and
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the lower bound. As network load increases, packet journey times will increase, and

the bounds will diverge, corresponding to larger RTTs. On a completely unloaded

system, the RTT will reach a minimum value, 2δ, corresponding to the shortest

possible time for an exchange between the client and server. The upper and lower

lines forming the corridor will never intersect each other:

τUB − τLB ≥ 2δ (6.10)

When there is a lot of traffic passing through the server, or the CPU is under high

load, it may take longer than usual for the server to get round to processing a client

request message. This explains the fact that in the example figure the lower bound

line is noisier than the upper bound line. It can also be seen that occasionally a low

latency message will slip through. We will show how these low latency messages can

provide useful information, even if the total round trip time is large.

6.7 Clock skew model

Over periods on the order of tens of minutes, the effect of drift between clocks is

typically small. It is reasonable to assume a constant-skew model:

Cc(t) = mt+ c (6.11)

where m and c are scalar parameters that must be learned by the client.

Using the definition for offset (equation 6.2) and the linear model (equation 6.11)

we find that the offset at any time is given by

τ(t) = Cc(t)− Cs(t) (6.12)

= (m− 1)t+ c (6.13)
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The lower bound becomes

τLB(t1) = Cc(t0)− Cs(t1) (6.14)

= mt0 + c− t1 (6.15)

= τ(t1)−m(t1 − t0) (6.16)

Similarly the upper bound becomes

τUB(t2) = Cc(t3)− Cs(t2) (6.17)

= mt3 + c− t2 (6.18)

= τ(t2) +m(t3 − t2) (6.19)

If the client is able to learn the correct values of m and c over (ideally a relatively

short) time, then given a local client timestamp, Cc(t), the time at the server may be

recovered trivially using

t =
Cc(t)− c

m
(6.20)

From this point onwards we shall assume that the relative clock offset takes the

form

τ(t) = αt+ β (6.21)

and that α and β are the quantities to be estimated.
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6.8 Previous Work

The problem of synchronizing two clocks comes down to using the bounds corridor to

estimate the skew and offset between the clocks, though many approaches consider

only messages sent in one direction, For those algorithms the offset estimate will

always be biased by the minimum network delay, δ.

6.8.1 Point estimate approaches

Early techniques based on exchanging timestamped messages made clock adjustments

based on information from only the most recent exchange and would not estimate

skew. The seminal work by Lamport [60] concentrated on the importance of deter-

mining the order of message events, rather than recovering exact time stamps. The

algorithm assumes knowledge of the minimum network delay δ and requires that the

clock of a process advances by at least one tick between any pair of message events (ie

send or receive). Whenever a process receives a message that appears to have been

sent after it arrived, the receiver’s clock is set to be one tick greater than the transmit

time plus the minimum propagation delay, δ. This ensures correct event ordering,

but is not satisfactory for measurement applications. Later work by Lamport and

Melliar-Smith [61] investigated the problem of achieving instantaneous synchroniza-

tion given differing time reports from multiple processes, including an ability to deal

with some processes reporting incorrect timing information.

Cristian’s algorithm [28] refined the technique by considering bi-directional mes-

sage passing, where Round Trip Times (RTT) can be measured. If a request-response

pair has a RTT less than some threshold, then the requestor’s clock is set to the re-

sponse transmission time plus half the RTT. The accuracy of the technique is bounded

by half the Round Trip Time. The technique is probabilistic in that the threshold

should be set to ensure a good balance between the achieved accuracy and the number
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of messages actually satisfying the threshold (ie. expected update interval). Gusella

and Zatti [43] propose a similar algorithm to that of Cristian, assuming stable and

accurate client clocks, and then show how it may be used to synchronize an ensemble

of processes.

Lundelius and Lynch [65, 64] take measurements from multiple clocks and average

them. They derive a lower bound on the achievable accuracy for a system of n clocks.

Marzullo [67] describes the implementation of a time server in a distributed system.

By assuming a known upper bound on clock skew, clocks in the system maintain an

upper bound on their possible error which is updated whenever they are adjusted. The

time server serves the value of the clock with the lowest error. Again, the accuracy

of this algorithm is bounded below by the minimum message delay.

6.8.2 Filtering approaches

We now address approaches which use temporal filtering to obtain a more accurate

result than is available from point estimates. Veitch et al. [114] use highly accurate

driver-level time-stamping to minimize packet timing error. Within a sliding window,

packet pairs with small Round Trip Times (RTTs) are selected and combined in a

weighted average, with weights inversely proportional to RTT. Aweya et al. [6, 7] dis-

cuss a hardware based approach to skew estimation (they do not recover offset) using

a jitter buffer and Phase Locked Loop. They suggest a linear regression approach

to finding the skew. Recognizing the need to minimize stored data motivates their

decision to use a sliding window and exponential smoothing of the estimate.

Paxson [89] takes an off-line multi-step filtering approach using bi-directional

timestamped messages. First, the clock offset for each measurement pair is found

by averaging the request and response delays (ie. taking a point mid-way between

the two bounds). These values are then ‘denoised’ by splitting the signal into equal

length segments and choosing the message pair with the smallest average delay in
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each segment. If there are N measurements then the segment lengths are chosen to

be the smaller of
√
N samples or (tN−1 − t0)/

√
N seconds. Clock skew detection is

performed by looking for downward trends in the data (or upward trends by mirroring

the data and looking for downward trends). These are found by sweeping through

the data and counting the number of new minima found. If this is greater than would

be expected from independent data then there is assumed to be a downward trend.

A robust line fitting technique is then used to fit a skew line to the points marked as

minima. It was shown by Moon et al. [73] that the skew error of Paxson’s algorithm

is dependent on the absolute skew value - it performs worse for larger skews. Duda

et al. [34] also propose a robust least squares regression technique but apply it to all

of the data from messages in both directions. They note that the method has the

drawback of not explicitly constraining the line to lie fully within the bounds corridor.

Elson et al. [36] describe a protocol called Reference Broadcast Synchronization

(RBS) which uses linear regression over a window of measurements to estimate skew

and offset between nodes of a wireless sensor network, assuming Normally distributed

delays. Once a node has determined its skew and offset relative to its neighbours,

it broadcasts the information so that the neighbours may then determine their skew

and offsets relative to each other. PalChaudhuri et al. [86] provide a closed-form

probabilistic bound on the synchronization error for RBS, which is interesting because

it allows the derivation of expressions to predict the number of samples required to

achieve a certain accuracy. The bounds are based on the assumption that transmit

delays are drawn from a Normal distribution, which is a reasonable assumption for

wireless sensor networks, but less applicable to Local Area Networks.

A recent development has been the introduction of the IEEE1588 Precision Time

Protocol (PTP), which is designed to provide an accurate clock synchronization ser-

vice over ethernet. The standard requires the use of specialized hardware to generate

high quality time stamps. The idea is send two-way timing messages between client
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and server at regular intervals, and compute the offset from each message in the same

way as Cristian’s algorithm [28]. The output from that is then fed into a Proportional

+ Integral (PI) controller which controls the frequency of the slave clock to drive the

offset error to zero.

6.8.3 Maximum Likelihood Estimator

Duda et al. [34] show how to pose the skew estimation problem in a Maximum Likeli-

hood framework. LetD = {d0 . . dN−1} be the set of upper bound offset measurements

and Q = {q0 . . qM−1} be the set of lower bound offset measurements. If the data are

generated from a pair of clocks with a linear relationship defined by αt + β then

each point can be thought of as being produced by a probabilistic process whereby

di = αti +β+ δ+wi and qj = αtj +β− δ−wj. Here δ is the minimum network delay

and wi ∼ W is a positive random variable representing unknown packet delays. We

discuss the form of the distribution W later.

The proposed likelihood function is

L(α̂, β̂) =
N−1∏

i=0

p(wi = di − (α̂ti + β̂ + δ))
M−1∏

j=0

p(wj = (α̂tj + β̂ − δ)− qj), (6.22)

which is the product of message delay probabilities. The estimator works by choosing

α̂ and β̂ to maximize the likelihood function. The estimator will always return a

solution that lies entirely between the upper and lower packet delay measurements,

because negative delays have zero probability.

The ML estimator is the optimal estimator for the skew estimation problem - it

makes best use of the available information. It has two drawbacks which make it

inappropriate to use in practice. To solve it requires an expensive iterative batch

optimization procedure, making it intractable to run online over long time intervals.

It also requires a priori knowledge of the true packet delay distribution and minimum
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network delay, which are usually not available.

Noh et al. [82] derive Maximum Likelihood Estimators (MLEs) for offset and skew

under the assumption of both Gaussian and Exponential delay distributions. Addi-

tionally, they are able to derive the Cramér-Rao Lower Bound for the ML Estimators

of offset and skew. The Cramér-Rao Lower Bound gives a bound on the lowest achiev-

able variance of any estimator, for a particular likelihood function. The derived ML

estimators are computationally expensive, so the authors propose a much simpler

approximation which is a function of only the first and last measurement pairs; it

ignores all the data in between. It also has the advantage of not requiring a priori

knowledge of the delay distribution parameters.

Chaudhari et al.[20] improved on the MLE derivations of Noh et al. by coming

up with a joint MLE for offset and skew, in the presence of exponential delays. The

resulting algorithm is even more complicated, so again they present an approximation.

They find the two measurement pairs with smallest Round Trip Time, and fit a

line through them, again ignoring all of the other data. Sometimes the line is ill

conditioned, so it may be necessary to replace one of the two measurement pairs with

one of the endpoints of the dataset. Later, Chaudhari et al. [19] derived the MLE for a

clock offset model allowing constant non-zero drift. The algorithm is, unsurprisingly,

more complicated still, but no low-cost approximation is given.

The algorithms we move on to discuss now may also be regarded as ways of

approximating the ML Estimate, but arguably they make more effective use of the

available data than the approximations just discussed.

6.8.4 Linear Programming Approaches

Linear programming approaches attempt to minimize or maximize an objective func-

tion, give a series of constraints imposed by the timing data. The assumption with

these is that clocks have zero drift, so that the problem amounts to finding the pa-
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Figure 6.3: The linear programming technique of Moon et al. applies to one-way delay
measurements D = {d0 . . dN−1} only, which form an upper bound on the line with true
skew α, offset by the minimum network delay, δ. The algorithm finds a line α̂t + β̂ which
touches the underside of the data, but does not lie above any data point.

rameters of a line that best approximates the skew and offset between clocks.

Moon et al. [73, 72] consider only one-way timing information and ensure that

the bounds are satisfied by using a linear programming technique to fit a line hard

up against the data points. The algorithm is very effective and lends itself to an

incremental implementation. Figure 6.3 shows the set of upper bound measurements

D = {d0 . . dN−1} generated from a pair of clocks with true skew α and initial offset

β. The algorithm chooses its estimate line α̂t+ β̂ to minimize the objective function:

min
α̂,β̂

∑N−1
i=0

(
di − α̂ti − β̂

)

s.t. α̂ti + β̂ ≤ di, i = 0 . . N − 1

(6.23)

Moon et al. note that linear programming problems in two dimensions may be

solved in O(N) time [68]. They do not offer any information about the convergence

properties of their estimator. In Sections 7.1.2 and 7.2 we will examine its convergence

properties and compare them with our own clock synchronization algorithm. Because
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Figure 6.4: The objective function of Sirdey and Maurice finds the two lines of maximum
separation that lie within the bounds corridor and share the same slope, α̂. The upper and
lower lines have intersect β̂1 and β̂2 respectively.

we will regularly mention the synchronization scheme of Moon et al., we will usually

refer to it simply as the Moon Estimator.

Much of the next Chapter will be devoted to analyzing an objective function

proposed by Sirdey and Maurice [103]. They present a linear programming algorithm

which seeks to find the pair of maximally separated lines of equal slope that fit

within the data corridor. Figure 6.4 shows an example, with the lines of maximum

separation being α̂t+ β̂1 and α̂t+ β̂2. If the upper bound measurements are given by

D = {d0 . . dN−1} and the lower bound measurements by Q = {q0 . . qM−1} then the
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lines of maximum separation are found by maximizing the objective function,

max
α̂,β̂1,β̂2

β̂1 − β̂2

s.t. α̂ti + β̂1 ≤ di, i = 0 . . N − 1

α̂t′j + β̂2 ≥ qj, j = 0 . .M − 1

(6.24)

Given that the data is expected to form a linear corridor, this approach (over the

others discussed) seems to make best use of all the information available and has the

effect of minimizing the maximum offset error. Assuming that message delays are

symmetric, one would use a line α̂t + (β̂1 + β̂2)/2 as the final offset estimate. The

reader may recognize similarities between this estimator and the Maximum Margin

Classifier of the Support Vector Machine [13].

Sirdey and Maurice show empirically that the method satisfies the stringent syn-

chronization requirements of the GSM Base Station Network, of 50 PPB (parts per

billion) in skew, given sufficient time to converge. We will present theoretical conver-

gence results for the algorithm later, and compare it to the Moon Estimator.

The implementation proposed by Sirdey and Maurice involves gathering timing

data over a period of around 10 minutes (in which the clocks are expected to exhibit

no drift) and then performing a batch linear programming optimization of equation

6.24 in linear time [68, 35]. They suggest that an implementation of the well known

simplex algorithm [75] could also be used.

In Section 8.0.1 we will present an algorithm which maximizes the objective func-

tion in equation 6.24, but does so much more efficiently than the algorithm proposed

by Sirdey and Maurice. We will refer to the resulting estimator as the MaxSep Esti-

mator, due to its goal of finding lines of Maximum Separation.
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Figure 6.5: The method of Duda et al. After computing upper and lower convex hulls,
the pair of lines passing between the hulls with minimum and maximum slope (α̂2 and α̂1

respectively) are found. The estimate α̂t+ β̂ is then given by the line that bisects the two.

6.8.5 Convex Hull approaches

Duda et al. [34] were amongst the earliest to recognize the importance of the convex

hull in estimating clock skew. After determining that linear regression gives a poor

result, they proposed a convex hull based algorithm. Figure 6.5 demonstrates the

idea, which involves computing convex hulls of the upper and lower bound packet

traces. By walking the hulls from opposite directions and looking for lines which lie

at a tangent to both hulls, a pair of bounding lines passing through the corridor with

minimum and maximum slope are found. The estimate is then given by the line that

bisects the bounds.

Later, Zhang et al. [123] showed that the Moon objective function (Equation

6.23) could be minimized using a convex hull approach in linear time. It should be no

surprise that the convex hull plays a part, since any line which is pushed up against
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the data cannot touch any point not on the convex hull. The result of Zhang et al.

is discussed in Section 7.1.1, and plays an important part in the later convergence

proofs.

6.8.6 Upset Detection

A number of authors relax the assumption of zero clock drift and attempt to track

the changing skew, as well as various types of clock upset such as resets. This usually

comes down to locating breakpoints between which the clocks are assumed to behave

in a linear fashion. The majority of piecewise linear techniques are off-line and search

for optimal breakpoints considering all of the data.

The types of upset considered are

Resets Where a clock has its time reset, but the frequency remains constant.

Hiccups Where a reset is closely followed by an equal and opposite reset, bringing

the clock back to its original offset.

Frequency Resets Where the clock frequency is reset, but the offset does not jump.

Drift The frequency varies smoothly over a period of time. This is typical behaviour

of a clock under the control of NTP.

Zhang et al. [123] propose offline approaches for detecting clock resets in one-way

timing data. They begin with an algorithm which assumes only a single reset point

and constant skew. They show how to estimate skew if the reset point is known.

In practice the reset point is located by running the algorithm for all possible reset

points, and finding the one the best explains the data. Then they generalize the

approach to allow an arbitrary number of resets, with a constraint on how regularly

they may occur. This involves trying all possible combinations of reset points; an

O((N/R)RNR) algorithm for R resets and N samples. In order to reduce the search
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time, they employ a divide-and-conquer heuristic, splitting the data into fixed-length

intervals and merging adjacent intervals which appear to share the same slope. The

single breakpoint algorithm is then applied to each remaining interval. The constraint

on the minimum time between resets means that hiccups may not be adequately

detected.

A similar approach is used to find piecewise linear skew lines, when there are a

finite number of skew adjustment points. The authors do not present an algorithm

capable of detecting both resets and skew adjustments simultaneously.

Bi et al. [12] take another offline divide-and-conquer approach, which operates

recursively on one-way timing data. First the Moon Estimator is applied to all of the

data. If the line does not fit the data well then the data is divided in two and the

algorithm called recursively on each segment. the measure of line fit goodness is to

count the number of delay measurements that touch the fitted line. A probabilistic

threshold must be chosen to tune this. the authors note that the algorithm can fail

when the minimum delay measurements are not fairly distributed. They provide a

solution to the problem by applying the line goodness test at multiple scales on each

segment, resulting in an O(N log2N) algorithm.

The advantages of the technique are that it can detect an arbitrary number of clock

upsets without increasing complexity. The disadvantages are that it has a number of

thresholds that must be chosen for window lengths and minimum delay measurement

density. It will also tend to overfit to network load fluctuations, unless the minimum

segment length is kept relatively large.

Wang et al. [115] provide another divide-and-conquer approach, again on one-way

measurements. They find stable clock periods (constant skew) and fit piecewise linear

segments, using a recursive top-down algorithm. The novelty of their method is in

a second pass which can undo previous poor segmentation decisions by re-merging

segments. The algorithm is O(KN2), where K is the final number of segments.
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To enable online use, the authors propose running the segmentation over a sliding

window. this will inevitably lead to a delay equal to the window period, and would

result in an O(Kw2N2) algorithm, where w is the window length.

A problem with many divide and conquer techniques is that since the algorithm is

offline and must be presented with all of the data, sometimes clock upsets are detected

before they occur. In one example presented by Bi et al., a clock hiccup is detected

10-15 seconds in advance, and the return to normal time is not detected for another

10-15 seconds.

Khlifi and Gregoire [55] suggest using a sliding window and exponential smoothing

on the skew estimates (which will add further phase lag) as well as a number of

heuristics to condition the data.

6.9 Chapter Summary

We have discussed the fundamentals of the clock synchronization problem and the

methods used to model the offset and skew relationships between different clocks.

We have shown how packet delay measurements between two networked computers

can be represented as a ‘corridor’ which gives upper and lower bounds on the offset

between the clocks of the computers.

We explored a number of existing methods of analyzing the corridor data in order

to recover the skew and offset between clocks, focusing particularly on linear pro-

gramming and convex hull based methods, which make most efficient use of historical

timing data. We then investigated methods of detecting clock ‘upsets’, finding that

existing approaches tend to require expensive offline processing, or put constraints on

the type and regularity of upsets.

In the following chapters we look more in depth at the linear programming ap-

proaches and will, from the insights gained, develop a highly efficient clock synchro-
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nization algorithm capable of detecting and adjusting to upsets online, in near-optimal

time. Our motivation remains the generation of accurate timestamps across a dis-

tributed system.
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Chapter 7

A Probabilistic Analysis

In this Chapter, continuing our pursuit of a distributed time-synchronisation sys-

tem, the performance of two estimators is studied in depth; the Moon Estimator

and the MaxSep Estimator. The originating authors of the two techniques present

only empirical results for the convergence properties of their estimators. We provide

convergence proofs and develop probabilistic convergence models for both. Those

results give us a basis for comparing the two estimators and for deriving real-time

performance measures.

7.1 Moon Estimator

Moon et al. [73, 72] do not present any form of convergence proof for their Linear

Programming based approach to clock synchronization (henceforth referred to as the

Moon Estimator). In this section, we present a new proof of convergence, and develop

a probabilistic model to characterize the convergence properties. The model will form

a basis for comparing the performance of different objective functions.
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Figure 7.1: A set of upper bound delay measurements shown with their convex hull. The
Moon objective function is minimized by the hull segment spanning the mean measurement
time, tmid = 1

N

∑N−1
i=0 ti. In this case that segment is {dj , dk}.

7.1.1 A Dual Formulation for the Moon Estimator

Figure 7.1 shows a set of upper bound offset measurements, D = {d0 . . dN−1} taken

between a pair of clocks. The true slope of the measurements is α. Note that we

have chosen the true intersect value to be β = 0 in order to simplify the following

steps, though no loss of generality is incurred. With a fixed sample period T and a

minimum message propagation delay, δ, we model the measurements with

di = αTi+ δ + wi, i = 0 . . N − 1 (7.1)

where wi ∼ W is a random variable representing unknown packet delays. Packet

delays are never negative, so wi is guaranteed to be positive. All measurements,

di ∈ D must lie above the line αt+ δ.

Recall that the Moon [73] objective function is

min
α̂,β̂

∑N−1
i=0

(
di − α̂ti − β̂

)

s.t. α̂ti + β̂ ≤ di, i = 0 . . N − 1

(7.2)
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Zhang et al. [123] showed that minimizing the objective function may be achieved

using a convex hull approach. A convex hull is shown fitted beneath the points in

Figure 7.1. Notice that no line lying below the data points can intersect the convex

hull, and that if such a line passes through more than one data point then it must

be collinear with one of the hull segments. We will use the short notation {dj, dk} to

refer to a section of the hull joining points (tj, dj) and (tk, dk).

Zhang et al. demonstrated that minimizing the Moon Objective Function is com-

pletely equivalent to choosing the hull segment spanning the time tmid = 1
N

∑N−1
i=0 ti

to be the line estimate. In Figure 7.1, the segment {dj, dk} is the one that spans tmid,

and is thus the estimate α̂t + β̂. As N increases, the number of low-latency packets

seen will increase, and the estimate will approach αt+ β + δ.

The Moon Estimator lends itself to an incremental implementation because the

convex hull can be computed incrementally, and maintaining a pointer to the hull

segment spanning tmid is trivial. A suitable algorithm for computing the hull is

reproduced in Section 8.0.1.

Before we move on, consider the case when tmid coincides with a point on the hull;

there is no single line which minimizes the objective function. Zhang et al. do not

discuss this case, but the set of possible solutions will be all lines passing through

dmid, with slope bounded by the slopes of the two adjacent hull segments. In practice

a sensible course of action would be to take the line passing along the later hull

segment, since the constantly marching mid-point will shortly lie in that segment.

7.1.2 Proof Of Convergence For The Moon Objective Function

Having a convex hull based formulation for the Moon Estimator allows us to apply

the tools of convex analysis and computational geometry and gain useful insights

into the performance of the Estimator. Moon et al. show only empirically that the

estimate produced by their method converges to the true answer. We now present a
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proof of convergence.

Suppose that after N measurements, the convex hull segment spanning tmid lies

on the interval [tj, tk] where tj < tmid < tk.

Lemma 7.1.1 Any hull segment {dr, ds} lies on or above the line αt + δ within the

interval [tr, ts].

Proof The measurements dr and ds form the endpoints of the hull segment. Since

di ≥ αt+ δ for all i, the hull segment must lie on or above the line αt+ δ.

Lemma 7.1.2 If the hull segment {dj, dk} has slope α̂ ≥ α then

α̂T i+ β̂ ≥ αTi+ δ, i = k . .N − 1 (7.3)

Proof Follows from Lemma 7.1.1. If the line α̂t + β̂ is above or touching αt + δ at

time tk then it must remain above or touching at all subsequent times if α̂ ≥ α.

Lemma 7.1.3 If some hull segment {dr, ds} has slope a < α then as N → ∞ no

future segment spanning tr will have slope greater than a.

Proof It is a property of the convex hull that every segment has a slope strictly

greater than that of all previous segments. When a new data point p is added on the

right, the hull changes in one of two ways. If p lies above the last hull segment line

then a new, steeper segment is appended to the hull, with p as its end point. If the

new point lies on or below any previous hull segment lines then those segments are

removed from the hull and then a new segment (less steep than all those removed)

is appended with p as its end point. Therefore existing segments are only modified

by a merge operation, and the merge operation only ever replaces old hull segments

with a less steep segment than before.

Thus if the segment {dr, ds} is replaced in a merge operation, the replacement

must both span tr and have new slope a′ ≤ a.
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Figure 7.2: If a hull segment has slope less than α then the line through that segment will
intersect the true line at some future time, tX . As the number of samples increases and tmid
progresses to the right, it will eventually pass tX . After that time, no hull segment spanning
tr will also span tmid.

Lemma 7.1.4 If some hull segment {dr, ds} has slope a < α then as N → ∞, the

hull segment spanning time tmid will not span time tr

Proof Figure 7.2 shows a situation where a hull segment {dr, ds} with slope a < α

lies after tmid. As N increases, tmid advances to the right at half the rate. Since a < α,

the intersection point tX between the extended hull segment and the line αt+ δ must

lie after tr. From Lemma 7.1.3, any future hull segment spanning time tr cannot have

slope greater than a, thus its intersection point with the line αt + δ must be on or

to the left of tX . Since no hull segment may intersect the line αt+ δ (Lemma 7.1.1),

no segment spanning tr will extend beyond tX . As N →∞, tmid > tX , so a segment

spanning tmid cannot also span tr.

Lemma 7.1.5 In the limit as the number of samples tends towards infinity, the length

of the convex hull segment spanning tmid is infinite.

Proof Consider the case shown in Figure 7.3 when the hull segment {dj, dk} spanning

tmid is followed by a segment {dk, dl} with equation α̂′t+ β̂′.
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Figure 7.3: As the number of samples tends to infinity, the length of the segment spanning
tmid (in this case {dj , dk}) also tends to infinity.

The existence of the hull segment {dk, dl} implies that all data points di for k <

i < N lie on or above the line through that segment, α̂′t + β̂′, and therefore strictly

above α̂t+ β̂. The probability of drawing a set of measurements whose random delays

satisfy that constraint is given by

P (α̂′ > α̂) =
N−1∏

i=k+1

P (di > α̂T i+ β̂) (7.4)

=
N−1∏

i=k+1

P (αTi+ δ + wi > α̂T i+ β̂) (7.5)

=
N−1∏

i=k+1

P (wi > (α̂T i+ β̂)− (αTi+ δ)) (7.6)

where wi represents a random positive delay, so wi ≥ 0 for all i. Finding the limit as

the number of samples tends to infinity gives

lim
N→∞

P (α̂′ > α̂) =





1 (α̂T i+ β̂) < (αTi+ δ), ∀ i > k

0 otherwise
(7.7)
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Figure 7.4: Any line passing through both ends of the shaded area must tend towards
αt+ δ as the number of samples tends to infinity.

The first case would be satisfied only when α̂ < α (from Lemma 7.1.1) and implies

intersection with the line αt+ δ at time tk. From Lemma 7.1.4, hull segment {dj, dk}

would therefore not span tmid in the limit as N → ∞. Thus the first case is never

satisfied.

Therefore, in the limit as N →∞, there can be no segment after {dj, dk} that has

greater slope. The convex hull does not allow for subsequent segments with lesser or

equal slope, so it must be the case that k →∞ as N →∞.

Lemma 7.1.5 offers good justification of our forthcoming assertion (Section 8.0.1)

that in practice convex hulls rarely grow above 20 segments when applied to packet

delay data. The probability of the hull growing in size without bound is vanishingly

small.

Lemma 7.1.6 If there is a line, at + b satisfying αt + δ ≤ at + b ≤ α̂t + β̂, for

tj ≤ t ≤ tk spanning tmid then it must converge to the line αt+ δ as N →∞

Proof Figure 7.4 shows a shaded area corresponding to the feasible region for the

line at + b. The probability that all data in the interval [tj, tk] lies above the line is
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given by

F (a, b) =
k∏

i=j

P (di ≥ aT i+ b) (7.8)

=
k∏

i=j

P (wi ≥ (aT i+ b)− (αTi+ δ)) (7.9)

In the limit as N →∞, Lemma 7.1.5 tells us that k →∞, so

lim
N→∞

F (a, b) = lim
k→∞

F (a, b) (7.10)

=
∞∏

i=j

P (wi ≥ (aT i+ b)− (αTi+ δ)) (7.11)

=





0 aT i+ b > αTi+ δ, j ≤ i ≤ ∞

1 aT i+ b ≤ αTi+ δ, j ≤ i ≤ ∞
(7.12)

If at + b passes through the shaded area it cannot lie below αt + β in the interval

[tj, tk], so the only possible outcome is that aT i+ b = αTi+ δ for j ≤ i ≤ ∞.

Using the Lemmas proved in this section, we are now in a position to present the

key convergence proof for the Moon Estimator:

Theorem 7.1.7 The Moon Estimator converges to the line αt+ δ as N →∞.

Proof The Moon Estimator picks as its estimate a line passing along the hull

segment which spans tmid. This line is guaranteed to run along the top of the

feasible area defined in Lemma 7.1.6 (shaded area in Figure 7.4). Therefore as

N →∞ the estimate must converge to αt+ δ.

7.2 Moon Estimator Convergence Properties

In order to model the convergence properties of the Moon estimator, we now derive

a hypothetical estimator which we will show to have slope greater than or equal to
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Figure 7.5: The anchored estimator is a line crossing αt+ δ at tmid and lying at a tangent
to the right half of the hull. Represented here as a thick dash-dotted line with equation
at+ b, it is guaranteed to be at least as steep as the Moon Estimator at all times.

that of the Moon Estimator at all times. We’ll call it the Anchored Estimator. It

is hypothetical because to implement it would require a priori knowledge of the true

clock skew.

Consider Figure 7.5 which shows upper bound packet delay measurements with

their convex hull. The Moon Estimate is the line α̂t+ β̂, which passes along the hull

segment spanning tmid. Also shown is a half-line at+ b, which passes through the line

of true slope (αt + δ) at tmid. Its slope is such that it lies at a tangent to the hull

right of tmid.

Theorem 7.2.1 The line at + b must be at least as steep as the Moon estimate,

α̂t+ β̂.

Proof If at+b touches the hull at ts, at the right hand end of the segment {dr, ds},

then dr must be above at+ b, and at+ b must be at least as steep as the segment

{dr, ds}. {dr, ds} is right of {dj, dk} and is steeper, so at+ b is at least as steep as

α̂t+ β̂.
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This is a key result. It tells us that no matter what slope the Moon Estimate

takes, the Anchored Estimator will always be at least as steep. If we can obtain an

expression for the convergence properties of the Anchored Estimator then we know

that the Moon Estimator must converge at least as rapidly as that.

7.2.1 Anchored Estimator Convergence Properties

For the anchored estimator to have a slope error εanc strictly greater than some value

φ, then all measurements must lie above the line at+b, with a = α+εanc. We express

this as:

P (εanc > φ) =
N−1∏

i=m

P (di > (α + φ)Ti+ b), m =

⌈
N − 1

2

⌉
(7.13)

Since di = αTi + δ + wi (where wi is a positive random variable representing packet

delay) then

P (εanc > φ) =
N−1∏

i=m

P (αTi+ δ + wi > (α + φ)Ti+ b) (7.14)

=
N−1∏

i=m

P (wi > φTi+ b− δ) (7.15)

but because (α + φ)t+ b intersects αt+ δ at tmid,

b = −φtmid + δ (7.16)

so

P (εanc > φ) =
N−1∏

i=m

P (wi > φ(Ti− tmid)) (7.17)

=
m−1∏

i=0

P (wi > φTi), (7.18)
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since tmid = N−1
2
T and m =

⌈
N−1

2

⌉
.

In the standard Cumulative Density Function (CDF) form, this is

P (εanc ≤ φ) = 1−
m−1∏

i=0

[1− P (wi ≤ φTi)] , (7.19)

since tmid = N−1
2
T and m =

⌈
N−1

2

⌉
.

7.2.2 Moon Estimator Convergence Bound

The Anchored Estimate, at+ b is guaranteed (by Lemma 7.2.1) to be at least as steep

as the Moon Estimate, α̂t+ β̂, so it must be the case that

P (εMoon ≤ φ) ≥ P (εanc ≤ φ), (7.20)

leading us to the main result of this section, which is a bound on the probability

distribution of slope error for the Moon Estimator:

P (εMoon ≤ φ) ≥ 1−
m−1∏

i=0

[1− P (wi ≤ φTi)] (7.21)

7.3 MaxSep Estimator

In this section we investigate the objective function proposed by Sirdey and Mau-

rice [103], deriving similar convergence bounds as we have just done for the Moon

Estimator.

The objective function of Sirdey and Maurice amounts to finding two maximally

separated lines of equal slope, which lie between the upper and lower packet delay
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measurements. It is stated as

max
α̂,β̂1,β̂2

β̂1 − β̂2

s.t. α̂ti + β̂1 ≤ di, i = 0 . . N − 1

α̂t′j + β̂2 ≥ qj, j = 0 . .M − 1

(7.22)

We will refer to the algorithm solving the objective function as theMaxSep Estimator.

7.3.1 Some necessary properties

We will shortly show that the MaxSep Objective Function can be maximized using

a Convex Hull based formulation of the problem. The steps we follow are similar to

those used by Zhang et al. [123], where they show how the Moon objective function can

be solved using convex hulls. However, the proofs we present are new. We commence

by proving some simple results which will be used to prove the main theorem.

Lemma 7.3.1 The sum of a pair of convex functions is also a convex function.

Proof A convex function is characterized by monotonically non-decreasing slope.

If f(t), g(t) are convex functions and h(t) = f(t) + g(t) then the slope is given by

h′(t) = f ′(t) + g′(t), which must also be monotonically non-decreasing.

A corollary of this is that the sum of two concave functions is also concave.

Lemma 7.3.2 Given a set of coefficients {a1 . . an} ∈ R and {b1 . . bn} ∈ R, the

function f(t) = mini(ait+ bi) is concave.

Proof See Figure 7.6. Suppose that on the interval [tp, tq] the line minimizing f(t)

is ajt+ bj and on the interval [tq, tr] the minimizing line is akt+ bk, with tp < tq < tr.
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Figure 7.6: For a set of coefficients {a1 . . an} ∈ R and {b1 . . bn} ∈ R, the function f(t) =
min
i

(ait+ bi) is concave and g(t) = max
i

(ait+ bi) is convex.

We may state that,

tp ≤ t ≤ tq : ajt+ bj ≤ akt+ bk

(aj − ak)t ≤ bk − bj (7.23)

tq ≤ t ≤ tr : ajt+ bj ≥ akt+ bk

(aj − ak)t ≥ bk − bj (7.24)

so that

(aj − ak)tp ≤ (aj − ak)tr (7.25)

Since tr > tp, this inequality is only satisfied when aj > ak. The slope of f(t) is

therefore monotonically non-increasing and f(t) is concave.

A corollary of this is that the function g(t) = max
i

(ait+bi) is convex. Figure 7.6 gives

a graphical representation of both functions.
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Lemma 7.3.3 The minimum vertical distance between upper and lower convex func-

tions is found when both functions take the same gradient at the same instant.

Proof If f(t), g(t) are upper and lower convex functions respectively, then the dis-

tance between them is given by d(t) = f(t) − g(t). The time, tmin at which the

minimum distance occurs is found by taking the derivative and setting it to zero, so

that f ′(tmin) = g′(tmin).

If a line lies entirely beneath a continuous, differentiable convex function except

for a single point of contact, then it must be tangential to the convex function at that

point. It will therefore have the same gradient. For the case of a convex hull, which is

a piecewise linear function, the contact point may be a vertex, at which the gradient

is discontinuous. In this case, the line must have a slope bounded by the gradients of

the two adjacent hull segments (or one of {−∞,∞} if the vertex is an endpoint). For

convenience, we will treat the vertices of the hull as being able to take any gradient

between the bounds of the two adjacent segments.

7.3.2 The dual formulation

We are now in a position to show how the MaxSep objective function may be solved

efficiently using a convex hull approach. As before, let D = {d0, d1, . . . , dN−1} be

the set of upper bound measurements and Q = {q0, q1, . . . , qM−1} be the set of lower

bound measurements. Assume that we have available to us a pair of lower and upper

convex hulls fitted to the two sets of measurements.

The lines of maximum separation found by the objective function in Equation 6.24

must both lie between the two convex hulls. The upper line, α̂t + β̂1 must contact

the upper hull, and the lower line, α̂t+ β̂2 must contact the lower hull. The following

steps will prove that the point of contact for both lines must occur where the hulls

have minimum vertical separation.
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We define a function

f(α̂) = max
β̂1,β̂2

β̂1 − β̂2

s.t. α̂ti + β̂1 ≤ di, i = 0 . . N − 1

α̂t′j + β̂2 ≥ qj, j = 0 . .M − 1

(7.26)

which is the value of the MaxSep objective function when the slope α̂ is provided.

That is, it finds the two lines of maximum separation which have the specified slope,

α̂.

Lemma 7.3.4 f(α̂) is concave in α̂

Proof Given α̂, the function is maximized by pushing the lines α̂t+ β̂1 and α̂t+ β̂2

apart until they contact data above and below, so that β̂1 and β̂2 are given by

β̂1 = min
i

(di − α̂ti)

β̂2 = max
j

(qj − α̂t′j)

= −min
j

(α̂t′j − qj)

and the function becomes

f(α̂) = min
i

(−α̂ti + di) + min
j

(α̂t′j − qj). (7.27)

By Lemma 7.3.2 the min function is concave, so by Lemma 7.3.1, f(α̂) must also be

concave.

Figures 7.7 and 7.8 illustrate the concavity of the function f(α̂) for an example

dataset.
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Figure 7.7: Maximally separated lines for a range of slope values, where θ = arctan(α).
Contact points are shown as crosses. Two crosses on a hull show that a whole segment is
in contact. Notice that as the slope increases, the point of contact on the upper hull moves
right and the point of contact on the lower hull moves left. The position at which the contact
points coincide is the point at which the lines have maximum separation. It also corresponds
to the minimum vertical distance between the two hulls. In this example, it occurs when
the lines have angle θ = 11◦.
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Figure 7.8: The objective function of equation 7.26 is concave and piecewise linear. It
represents the distance between the maximally separated lines, for a given slope value α̂.
This example is plotted from the case shown in Figure 7.7. When the function takes values
below zero it violates the constraint that the lines of maximum separation must lie between
the convex hulls, because it implies that β̂1 < β̂2.

Lemma 7.3.5 The MaxSep Objective Function is maximized by choosing the pair of

equal slope lines which contact the top and bottom convex hulls at the same moment

in time.

Proof Consider two inputs to the function f , a1 and a2, with a1 < a2. If both inputs

cause the lines of maximum separation to pass through the same hull points then we

have the situation illustrated in Figure 7.9. Evaluating the function at both inputs

yields

f(a1) = −(a1t∗ − d∗)− (q∗ − a1t
′
∗) f(a2) = −(a2t∗ − d∗)− (q∗ − a2t

′
∗)

= a1(t′∗ − t∗) + d∗ − q∗ = a2(t′∗ − t∗) + d∗ − q∗ (7.28)

Because f is concave then any local maximum solution must also be the global max-
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Figure 7.9: Finding the hull vertices through which the maximally separated lines pass.
Here the function f is evaluated at two values, a1 and a2, with a1 < a2 such that the lines
of maximum separation pass through the same hull points, (t∗, d∗) and (t′∗, q∗).

imum solution, for which we now search. From equation 7.28,

f(a1)− f(a2) = (a1 − a2)(t′∗ − t∗) (7.29)

f(a1) < f(a2) ⇐⇒ t′∗ > t∗ (7.30)

since a1 < a2. Therefore we may write that

t′∗ > t∗ ⇐⇒ f ′(α̂) > 0

t′∗ < t∗ ⇐⇒ f ′(α̂) < 0.

(7.31)

The objective function is maximized when t′∗ = t∗. Thus the objective function is

maximized by lines which have slope such that they contact the two hulls at the same

moment in time.

An intuition into this result may be gained by studying Figure 7.7.
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Lemma 7.3.6 The lines of maximum separation will contact the hulls where both the

upper and lower hull share the same slope.

Proof The lines of maximum separation are defined as having identical slope. They

must both contact their respective hulls at points where the hull has gradient equal

to the line slope. Therefore the contact points on both hulls must share the same

gradient.

Theorem 7.3.7 The MaxSep Objective Function is maximized by choosing a pair

of lines that contact the convex hulls at the time corresponding to the minimum

vertical distance between the hulls.

Proof By Lemmas 7.3.6 and 7.3.5, the lines of maximum separation correspond to

a pair of equal slope lines contacting their respective hulls at the point where the

hulls have equal slope at the same time instant. By Lemma 7.3.3, this is the point

of minimum vertical distance between the two hulls.

This is an important result, which will (in Section 8.0.1) directly allow us to create

an efficient algorithm for solving the MaxSep Objective Function. Intuitively the

result makes sense. The lines of maximum separation must pass entirely between the

two hulls, including the parts of the hull having minimum vertical distance. Therefore

the lines of maximum separation cannot be further apart than the smallest vertical

distance between the two hulls.

7.4 MaxSep Estimator Convergence

Using the results from the previous section, we are now in a position to derive conver-

gence properties for the MaxSep Estimator, as we did for the Moon Estimator. First

we present a proof of convergence, which follows directly from the Moon Estimator

convergence proof.
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7.4.1 MaxSep Convergence Proof

Theorem 7.4.1 The MaxSep estimator converges to the slope α as N →∞.

Proof As N → ∞, by Theorem 7.1.7, the segment of the upper hull spanning tmid

will converge to αt+δ. By a similar argument the segment of the lower hull spanning

tmid will converge to αt − δ. these two lines have the minimum possible separation

between the two hulls. The MaxSep estimator must therefore select them as having

the closest point between the two hulls, and will take as its estimate α̂ = α.

7.4.2 MaxSep Estimator Convergence Properties

The MaxSep Estimator takes advantage of two-way delay measurements, so it should

be expected to out-perform the Moon Estimator. We now obtain a probabilistic bound

for the MaxSep Estimator, and conclude by showing that the MaxSep Estimator does

indeed converge significantly faster than the Moon Estimator.

We proceed in a similar fashion to before, by considering a hypothetical anchored

estimator which is guaranteed to give estimates at least as steep as the MaxSep Esti-

mator. We can use its convergence properties to provide a bound on the convergence

properties of the MaxSep Estimator.

Consider Figure 7.10, which shows upper and lower bound packet delay mea-

surements D = {d0 . . dN−1} and Q = {q0 . . qM−1} along with their respective hulls.

a1t + b1 + δ is the steepest line passing through the point (tmid, αtmid + δ) such that

di ≥ a1t + b1 + δ for all i. Likewise, a2t + b2 − δ is the steepest line passing through

the point (tmid, αtmid− δ) such that all qj ≤ a2t+ b2− δ. We shall now prove that the

steepest of these lines is an upper bound on the convergence of the MaxSep Estimator.

The MaxSep Estimator will choose for its slope estimate a segment from one of

the hulls, at the point where the hulls have minimum vertical separation. We need

to show that the steeper of the two anchored estimator lines is at least as steep as
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Figure 7.10: The MaxSep Anchored Estimator uses a line crossing αt+δ at tmid and lying
at a tangent to the right half of the top hull, and a line crossing αt− δ at tmid and lying at
a tangent to the left half of the bottom hull. Represented here as a thick dash-dotted lines,
one or the other is guaranteed to be at least as steep as the MaxSep Estimator at all times.

any hull segment that the MaxSep estimator may choose. As before, we use α̂t + β̂

to denote the line passing along the hull segment chosen by the MaxSep estimator.

Lemma 7.4.2 If the MaxSep Estimator chooses a segment on one hull as its esti-

mate, then its slope is bounded by the slopes of the two segments adjacent to the closest

point on the other hull.

Proof Figure 7.11 shows the situation. The MaxSep estimator finds the point of

smallest vertical separation between the two hulls, which by Lemma 7.3.3 happens

when they have equal slope. The slope at a hull vertex can take any value bounded

by the slope of the two adjacent segments. So those two adjacent segments must also

bound the slope of the closest segment on the other hull.

We need to prove that the Anchored Estimate is at least as steep as the MaxSep

Estimate for any hull segment that might be chosen by the MaxSep Estimator. We

need to consider each end of the two hulls separately, leading to four possible scenarios:
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Figure 7.11: The closest vertical distance between the two hulls occurs at tc, corresponding
to vertex dc on the upper hull. The opposite segment, {qb, qd} on the lower hull has its slope
bounded by segments {da, dc} and {dc, de} on the upper hull. The dashed line has the same
slope as the segment {qb, qd}. If the slope of {qb, qd} was adjusted such that it was just
greater than that of {dc, de} then the closest point between the two hulls would snap to td.
Note that any segment on the upper hull that is left of dc must be less steep than {qb, qd}.
Equally, any segment on the upper hull that is right of dc must be steeper than {qb, qd}.

Lemma 7.4.3 If the MaxSep Estimator chooses a segment on the top hull which is

left of, or spanning tmid then a1t+ b1 + δ is steeper than α̂t+ β̂.

Proof Lemma 7.2.1 showed that a1t + b1 + δ must be steeper than the segment on

the upper hull spanning tmid. It must therefore be steeper than any segment left of

tmid on the upper hull.

Lemma 7.4.4 If the MaxSep Estimator chooses a segment on the top hull which is

right of the segment spanning tmid then a2t+ b2 − δ is steeper than α̂t+ β̂.

Proof See Figure 7.11. By Lemma 7.4.2, the slope of α̂t+ β̂ is bounded by the slopes

of the two segments adjacent to the closest point on the lower hull. By Lemma 7.2.1,

a2t+ b2− δ must be at least as steep as the segment on the lower hull spanning tmid,

which must in turn be steeper than the two segments bounding the slope of α̂t + β̂,

as they are to the right of tmid.
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Lemma 7.4.5 If the MaxSep Estimator chooses a segment on the lower hull which

is left of tmid then a1t+ b1 + δ is steeper than α̂t+ β̂.

Proof This is a mirror image of Lemma 7.4.4 and may be proven in the same way.

Lemma 7.4.6 If the MaxSep Estimator chooses a segment on the lower hull which

is right of the segment spanning tmid then a2t+ b2 − δ is steeper than α̂t+ β̂.

Proof This is a mirror image of Lemma 7.4.3 and may be proven in the same way.

Theorem 7.4.7 If the MaxSep Anchored Estimator, at+b is defined as the steepest

of the two lines, a1t+ b1 + δ and a2t+ b2 − δ then at+ b must be at least as steep

as the MaxSep Estimate, α̂t+ β̂.

Proof Lemmas 7.4.3, 7.4.4, 7.4.5 and 7.4.6 take account of all possible hull seg-

ments that may form the MaxSep Estimate. They show that in all cases, the

MaxSep Estimator is bounded above in slope by either a1 or a2. If a = max(a1, a2)

then a must be at least as steep as α̂, the MaxSep slope estimate.

This is a key result. As we showed before with the Moon Anchored Estimator,

no matter what slope the MaxSep Estimate takes, the MaxSep Anchored Estimator

will always be at least as steep. Again, if we can derive convergence properties for

the MaxSep Anchored Estimator then the MaxSep Estimator must converge at least

as rapidly as that.

7.4.3 MaxSep Anchored Estimator Convergence Properties

We have shown that any hull segment chosen by the MaxSep Estimator is bounded

above in slope by the line at + b, which is the Anchored Estimate. Suppose the

MaxSep Anchored Estimator has slope error εanc, so that a = α + εanc. For that

error to be strictly greater than some value, φ then all measurements di ∈ D must
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lie above the line (α + φ)t + b + δ, and all measurements qj ∈ Q must lie below the

line (α+ φ)t+ b− δ. This is trivially satisfied for one half of each line; for the other

halves we express the slope error probability as:

P (εanc > φ) =
m−1∏

j=0

P (qj ≤ (α + φ)Tj + b− δ)
N−1∏

i=m

P (di > (α + φ)Ti+ b+ δ),

(7.32)

but because (α + φ)t+ b intersects αt at tmid, then b = −φtmid, so

P (εanc > φ) =
m−1∏

j=0

P (qj ≤ αTj + φ(Tj − tmid)− δ)

N−1∏

i=m

P (di > αTi+ φ(Ti− tmid) + δ)

=
m−1∏

j=0

P (αTj − δ − wj ≤ αTj + φ(Tj − tmid)− δ)

N−1∏

i=m

P (αTi+ δ + wi > αTi+ φ(Ti− tmid) + δ)

=
m−1∏

j=0

P (wj > φ(tmid − Tj))
N−1∏

i=m

P (wi > φ(Ti− tmid)) (7.33)

Noticing that tmid = N−1
2
T and m =

⌈
N−1

2

⌉
we can simplify the expression to

P (εanc > φ) =
m−1∏

i=0

P (wi > φTi)2 (7.34)

Converting to the more standard CDF form as we did for the Moon Estimator in

equation 7.19 gives,

P (εanc ≤ φ) = 1−
m−1∏

i=0

[1− P (wi ≤ φTi)]2 (7.35)
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7.4.4 MaxSep Estimator Convergence Bound

The MaxSep Anchored Estimate, at + b is guaranteed (by Theorem 7.4.7) to be at

least as steep as the MaxSep Estimate, α̂t+ β̂. If εMS is the slope error of the MaxSep

Estimator then it must be the case that

P (εMS ≤ φ) ≥ P (εanc ≤ φ), (7.36)

leading us to the main result of this section, which is a bound on the probability

distribution of slope error for the MaxSep Estimator:

P (εMS ≤ φ) ≥ 1−
m−1∏

i=0

[1− P (wi ≤ φTi)]2 (7.37)

Compared with the Moon Estimator CDF:

P (εMoon ≤ φ) ≥ 1−
m−1∏

i=0

[1− P (wi ≤ φTi)] , (7.38)

we see that the MaxSep Estimator can be expected to converge much faster than the

Moon Estimator. Given the modest extra overhead of the algorithm, this is a signifi-

cant improvement. Note also that the convergence rate of both the Moon Estimator

and the MaxSep Estimator is independent of the minimum network propagation delay,

δ.1

7.5 Quantifying Estimator error

In this section we look at a way to quantify the convergence properties of the MaxSep

Estimator. If we have a suitable model for the distribution of packet delays then we
1The same is not true for the offset estimates, since the Moon Estimator’s offset estimate is

always biased by δ.
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can substitute it into equation 7.35 and ask questions about the number of samples

required for the algorithm to converge to a required level of accuracy.

Chaudhari et al. [19] model network delays with both Gaussian and Exponential

distributions. Elteto and Molnar [37] analyze TCP/IP network delays and propose

a technique to learn the distribution, by modelling it with a truncated Gaussian.

Sirdey and Maurice [103] note that the Weibull distribution [116] is appropriate, as

it well represents the characteristic steep beginning and long tail of typical internet

delay histograms. This is supported by Papagiannaki et al. [87] who analyze single-

hop network delays and again propose the Weibull distribution as a suitable model.

Hernández and Phillips [48] show how to fit a Weibull mixture model to internet

packet delay data using an Expectation Maximization technique. They suggest that

a mixture of 3 Weibull distributions typically gives a very good fit, though a reasonable

approximation is achieved with a single Weibull distribution.

7.5.1 The Weibull distribution

We will use the Weibull distribution primarily because of its flexibility and the fact

that it can be fitted to small datasets [33]. Another key advantage is the availability

of algorithms for learning the parameters of the distribution online and incrementally.

This does limit us to using a single distribution rather than a mixture, but we will

show that using a single Weibull distribution will usually cause us to generate close,

but conservative estimates of an estimator’s error.

The Weibull distribution [116, 23] is a more general form of the Exponential

Distribution. It takes two parameters: shape, k and scale, λ. It has the form,

f(t;λ, k) =





k
λ

(
t
λ

)k−1
e−( tλ)

k

t ≥ 0

0 t < 0

, (7.39)
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Figure 7.12: The effect of varying the shape (k) and scale (λ) parameters of the Weibull
distribution.

with the Cumulative Distribution Function being given by

F (t;λ, k) = 1− e−( tλ)
k

(7.40)

so that if wi ∼ f(λ, k) then

P (wi ≤ φ) = F (φ;λ, k). (7.41)

Figure 7.12 shows how the shape of the Weibull distribution varies with k. Tech-

niques for learning the distribution of packet delays online will be discussed shortly.

Recall that the bound on the convergence of the MaxSep Estimator is given by

P (εMS ≤ φ) ≥ 1−
m−1∏

i=0

[1− P (wi ≤ φTi)]2 (7.42)

where m =
⌈
N−1

2

⌉
.
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Figure 7.13: The discrete function ik (shown as a bar plot) is bounded above and below
by the continuous functions y = (x + 1)k and y = xk respectively. In this case, k = 2, but
the bounds are correct for all k ≥ 0

Inserting the Weibull CDF gives

P (εMS ≤ φ) ≥ 1−
m−1∏

i=0

e−2(φTiλ )
k

(7.43)

In log form this becomes

ln [P (εMS > φ)] ≥ −2
m−1∑

i=0

(
φTi

λ

)k
(7.44)

= −2

(
φT

λ

)k m−1∑

i=0

ik (7.45)

Finding a bound on the true distribution

The summation term in equation 7.44 has no closed form solution. Instead we must

resort to finding bounds on the true result. Consider the function

g(N) =
N−1∑

i=0

ik (7.46)
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Figure 7.13 shows that the discrete function ik is bounded above and below by

the continuous functions y = (x+ 1)k and y = xk. Thus we may obtain the following

bounds on the function g(N),

∫ N−1

0

xkdx < g(N) <

∫ N−1

0

(x+ 1)kdx (7.47)
[
xk+1

k + 1

]N−1

0

< g(N) <

[
(x+ 1)k+1

k + 1

]N−1

0

(7.48)

(N − 1)k+1

k + 1
< g(N) <

Nk+1

k + 1
(7.49)

As N →∞, the bounds converge, because

lim
N→∞

(N − 1)k+1

k + 1
=
Nk+1

k + 1
(7.50)

and in practice the bounds are tight for N >> 1.

Applying this result to equation 7.44 gives

ln [P (εMS > φ)] ≥ −2

(
φT

λ

)k
mk+1

k + 1
(7.51)

Approximating m ≈ (N − 1)/2 and rearranging gives

ln [P (εMS > φ)] ≥ −
(
φ

ψλ

)k
, where ψ =

2

T (N − 1)

(
k + 1

N − 1

) 1
k

(7.52)
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7.5.2 Quantitative estimates

Differentiating equation 7.52 allows us to recover the PDF over slope error for the

MaxSep Anchored Estimator,

p(εanc) = − d

dφ
P (εanc > φ)

=
k

ψλ

(
εanc
ψλ

)k−1

e−( εancψλ )
k

(7.53)

which is simply a form of the Weibull distribution, with p(εanc) = f(εanc;ψλ, k) - ie.

a scaled version of the original distribution. This is a pleasing result, especially given

the approximations used in the derivation.

A Weibull distribution has mean and variance:

E(t) = λΓ

(
1 +

1

k

)
(7.54)

var(t) = λ2Γ

(
1 +

2

k

)
− E(t)2 . (7.55)

Γ is the Gamma function, which has no closed form solution, but there are many fast

and accurate approximation algorithms such as those by Cody [22]. Using these we

can calculate the expected error, given the number of samples, N .

From the previous inequalities on the CDFs for the MaxSep Estimator and the

Anchored Estimator, we know that the error of the MaxSep Estimator will not be

greater than the error of the Anchored Estimator. We can thus state that,

E(εMS) ≤ ψλΓ

(
1 +

1

k

)
(7.56)

var(εMS) ≤ (ψλ)2

[
Γ

(
1 +

2

k

)
−
[
Γ

(
1 +

1

k

)]2
]
. (7.57)

Sirdey and Maurice [103] suggest suitable Weibull distribution parameters for a
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Figure 7.14: Expected slope error of the MaxSep Estimator for 50Hz sampling and Weibull
parameters k = 0.4 and λ = 1.35 × 10−3. The dotted lines are 3σ bounds. Note the rapid
convergence. The figure on the right shows the same data on a log scale.

public internet setting to be k = 0.4 and λ = 1.35 × 10−3. Figure 7.14 shows the

expected error with a sample rate of 50Hz, along with 3σ bounds calculated from

Equation 7.57.

Following the same derivation for the Moon Estimator, we find that

E(εMoon) ≤ 2
1
kψλΓ

(
1 +

1

k

)
(7.58)

var(εMoon) ≤ 2
2
k (ψλ)2

[
Γ

(
1 +

2

k

)
−
[
Γ

(
1 +

1

k

)]2
]
. (7.59)

Note that these are derived from the anchored estimators, and as such cannot be

used to compare completely fairly between the Moon and MaxSep estimators, though

they do give a good ball-park for the performance of each.

Determining the number of samples required for a given accuracy

Perhaps more usefully, we may also derive an expression for estimating the minimum

number of samples required to achieve a particular slope error ε with a given confi-

dence c. The confidence value lies in the range [0, 1], so that c = 0.99 corresponds to
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Figure 7.15: Required number of samples to achieve a given level of slope accuracy, with
k = 0.4 and λ = 1.35× 10−3 and a sampling frequency of 50 Hz. Various confidence levels
are shown. The Moon Estimator requires a factor of 2

1
k+1 as many samples as the MaxSep

Estimator. Errors are given in Parts Per Billion (PPB).

a 99% confidence bound. Rearranging equation 7.52,

NMS ≥
[
−(k + 1)

(
2λ

εT

)k
ln(1− c)

] 1
k+1

+ 1 (7.60)

As a comparison point, a similar expression can be derived for the Moon Estimator:

NMoon ≥ 2
1
k+1

[
−(k + 1)

(
2λ

εT

)k
ln(1− c)

] 1
k+1

+ 1 (7.61)

Sample plots of these function are shown in Figure 7.15. Note that reducing

the required confidence by only a small amount can drastically reduce the required

number of samples.
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Offset error

Let ε be the MaxSep Estimator’s slope error after N samples and let εsep = (β̂1−β̂2)−

2δ be the separation error. Because of the necessity to touch at least one data point,

the upper line of maximum separation, α̂t + β̂1 is constrained to lie above the line

αt+ δ at some point in the interval [t0, tN−1]. The lower line of maximum separation

is similarly constrained to have some part below αt− δ in the same interval.

The offset error ετ after N samples is therefore bounded above and below, such

that





− εsep
2
≤ ετ ≤ εTN + εsep

2
ε ≥ 0

εTN − εsep
2
≤ ετ ≤ εsep

2
ε < 0

(7.62)

Thus the expected value of the offset error is E[ετ ] = εTN/2. If we use a 99%

confidence upper bound on ε then the expression for ετ is an approximation of an

upper bound on the true offset error. Unfortunately we cannot make a stronger

statement than that, but in practice we find it to be a sound estimate.

Figure 7.16 shows slope and offset errors for the MaxSep Estimator when applied

to synthetic data for two clocks with constant relative skew. We caused the Estimator

to be reset every 50 samples, so that its initialization behaviour can be studied. The

equations derived above are used to provide 99% confidence bounds for the plots.

7.5.3 Improving initial convergence

In practice the MaxSep Estimator converges rapidly, but the slope estimate can be

unstable for the first few samples. If the packet delay distribution is known a priori

then the Maximum Likelihood Estimator from section 6.8.3 may be used initially

(while it is still tractable) and the MaxSep Estimate switched in once it has stabilized.
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Figure 7.16: Slope and Offset Error plots for the MaxSep Estimator when applied to
synthetic data with Weibull Parameters λ = 1.35e − 3 and k = 0.4 at 5Hz. The filter is
reset every 50 samples in order to show many convergence cycles. The dashed lines are the
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It may be a suitable course of action if the filter needs to be reset (ie. in the event

of a clock upset) and the packet delay distribution can be assumed to be unchanged.

The approach eventually becomes intractable because to optimize the estimator’s

parameters requires iterating over all packet delay data gathered so far, making it

O(N2) if the parameters are updated at every time step. Since clock synchronization

is a low-level function, it should only use a small amount of CPU time for updates,

so the MLE approach is liable to become too expensive quite rapidly.

Failing that, rapid initial convergence can be achieved by using a faster sample

rate for the first few seconds only. This maximizes the probability of obtaining low-

latency measurements, which are critical at the start, as the slopes of the short hull

segments are not well conditioned.

7.6 Convergence results

In order to evaluate our probabilistic analysis of the convergence properties of the

Moon estimator and the MaxSep estimator, we performed experiments with synthetic

data. Concretely, we produced a sequence of synthetic network delay measurements,

drawn from a Weibull distribution with parameters λ = 1.35× 10−3 and k = 0.4, as

suggested by Sirdey and Maurice [103]. The minimum network delay was chosen as

δ = 5ms, and the sample rate was 10Hz.

3000 different network delay sequences were produced, with random skew and

offset between clocks, of up to 1ms/s and 200ms respectively (though we have already

shown that these have no effect on the magnitude of the error). Both the Moon and

the MaxSep estimators were applied to each sequence, and the mean errors at each

time step were found. The results are shown in Figure 7.17, along with the expected

values of skew computed using Equations 7.56 and 7.58.

In offset estimation, the Moon estimator suffers from a constant DC error equal to
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Figure 7.17: Synthetic data experiments to compare the performance of the Moon and
MaxSep estimators. Packet delay data was generated from a Weibull distribution with
parameters λ = 1.35×10−3 and k = 0.4 at a rate of 10Hz, and fed through both estimators.
The experiment was repeated 3000 times on different data each time, and these figures show
the mean errors over all experiments. For the skew plots, the dotted lines show the expected
error for each estimator.
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the minimum network delay, δ. The MaxSep estimator does not suffer from this, so is

clearly superior. In skew estimation the MaxSep estimator has a faster convergence

rate than the Moon estimator.

The expected skew errors are shown as dotted lines. These are computed using

the anchored estimators, which provide an upper bound on the performance of the

actual estimators. This explains why both estimators appear to outperform their

expected errors.

7.7 Chapter Summary

We have now presented new convergence proofs for two existing clock synchronization

methods due to Moon et al. [73] and Sirdey and Maurice [103] - the ‘Moon Estimator’

and the ‘MaxSep Estimator’ respectively. We showed how the linear programming

approach of Sirdey and Maurice has a dual formulation involving convex hulls and that

the MaxSep objective function is maximized simply by finding the point of minimum

separation between the convex hulls of the upper and lower packet delay data.

By transforming each method into its dual formulation, a probabilistic upper

bound on the convergence characteristics of each method was provided, allowing for

a direct comparison between the two. The MaxSep Estimator was found to have

significantly improved performance over the Moon Estimator, due to its use of two-

way delay data. We also showed that convex hulls applied to network timing data

require only a small number of segments to represent them, even when the number

of delay measurements they enclose is very large. This is significant because it shows

that convex hull based synchronization approaches can be very memory efficient whilst

still being able to make optimal estimates involving all previous timing data.

These insights will lead us directly to the creation of the efficient clock synchro-

nization (a.k.a data time stamping) algorithm which we seek in the next chapter.
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Chapter 8

An Efficient Algorithm for Clock

Synchronization

In this Chapter we build on previous chapters and describe a new efficient clock

synchronization (data time-stamping) algorithm for solving the MaxSep objective

function. We call it TICSync, for Timestamp-based Incremental Clock Synchroniza-

tion. The algorithm is incremental, with each update having O(1) amortized cost,

making it highly tractable for on-line use. This is a significant improvement over

the algorithm suggested by Sirdey and Maurice [103], since their linear programming

algorithm is O(N) for each incremental update if an estimate is required after every

new sample and thus O(N2) in total.

Using the convergence results of Chapter 7 and by choosing an appropriate model

for the distribution of packet delay measurements (which can also be learnt online

incrementally), we can use the methods developed in Section 7.5 to obtain quantitative

estimates (with confidence bounds) of TICSync’s current error.

We then extend the basic TICSync algorithm to work in regimes where the clocks

do not behave in the manner expected by the linear skew model. It is reasonable

to question the regularity of clock upsets. The quartz oscillators of a PC clock are
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low-cost items that are sensitive to changes in temperature. Or if a computer is

running NTP and has not yet converged, there can be large swings in frequency.

Reset events may be caused by a computer using the SNTP protocol to synchronize

its clock, by user intervention, or the running of a rogue program which is able to

make clock adjustments. Being robust to frequency changes and reset events is vital

to accurately tracking the current time at the server’s clock.

The Upset Detection scheme runs with O(F ) incremental updates, where F is the

size of a Bank of Estimators and is usually less than 10. This is significantly more

efficient than other upset detection algorithms that we are aware of and crucially is

able to detect upsets in an online setting in near-optimal time. We call the improved

algorithm TICSync+.

8.0.1 A Convex-Hull based Algorithm

We begin with a simple observation about the linear programming approach to solving

the MaxSep Objective Function proposed by Sirdey and Maurice:

max
α̂,β̂1,β̂2

β̂1 − β̂2

s.t. α̂ti + β̂1 ≤ di, i = 0 . . N − 1

α̂t′j + β̂2 ≥ qj, j = 0 . .M − 1

(8.1)

Sirdey and Maurice use a rapid 50Hz sample rate in their synchronization exper-

iments. They suggest running the algorithm over 10 minute windows of data, over

which the error due to clock drift is negligible. For a 10 minute run, the batch linear-

programming algorithm must process 60,000 constraints; many of them far from the

feasible region and therefore never active.

Our initial observation is that the algorithm’s efficiency would be greatly improved
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by using as constraints only those points which appear as vertices on their respective

convex hulls. In our own experiments, convex hulls applied to timing data rarely

exceed 20 segments, independent of the number of samples; the segments just tend to

get longer (this statement is justified by the result in Section 7.1.2). The hulls could

be maintained incrementally and then batch linear programming updates would be

cheap.

In this section, we demonstrate how the algorithm can be even further improved

such that the whole optimization may be performed incrementally. To motivate our

new TICSync Estimator for solving the MaxSep Objective function, we have already

shown (Section 7.3) that maximizing the objective function can be achieved by finding

the point of minimum vertical separation between the upper and lower convex hulls

of the two-way timing data.

The lower convex hull for a time ordered set of points,

V = {(t0, v0), (t1, v1), . . . , (tN−1, vN−1)} , (8.2)

can be computed with the simple O(N) package wrapping algorithm given by Zhang

et al. [123]. It is reproduced here as Algorithm 2 (Lower-Convex-Hull). By swap-

ping inequalities, the algorithm may be used to compute an upper convex hull. Note

that the cost of adding each new point is O(1) amortized. The function ‘line(va, vb)’

fits a line through the points va and vb.

We can now describe the basic TICSync algorithm to efficiently solve the MaxSep

Objective function. There are only a few simple steps. When a new packet delay

measurement arrives, it is added incrementally to the appropriate convex hull (upper

or lower). Then the procedure Find-Closest-Hull-Vertices is called to find the

instant, t∗ of minimum vertical distance between the two hulls. The slope of the hulls

at t∗ gives the slope of the two Maximum Separation lines. Finally the offsets for
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Algorithm 2 Lower Convex Hull Algorithm
procedure Lower-Convex-Hull({v0 . . vN−1})

stack ← {}
stack.push(v0)
stack.push(v1)
for i = 2 to N − 1 do

if vi above line(stack.top, stack.penultimate) then
stack.push(vi)

else
while stack.size > 1 and . . .
. . . vi not above line(stack.top, stack.penultimate) do
stack.pop

end while
stack.push(vi)

end if
end for
return stack

end procedure

the Maximum Separation lines are computed such that they contact their respective

hulls at t∗.

The procedure Find-Closest-Hull-Vertices is easy to implement. Starting

from the left hand side and sweeping right, it evaluates the distance between the

hulls for every vertex encountered. As soon as the distance begins to increase, then

the algorithm may bail out, because the vertical distance between the two hulls is a

convex function (Lemma 7.3.1). The algorithm will typically return a vertex index

on one hull and a pair of vertex indices on the other hull, corresponding to a segment.

If two segments on the upper and lower hull are parallel then the lines of maximum

separation will lie through both segments, as is the case in Figure 7.7. A final case

is when the lines pass through only a single hull vertex each. In this example the

objective function has a flat spot where a whole range of slopes will achieve maximum

separation. In that case it is sensible to choose a slope mid-way through the range.

Find-Closest-Hull-Vertices is already efficient enough to be run at every

time step, since the convex hulls tend to have few segments. Nonetheless it may be
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further improved by noticing that a) the point of minimum distance between two

hulls will only change when a new measurement falls between the existing Lines of

Maximum Separation and b) it will only ever move to the right.

The full update for a new upper bound delay measurement is given by the following

steps:

• Add the point to the upper convex hull

• If the point lies below α̂t+ β̂1 then

– Call Find-Closest-Hull-Vertices to search right from the previous

point of minimum hull distance.

– Recompute the lines of maximum separation to pass through the new clos-

est hull vertices or segments.

The update for lower bound measurements is similar. The cost of an update is

O(1) amortized: usually there is no work to do beyond adding a new hull segment,

but occasionally the maximum separation lines will need to be recomputed. As the

algorithm converges to the correct line, the regularity with which a datum falls be-

tween the Maximum Separation Lines will decrease to zero. Once the algorithm has

converged, the update cost is minimal.

8.1 Learning the Weibull Distribution Online

In order to make good predictions of error or required sample counts, it is important

that the network delay distribution is well characterized. In practice we need to learn

the distribution online as data is accumulated.

The input data is derived from the packet round trip times. We need a way to

deal with the minimum network delay portion of the round trip times, as this is not

modelled by the two-parameter Weibull distribution. One way is to adjust the round
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trip time (RTT) data by a current TICSync estimate of the minimum network delay,

δ. The other way is to add a third parameter representing position to the Weibull

distribution and learn all three directly from the data.

The 3-parameter Weibull distribution is written as

p(t;λ, k, ρ) =





k
λ

(
t−ρ
λ

)k−1
e−( t−ρλ )

k

t ≥ ρ

0 t < ρ

, (8.3)

where ρ is the position parameter.

8.1.1 Weibull Parameter Estimators

Estimators for the 2-parameter and 3-parameter Weibull Distribution are described

by Cohen andWhitten [23] and Ghosh [42] amongst others. The Maximum Likelihood

Estimator (MLE) is commonly used and is generally regarded to give the best result

(under the right conditions). Let {x0 . . xn} be a set of samples drawn from a Weibull

distribution. The likelihood function for the 3-parameter case is

L(x0 . . xn;λ, k, ρ) =

(
k

λk

)n n∏

i=1

(xi − ρ)k−1 exp

[
−

n∑

i=1

(
xi − ρ
λ

)k]
(8.4)

The Maximum Likelihood Estimator is an iterative algorithm, using successive esti-

mates to refine the Weibull parameters of a given delay sequence. One disadvantage

of the approach is that it requires all of the data to be kept and iterated over when-

ever a new sample arrives, making an incremental parameter fitting algorithm at least

O(N) per update. Perhaps more significant is that there are no valid solutions for

some values of the shape parameter. There are known numerical issues for values

of k < 2 and worse, when k < 1 the likelihood function becomes infinite. Cohen

and Whitten [24] suggest a series of Modified Maximum Likelihood Estimators in an

attempt to overcome the issues.
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More interesting in the context of our work is the Modified Moment Estimator

(MME), also due to Cohen and Whitten [24]. It reportedly performs better than

the MLE for smaller sample sizes, is applicable for any value of the shape parameter

k, and remarkably requires as input only three population statistics: the mean, the

variance and the first order statistic (minimum value). Appendix F describes the

steps of the algorithm.

The MME algorithm is easily made to run online, with O(1) updates. The vari-

ance and mean can be incrementally updated using the method of Knuth [56] (See

Appendix G) and maintaining the minimum is trivial. The MME does use an iter-

ative root-finding step to determine k, but from one sample to the next the shape

parameter is unlikely to change by much, so a small number of iterations are usually

sufficient.

8.1.2 Using the Modified Moment Estimator on Real Data

The Modified Moment Estimator is a remarkable algorithm, but it relies fundamen-

tally on the assumption that the sample values really do come from a Weibull dis-

tribution. Figure 8.1 shows some real network delay histograms from a week-long

experiment we carried out on our local Gigabit network. The packet delay distribu-

tion is clearly multi-modal, so the Weibull model is not strictly correct. But recall

that our expression for the TICSync estimator error in Equation 7.42 uses the CDF

of the distribution, rather than the PDF. In fact, the Weibull model follows the CDF

of the raw data rather well.

Conservative Estimates

If the initial part of the Weibull CDF is too steep, or leads the true CDF then it

will result in overconfident TICSync error estimates. Conversely, if the Weibull CDF

lags the true CDF or begins at too shallow a slope then it will result in conservative
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Figure 8.1: A packet delay measurement experiment was performed over a fast Gigabit
network between two standard PCs, with a message rate of 2Hz. (a) shows a histogram
of 1000 delay measurements, along with the Weibull Distribution fitted by the Modified
Moment Estimator (parameters: λ = 5.4× 10−5, k = 1.33, ρ = 0.89ms). It is clear that the
data is not really drawn from a Weibull distribution. However, our error estimates make use
of the Cumulative Distribution rather than the PDF. (b) shows the CDF of the data as a
thick dashed line, with the CDF of the Weibull distribution overlaid. The similarity here is
much greater. (c) shows the same histogram, but this time the MME was forced to choose
a shape parameter value of k > 2. The front end of the distribution is less steep, leading to
a conservative estimate of the CDF (d).
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error estimates. The latter situation is clearly preferable, so on that basis we place a

restriction on the minimum value of the shape parameter for our Weibull distributions,

enforcing that k > 2. The decision is not arbitrary, as 2 is the smallest value for

which the initial slope of the Weibull function is 0. It helps to ensure that the sharp

front edge of the true histogram is only softly reproduced by the Weibull distribution.

Figure 8.1 shows the result of applying the restriction. We find that the approximation

works very well throughout our week-long dataset, giving a Weibull CDF which is

close to the true data, but usually conservative. To reiterate, it is not necessary

that the Weibull Distribution exactly fits the true network delay distribution. The

important thing is that the Weibull CDF is conservative in comparison to the true

CDF. That way, the error estimates that the following TICSync+ algorithm relies

upon will always be conservative.

Outlier Rejection

One final component is required to make Weibull parameter fitting a success. We

find it necessary to perform simple outlier detection on the incoming data before

fitting the distribution. Occasionally network packets can get lost or delayed for a

considerable period. Just one erroneous measurement can greatly bias the mean and

variance statistics used by the MME. We apply a standard χ2 gating procedure based

on the previous mean and variance estimates to throw out measurements which are

very improbable. We have found this simple measure to be highly effective.

8.1.3 Sliding Window Weibull Estimation

In order to track changes in network properties over time, we suggest running the

MME at occasional intervals of around 200 samples or 5 minutes (whichever is

smaller). That gives a good compromise between the quality of Weibull estimates

and the phase lag of the MME.
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A more expensive alternative is to run the MME incrementally over a sliding

window. It would require the ability to remove samples from the running mean,

variance and first order statistics as they drop off the end of the window. Using a

ring-buffer of previous data makes this trivial for the mean and variance values. A

running minimum in amortized O(1) time is a little harder to achieve, but can be

done by maintaining a list of ascending minima throughout the sliding window [118].

A simple way of initializing the distribution parameters quickly would be to use

a very rapid sample rate for a few seconds when the MME is first started up. Em-

pirically, we find on synthetic data that the estimated distribution rapidly converges

towards the correct shape.

8.2 Upset Detection

None of the existing work appears to make full use of two-way timing data for upset

detection. We present efficient and simple online algorithms for rapid (sometimes

instantaneous) detection of upsets.

We first reiterate that the offset between two clocks is bounded by the two-way

packet delay measurements. Thus the offset estimate need never be in error by more

than the most recent Round Trip Time.

8.2.1 Large Reset Detection

Detection of large resets greater in magnitude than the current closest vertical distance

between the two hulls is trivial. Such resets will cause an immediate intersection of

the two hulls, requiring the filter to be reset.

Because Large Reset detection is instant, hiccups of arbitrary duration are handled

too. Figure 8.2 shows the filter output and slope and offset error plots for a synthetic

case, showing the instantaneous reaction of the filter to reset events.
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Figure 8.2: Filter response to a series of reset events, using synthetic data at 5Hz. The
data were produced by measuring a series of real packet round trip times and randomizing
their order, before applying artificial skew and offset events. The thick dashed lines show
the estimates from the lines of maximum separation, with the fine dotted line being the
final offset estimate. The middle plot shows that the slope error remains within the 99%
confidence interval predicted using a Weibull distribution fitted to the data. The bottom
plot shows that the offset error rapidly reduces to well below 50µs. Indeed, by the end of
the plot, the achieved offset error is around 0.5µs.
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Figure 8.3: Response of a previously converged filter to a skew change. The thick lines
show the estimates from the lines of maximum separation. If the slope changes from α1 to
α2 then the time to the meeting of the lines of maximum separation is ∆ ≈ 2δ/ |α2 − α1|.

8.2.2 Skew Change Detection - A Naïve Approach

A similar mechanism might be used to detect changes in skew. We will analyze the

response to a skew change to see whether it results in satisfactory detection.

Figure 8.3 shows the situation for a filter that has converged on an initial slope.

The initial slope is α1, the new slope is α2 and in this case α2 > α1. After the skew

change, the minimum distance between the two hulls will decrease linearly until the

hulls intersect, or the maximum separation lines meet.

The time until intersection is a function of both α1 and α2, and is the time taken

for the offset to vary by 2δ. The detection delay is given by

∆ =
2δ

|α2 − α1|
(8.5)

This should be regarded as a best-case scenario. If the algorithm has not previously

converged to α1 then it might run for much longer before intersection occurs. Figure

8.4 demonstrates how the basic TICSync Estimator can maintain an incorrect but

feasible solution for much longer, if the previous slope was only seen for a finite time.
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Figure 8.4: The bounds corridor is modelled by the two solid lines, separated by twice
the minimum network delay, δ. At time t0, the TICSync Estimator begins converging to
slope α1. At time t1 the slope changes instantaneously to α2. t2 is the time at which a fully
converged Estimator would have detected the change in slope. But in this case, until t3, the
Estimator is still able to find feasible lines of maximum separation which pass between the
corridor bounds. The dashed line is the last of these. The upset is detected at t3.

Solving for the location of t3 yields the detection period

∆ = t3 − t1 (8.6)

=
2δ

|α2− α1| − 2δ
t1−t0

(8.7)

The detection period must be positive, which requires that

|α2− α1| > 2δ

t1 − t0
, (8.8)

implying that sufficiently small slope changes will never be detected. The algorithm

will eventually converge to the true slope, but with a constant offset error, and sep-

aration lines that are closer together than twice the minimum network delay. It is

worth reiterating that the offset will still never be in error by more than 2δ.
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8.2.3 Skew Change Detection - A Better Approach

In designing a filter sensitive to skew upsets, it is important to think about what

constitutes an ‘acceptable’ delay for detection. Large changes need to be detected

and adjusted to rapidly, but it is acceptable (and necessary) to take longer before

trusting the detection of a small estimated change. Small errors in slope will only

cause the offset error to increase slowly.

Slope changes cannot be immediately detected and a certain amount of evidence

must be collected before they can be reliably determined. Suppose the skew changed

instantaneously by 2 PPM; even if the filter was started afresh at the precise moment

of the change, it would need to run for some time before it converged to an accuracy

of better than 2 PPM. Only then would its output be useful for showing a change in

skew from the previous value.

We now investigate a solution which is independent of the minimum network delay,

δ. Because the TICSync Estimator updates are so cheap, it is possible to run a Bank

of Estimators operating at different scales.

Suppose we decide that we wish to detect all skew changes greater than 50 PPB,

and that a basic TICSync Estimator must run for W samples in order to converge

to such an accuracy. An optimal filter would run a Bank of Estimators, E1 . . EW on

sliding windows of every integer interval up to W. If at any point one of the Estimators

detects a slope error greater than its current precision, then a skew upset is deemed

to have occurred within the Estimator’s window. The proposed filtering algorithm

would be O(W ) for each update (with careful management of the Estimator Bank),

resulting in O(NW ) overall cost for an N sample dataset. For detecting small changes

with high sample rates, this could be prohibitively expensive.

A significantly cheaper solution can be achieved by running a reduced Bank of

Estimators. Each Estimator uses a window twice the size of the last. Such a solution

incurs a cost of only O(log2W ) per update, with overall cost O(N log2W ). It is
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Estimator Window length Detectable Slope Error

(Samples) (Seconds) (PPM)

E1 20 4.0 136.39

E2 40 8.0 51.80

E3 80 16.0 19.67

E4 160 32.0 7.47

E5 320 64.0 2.84

E6 640 128.0 1.08

E7 1280 256.0 0.41

E8 2560 512.0 0.15

E9 5120 1024.0 0.06

E10 10240 2048.0 0.02

Table 8.1: A typical TICSync+ (Bank-Of-Estimators) filter with 10 Estimators. Each
successive Estimator runs over a longer window, but is able to detect smaller skew errors.
The figures presented here are for a Weibull Distribution with k = 2.52 and λ = 0.00035.

sketched out in Algorithms 3, 4 and 5. In the worst case, the detection of a given

skew change will take twice as long as the full Bank-of-Estimators filter. On average

it will take 1.5 times as long. We call this configuration TICSync+.

In the proposed TICSync+ implementation, the TICSync Estimator E0 is fed all

measurements, and is only reset if an upset is detected. This allows it the opportunity

to converge to arbitrary precision when there are no upsets. The bank of basic

TICSync Estimators Ei, for i = 1 . . S are each never allowed to exceed w2i−1 samples

in length, where w is the maximum length of the lowest order estimator, E1. When an

Estimator reaches it’s maximum length, it takes a copy of the next smallest Estimator

and continues adding measurements. This scheme ensures that an Estimator Ei

always has a window of at least w2i−2 samples available to it. Table 8.1 gives typical

detectable skew errors for a bank of 10 Estimators.

The TICSync+ algorithm has only two user-selected parameters: The number of
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TICSync Estimators, S, and the smallest window size, w = dW/2S−1e. Choosing their

values is a trade-off between the cost of the updates (O(S)), the smallest detectable

skew error (where W is calculated using Equation 7.60), and the required rapidity of

detection. The lack of further tuning parameters makes the algorithm very simple to

deploy.

Algorithm 3 Main loop for TICSync+ Bank of Estimators Filter
procedure TICSync+(S, w)

. S: size of Estimator Bank

. w: window size for smallest Estimator

for i← 0 to S do
Ei ← Init-Estimator()

end for
loop

[d, q]← GetNextMeasurementPair()
Update-Estimator-Bank(E, S, w, d, q)
Detect-Upsets(E)

end loop
end procedure

Algorithm 4 Update Estimator Bank with a new measurement
procedure Update-Estimator-Bank(E, S, w, d, q)

if E1.Num-Samples() = w then
for j ← S to 2 step −1 do

if Ej.Num-Samples() = 2j−1w then
Ej ← Ej−1

end if
end for
E1.Reset()

end if

for i← 0 to S do
Ei.Update(d, q)

end for
end procedure

It may seem a drastic measure to reset all TICSync Estimators when even a small

skew change is detected. When an Estimator detects a skew change, the precise
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Figure 8.5: The TICSync+ Bank-Of-Estimators response to two slope change events (oc-
curring at the vertical dashed lines). The first is a change of 75 PPM, and the second 50
PPM. The data were obtained by randomizing some real packet delay data from a local
network and applying synthetic skew events. There are 4 filters in this example, running at
scales of 4,8,16 and 32 seconds. The smallest theoretical error detectable by the 32 second
window is 6.5 PPM in this particular case. The points at which the upsets were detected are
shown by vertical dotted lines. In the periods between event and detection, the filter may
be in error by more than the expected bounds. The second slope change is relatively slight,
so the filter takes longer to detect it. Note that at no point does the offset error exceed
500µs.
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Algorithm 5 Compare Estimators to detect Reset and Skew errors
procedure Detect-Upsets(E, S)

if E0.CheckHullIntersection() then
Reset-Estimators(E)
return

end if

for i← 1 to S do
εα ← |Ei.Slope()− E0.Slope()|
if εα > Ei.MinDetectableSlopeError() then

Reset-Estimators(E)
return

end if
end for

end procedure

location of the change is unknown, other than that it must have occurred somewhere

in the detecting Estimator’s measurement window. It could even have occurred just

in the last few samples. The filter cannot be sure for any of the Estimators that

the upset did not occur within the Estimator’s measurement window. If Ek was the

detecting Estimator, then it might seem sensible to copy the contents of Ek−1 into

E0, and reset all Estimators larger than Ek−1. The idea being that E0 would then

be more correct than before, and that the remaining error would be picked up by a

subsequent filter. This would hopefully result in a smoother transition. The problem

with this approach is that (depending on where the upset occurred) the remaining

error might be less than the filter’s minimum discernable error. In that case, the

measurement window of E0 will remain spanning the upset point, and it will remain

in error indefinitely.

In some cases, rapid re-initialization may be achieved by using the previous slope

estimate in preference to the normal filter output until the Estimator has converged

enough that its estimated error is less than the difference between the current and

previous slope estimates. Alternatively, given a prediction of the number of samples

required for the filter to converge to the required accuracy, the adjusted estimate
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could be smoothly phased out in favour of the normal filter output. This technique

works very well in some circumstances, but in others the results are much worse than

just allowing the filter to start from scratch. Smoothing the filter response after an

upset detection is an area requiring further research, but in the mean-time, resetting

the whole filter is a conservative approach to the problem.

8.2.4 Small Reset Detection

Small resets less than 2δ in magnitude will not cause an immediate hull intersection.

They may cause one of the Bank-Of-Estimators to detect a skew change, but this is

not guaranteed. Once the small reset lies outside of an Estimator’s sliding window,

the skew will return to the previous value, making the upset undetectable. The long-

term effect of the upset will be to reduce the distance between the lines of maximum

separation.

Using the approximation for an upper bound on the offset error allows us to add

another test to the function Detect-Upsets in Algorithm 5. The code snippet is

shown in algorithm 6.

Algorithm 6 Offset detection snippet
ετ ← |Ei.Offset()− E0.Offset()|
if ετ > Ei.MinDetectableOffsetError() then

Reset-Estimators(E)
return

end if

With the new test in place, the TICSync+ filter is equipped to detect both small

and large resets as well as changes in skew, without being affected by network load

fluctuations (which tend to vary the width of the bounds corridor). Figure 8.6 shows

the typical response time for small resets, as well as a situation where a change in

network load has no effect on the filter.
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Figure 8.6: The TICSync+ Bank-Of-Estimators response to small magnitude reset events
(occurring at the first two vertical dashed lines). Both have a magnitude of 8ms. The
data were obtained by randomizing some real packet delay data from a local network and
applying synthetic skew events. The points at which the upsets were detected are shown by
vertical dotted lines. Note that smaller changes are rapidly detectable, but were not easy
to see in the figure. There are 4 filters in this example, running at scales of 4,8,16 and 32
seconds. The third vertical dashed line marks a change in network load. There is no offset
or skew change, so the filter ignores it.
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8.2.5 Drift Detection

The linear clock model which is assumed by the TICSync Estimator does not allow for

the possibility of non-zero drift. Indeed, to do so would require an entirely different

approach, as convex hulls would no longer be applicable. Nonetheless, the TICSync+

Bank-Of-Estimators approach handles such events gracefully by approximating them

as piecewise linear. This does affect the minimum achievable error, which will be a

function of the drift magnitude. Figure 8.7 shows a typical response to an extreme

constant drift situation. In the steady state the filter reset points are regularly spaced,

and always prompted by the same Estimator in the Bank of Estimators.

A filter operating in the constant drift regime would certainly benefit from further

research into rapid reinitialization. It might be possible to detect regular slope error

events and learn the average change in slope over time. This could be fed into the

Estimators to aid in initialization.

8.3 Summary

Using the insights gained in Chapter 7, we developed TICSync: a new constant time

incremental algorithm for rapidly synchronizing clocks across a network to arbitrary

skew accuracy. The algorithm uses a pair of convex hulls to extract salient points

from incoming timing data and thus has modest memory requirements.

By modelling expected packet delay measurements with a Weibull distribution, we

were able to derive analytic expressions for the probable error of the TICSync filter

at any time. This led us to the idea of using a bank of TICSync Estimators running

at different scales in order to detect clock upsets of various types and magnitudes

as rapidly as possible. By choosing the scales carefully, we obtained good detection

performance with only a limited number of Estimators. When Estimators reach their

maximum window size, the data gathered is passed on to Estimators running at larger
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Figure 8.7: The TICSync+ Bank-Of-Estimators response to a constant-drift upset. The
period of constant drift begins at the vertical dashed line, and has a magnitude of 15µs/s2.
The data were obtained by randomizing some real packet delay data from a local network
and applying synthetic skew events. There are 4 filters in this example, running at scales
of 4,8,16 and 32 seconds. The constant drift has the effect making the slope error increase
at a constant rate. The vertical dotted lines show the filter reset points. Despite the large
slope errors and regular resets, the filter generally remains accurate to better than 200µs.
The situation depicted is much more extreme than would be expected for typical clocks. In
more ‘normal’ situations the typical offset error will be much lower than 200µs.
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scales to maintain efficiency. The final algorithm, known as TICSync+ retains the

constant time incremental performance of TICSync, making it suitable for long-term

online deployment.

Although TICSync+ is a standalone contribution and has broad applicability, in

the context of the mobile robotics endeavour, TICSync+ fulfills our requirement for

a system which enables accurate data-timestamping across multiple machines. What

remains to be done in the last chapter is to summarise this thesis, its structure and

contributions and emphasise the underlying theme which binds it together.
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Chapter 9

Summary

In this Section we will review the main contributions made by this thesis. We begin

by explaining the structure, chronology and interconnectedness of its components.

9.1 Perspective

This is a thesis of two distinct parts. The first (Chapters 2 - 5) is sensor based. It is

concerned with the fusion of laser and camera data and the correction, subject to an

architectural prior, of 3D point clouds. The second part (Chapters 6 - 8), is about

securing precision timing across a distributed network. This is motivated by the need

to ensure the veracity of time sequential data for use in mobile robotics. That is not to

say that these two parts are unrelated. On the contrary, the entire thesis is driven by

a desire for ‘better sensing’, be that through the fusion of two different modalities or

synchronization of data streams. The ordering of the contents of this thesis represents

the flow of the research as it happened. The initial intention was to concentrate solely

on generating high fidelity surfaces from point clouds. It quickly became clear that

firstly the problem was totally driven by point cloud quality, and secondly that much

could be gained by leveraging appearance information. The former consideration re-

sulted in a large but worthy systems engineering endeavour involving both hardware
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and software aspects. It was during this research period that the importance of good

timing became apparent. Initially this issue was addressed with bespoke hardware

(described in Chapter 3) and this approach allowed the development of the MRF

framework which is discussed in Chapter 5 and the point cloud adjustment technique

described in Chapter 4. However during the writing of papers [76] and [104] it be-

came clear that timing errors of a just a few milliseconds between cameras and lasers

were having a profound effect on data quality - a 5ms error while sensing objects 40m

away during a 45◦/s turn gives over 15cm of error. The investigation into the cause

of such timing errors and previous work that had been done in clock synchronisation

(in a community some way from mobile robotics) led the research in an unexpected

direction - certainly for a mobile robotics thesis. The outcome of this introspection

was a new timing algorithm (Chapters 6-8) that was shown to have advantages over

commonly used approaches such as NTP, and with provable convergence and per-

formance properties. Although the latter research was driven by a desire to achieve

better sensor data time stamps, it resulted in an algorithm and a package of research

which in many ways stand alone with applications far beyond laser time stamping (as

it was used in [76]). For this reason we did not strive to tightly include the timing

work in the sensor exploitation chapters, preferring to make explicit its independence

while acknowledging its provenance.

9.2 Contributions

In this thesis, we have explored many aspects of the data acquisition and processing

pipeline on a mobile robot. By analyzing a typical surface reconstruction scheme in

Chapter 2, we discovered the importance of accurate and consistently sampled point

clouds for high quality reconstructions. Noisy measurements can lead to poor surface

normal estimates, which are of vital importance in surface reconstruction. At every
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stage of the pipeline, we have analyzed the causes of errors and applied a careful

treatment to minimize their impact on the data. We now précis the contributions

made in the preceding chapters.

Laser Hardware and Calibration Methods We described a low cost solution

for gathering 3D point cloud data from a mobile robot, using a commercial 2D laser

scanner mounted on a reciprocating mechanical nodder unit. The unit allows for rapid

data collection and produces good coverage of the environment even with the robot

travelling at reasonable speed. Having no direct control over the nodding unit means

that we cannot sidestep the issue of time stamping, which is a particular problem

with high-speed data acquisition. To deal with the problem, we developed a simple

calibration procedure that runs at the beginning of each data gathering experiment,

transparently to the user. It learns the timing offset between laser data and nodder

encoder measurements by means of an optimization that minimizes the discrepancy

between data gathered on upward and downward sweeps of the nodder.

We have found the nodding laser to produce very high quality point clouds which

are an ideal input to the data processing pipeline.

Data Processing Requiring the robot to be stationary during the gathering

of high quality point clouds places unacceptable constraints on the data collection

process. Much more attractive is the ability for the robot to be able to gather good

data whilst on the move. Previous methods have restricted the robot to a reduced

set of manoeuvres which minimize odometry errors, but we have tackled the problem

of dealing with arbitrary vehicle motion and the associated odometry errors.

The use of architectural priors enables us to recover the vehicle trajectory by

registering sparse subsets of the gathered data. This has the benefit of providing

extra roll and pitch information which was previously unavailable from odometry,

allowing us to deal with uneven terrain.
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The method undoubtedly improves the maps that we can produce, but sometimes

does not behave as expected. In areas where the architectural priors do not hold,

there can be insufficient information for the algorithm to recover the vehicle’s trajec-

tory. A more general method for matching sparsely sampled point clouds in 6-DOF

would make the method more widely applicable. The work appeared in the ICRA’08

conference and was a finalist for the best student paper award [46].

MRF Methods for Laser and Vision Fusion The density of point clouds

produced by our nodding laser system is directly related to the amount of time avail-

able for scanning the environment. Rather than impose data gathering constraints

on the robot, we looked at methods of inferring extra range data by fusing the sparse

range measurements with higher resolution camera images to produce dense range

images. Our main contribution was to introduce the use of 2nd-Order smoothness

priors into an existing MRF framework for range interpolation. Our new prior makes

effective use of image colour information to choose the most appropriate form of range

inference from neighbouring nodes - either interpolation or if required, extrapolation.

We also provided a novel way to overcome errors introduced by the non-linearities

of the projective camera model. The problem is not treated by existing literature, but

we show how the MRF weights can be modified so that the optimization takes the

camera model into account. We also give a method of down-weighting the influence

of noisy range measurements that often occur at depth discontinuities.

We have shown that when properly tuned, our method is able to consistently out-

perform a number of recently proposed techniques running on real data. We made

use of readily available datasets to benchmark the performance.

There are however a number of areas where further work could be done. In

particular, a method of adaptively tuning the MRF’s parameters in different areas

of the image would improve results further. Currently the parameters must be set
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to give reasonable performance in a wide variety of situations. A means of applying

machine learning techniques to learn what parameters work well in different regimes

would be highly beneficial.

The use of robust kernels in the MRF’s data cost term would alleviate the prob-

lem of noisy data causing disruptions in the inferred range surface. Currently a laser

measurement far from the surface carries a disproportionately high cost, due to the

squared distance metric. A Huber kernel [54] or similar might produce a more ap-

propriate cost function, though it would preclude the use of the fast linear solving

techniques that we currently employ.

In order to make good use of the surfaces produced by the MRF method, we need

a way of fusing or stitching surfaces from different images. There are many existing

methods for fusing range images, but we are not currently able to enforce continuity

between surfaces in overlapping areas. It may simply be a case of taking a surface

lying between the two estimates, but further investigation is necessary.

Clock Synchronization Synchronizing the clocks of network distributed com-

puters is vital for many tasks. In the robotics context, the problem is often dealt

with in an unsatisfactory way, by running synchronization tools designed for long

term stability rather than rapid convergence. We have presented a new algorithm,

TICSync+, which is capable of synchronizing clocks to millisecond accuracy after just

a few seconds. Given a few minutes, it can achieve synchronization performance mea-

sured in Parts Per Billion on standard PC hardware. The upset detection capability

of TICSync+ allows it to be applied to computers whose clocks are being regularly

interfered with by other synchronization schemes. Even in these cases it is able to

robustly maintain a mapping between clocks. The algorithm requires no special hard-

ware or modified device drivers, as it works over standard network protocols.

TICSync+ is very efficient, with constant time incremental updates and a modest
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memory footprint. This makes it applicable in many areas, including embedded

systems and low-power wireless sensor networks.

9.3 Future Work

We have highlighted throughout the thesis various points of extension for future work

but there are some stand out cases which deserve particular attention and summary.

Laser Sensor Modelling What has not been addressed in this work is an em-

pirical development of a full and realistic sensor model for the laser. There is likely

to be benefit in future work that considers how range measurements are affected not

just by the geometry of the scene (angle of incidence), but the material qualities.

Indeed, one might consider a sophisticated model that leverages appearance informa-

tion gleaned from images to enable the construction of a time-varying sensor model.

Regretfully, due to time constraints, this topic is left for future derivative work.

Large Scale MRF Application As it stands, we used off-the shelf opti-

misation tools for the linear solve required in the MRF work. Further work could

benefit from explicit exploitation of the structure of the problem when trying to solve

over very large point clouds. The problem of fusing adjacent inferred range images

would also need to be addressed before large scale dense maps could be built with

the method.

Explicit Handling of Range Data Outliers We did not consider in any

great detail how to handle the presence of outliers in range data. M-estimators are

commonly used in vision based optimisation problems to seamlessly handle rogue

data and given more time we would have taken that approach here. This would be

the first extension we would undertake in future work.
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TICSync There are areas in which the TICSync algorithm would benefit from

further work. Currently, when an upset is detected, a conservative approach is taken

and the TICSync estimators are all reset. Resynchronization is rapid, but it may

take some time to achieve the levels of accuracy that had been reached before the

reset. It should be possible to make use of information gathered prior to the upset

detection event in order to speed up the resynchronization process. Further work will

be put in to online learning of appropriate delay distribution models. The current

heuristic approach usually gives a conservative estimate of error, but no guarantees

can be made. It is also necessary to further consider the appropriate course of action

to take when the network delay distribution changes, potentially invalidating future

error estimates.

An earlier version of TICSync has been successfully running as part of the MOOS

middleware system for almost 2 years, providing a time synchronization service for

MOOS clients. Future work will seek to apply the algorithm more widely to our

robotic platforms, with a particular effort to quantify achievable improvements in laser

data from push-broom laser configurations (as used by the ‘Lisa’ robot introduced

in Chapter 1) and rapidly rotating laser configurations. Finally, we are exploring

a number of interesting applications of skew estimation algorithms in the temporal

fusion of data from disparate sensors.
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Appendix A

Least squares plane fitting

Let P = p1, ...,pm be a set of points in R3. We wish to fit a plane such that the sum

of squared distances from the plane to each of the points is minimized.

The equation of a plane is

ax+ by + cz + d = 0 (A.1)

where a, b, c, d are the free variables. The distance of a point (x, y, z) from the plane

is then defined as

dist =
ax+ by + cz + d√

a2 + b2 + c2
(A.2)

Our aim is to choose a, b, c, d in order to minimize the sum of squared distances

to each point pi(xi, yi, zi):

f(a, b, c, d) =

∑m
i=1(axi + byi + czi + d)2

a2 + b2 + c2
(A.3)

Finding the partial differential of A.3 wrt d gives

∂f

∂d
=

1

a2 + b2 + c2

m∑

i=1

2(axi + byi + czi + d) (A.4)
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Setting it to zero shows us that the minimum occurs when

d = − 1

m

m∑

i=1

(axi + byi + czi) (A.5)

d = −(ax̄+ bȳ + cz̄), (A.6)

where p̄(x̄, ȳ, z̄) is the centroid of the points in P .

If we define p̃i(x̃i, ỹi, z̃i) = pi − p̄i, then A.3 may be rewritten as

f(a, b, c) =

∑m
i=1(ax̃i + bỹi + cz̃i)

2

a2 + b2 + c2
(A.7)

=
1

a2 + b2 + c2

m∑

i=1

(a2x̃2
i + b2ỹ2

i + c2z̃2
i + 2abx̃iỹi + 2acx̃iz̃i + 2bcỹiz̃i) (A.8)

=
1

a2 + b2 + c2

[

a b c

]
(MTM)




a

b

c




(A.9)

where M is defined as

M =




x̃1 ỹ1 z̃1

x̃2 ỹ2 z̃2

...
...

...

x̃n ỹn z̃n




(A.10)

If we further define
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v =

[

a b c

]T
(A.11)

then A.9 becomes the Rayleigh quotient,

f(v) =
vT (MTM)v

vTv
(A.12)

The Rayleigh quotient is minimized by setting v to be the eigenvector of MTM

with the smallest eigenvalue. In practice the Singular Value Decomposition of M

gives the eigenvectors of MTM and the squares of the eigenvalues of MTM , but is

more efficient to compute than the eigen decomposition of MTM .

To recap, the normal vector of the best-fit plane is given by the eigenvector u0

having smallest eigenvalue λ0. The two other eigenvectors lie within the plane. If the

plane fit is perfect then the magnitude of the smallest eigenvalue will be 0.
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Appendix B

KD-Trees

Given an unorganized point cloud X = {x1, ...xn}, the most obvious data structure

to represent them would be a point array of length n, but it does not explicitly

convey any information about the structure of the point cloud. That is, there is no

information stored about the relationships between the points

Many surface reconstruction algorithms need to make repeated ‘neighbourhood’

queries of the point cloud. Given an arbitrary query location q, the goal of a neigh-

bourhood query is to find the k points in X that are closest to q. When the data

structure is a simple array, such a query requires calculation of the Euclidean distance

from q to every point in X, followed by a sort on distance. This is an O(n+ k log k)

operation, but by using an efficient data structure the complexity can be reduced to

O(k log n).

By using a data structure optimized for neighbourhood searches, surface recon-

struction algorithms can be significantly more efficient. One such data structure is

the kd-tree, introduced in [40]. The kd-tree is a binary tree structure that allows

neighbourhood searches to be performed in logarithmic time and can be used in con-

junction with an array-type representation. It should be noted that kd-trees can be

applied to data of arbitrary dimension, though they become less efficient as the num-
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ber of dimensions increases. We are concerned only with data in R3, where efficiency

is high.

Building the Tree

Building a kd-tree requires recursive division of the space occupied by the point cloud

into a series of hyper-rectangles known as cells. Starting with a cell containing all

points inX, a division is made perpendicular to one of the principal axes. The location

of the division depends on the exact splitting rule being used, but a common rule is

to divide the cell along its longest dimension, at the mean of the point coordinates

in that direction. A node is added to the kd-tree, containing information about the

split direction and the dimensions of the two new cells.

Following the cell split, the division function is recursively called for each of the

two new cells. Divisions performed in those cells are added to the kd-tree as sub-nodes

of the parent division node.

The recursion terminates when a cell contains only a single data point. A leaf

node is added to the kd-tree under the parent division node, containing a reference

to that data point.

The tree building step is O(n log n), requiring O(n) storage. A disadvantage to

the kd-tree’s structure is that it is non-trivial to add new points once it is built. Of

course, it is possible to find the cell in which the new point lies and perform another

division step, but it can result in a poorly balanced tree if many points are added in

the same area. In these cases the structure becomes increasingly inefficient and it is

usually best to simply rebuild the whole tree.

Querying the Tree

To find the k nearest neighbours of an arbitrary query point, q, the algorithm proceeds

as follows:
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Figure B.1: A kd-tree partitioning of a synthetic 2D point cloud. Each partition line
corresponds to a branch node and each cell corresponds to a leaf node in the kd-tree data
structure.

1. Initialize a neighbourhood set Nq = ∅, to be sorted by distance from q

2. Traverse tree to find the cell Cq in which q lies.

3. Traverse tree in the neighbourhood of the node Cq until k points have been

encountered.

Populate Nq with the k best candidates seen so far, sorted in ascending distance

from q.

4. Inspect all unvisited cells that intersect a hypersphere centred on q, with radius

just touching x′k. If points are encountered closer than those in Nq, then insert

them into Nq, replacing the most distant points and then re-sort.

For details of different cell splitting schemes, and a description of approximate

kd-trees for faster neighbourhood queries, see [74].
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Appendix C

Graphs and Spanning Trees

A graph G = (V,E) is a data structure consisting of a set of vertices (or nodes), V

and a set of edges, E. An edge in E is defined as a pair (u, v) where u, v ∈ V and

u 6= v. In an undirected graph the vertex pairs are unordered, whilst in a directed

graph the pair is ordered, and signifies that the edge may only be traversed in one

direction. Examples of both types can be found in Figure C.1.

There are many data structures which are more specialized forms of graphs, in-

cluding trees, linked lists, heaps and priority queues. In particular, a tree is defined

as a connected, acyclic, undirected graph. The term ‘connected’ means that there

is some path by which any vertex may be reached from any other vertex. ‘acyclic’

means that the graph contains no loops.

In many graph implementations, it is convenient to attach a weight or cost to each

edge in E. This may represent a physical distance, or perhaps a penalty associated

with the traversal of that edge. Then the total cost of the graph is the sum of all the

edge costs.
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(a) A directed graph (b) An undirected graph, with edge costs

(c) AMinimum-Spanning-Tree (MST) of
C.1b

Figure C.1: Some simple graphs

C.1 Minimum Spanning Trees

If G is a connected, undirected graph then a spanning tree of G is an undirected,

acyclic, connected graph which contains all the vertices of G but a subset of the

edges. G may have multiple spanning trees.

A minimum spanning tree (MST) of G is a spanning tree of minimum total cost.

That is, a tree whose edges are a subset of E and which connect all the vertices of

G, but that has a total cost at least as small as any other spanning tree of G. There

may be multiple MSTs that share the same minimum cost but use different edges.

There are a number of algorithms for finding MSTs (see [26]). The algorithm of

Prim is described here, and it proceeds as follows:

• Initialize a tree, T with an arbitrarily chosen vertex from the graph as its only

node

• Place all edges in G into a set, E

• Loop until E is empty (or T spans all vertices)

– Find the edge, u having minimum weight in E
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– If u connects a vertex in T with a vertex not in T

∗ Add u and the new vertex to the tree, T

– Remove u from E

• T is now a minimum spanning tree of G
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Appendix D

Marching Cubes

Marching Cubes [62] is an algorithm for extracting isosurfaces from scalar fields. The

output is a triangular mesh which approximates the chosen isosurface. To produce

the mesh, the scalar field is divided into a regular grid of cubes, and each cube is

then replaced in turn with one of 256 preset mesh components which best matches

the isosurface as it passes through that cube. The name marching cubes comes from

the way in which the algorithm marches through the entire grid of cubes.

To illustrate the method, consider the more simple case of marching squares. First,

the area is divided into a grid of equal squares. The scalar field is evaluated at the

four corners of each square to determine whether its value is above or below the value

of the isocontour to be extracted. In Figure D.2a, the red blob represents areas of

the scalar field which are above the value, so that the isosurface to be extracted lies

at the boundary of the blob. The grid nodes (where the function is evaluated by

the Marching Cubes algorithm) are coloured black or white, to denote above or below

respectively.

Since each square has four nodes, there are only 16 possible configurations. The

algorithm simply looks up the case in a list (Figure D.1) and approximates the iso-

contour with a small straight line segment. By repeating this for every square, a
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0 1 2 3 4 5 6 7

8 9 10 11 12 13 1514

Figure D.1: The 16 Marching Squares cases. The grey lines in cases 5 and 10 denote
ambiguous configurations, though either one will create a valid closed surface.

(a) Marching Squares (b) Adaptive marching squares

Figure D.2: The required contour is the boundary of the dark blob. The thick line is the
approximation created. Notice how the adaptive method pushes the vertices closer to the
true contour.

piecewise linear representation of the isocontour is constructed. This is represented

by the green line in Figure D.2a.

The algorithm is O(mn), where m,n are the grid dimensions. The quality of fit

can be improved by using a finer grid, but this brings with it higher computational

cost, increased memory requirements and more evaluations of the scalar field. It may

be noted that many of the vertices of the contour approximation are a long way from

the true contour. A better fit can be achieved by allowing the vertices to slide along

the grid line section that they are attached to. Since the value of the scalar field is

known at both ends of the grid line segment, a simple linear interpolation can be
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performed to determine an intersection point closer to the true contour value. Figure

D.2b shows the results of the technique, which is known as adaptive marching squares.

The Marching Cubes algorithm is simply an extension of the Marching Squares

algorithm into 3D. With 8 nodes per cube, there are 256 cases. There are 15 major

cases, with all the remaining cases being rotations of the major cases.

Notice that cases 5 and 10 in Figure D.1 are ambiguous, with two possible con-

tour approximations. Provided that one is consistent in the representation used, the

contours created are not topologically incorrect. There are similarly ambiguous cases

for marching cubes but they may be topologically incorrect. A strategy for detecting

and fixing the ambiguities is described in [80].

Further speed improvements can be achieved by avoiding evaluation of grid cubes

which do not contain the surface. By seeding the algorithm somewhere on the surface,

it can then follow the surface to be extracted by only evaluating cubes through which

the surface subsequently passes. This can be problematic if the surface is not fully

connected.

Many subsequent modifications (ie. [100, 57, 96]) have been introduced to improve

Marching Cubes, but the original algorithm is currently adequate for our purposes.
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Appendix E

Spherical k-means Algorithm

E.1 k-means

k-Means is a technique used to segment a set of point samples into k clusters, where

each data point is assigned to its closest cluster centre. Let X = {x1 . . xn} be a set of

point samples with X ∈ R3. The aim is to partition X into k clusters Θ = {Θ1 . .Θk},

to minimize the expression

arg min
Θ

k∑

i=1

∑

xj∈Θi

‖xj − µi‖2, where µi =
1

|Θi|
∑

xj∈Θi

xj (E.1)

There are a few algorithms for solving the problem; the most popular, known as

Lloyd’s algorithm is described by Bishop [13].

E.2 Spherical k-means Algorithm

The spherical k-means algorithm due to Dhillon and Modha [31] is a minor modi-

fication of Lloyd’s algorithm. It is used to find cluster centres of points lying on a

spherical manifold of unit radius, using a squared cosine similarity metric rather than

the squared euclidean distance. The algorithm uses the result that the central point
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of a cluster in a cosine-distance sense is given by the normalized Euclidean mean

of the points assigned to the cluster. The cosine similarity between two normalized

vectors is easily computed with the dot product operation.

Another way of putting this is that if ĉ is the normalized Euclidean mean of X,

then there is no vector ẑ for which the quantity
n∑

i=1

xTi ẑ is greater than
n∑

i=1

xTi ĉ.

Formally,
n∑

i=1

xTi ẑ ≤
n∑

i=1

xTi ĉ ∀ ẑ =
z

‖z‖ , z ∈ R3 (E.2)

where

ĉ =
x̄

‖x̄‖ and x̄ =
1

n

n∑

i=1

xi (E.3)

The inequality is proved by manipulating equation E.2 to become

n∑

i=1

xTi z

‖z‖ ≤
n∑

i=1

xTi x̄

‖x̄‖ (E.4)

n
x̄T z

‖z‖ ≤ n
x̄T x̄

‖x̄‖ (E.5)

x̄T z ≤ ‖x̄‖ ‖z‖ (E.6)

which is a form of the Cauchy-Schwarz inequality. In this representation, x̄T z is a

dot product, so that

‖x̄‖ ‖z‖ cos θ ≤ ‖x̄‖ ‖z‖ (E.7)

which must be true because cos θ ≤ 1.

E.2.1 The Algorithm

The algorithm (reproduced here as Algorithm 7) takes as input the set of points

X = {x1 . . xn} and initial cluster centres, M0 = {µ0
1 . . µ

0
k}. It iterates until the

cluster assignments are stable, and returns the final cluster centres.
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Algorithm 7 Spherical k-means
procedure spkmeans(X = {x1 . . xn}, M0 = {µ0

1 . . µ
0
k})

M ← {µ0
1 . . µ

0
k}

Θ← {}

repeat
Θold ← Θ

. Assign each point to closest cluster centre
for j ← 1 to n do

Aj ← arg min
i

(
xTj µi

)

end for

. Recompute cluster centres
for i← 1 to k do

Θi ← {xj | 1 ≤ j ≤ n, Aj = i}

µi ←
mean(Θi)

|mean(Θi)|
end for

until Θold = Θ

return {µ1 . . µk}

end procedure
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Appendix F

The Modified Moment Estimator

The 3-parameter Weibull distribution has the pdf

p(t;λ, k, ρ) =





k
λ

(
t−ρ
λ

)k−1
e−( t−ρλ )

k

t ≥ ρ

0 t < ρ

, (F.1)

where k is the shape parameter, λ the scale parameter and ρ the position parameter.

Cohen and Whitten [24] provide an algorithm for the estimation of the 3 param-

eters given a set of samples {x0 . . xn} drawn from the distribution. The algorithm

does not operate on the sample values themselves. Rather it requires nothing but

three population statistics: the mean, the variance and the minimum value. This

property makes it particularly suitable for use in algorithms requiring online Weibull

parameter learning.

The derivation is somewhat involved and will not be reproduced here, but it results

in a few simple steps to obtain the parameter estimates k̂, λ̂ and ρ̂:

1. Calculate s2, x̄ and x(1) which are the sample variance, sample mean and first

order statistic (minimum sample value) respectively.

2. Set W =
s2

(x̄− x(1))2
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3. Obtain the shape parameter estimate k̂ by finding the root of the equation,

f(k̂) =
Γ̂2 − Γ̂2

1[
(1−N−1/k̂)Γ̂1

]2 −W, (F.2)

where Γ̂i = Γ
(

1 + i/k̂
)
, Γ is the Gamma function, and N is the number of

samples. f is a function only of k̂.

4. Compute the scale and position parameter estimates,

λ̂ =
s√

Γ̂2 − Γ̂2
1

(F.3)

ρ̂ = x̄− λ̂Γ̂1 (F.4)

Step 3 requires an iterative root-finding algorithm; we used the Newton-Raphson

method which requires the derivative of the function f(k̂). After a great deal of

headscratching and coffee, we derived this to be

f ′(k̂) =
2

(
kΓ̂1g(k̂)

)2


ψ̂1Γ̂2

1 − ψ̂2Γ̂2 + (Γ̂2 − Γ̂2
1)


ψ̂1 +

(
1− g(k̂)

)
log(N)

g(k̂)




 (F.5)

where g(k̂) = 1−N−1/k̂, ψ̂i = ψ
(

1 + i/k̂
)
and ψ is the Digamma function, defined as

ψ(x) =
Γ′(x)

Γ(x)
. Efficient solvers for the Gamma and Digamma functions are provided

by Cody [22] and Bernardo [10].
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Appendix G

A Running Variance Estimator

The formula for computing the unbiased variance of a sample population of size n is

well-known:

σ2 =
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

n(n− 1)
(G.1)

However, computing it naïvely can lead to significant numerical errors. Floating

point representations of numbers have a limited number of significant figures available

to them. The sum-of-squares and square-of-sums quantities can become very large,

though their difference may be small. There may be insufficient significant figures

available to obtain the difference between the numbers to the required precision. In

some cases this can lead to a negative value as the result of the computation.

In his second book in the Art of Computer Programming series [56], Knuth briefly

mentions an algorithm for computing the variance of a set of samples in an incremental

fashion, that is much more robust to numerical precision issues. It computes the

variance in a single pass, making it useful for maintaining incremental running mean

and variance measures. Algorithm 8 shows the method. M is used as an accumulator

variable which can be divided by n− 1 at any time to obtain the current variance.
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Algorithm 8 Single-pass variance algorithm
procedure Compute-Variance(X = {x1 . . xn})

n← 0 . Sample counter
µ← 0 . Running mean
M ← 0
for each x ∈ X do

n← n+ 1
δ ← x− µ
µ← µ+ δ/n
M ←M + δ(x− µ)

end for
return M/(n− 1)

end procedure
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