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Abstract

People tracking is a fundamental problem in computer vision and video surveillance.  Automated 
person tracking is the foundations of several video analytics tasks that have a potential of significantly 
facilitate the efficiency of using video surveillance technology. This includes human activity/event
recognition (for example, recognition of suspicious activities such as tailgating and loitering), scene 
analysis (for example, computing the number of visitors to a specific area), and calculation of face logs 
(for example, storing multiple views of the same person’s face, for future analysis tasks such as face 
recognition). 

This paper presents a survey of techniques developed for tracking people in video, followed by the 
technology readiness level (TRL) assessment for people tracking technology based thereon. Two main 
approaches for the problem are identified and comparatively reviewed: one based on appearance 
models and the other based on motion models. The technology readiness assessment is performed for 
different surveillance-based scenarios of increasing complexity: at passport control kiosk, controlled 
chokepoint, uncontrolled chokepoint, little and dense traffic, and outdoors. For each surveillance setup 
type, the techniques that show the best reported performance are identified. Additional background 
related to people re-identification video and the object tracking techniques developed at the University 
of Ottawa is provided. 

Keywords: video-surveillance, video analytics, person tracking, loitering detection, tailgating detection, 
technology readiness, performance evaluation, data-sets. 

Community of Practice: Border and Transportation Security 

Canada Safety and Security (CSSP) investment priorities: 

1. Capability area: P1.6.  Border and critical infrastructure perimeter screening technologies/ 
protocols for rapidly detecting and identifying threats. 

2. Specific Objectives: O1.  Enhance efficient and comprehensive screening of people and cargo 
(identify threats as early as possible) so as to improve the free flow of legitimate goods and 
travellers across borders, and to align/coordinate security systems for goods, cargo and 
baggage;  

3. Cross-Cutting Objectives CO1.  Engage in rapid assessment, transition and deployment of 
innovative technologies for public safety and security practitioners to achieve specific objectives;  

4. Threats/Hazards F. Major trans-border criminal activity  e.g. smuggling people/material. 
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1 Introduction 

Person tracking is a fundamental problem in computer vision and visual surveillance.  Automated 
person tracking permits more complex tasks such as human activity/event recognition (for example, 
recognition of suspicious activities), scene analysis (for example, computing the number of visitors to a 
specific area), and calculation of face logs (for example, storing multiple views of the same person’s face, 
for future analysis tasks such as face recognition). 

Tracking can be defined as follows: Given a target to track, to localize that target in each consecutive 
frame based on a combination of its previous position and its stored appearance. This yields the 
computational benefit of not having to detect the target by an entire image search (by leveraging its 
previously tracked location), and allows us to infer a target’s location when detection fails or it becomes 
occluded.  By tracking a target throughout a sequence, we can extract its trajectory through time.  

It is often an operational requirement that targets are tracked in real-time, which means that a 
tracker may only use information from the present and past video frames, and is not able to look into 
future frames for target appearance. Another common requirement is that when a target leaves the 
camera’s field of view and returns, the same identity must be associated with the target before leaving 
and after returning to the field of view. As an example, if a tracker is employed to count the number of
visitors to a room within a day, the same visitor should only be counted once, regardless of whether the 
camera is able to see that visitor at all times. 

Due to its occurrence in several more complex computer vision tasks, tracking has been thoroughly 
studied both in the general domain and for specific applications (surveillance, human-computer 
interaction, navigation). The goal of this survey is to evaluate and compare recent approaches that are 
applicable to human and face tracking in a surveillance environment, for different pre-defined 
scenarios.  These scenarios are thoroughly described in Section 4.  Briefly, we are interested in
trackers applicable to tracking an isolated face in a constrained environment (person in lane), trackers 
applicable to tracking a person entering and exiting a controlled doorway (controlled chokepoint) and an
uncontrolled doorway (uncontrolled chokepoint), trackers applicable to tracking multiple people in both 
general sparse and dense environments, and trackers applicable to tracking multiple people in an
unrestricted outdoors environment. For a thorough survey of less recently-proposed methods, readers 
are referred to a tracking survey by Yilmaz et al. [51].

This paper is organized as follows.  First ,we overview the approaches used for tracking objects in video, of which two main 
types are identified: one based on appearance models (Section 2) and the other based on motion models. (Section 3).
While reviewing these two types of approaches, we introduce and compare similar tracking methods 
that use motion and appearance models.  Then we evaluate the technology readiness level (TRL) for 
different surveillance-based scenarios (Section 4) based on the developed performance metrics and 
results reported in literature. For each surveillance setup type, the techniques that show the best 
reported performance are identified. In appendix, there additional background papers are included to 
provide additional background related to the people tracking and re-identification in video. 
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Table 1. Comparison of appearance models used in recent approaches.

2  Tracking based on Appearance Models

Arguably the most important aspect to any tracker is its appearance model.  The appearance model 
largely dictates the successes and shortcomings of trackers, defining the feature-space used to
represent the target. Sometimes we trade off keeping information about one domain of the target in
exchange for robustness to certain criteria, or computational efficiency. For example, a commonly-used 
construct in appearance models are histograms, which lose spatial information in exchange for point-to-
point transformation invariance and resistance to motion blur. In this section, we describe some of the 
most common appearance models in the recent literature, and a tabular comparison of some methods is
presented in Table 1.
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2.1  Template Matching

In template matching, a pre-computed region of interest containing the target (called a template) is
stored and used as a model to compare potential candidate targets against.  Each candidate is 
compared against the stored template by some similarity measure, such as a pixel-by-pixel comparison 
with the sum-of-squared-difference similarity measure [20], or cross-correlation [53].  These two 
methods use colour or intensity features and are popular approaches due to their simplicity and
computational efficiency. 

While tracking with a single template performs well when tracking static objects with little-to-no
appearance change, this strategy is often insufficient for video surveillance tasks, where the target 
undergoes significant appearance changes due to phenomena such as human articulation. To account 
for this, either multiple templates must be stored or the template must be sequentially updated to reflect 
the current target appearance. When the target is unknown a priori, the former is not possible and the 
target must be updated online. The problem of deciding when to update a template throughout a 
tracking sequence remains an open problem. If a target’s appearance changes throughout a scene, the 
template model should reflect those changes or it risks becoming out-of-date and the tracker will drift 
[34]. For example, if we are tracking a human’s face and the human rotates at a 90 degree angle, the 
template will be out-of-date and match poorly against the actual target. A gradual update as the human 
rotates their head would ensure good matches and accurate tracking. However, updating the template 
at the wrong frame risks introducing artifacts into the template. For example, if the target is moving 
quickly at the time of update, motion blur will be included in the template and the template will be less 
accurate. Updating at the wrong frame also risks introducing occluders or background pixels to the 
template. Many different strategies have been proposed to tackle this problem. Matthews et al. [34] 
present a template update scheme that corrects for tracking drift by storing two templates: the template 
from the first frame and the most recent tracking result. Drift is corrected via gradient descent 
minimization of a cost score for aligning the current tracking result template with the first frame 
template. Many sparse representation trackers [36, 23, 52], described in Section 2.4 give a dynamic 
importance weight to each template, and update the template set by discarding the least important 
template and adding the current tracking result when the tracking reconstruction error is sufficiently 
high, up to some threshold. 

When tracking with a single template, illumination changes in the scene often cause there to be large
differences in the pixel values between the true target and the stored template. A standard approach for 
solving this issue is to use normalized cross-correlation [53], which normalizes the image by subtracting 
the mean value and dividing by the standard deviation. The resultant value is a similarity measure 
between a template and candidate target, computed by
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The idea of template matching has been expanded in recent years. Rather than doing a pixel-by-pixel
comparison, in Section 2.2.1 we explore methods that break a template into rectangular subregions 
and use histogram comparison over these subregions as a similarity measure. In Section 2.4, we
explore methods that keep a large dictionary of templates and represent the current tracked target as a 
sparse linear representation of the template dictionary. 

2.1.1   Contour Tracking 

While a great deal of research has gone into tracking by a template represented by a geometric shape, 
such as an elliptical or rectangular region of interest, there also exist techniques that directly track the 
contour of a template.  This has the benefit of excluding all background pixels from the template, which 
increases the precision of the pixel distribution and increases the discriminative power of the target 
representation. 

Contour tracking aims to estimate the target’s location, scale, and shape in each frame using either 
the contour from the previous frame or an external contour detector. The target’s appearance is 
generally modelled by either a descriptor representing the shape’s silhouette [9] or a colour/intensity 
histogram of the interior region of the shape boundary [27].

Figure  1. A shape contour is represented by a set of concentric circles, each of which
provides a probability distribution over the contour edge pixels [27]

When matching directly by shape, there are two required steps. First, the shape of the target must be
segmented from the overall image, either by background subtraction or an image segmentation 
algorithm. Then, a shape-matching algorithm is employed to return the similarity between the template 
contour and the segmented shape. Shape Contexts [9] are among the most popular shape descriptors 
for matching. Points are randomly selected along the contour and a shape context is computed for 
each of those points. A shape context encodes the general spatial distribution of a given point relative 
to the remaining points on a contour with a log-polar space histogram. Then, a mapping is found 
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between the shape context points from the template to the candidate target, which returns a similarity 
cost that we aim to minimize. 

Kang et al. [27] propose a contour-based appearance model based on circular regions around the 
contour. The smallest circle that fully contains the contour is taken as a reference circle, and small 
concentric circles of various radii are extracted from within the reference circle to be used as bins. This is
illustrated in Figure 1. Within each bin, the contour is modelled by a Gaussian colour model over the 
RGB distribution of contour edge pixels within that bin. The final shape descriptor is obtained by
counting the number of contour-edge pixels within each bin, yielding a probability distribution. Then, any 
probability distribution comparison technique (such as the Kullback-Leibler distance), can be used as a 
similarity function between a candidate target and a template. This approach is invariant to changes in
scale, rotation and translation. 

2.2 Histograms 

Histograms are a popular choice due to their simplicity and power. There exist methods to efficiently 
compute arbitrarily large histograms over arbitrary regions in an image in constant time [40] and several 
approaches are available to compare histograms. One of the major drawbacks to histograms is that all 
spatial information within the searched region is lost, since histograms are essentially a discretized 
sum of values over the image region. Some trackers [2, 17] combat this by computing histograms of
neighbouring regions and enforcing that a pair of matching histograms must also have matching 
neighbourhood histograms. Other drawbacks of histograms include sensitivity to illumination changes, 
large appearance changes, and occlusions. Despite these drawbacks, histograms remain among the 
most popular appearance models in use. 

Figure 2. A reliability value  (proportional to the shading) is assigned to each fragment. 
The reliabilities are dynamically updated at each frame and contribute proportionally to
the final tracking result.  Low-reliability (occluded) fragments have minimal impact on the 
tracking result [17].



D. Macrini et al. “Assessment of People Tracking Technology for Video Surveillance Applications”   

Page 12 of 36 

2.2.1   Part-based histogram techniques 

An alternative to tracking by a holistic template is to track by template fragments and then enforce 
spatial constraints on those fragments.  Adam et al. [2] introduce Fragtrack, a tracking algorithm that 
permits real-time target tracking by breaking a target up into several small patches and comparing 
histograms on individual patches as a similarity measure. Histograms are efficiently computed using a 
data structure called the integral histogram [40], which is designed to compute histograms over arbitrary 
rectangular regions with a constant number of arithmetic operations. Fragtrack operates on a frame-
by-frame basis by searching the entire image within a search radius r of the previously tracked 
location. For each candidate location c, a region of interest is extracted and broken up into several 
patches to compare against the template image t. The similarity between c and t is computed by
comparing the histogram similarities between each extracted patch and sorting them. Then, the top 25%
most similar patches are thrown away and the next most similar patch is used as the similarity score 
between c and t. Such a similarity measure grants the algorithm robustness against occlusions of up
to 75% of the target template, making for a powerful tracker. However, the tracker is sensitive to full 
occlusions, low frame rates, and no appearance model update scheme is proposed. 

Fragtrack was expanded upon by Erdem et al. in [17]. A particle filter framework is used for improved
search efficiency, rather than exhaustive region searching.  The particle filter framework also allows for 
more natural inclusion of scale information into the problem formulation.  Tracking accuracy is
improved via adaptive cue integration, which assigns a reliability to each of the “cues” (fragments or 
patches) and uses these to weight their contribution to the joint tracking result. Cues with low reliability 
contribute little to the final tracking result, while cues with high reliability greatly influence the final tracking 
result. A cue’s quality is estimated with a sigmoid function of the Euclidean distance between the result 
suggested by an individual cue, and the final tracking result agreed upon by all cues. The reliabilities 
are updated at the “update” phase of the particle filter framework, via a technique called Democratic 
Integration [41]. Democratic Integration suppresses fragments that are not in agreement with the joint 
tracking result, while giving higher future influence to fragments that are in line with the joint result. A 
visualization of the cue reliabilities can be seen in Figure 2, where more transparent fragments 
correspond to low reliabilities and opaque fragments correspond to high reliabilities. 

Figure 3. Distribution Fields explode an image into multiple  layers, one  for each 
histogram bin. These layers are shown on the left, and shown spatially smoothed on
the right.
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2.2.2   Holistic histogram techniques

Oron et al. [39] propose a tracking technique based on locally orderless matching (LOM), where an
online learning approach allows the tracker to shift between rigid template matching and nonrigid 
histogram matching with Earth Mover’s Distance [43] as a histogram matching metric. LOM allows the 
calculation of the likelihood of an image patch P being a noisy replica of a previous patch Q: 

P=r(P|Q,Θ),

where Θ are noise model parameters. These noise model parameters control (in an online fashion) the 
cost of spatially moving pixels and the cost of changing a pixel’s appearance. As these costs are 
adjusted, the tracker can tend to increase the likelihood of a rigid template or the likelihood of a 
deformable template. The paper shows that computing the MAP estimate of a mapping between the a 
patch P and its assumed replica patch Q is proportional to computing the optimal “signature Earth 
Mover’s Distance”, for a signature where the source is the pixels of the source patch, the destination is
the pixels of the destination patch, and the distance function is defined as  

d(p, q) = − log (P r(p|q, Θ)), for pixels p P and q Q.

Finally, tracking is formulated in a particle filter framework, where the particle likelihoods are inferred 
using the LOM described above. The noise model parameters Θ are learned in an online fashion, 
propagated through frames. The EMD flow between the final candidate particle’s signature and the 
target signature is used to estimate the maximum likelihood of the noise model parameters, which are 
regulated using a prior and a moving average process. Generally, we compute the ML parameters of
Θn , regularize them, then mix them in a moving average with the previous noise model parameters, 
Θn−1 . This approach is very robust for handling a variety of targets, but suffers from a low tolerance 
for occlusions, no online model updating, and no approach to track multiple targets. 

Distribution Fields [45] have been introduced as a template-based approach to object tracking. 
Tracking is performed by comparing the `1 difference between a model and candidate region, and
following the direction of steepest descent until a local minimum is reached. In standard practice, this 
method of convex optimization of tracking works poorly due to low landscape smoothness (smoothness 
of the optimization space) and poor specificity (when the global optimum of a matching function does
not represent the true position of the target).  Distribution Fields alleviate these problems by exploding 
a frame into multiple layers, one layer for each binned feature, as seen in Figure 3.  Each layer is
spatially smoothed with a Gaussian, resulting in a probability distribution at each pixel corresponding to 
the probability that that location contains the layer’s feature. This gives a smooth optimization space in
the spatial dimension, but not the feature dimension. The image is then smoothed in the feature 
dimension, permitting a compact representation of all “neighbour images” (that is, all images 
corresponding to subtle, subpixel differences in motion, shadows, and changes in illumination). This 
increases the width of the capture range around the position of the tracked target, and gives rise to a 
very accurate tracker. However, there is no model for occlusion or variance in object pose, limiting the 
possible domains for this accurate tracker to be used. 
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2.3  Local Feature Tracking 

Another popular method of tracking is to use specific local features, such as salient keypoints, and to
track their displacements from frame to frame. We begin with a brief overview of some common feature 
choices for tracking, and then present some proposed approaches. 

2.3.1   Keypoints

SIFT [33] is arguably the most famous descriptor to date.  A grid of HOG (histogram of oriented 
gradients) features determines a 128 dimensional descriptor which is highly discriminant and robust to
rotation, scale and location changes. Although SIFT has become the benchmark for keypoint 
matching algorithms, computing and comparing SIFT points is notoriously slow [12], leading 
researchers to investigate more compact descriptors that can be compared efficiently [8, 12, 30, 4].

SURF [8] is a popular alternative to SIFT with faster matching speeds.  It uses the integral image to
compute a 64 or 128 dimensional descriptor based on Haar-wavelets and local gradient histograms. 
Despite its increase in speed over SIFT, SURF descriptors are still represented by, at minimum, 64
floating point values. For real time applications, such as tracking, more compact representations are 
needed to minimize space and comparison runtime. These requirements have encouraged the advent
of binary descriptors for keypoint representation. 

Binary descriptors have become very popular due to their efficiency to compute, efficiency to compare, 
and compactness.  A simple binary string is used to describe the keypoint, which is much more 
compact than a 128-dimensional vector of floating point values. Furthermore, two binary strings can be
quickly compared by a simple Hamming distance calculation (XOR, followed by counting the number of
1 bits). 

Binary Robust Independent Elementary Features (BRIEF) [12] descriptors describe an image patch with 
a binary string for the aforementioned reasons. The binary string is built by simple smoothed pixel
comparisons. If we have two pixels to compare whose intensity values are denoted p(x) and p(y), the 
descriptor bit for these two pixels is set to 1 if p(x) < p(y), which is trivial to compute and compact as a 
representation. Two BRIEF points are efficiently compared by computing the Hamming distance 
between their bit strings. Although this descriptor is powerful due to its efficiency and compactness, it 
suffers from a low tolerance to in-plane rotation and scale changes. 

Binary Robust Invariant Scalable Keypoints (BRISK) [30] build on this idea and provide invariance to
rotation and scale changes. Keypoints are detected by a variation of the FAST detector [42] that 
identifies keypoints based on their saliency along multiple scales through a scale-space pyramid. This 
scale-space search provides the descriptor with scale invariance. The descriptor is built by sampling a 
number of points around the detected keypoint in a specific circular sampling pattern, with higher 
sampling density closer to the keypoint. The sampled points are then separated into two sets, long-
distance pairings and short-distance pairings. The long-distance pairings are used to estimate the 
direction of the keypoint, which is then used to rotate the sampling pattern, yielding rotation invariance. 
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Then, the short-distance pairings are used to build the descriptor by simple intensity comparisons, 
similar to BRIEF [12].

Fast Retina Keypoints (FREAK) [4] are efficient binary keypoint descriptors based on a sampling pattern 
derived from the human retina.  Matching is efficiently performed with these keypoints in a similarly 
biologically inspired manner. Keypoints are defined by comparing local pixels, where the sampling is
dense around the center pixel and more sparse (corresponding to a human’s peripheral vision) further 
away. Searching for a corresponding keypoint is first performed with only the “peripheral” bits from the 
keypoint, eliminating approximately 90% of the search space, which is then examined with the more 
densely sampled bits to find a match. 

2.3.2   Tracking by Local Features

Due to redundancy in images and large variations due to illumination changes and articulation, some 
pixels can be deemed more informative than others. With this in mind, many tracking applications 
choose to track specific extracted keypoints from an image, rather than tracking a target by its entire 
pixel distribution. This has the advantage of offloading many required invariances to the keypoint 
descriptor, which for many keypoints has been a well studied problem. For example, SIFT keypoints 
[33] are invariant to both scale and rotation, potentially allowing the author to exclude this complexity 
from their tracker. Furthermore, tracking by keypoints is relatively robust to partial occlusions when the 
keypoints are well distributed along the target, as the unoccluded keypoints can still be well matched. 

Tracking by keypoints can be separated into two general approaches: methods that find keypoint 
correspondences and methods that build classifiers with keypoints. Shu et al. [46] build several person-
specific SVM classifiers with a feature descriptor containing local binary patterns, colour histograms and
HOG features. Kalal et al. [25] train a classifier based on 2-bit binary patterns. In contrast to classifier-
based approaches, Zhou et al. [55] present a tracker that fuses information from keypoints and
histograms. From a target region of interest in the first frame, a colour histogram and SIFT features 
are extracted for comparison purposes.  Then, starting from the previously tracked location, a local 
region is searched with mean shift to get a potential tracking result with respect to the colour 
histogram, and SIFT points are compared to get a potential tracking result from the feature points.  
Finally, the EM algorithm is used to balance the two results, minimizing the distance between the mean 
shift tracking result and SIFT correspondences. Wagner et al. [48] use FAST corner detection [42] as
features to track and use a forest of spill trees, a variant of k-d trees that are robust against noisy data, 
to match their descriptors. A motion model is employed to coarsely estimate a search region for 
previously tracked features for finding correspondences. 

One problem with tracking by keypoints is deciding how to update the appearance model to reflect the 
current appearance of the target. Keypoint trackers generally select keypoints from a template at the 
beginning of the tracking sequence and progressively track these keypoints, never updating the set from 
which they match. Hare et al. [21] tackle this problem with structured ouput learning using binary 
descriptors for efficiency. Each keypoint descriptor is given a dynamically updated weight, which are 
approximated at the learning stage as binary coefficients of basis vectors used for SVM training. This 
online learning stage allows the tracker to continuously update the importance of each keypoint 
through its weight, essentially removing outdated keypoints from the appearance model. 
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2.4  Sparse Representations 

Using a sparse subspace for representing a target’s appearance was popularized by Mei et al. [36] 
and has been frequently adopted in the recent literature [37, 23, 54, 52].  In this approach, a 
dictionary of reference templates T = [t1 , ..., tn ] Rdxn is kept, and new candidate templates are 

treated as a sparse linear combination of the templates in the dictionary y≈T a, a=[a1 , ..., an ]T Rn, 
with sparsity ensured by L1 regularization. A candidate’s likelihood is evaluated as its reconstruction 
error, the cumulative pixel-wise error between the actual candidate and the transformed linear 
representation. Errors can be accumulated for a multitude of reasons, such as tracker error, motion blur, 
and occlusion. To deal specifically with occlusion, trivial templates I = [i1 , ..., id ] Rdxd are 
introduced. A trivial template is a vector with only one non-zero entry, corresponding to an occlusion at
that location. Finally, that gives us the following representation of the target as a linear combination of
target templates and trivial templates: 

From that representation, the reconstruction problem is solved by L1 -regularized least squares. 
Appended to the end of the least-squares equation is a regularization constraint, which encourages the 
coefficient vectors to have as few non-zero elements as possible while minimizing the prior term for 
sparse reconstruction. This permits an efficient tracking solution based on a small set of target 
templates, and can be written as: 

Zhang et al. [52] expand on this method of sparse representation by assumption that there are valuable 
interdependencies between particles in the particle set of a particle filter, and they can be more sparsely 
represented by a joint representation over the template dictionary. The problem is posed as a multi-
task learning problem, where learning the representation of a particle is considered a single task.  This 
learning task reduces into a similar regularization problem over mixed norms, which can be solved by
the Accelerated Proximal Gradient method (APG) [38]. APG solves convex optimization problems with 
non-smooth terms. It achieves a global solution with quadratic convergence, resulting in an accurate and
efficient solution. 

A collaboration of generative and discriminative models is proposed by Zhong et al. [54], where the 
discriminative classifier is trained by stacking positive templates and representing them sparsely. Then, a 
projection matrix S is computed that projects an original feature space of intensity values into a sparse 
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feature space, where the features are coefficients to reconstruct based on the stacked templates. A 
particle filter is used to select candidates to project into this feature space. 

A given candidate x is projected into the sparse feature space by x0  = Sx and becomes a 
representation of the training set and sparse coefficients α.  The candidate is computed by minimizing 

α over ||x0 − A0α||2  + λ||α||, where A0  is the template set projected into the sparse feature space. The 
discriminative model operates on a pixel-by-pixel classification basis, making it good for non-
rectangular objects so that background pixels are not included in the positive instances of the classifier. 
The generative classifier is modeled by a sparse histogram representation over image patches to
effectively account for the spatial appearance model of the target.  An overlapping sliding window is
used to generate candidates, in contrast to the particle filter used in the discriminative model.  A 
sparse coefficient vector β is computed over each patch by its reconstruction error against the 
template dictionary, generated from the centers of a k-means clustering of the dictionary. Finally, each 
sparse coefficient vector is concatenated into a histogram which is used to compare the similarity 
between an image patch and the template set. These two models both return classification results and
reconstruction errors, which are linearly combined to return the final tracking result. 

Methods using sparse representation often differ in their template update model. That is, when and how 
do you update the dictionary of templates such that the appearance model continues to capture the 
current appearance of a tracked target through rotations, occlusions, illumination changes, and other 
large changes in the target’s appearance?  Tracking with fixed templates is doomed to fail in
unpredictable environments such as visual surveillance, due to its inadaptability to new, previously 
unseen appearances.  On the other hand, updating the template too often leads to an accumulation of 
errors, resulting in tracker drift. Mei et al. [36] have initially proposed adding a weight to each template 
in the dictionary. A template’s weight is increased when recently tracked frames are visually similar to 
that template, and decreased in the opposite fashion.  When the tracking result is not sufficiently 
similar to any one template, the least important template is removed and the current tracked result is
added to the dictionary. Jia et al. [23] propose a probabilistic approach that updates old templates 
slowly, and new templates rapidly. An incremental learning method [41] based on a PCA updates the 
basis vectors to adapt to appearance change and learns the visual information that the set of targets 
have in common, which is used to reduce the dimensionality of target reconstruction via the template 
dictionary. Zhang et al. [52] associate a weight with each template di  in the dictionary and iteratively 
update them at each successive frame, based on whether di was used in the reconstruction of the 
tracked target. Templates that are used more frequently are deemed more important and given higher 
weights. When the particles from a particle filter cannot be represented with low reconstruction error 
(up to some predefined threshold), the template set is deemed unsatisfactory and the template with 
the lowest weight is replaced with the current tracking result. This approach updates often enough to
ensure the dictionary is representative, while being robust against occlusions and other noise, as
these situations will be quickly filtered out due to their low weight. 

Although these approaches of using least-squares over a sparse representation have become popular, 
some approaches are borrowing these ideas and applying them in a non-sparse manner.  Li et al. [31] 
represent a tracked object with an “appearance subspace”, spanned by a set of basis samples 
encoding the appearance distribution.  A linear combination of these basis samples are then used to
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reconstruct candidate samples, and an optimal solution is computed in closed-form with a metric-
weighted least-squares solution. This approach borrows many of the ideas from recent successes in 
sparse target representation, but differentiate by not searching for a sparse representation and instead 
using the closed-form solution.  Real-time performance is achieved with weighted reservoir sampling, 
which maintains and updates the appearance subspace while balancing between sample diversity and
adaptability in the learning metric. 

2.5 Learned Appearance Model

Rather than hand-picking features or pixels that are powerful for tracking, it is becoming increasingly 
common for approaches to employ automatic feature selection strategies to learn discriminative tracking 
features over a video sequence or a dataset of training examples. The most successful of such 
approaches is the use of Adaboost [44], most famously used in object detection [47]. Adaboost is a 
boosting algorithm that combines several weak (slightly better than random guessing) classifiers into 
one strong (highly accurate) classifier. In the context of image processing, this allows for several very 
simple features to be combined into a complex, powerful appearance model. 

Avidan [6] treats the tracking problem as a binary classification problem, classifying on a pixel-basis 
whether a pixel is the target or background. This is achieved with an updating set of weak classifiers, 
combined into a strong classifier with Adaboost. An ensemble of weak classifiers is maintained to
create a confidence map of the pixels in the current frame. Mean-shift is run on the confidence map to
locate the peak (that is, the position of the tracked object). Finally, the ensemble is updated by training a 
new weak classifier on the current frame and adding it to the ensemble. The weak classifiers are 
trained with an 11-dimensional feature vector extracted from the image, containing local orientation 
histograms and pixel colours. The appearance model is kept up to date by holding T weak classifiers, 
and at each frame, throwing out the oldest one and training a new weak classifier on the data from the 
current frame. This approach is beneficial because it offloads the large training process into a sequence 
of small, simple learning tasks that can be performed online. If the target to track is known a priori, a 
large dataset can be used to train an initial classifier offline before tracking even begins. 

Among the most prevalent problems with modern trackers is that of tracker drift. If a tracked sequence 
is a bit off and the appearance model is updated, the appearance model for the target begins to contain 
a portion of the background, and slowly tends further away from the actual target due to overfitting, by
assuming the entire bounding region contains the target. In MILTrack [7], this problem is tackled by bags 
of bounding regions, rather than a single box containing the target. Traditionally, discriminative classifiers 
for tracking use the bounding region of a previously tracked location as a single positive training 
instance, and select several regions away from that to train the background as negative training 
instances. With even a very small error at the current tracking step, a template update would include 
part of the background as a positive instance, decreasing discriminative power and contributing to
tracking drift. Instead, Babenko et al. [7] propose to use several bounding regions that are very close to
the current tracked target location and bag them into one large positive bag. Moving further away from
the current tracked location, negative bounding regions are selected to increase discriminativity against 
the background.  Multiple Instance Learning (MIL) is used to deal with the ambiguity in the training 
data. Instead of instance/label pairs, we have a bag of instances/label pairs. A bag is considered 
positive if one or more of its members is positive (that is, at least one bounding box in the bag is the true 
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target). This solves the problem of inherently ambiguous rectangle labeling, caused by small tracking or
detection errors, where part of the target is missing or a large portion of the rectangle is background. 
Each rectangle is then broken down into a feature vector of Haar-like features, and the most 
discriminative features are selected based on a MIL variant of Adaboost [16, 19]. This algorithm 
performs well due to its ability to handle ambiguously labeled training examples, by performing 
classification over bags rather than single suboptimal instances. This algorithm also permits resistance 
to short-term occlusions when updating the appearance model, due to the extracted bag of examples 
around the correct region being added to a large set of weak classifiers, which are trained on the 
features from previous frames which were unoccluded. However, if the target is often occluded by the 
same object, and for long periods of time, it is possible that the appearance of the occluder is
overlearned and the tracker will drift. 

Shu et al. [46] propose a part-based tracking-by-detection approach. They describe a system that 
employs several part-based person-specific SVM classifiers, which are capable of capturing the specific 
articulations of bodies in a dynamically 

Figure 4. Three different detection configurations are considered. Red rectangles 
correspond to full body detections, green rectangles correspond to  upper-body 
detections, yellow rectangles correspond to head detections.

changing appearance and background.  These person-specific SVMs are trained based on the 
detections in the tracking sequence, and are used to classify the identity of new detections. They are 
trained with a feature vector of colour histograms and local binary patterns, with positive examples from 
the tracked trajectory and negative examples from other trajectories to ensure high discriminative power 
between individuals. This is beneficial in associating trajectories of the same person who enters and
exits the camera’s field of view multiple times. Initial detections are done with an offline-trained part-based 
SVM detector, and a greedy bipartite algorithm is used to associate detections into tracked trajectories. 
Another advantage of this approach is robustness against partial occlusions. When searching for a 
new detection at location (xo , yo ), three possible configurations of a human are considered. These 
configurations correspond to different sets of human body-parts being unoccluded: the entire body, the 
upper body parts only, or the head only, as can be seen in Figure 4. This avoids an exhaustive 
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combinatorial search over all possible combinations of unoccluded and occluded parts for each 
individual. The configuration that maximizes a detection score based on HOG features is selected as
the candidate tracking location for position (xo , yo ). Also, the algorithm handles crowded scenes well 
by using a correlation-based Kalman filter to track the head of an individual when no detection is
achieved, due to occlusion or misdetection. 

3. Tracking based on Motion Models

Once the target is represented and an appearance model is extracted from a scene, we must locate a 
similar appearance in subsequent frames and associate them into one continuous tracked trajectory. 
An exhaustive search over all possible locations and scales at each frame is both infeasible and
unnecessary. There exist a small number of motion frameworks of which one appears in almost every 
recent tracker in the literature. In this section, we give a brief overview of the most common motion 
models. 

Table 2. Comparison of motion  models used in papers.
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3.1  Local Optimization

A common approach to locating the target in a new image frame is to treat tracking as a global search 
problem over a spatially smooth function. That is, represent each possible search location as a point 
on a continuous function space, where the global minimum represents the true target location. Such a 
search space is commonly solved with mathematical optimization algorithms, such as gradient descent. 
These approaches rely on the assumption that the gradient descent of the alignment function (function 
that returns the similarity between the target to track and the candidate location) will eventually reach a 
global optimum.  

Comaniciu et al. [14] define the alignment function as the distance between two distributions 

where is the sample estimate of the Bhattacharyya coefficient [3] between p and q.
As distributions, the colour histograms of the target and candidate are used. The goal is to find the 
location y that minimizes the proposed distance from the stored target distribution. This is solved using 
mean shift [13], which is an optimization technique for finding minima of a density function. A 
confidence map is created based on the distance function and peaks are detected as local minima. 
These local minima correspond to likely target correspondences. Such a function is made feasible by
gradient descent on the distance function, which from some initial point ỹ , returns the next point ỹ ’ that 
has the largest drop in distance. 

The approach proposed by Comaniciu et al. [14] suffers from a small basin of attraction, which results 
in the method being more likely to get stuck in a local optimum and not reach the true target. Sevella-
Lara et al. [45] propose the use of Distribution Fields to counter this. Distribution Fields perform 
smoothing both spatially and across intensity histogram bins to achieve a large basin of attraction, 
which results in gradient descent being much more likely to reach to global optimum of the distance 
function. 

3.2 Bayesian Filters

The Kalman filter and the particle filter are Bayesian filtering frameworks that recursively estimate the 
current state of the target (for example, location and scale) at each frame. The main advantage of the 
Kalman filter is that, when the underlying distribution is known to be Gaussian, the Kalman filter 
provides the optimal tracking solution. However, when the underlying distribution is not known to be a 
Gaussian, the Kalman filter does not provide the optimal solution and an alternative approach is
needed, which gives rise to non-linear models, such as the extended Kalman filter and the particle filter. 
The extended Kalman filter considers the current mean and covariance estimates of a target’s position 
and tries to linearize the model with these estimates [35]. For highly non-linear observation and 
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prediction models, this yields very poor performance [24], making this unsuitable for most tracking 
applications. The particle filter was introduced to object tracking as the CONDENSATION algorithm [22].
The particle filter is used to approximate the posterior p(sk |z1:k ) by a N weighted set of particles 

as: 

In this formulation, z1:k  represents the observations at frames 1 to k, sk  is a particle representing a 
possible state, and πk  is a weight (probability) corresponding to that state. 

The method for recursively estimating the current state is achieved in two steps: prediction and
update.  Prediction consists of generating new particles from the old particle set by importance 
sampling, where each particle is selected (with replacement) with probability proportional to its weight. 
The update phase consists of computing the current observation zk and updating the weights of the 
new particles based on this observation. 

After the prediction and update steps, a tracking decision is computed from the particles by a weighted 
average. 

The particle filter has become the most prevalent framework for modeling motion in tracking, due to its 
adaptability and computational efficiency. Its popularity can be seen in Table 2. One important note 
when using particle filters is the tradeoff between the number of particles and computational efficiency. 
Increasing the number of particles permits more accurate tracking, but requires linearly more 
computations in the number of particles. In contrast, computational efficiency can be increased by
reducing the number of particles, which leads to a smaller region of searched spaces for the target. 

Liu et al. [32] demonstrate how real-time tracking can be sustained when using a large number of
particles a large number of particles by parallelizing the algorithm in the context of a multi-cue face 
tracker. The proposed tracker uses three feature sets as cues: colour histograms, edge orientation 
histograms, and Haar filter histograms. A single reference template is used for comparisons, with the 
Bhattacharyya metric [3] used to compare the colour histogram and edge histogram cues, and the 
Euclidean distance used to compare the Haar filter cue. A linear combination of these three cues yields 
the observational likelihood for a particle, which is used to weight each particle. Two parallelization 
schemes are proposed in [32]: one that leverages multi-core CPUs and one that makes use of GPUs. 
These approaches take advantage of the fact that the computation of each particle is independent of the 
computation of the remaining particles. 
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The multi-core CPU approach in [32] follows the MapReduce paradigm [15], where the programmer 
specifies a map function that processes a key-value pair to generate a set of intermediate key-value 
pairs, and a reduce function that merges the intermediate values sharing the same key. In the context of 
a particle filter, the map function allocates particles across processor cores for parallel likelihood 
computation. Each core retrieves a particle, representing a possible candidate target location and scale, 
and that core computes the set of cues and their similarity to the reference template.  Finally, the 
likelihood for that core is computed. The reduce function takes as input all of the likelihoods that each 
core has computed and computes the final target estimate location, representing a single iteration of the 
particle filter. The authors claim very efficient tracking with this multi-core parallelized approach. Real-
time tracking (less than 50 milliseconds) is achieved with 4000 particles on an 8-core consumer-grade 
processor, while 10, 000 particles are processed per frame at less than 200 milliseconds. 

Liu et al. [32] also propose a parallel particle filter algorithm to be run on the GPU. The GPU’s kernel is
split up into M blocks, each of which contains N threads, where each individual thread computes the 
observational likelihood for a single particle. This allows for M  N particles to be computed in parallel. 
Rather than integrating over all particles to gain a final tracking estimate, the authors have chosen to 
take a maximum likelihood approach and simply select the particle with the highest observational 
likelihood. Once each block has completed the computations in its N threads, it selects the particle 
corresponding to this maximized objective function as its return value. Finally, when all of the blocks 
have selected their best particle, the particle across all blocks with the largest likelihood is selected as
the final tracking solution. The authors have shown that this approach is even more efficient than the 
multi-core approach. Where the multi-core algorithm was able to process 4000 particles in under 50
milliseconds, the GPU algorithm is able to process 6000 particles in the same time. In another 
comparison, where the multi-core algorithm processes 10, 000 particles in under 200 milliseconds, the 
GPU algorithm processes 10, 000 partilces in under 90 milliseconds. These experiments run on a 
consumer-grade NVIDIA GPU with 12 multiprocessors. Images used for experiments for both algorithms 
have a resolution of 320 by 240.

Figure 5. Formerly seen samples are clustered and a cluster-specific classifier is built 
over  each classifier, each contributing to the final tracking  decision.

Other Bayesian filtering techniques exist besides the Kalman and particle filter. For instance, another 
sampling technique called Markov Chain Monte Carlo is sometimes used, which samples potential 
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target candidates from a sample distribution, which is iteratively revised in hopes of retrieving the true 
underlying distribution. This technique is used by Woo Park et al. [49], where rather than simply using 
time-invariant features like keypoints or histograms, the probabilistic dependency between sequential 
target appearances is modeled with Autoregressive Hidden Markov Models (AR-HMM). This Bayesian 
network explicitly defines a probabilistic dependency between the past n sequential target observations, 
in contrast to standard HMMs which define independence between all observations, and only a 
dependency between the most recent actual state variable and the current actual state variable. 
Formerly seen target samples are separated into multiple clusters and a classifier is trained around 
each cluster, as illustrated in Figure 5. These classifiers independently discriminate the target from the 
background, and as such represent the appearance model for the target. The Metropolis-Hastings 
algorithm for Markov Chain Monte Carlo is used as the method to search for a target in the current 
frame. Potential target locations are drawn from a proposal distribution defined by a Gaussian around 
the previously tracked location. Although this technique achieves very accurate results, the mean 
processing time for this algorithm is reported as 8 seconds per frame. The authors note that after 
several optimizations, real-time tracking is achievable. 

3.3 Detection

In the past, running detection algorithms was discouraged due to their high computational cost, so they 
have been used almost exclusively for seeding trackers with the first frame of the target. As object 
detectors have become more efficient [47] and computers have become more powerful, the cost of
detection is less of an obstacle and many trackers now rely heavily on object detectors to verify 
tracking results, and are sometimes even used as the entire motion model. When a detector is used as
the motion model, the problem of tracking is reduced to finding the optimal labeling of each detection to 
produce the correct tracked trajectory. We now look at some tracking methods with such a reliance on
detectors. 

In [50], a multi-target tracking-by-detection approach is modelled with an online-learned conditional 
random field. Given the detections over a video sequence, a low-level association process [29] 
connects detection responses in neighbouring frames into reliable tracklets.   A progressive approach 
is taken to iteratively connect these tracklets through multiple levels. At each level, the input to the 
model is the tracklets formed from the previous level, S = {T1 , T2 , ..., Tn }, and the goal is to find the 
optimal labelling L where a label `i L denotes whether two tracklets should be connected into one

continuous sequence. More concretely, the goal is to find the best set of associations (labelling) L
given a set of tracklets 

where Z is a normalizing constant and Ψ is the cost function. The cost function is a combination of
unary and pairwise energies, which correspond to the linking probabilities between two arbitrary 
tracklets, and the correlation between pairs of tracklets based on discriminative features learned 
between them. These energies are minimized to compute the optimal labelling over the CRF. The main 
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advantage of this approach is its ability to accurately distinguish between spatially close targets with 
similar appearance, due to the learned discriminative features between pairs of detections. 

Kalal et al. [25] use a simple base tracker to improve tracking efficiency by learning an object detector 
based on the simple tracker’s trajectory. An object appearance model Lt  at time t consists of previously 
tracked frames from the simple tracker, and an object detector based on efficient 2-bit binary patterns is
built on Lt . At each frame, both the object detector and the tracker are run. Detections that are far away
from the tracked trajectory are deemed poor and their corresponding region of interest in Lt  is pruned 
away, while the tracked trajectory is added to Lt  if it is close to a true detection from the learned object 
detector. The learned object detector allows for tracker re-initialization when the tracker drifts or leaves
and re-enters the scene. The greatest limitation of this approach is the assumption that the target is
unique in the scene, and tracker initialization must be done manually by clicking on the target in the first 
frame. 

An extension to this is presented in [26], where the method is optimized for face tracking.  An offline-
trained face detector is used, rather than the general learned detector, and a “validator” module is
introduced to validate the identity of each detected face. Using an offline-learned detector increases 
efficiency at runtime, as a new detector need not be learned online. With the gained efficiency, the 
learning then focuses on building the validator. The validator takes as input a face patch, and outputs a 
confidence that the patch corresponds to a given face. Training the validator is initialized with the first 
detected frame and bootstrapped with consecutive tracked frames. This approach is robust to partial 
occlusions and targets leaving and re-entering the camera’s field of view. 

A discrete-continuous optimization approach [5] considers tracking as two distinct problems.  The first 
problem is assigning the correct identity labels to each detected target with a discrete optimization 
algorithm. The second problem is to fit a continuous function through the detected locations to
approximate the correct target trajectory. Detection labeling is solved by the minimization of an energy
term within a pairwise Markov random field, where the vertices correspond to each detection and
detections in consecutive time steps that are within some pre-defined threshold distance are connected 
by an edge. This encourages nearby detections in adjacent frames to belong to the same trajectory. For
fitting a trajectory to these labelled detections, cubic B-splines are fit to the detections, whose parameters 
are estimated by minimizing an energy function that combines two energy terms that make a tradeoff 
between trajectory smoothness and how well the trajectory fits the labelled detections. Finally, since we
have defined a separate energy function for the discrete optimization and the continuous optimization, 
the two functions are unified into a single energy function for discrete-continuous optimization. 

4  Technology Readiness Level Evaluation 

To evaluate the technology readiness level of face and person tracking technologies, we use provided 
experimental results from the current literature. The relevant technology readiness levels in this report 
are TRL-3 (characteristic proof of concept), TRL-4 (component validation in laboratory) and TRL-5 
(component validation in relevant environment), because this technology is reasonably mature but not 
currently running in a local prototype environment.  A description of the different technology readiness 
levels is available in Table 3. TRL assignments are required for five different environments, specifically 
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for  PIL (primary inspection lane) kiosk, controlled chokepoint, uncontrolled chokepoint, little and dense 
traffic, and outdoors. 

Table 3. Overview of the different  Technology Readiness Levels [1].

4.1 Evaluation methodologies

Not all authors evaluate tracker performance by the same metrics. In this section, we briefly review the 
necessary details for each metric used in the reported experimental results used for TRL assessment. 

4.1.1   PASCAL VOC criterion

One commonly used metric is the PASCAL VOC criterion [18], which evaluates a combination of
centering accuracy and scale. It can be written as

For each frame, a PASCAL criterion of a0   > 0.5 is deemed to be a successful tracking result. 
Authors often report the percentage of frames that report a PASCAL criterion of greater than 0.5 as the 
percentage of frames that were accurately tracked. 

4.1.2   Mean distance

Another common evaluation technique is the mean L1   distance.  This metric, also known as the 
Manhattan distance, computes the L1 distance from the center of the tracked bounding box to the 
center of the ground-truth bounding box. This can be written as

where n corresponds to the number of dimensions, normally 2.
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4.1.3   CLEAR MOT

The CLEAR MOT metrics [28] are a standard of evaluation metrics that are sometimes used to compare 
different trackers. Shu et al. [46] evaluate on TP (tracking precision), TA (tracking accuracy), DP
(detection precision) and DA (detection accuracy). Also from this standard, Andriyenko et al. [5] 
evaluate on MOTA (Multi-Object Tracking Accuracy), which combines missed targets, false alarms, and
identity switches into one normalized number between 0 and 100 percent. MOTP (Multi-Object 
Tracking Precision) evaluates how precise the tracking is, by computing the average overlap between 

The tracked bounding box and ground truth. Similarly to MOTP, the result is normalized. We now list the 
remainder of the used CLEAR MOT metrics in this survey. 

� MT indicates the ratio or number of trajectories for which the target is “mostly tracked”,
successfully tracked for more than 80% of the sequence. 

� ML indicates the ratio or number of trajectories that are “mostly lost”, successfully tracked for 
less than 20% of the sequence. 

� FM indicates the number of times that a ground truth trajectory is interrupted. 
� IDS indicates the number of times a tracked trajectory switches its target id. 

Table 4. Code availability for the studied approaches

4.2 PIL kiosk

The requirements for person tracking in the PIL setup are the most surmountable of the evaluated 
environments. The camera is at approximately face level and pointing in the direction of the trackable 
person, making face detection possible for tracker seeding. Furthermore, the scene will not face a great 
deal of clutter, but must be able to handle rotation of the face and potential self-occlusion by events 
such as a person raising their hand to their face. Such scenarios are commonly used for experimental 
results in the literature, and as such many results and comparisons are available.  However, it is 
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important to note that all of the following datasets used to evaluate the PIL environment are laboratory 
setups, meaning the highest assignable TRL is 4.

The first video sequence used for evaluation is the “occluded face” video sequence, provided by Adam et
al. [2]. In this sequence, a single face is present and is directly facing the camera. The face is
repeatedly occluded with a magazine, at some points occluding over 90% of the face. This video 
sequence is demonstrative of robustness against partial occlusions, but does not exhibit large
appearance changes, such as a turned face, and only one face is present. Fragtrack [2] performs very 
well on this sequence, showing virtually no tracker drift in light of very heavy occlusions. Babenko et al. [7] 
performed a comparison showing that Fragtrack had a mean L1 distances on this sequence of 6.34 
pixels, while MILTrack has a mean `1 distance of 27.23 pixels. Distribution Fields [45] are reported to 
have a mean `1 distance of 5 pixels, with 100% of the frames being tracked correctly, in contrast to
MILTrack only tracking 77.28% of the frames correctly. These results are organized in Table 5. 

Babenko et al. [7] provide a similar video sequence, called “occluded face 2”, which is similar to the 
previous video but with added appearance changes. In this sequence, the target rotates his head, hides 
his face, puts on and takes off a hat, and occludes his face repeatedly with a textbook. Fragtrack tends 
to fail when the target rotates its head, while MILTrack learns the new appearance and continues to 
track accurately. Reported results show that Fragtrack has a mean `1 distance of 45.19 pixels, while 
MILTrack has a mean L1 distance of 20.19 pixels. Despite 20.19 pixels seeming like a large error,
examination of the tracking result shows that the tracker does not stray from the actual target.  
Distribution Fields are reported to have a mean distance of 11.25 and correctly track 98.76%, in 
contrast to MILTrack correctly tracking 78.13% of the frames. This result is suspect, since observation 
of MILTrack on this sequence as a human appears to show much more accurate tracking results than 4 
of every 5 frames. The results are organized for comparison in Table 6. 

Table 5. Comparison of performance on the “Occluded face” sequence

Table 6. Comparison of performance on the “Occluded face  2” sequence

Birchfield et al. [11] provide the “girl” video sequence, which has a similar camera setup to the PIL 
scenario, but the camera pans and zooms with respect to the target. This sequence showcases scale 
changes, the target rotating and moving around the scene rather quickly, and a secondary human as an
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occluder. Distribution Fields are reported to correctly track 73% of the frames, while MILTrack 
reportedly correctly tracks 55.2% of frames. The mean `1 distance for Distribution Fields is 21.57 
pixels, compared to 32.76 pixels for MILTrack and 16 pixels for Fragtrack with adaptive cues.  Mei et 
al. [37] and Zhang et al. [52] have not released exact numbers, but graphically show that their L1
tracker and multi-task sparse tracker (respectively) achieve a more accurate mean L1   distance than 
MILTrack as well, with a mean error of approximately 10 pixels. The sparsity-based collaborative 
tracker [54] appears to have achieved the state of the art on this sequence, yielding a mean L1 distance 
of just 9.8 pixels. This approach is worthy of further investigation, as it reports very significant 
improvements over the state of the art on almost all standard evaluation sequences. The reported 
comparable results are organized in Table 7. 

Table 7. Comparison of performance on the “Girl” sequence

4.2.1   Assessment

Several demonstrated trackers perform well on datasets that are relatable to the PIL environment. 
Specifically, the Distribution Fields tracker [45] achieves very accurate results on all three evaluated 
video sequences, both in terms of the mean distance to the target center and the number of frames 
that the target is well-tracked in. We remind the reader that, although these techniques have very 
favorable performance results, the tested video sequences are devised in a laboratory environment. As
such, we assign TRL of 4 for person tracking in the PIL environment. 

4.3  Controlled chokepoint

A controlled chokepoint can be defined as a scene where a doorway entrance is monitored and a 
small number of individuals are passing through it in controlled intervals. Such a scenario could 
possibly be the exit of an airport security checkpoint. Due to the controlled point-of-entry, a face or
body detection is achievable to seed the tracker. The tracker must be robust to events such as
rotations and transformations, such as a person crouching to tie their shoe or secure their luggage. 
Unfortunately, there are no relevant video sequences that are commonly evaluated against in the current 
literature. However, if a relevant dataset is available, the source code for many of these trackers is
available for evaluation, and the location of each tracker’s available source code is noted in Table 4. 
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4.4 Uncontrolled chokepoint

An uncontrolled chokepoint is very similar to the previously mentioned controlled chokepoint, but there 
are no requirements on the number of people entering at a time, or the manner by which they enter. 
Face or body detection might not be immediately achievable due to possible occlusions. Unfortunately, 
there are no relevant video sequences that are commonly evaluated against in the current literature. 
However, if a relevant dataset is available, the source code for many of these trackers is available for 
evaluation, and the location of each tracker’s available source code is noted in Table 4. 

4.5  Little/Dense Traffic

The requirements for person tracking in the Little/Dense Traffic environment are much more rigid than 
the previously described setups. Videos must contain several humans entering and exiting the camera’s 
field of view, often occluding one another. A tracker must be able to handle multiple targets, exits and
entrances of targets, partial and full occlusion, and significant appearance changes, as humans are 
able to move freely with all parts of their bodies. We have noted a small number of videos that are 
evaluated in the recent literature that fit this criteria in a relevant environment. The maximum 
achievable TRL for these videos is 5.

Table 8. Comparison of performance on the “PETS-2006” sequence 

Table 9. Comparison of performance on the “Caviar” sequence

A relevant video sequence for evaluating this style of tracking is a 900 frame video of a train stop from 
the PETS-2006 dataset. The video shows travellers walking through a stop at a train station. This 
video exhibits many changes in pose and many occlusions. Oron et al. [39] report that Locally 
Orderless Tracking is the current state of the art on this dataset, providing good tracking results on
69.6% of the frames by the PASCAL VOC criterion.  In contrast, MILTrack only returned successful 
tracking on 2.9% of the frames. It is suggested that the occlusions present early on in this sequence 
cause other evaluated trackers to drift and not recover, while Locally Orderless Tracking continues 
tracking the target. 
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The caviar sequence is video footage from a surveillance camera tracking several humans walking 
through a hallway with doors to exit into along the side of the camera’s field of view.  Several humans 
overlap and occlude one another, stop and interact, and enter and exit the scene from different 
locations.  Zhong et al. [54] report a quantitative analysis of several trackers on this sequence with a 
tracking metric of mean L1 distance. Two recent approaches report significant gains on this dataset. 
The collaborative model sparse tracker presented by Zhong et al. reports significant improvements, with 
a reported error of 2.7 pixels. The adaptive structural local sparse tracker by Jia et al. [23] also reports 
very accurate results, with an error of 2.3 pixels. In contrast, the L1 tracker presented by Mei et al. [36]
has an average distance of 65.7 pixels, MILTrack has an average distance of 100.2 pixels, and
Fragtrack has an average distance of 116.1 pixels.  The disparity between the best trackers and the 
others is attributed to the generative model by [54], that reduces the impact of occlusions, resulting in
a simple foreground histogram comparison. [23] reports similar reasoning, that using both the holistic 
and local information allows the tracker to not drift when the target disappears and reappears due to
short-term full occlusion. Early in the video sequence, a full occlusion of the target causes all other 
trackers to drift, while the two improved trackers permit immediate tracker recovery. 

Shu et al. [46] present a new dataset from airport surveillance footage and evaluate their part-based 
tracker on this dataset with the CLEAR MOT metric. This sequence has a dense neighbourhood of
humans undergoing significant appearance and pose change throughout the video, with a low frame rate 
and high image resolution (5 fps and 4000 x 2672, respectively). This approach yields a tracking 
precision of 67.2 and a tracking accuracy of 52.2.

4.5.1   Assessment

The most characteristic sequence for the Little/Dense Traffic scenario is the caviar dataset.  Recent 
results in [23] and [54] report significant and promising results on this dataset, suggesting that these 
approaches would be well suited to this environment. Based on these results, we propose a TRL of 5 for 
person tracking in the Little/Dense environment. 

Table 10. Comparison of performance on the “TUD” dataset.

4.6 Outdoors 

The Outdoors environment presents the most difficult tracking setup of the researched environments. 
Video sequences may contain any number (including 0) of targets at any given time, with no
restrictions on occlusions or illumination changes, target entry and exit at arbitrary times from arbitrary 
locations, and several available appearance changes due to adding or removal of attire, human 
articulation, or rotation. We present experimental results on small number of videos that are relevant to
this environment. The maximum achievable TRL for these videos is 5.
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Andriyenko et al. [5] present experimental results on the PETS-2009 S2.L1 dataset and the TUD 
dataset. These video sequences show pedestrians walking in an outdoor rural environment. These 
sequences exhibit several occlusions from overlapping pedestrians due to the low camera angle. The
authors compare their results on the PETS-2009 dataset against the previous state of the art [10] as
evaluated by the PETS organizers, and show that they have achieved favourable results. By the CLEAR 
MOT metric, this approach achieves a MOTA score of 89.3 %, comparing favourably to the previous 
best of 82 % on this dataset. From this result, we read that the approach yields a low number of false 
alarms, missed targets, or identity switches.  However, it says little about how precise the tracking is.  
Another CLEAR MOT metric has been compared for this purpose. On this same dataset, the authors 
report a MOTP result of 56.4%, indicating that the tracking could be much more precise, and on
average deviates from the true center of the target by almost half of its area.  The reported state of the 
art on this metric, as reported by the PETS organizers, is 60 %.

Yang et al. [50] also report experimental results on the TUD dataset. Due to a small difference in
evaluation methodologies used, there is one disparity in comparing [50] against [5]. The “mostly
tracked” value for [5] is reported as nominal value, while it is reported as a percentage of the trajectories 
that are mostly tracked in [50].

4.6.1   Assessment

It is difficult to evaluate the readiness of these tracking methods for the Outdoors environment, due to
the fact that most recent trackers do not evaluate on relevant video sequences for this setup. Of the two 
trackers that have, [50] appears to have achieved the current state of the art, which accurately tracks 
70% of the target trajectories. A more thorough evaluation on more data is recommended before 
declaring these approaches to have been evaluated in a relevant environment, as there are surely 
situations that are not captured within these few data sequences that will affect the long-term 
performance of these trackers. As such, it can be noted that these approaches have been validated on a 
small dataset, comparable to that of a laboratory environment, and we assign TRL of 4 this application. 

5 Conclusion

Throughout this survey, several recent advances in tracking have been introduced and evaluation of
these approaches to person/face tracking in a visual surveillance environment has been performed in
Section 4.  From the experimental results provided by the literature introducing these tracking methods, 
it has been shown that the technology may be mature enough for certain surveillance environments, 
such as person-in-lane tracking and little/dense traffic.  Specifically, our investigations show that sparse 
methods are significantly outperforming other appearance models for surveillance tracking. 
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Table 11. TRL evaluations and recommend trackers for each environment scenario.

We have also found that there are an insufficient number of authors currently publishing results 
against chokepoint and outdoors surveillance environments. We summarize the final TRL evaluations, 
along with the suggested trackers for each environment in Table 11 and summarize the available code 
for the described approaches in Table 4 for any desired further investigation. 
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