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Abstract …….. 

This report presents the results of Operational Research support to maritime surveillance 
operations in the Canadian maritime approaches. The principal development is a Bayesian 
method to estimate the performance of sensors in a way that can be applied during ongoing 
operations. This novel method does not require knowledge of the sea-truth to evaluate sensors. A 
method to estimate sea-truth is also presented, which provides a new and unique analysis 
capability for the estimation of surveillance gaps. The series of new metrics and methods are 
implemented in a variety of operational tools for analysis of the recognized maritime picture 
(RMP), which support new operational procedures and processes. The desired result is a more 
robust and optimized maritime surveillance capability. 

Significance to defence and security  

This report presents a body of research conducted under Defence Research & Development 
Canada (DRDC) Advanced Research Project (ARP) 11hn aimed at improving maritime surface 
vessel surveillance. The methods developed take advantage of having multiple sensors surveying 
a given region at a given time period to produce estimates of sensor detection probabilities and 
estimates of the number of targets in the region that might have gone undetected. 

A major side-benefit of the Bayesian approach when applied to sensor mix analysis is that it can 
also be used to estimate the (generally unknown) sea-truth. A closed form solution has been 
derived for the distribution of the total number of targets that may have been out there in any 
given multi-sensor trial (the union of all detections plus the undetected targets). This solution is in 
the form of the Negative Binomial distribution. This provides a useful estimate of the 
performance of any given collection of sensors employed to feed the recognized maritime picture 
(RMP). 

Impact  

This research has led the Canadian Forces to adopt a policy of employing multiple sensors 
simultaneously in surveillance exercises and trials on the West Coast in order to gain a firmer 
indication of sensor performance. These methods, while developed for application in maritime 
surveillance, also have potential for utility in other areas such as minesweeping and estimation of 
populations. 
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Résumé …….. 

Le présent rapport expose les résultats du soutien à la recherche opérationnelle dans le cadre 
d’opérations de surveillance maritime menées dans les approches maritimes du Canada. Le 
principal résultat est le développement d’une méthode bayésienne servant à estimer le rendement 
de capteurs, de façon à pouvoir utiliser cette méthode pendant le cours des opérations. Avec cette 
méthode originale, il n’est pas nécessaire d’avoir une connaissance de la réalité maritime pour 
évaluer les capteurs. Le rapport présente également une méthode d’évaluation de la vérité mer, 
qui fournit une capacité d’analyse novatrice et unique pour estimer les brèches de la surveillance. 
Une série de mesures et de méthodes inédites sont mises en œuvre dans divers outils 
opérationnels pour analyser  la situation maritime (SM), qui appuie des procédures et des 
processus opérationnels nouveaux. Ces travaux visent à renforcer la capacité de surveillance 
maritime et à en tirer le maximum. 

Importance pour la défense et la sécurité  

Le présent rapport expose un ensemble de recherches menées dans le cadre du projet de recherche 
avancée (PRA) 11hn de Recherche et développement pour la défense Canada (RDDC). Le projet 
vise à améliorer la surveillance maritime des navires de surface. Les méthodes élaborées se 
fondent sur l’avantage de disposer de multiples capteurs pour surveiller une région donnée, à un 
certain moment, afin d’estimer les probabilités de détection à l’aide de capteurs ainsi que le 
nombre de cibles dans la région qui pourraient être passées inaperçues. 

Un avantage complémentaire important de la méthode bayésienne, lorsqu’elle est appliquée à 
l’analyse de l’ensemble des capteurs, c’est qu’elle peut aussi servir à estimer la réalité maritime 
(généralement inconnue). Une solution analytique a été produite pour la distribution du nombre 
total de cibles qui auraient pu se trouver dans les parages dans n’importe quel essai donné d’un 
système multicapteurs (l’ensemble de toutes les cibles détectées et non détectées). Cette solution 
suit la loi binomiale négative. Elle permet d’obtenir une estimation utile du rendement de 
n’importe quel groupe de capteurs employés pour alimenter la situation maritime (SM). 

Incidence  

Cette recherche a incité les Forces canadiennes à adopter une politique qui préconise l’emploi 
simultané de multiples capteurs dans les exercices et les essais de surveillance qui ont lieu sur la 
côte Ouest, afin d’obtenir une indication plus nette du rendement des capteurs. Ces méthodes, 
bien qu’elles soient développées pour leur application dans la surveillance maritime, pourraient 
également être utiles dans d’autres domaines, dont le dragage de mines ou l’estimation de 
populations. 
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1 Introduction 

1.1 Background  

Coastal maritime surveillance is an ongoing Canadian Forces (CF) activity. However, the manner 
in which maritime surveillance is conducted is ever changing. One of the major changes observed 
today is the steady increase in the variety of remote sensing capabilities available. For example, 
RADARSAT 2 (RS2) can detect surface ships on the order of 25 meters in length in a wide area 
surveillance mode [1]. This is causing a gradual shift away from purely wide-area surveillance 
using aircraft patrol platforms and more towards remote sensing [2]. This shift in emphasis can be 
seen in CF publications such as the Maritime Capability Planning Guidance (MCPG) 2010 [3]. 
To make effective use of these new remote sensing capabilities, it is necessary to gain an 
understanding of the capabilities and performance of these sensors. The Bayesian approach 
described in this report was developed in order to support this sensor characterisation. 

In order to use new sensor capabilities effectively, it is essential to understand the performance 
characteristics of that sensor in the operating environment in which it is employed. One of the 
most important performance metrics is the likelihood that the sensor will detect ships in the area 
being covered. In other words, if the sensor detects a certain number of ships, how confident can 
the decision maker be that these are all the ships in the area? A related problem is the possibility 
that some of the reported targets could be false positives. These issues are especially important if 
remote sensors are to be used to shoulder an increasing share of surveillance activity, so that the 
information they provide can be used to form an accurate picture. 

The approach that has been undertaken by Operational Research Teams to characterise the 
sensors is to use operational systems and real-life data. This has the advantage that the data 
obtained will be representative of future operational use, and data can be collected at relatively 
low cost. A disadvantage is that analysis of the data may be difficult due to the lack of knowledge 
of ground truth, and messiness of real-world data. A possible alternative approach would be to set 
up dedicated trials, but this has its own problems. Apart from the prohibitive cost, a major 
problem with dedicated trials is that no matter how carefully set-up, they will never perfectly 
mimic real maritime targets. The amount of data that can be collected from dedicated trials will 
be limited, both in terms of the types of ships observed, and to limited times and weather 
conditions. 

The difficulty of characterising sensor capability using operational data arises from the fact that 
our knowledge of sea truth is unknown. This is because our knowledge of sea truth is based on 
information we receive from sensors, and the specific performance characteristics of these sensors 
are not well known. This report outlines a method for analysis of operational multi-sensor 
surveillance data. 

As new technology becomes available for surveillance, the processes and procedures to use the 
technologies also need to be developed or updated to accommodate existing and future systems. 
This paper discusses recent work by the Defence Research and Development Canada Centre for 
Operational Research and Analysis (DRDC CORA) in the development of new analysis methods 
in the field of maritime surveillance. The work described here was done under the auspices of the 
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DRDC Advanced Research Project (ARP) 11hn – Maritime Security Planning Tools and 
Analysis. 

1.2 Maritime surveillance concepts and terms  

Aircraft patrols and remote sensing satellites are only two of the diverse types of 
sensors/platforms that can contribute to the development of the Recognized Maritime Picture 
(RMP) on the surface of Canada’s ocean approaches. An expanded list would include the 
following: 

a. Aircraft patrols, which will attempt to detect (using airborne radar), overfly, and 
identify each ship in an area of interest (AOI); 

b. Satellite surveillance systems employing synthetic aperture radar (SAR) sensors, such 
as RS2; 

c. Shore-based conventional radars, generally used for traffic control; 

d. Automatic Identification Systems (AIS), an automated electronic ship tracking system 
where an onboard radio transponder broadcasts information on the ship’s 
identification, position, course, etc. which is received by a nearby fixed installation, 
ship, aircraft, or satellite. Ships of a certain size or type are required by the 
International Maritime Organization (IMO) to carry AIS transponders; 

e. Long Range Identification and Tracking (LRIT), another system mandated by the 
IMO but somewhat different from AIS, where the ships of a certain size or type are 
obliged to actively and willingly report via satellite communications their positions at 
least four times daily. AIS and LRIT are complementary; 

f. Radio signal intelligence gathering systems, which can potentially extract valuable 
information from (cooperatively) transmitting targets; and 

g. Surface wave radar (SWR), which takes advantage of the transmission properties of 
high frequency (HF) radio waves hugging the surface of the earth. There is no SWR 
on the west coast but an experimental system exists on the east coast.  

It is important to be able to maximize our understanding of the capabilities of these diverse 
sensors, and appreciate their relative ability to contribute to the establishment and maintenance of 
the RMP. 

It is useful at this point to pause and define clearly some of the concepts and terms that will be 
used in this report. Most are broadly used in the field, but some are specific to this report.  

a. The Recognized Maritime Picture (RMP) is the compilation of available maritime 
traffic information. The RMP has been described as knowing who is doing what, 
where and when [5]. 
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b. Maritime Domain Awareness (MDA) is the cognitive understanding of a maritime 
operational area. The RMP is a subset of MDA, as MDA brings in the fifth ‘W’ – 
why. It includes knowledge of the environment, adversaries, allies, and situational 
prediction and projection. 

c. A target is any object of interest (e.g., ships or vessels), which is able to be 
represented in the RMP. 

d. Knowns are those targets in the RMP for which the position, classification, and 
identity are all known. 

e. Detected targets are those targets in the RMP for which their position is known, but 
their identity and/or classification are not. There are many sensors (such as radar) that 
are able to provide target positions, but not necessarily identities. 

f. Undetected targets are those targets which are not in the RMP. For these targets, 
there is no positional, classification, or identity information available. This can be 
due to lack of sensors, ineffective surveillance, or stealth abilities of the target. 

g. Detection is the activity during which targets are converted from Undetected targets 
into detected targets. This is the lowest level of information collection for the RMP. 

h. Knowns are those vessels in the RMP for which the position, classification, and 
identity are all known.  

i. Identification is the activity during which targets are converted from undetected 
targets or detected targets into knowns. Identification is often a prerequisite for a 
threat analysis. 

j. The Area of Interest (AOI) is the term used to describe the region for which the CF 
must maintain an elevated level of surveillance in support of operations.  

k. A Surveillance Session is defined for the purposes of this analysis as a time and space 
window during which an AOI is surveyed by all the sensors that can be brought to 
bear. 

l. Sea Truth is the underlying reality of what surface ships are actually out there in a 
given surveillance session. The RMP will always be a subset of the sea truth. 

m. RMP Validation Mission describes a Surveillance Session established with several 
key sensors (usually one being an air patrol flight) to update the RMP in an AOI. 

n. Cadence describes the time periodicity of a sensor - how long it takes to survey the 
AOI and possibly detect targets that might be out there. 

o. Sensor dwell time is the time window during which the sensor has the opportunity to 
detect targets. 
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p. Coverage, that is, how completely is a sensor able to survey an area of interest (AOI) 
in a given time period. 

q. Time to Detect, which is the time that the sensor takes to complete a target detection 
cycle. This could include the time to acquire the sensing data, and process the 
observations into detected targets. 

r. Probability of Detection depends on the inherent abilities of the technology employed 
by the sensor and the physical or behavioural characteristics (‘signature’) of the 
target. But it also is dependent on the integrated time duration of this opportunity (a 
function of time to detect and cadence) and the environmental conditions. In simple 
terms, it is the probability of the sensor detecting a target when presented with an 
opportunity to do so. 

s. The probability of detection of a target given a time window is often called 
detectability. A target is considered detectable if the detectability becomes one for a 
sufficiently large dwell time. 

t. For sensors surveying an area, the sensors will have a Target Detection Rate (TDR) 
which describes the rate at which detectable targets are found. 

The methods developed and presented in this report focus on the probability of detection by 
individual sensors of surface ship targets. Useful mathematical formulations to estimate 
probability values are derived. The focus is on the elemental phenomenon of ‘detection’, and does 
not attempt to venture into the complexities of tracking targets over time. Although, the detection 
and tracking of targets can be related, it is modeled here that the detection is achieved through 
any means including detect-before-track, or track-before-detect. This report focuses then on the 
simple question that if there are some targets to be detected in a given AOI within a given time 
window, then what is the likelihood that the various sensors engaged will detect them? 

The mathematics are intended to use actual operational surveillance data accumulated over time 
to estimate the relative detection capabilities of the various sensors that might be engaged. 
Bayesian methods are employed, where original ‘a priori’ engineering estimates of detection 
performance can be progressively refined and improved over time with the addition of new 
operational data.  

1.3 Scope and aim  

In order to present a practical analysis, this report focuses on a systems-level analysis of sensor 
performance, meaning that the sensors systems are considered as individual components, which 
feed into a higher level system. The specific physics signal processing, tracking, scan rates, etc. of 
each sensor are not considered in fine detail. Instead, the output of individual sensors is analyzed. 
This is not to say that these specifics are not important, but that meaningful results can be 
obtained by treating sensors as self-contained entities. For example: with RS2, the orbit, look-
angle, and detection algorithm are not considered individually. Instead, the target detections are 
treated as a single output of the sensor.  
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The overall aim of this report is to present new mathematical methods and procedures applicable 
to the analysis of maritime surveillance effectiveness. 

This report provides the details of these mathematical developments and is intended to 
complement the broader (and classified) treatment of Maritime Domain Awareness (MDA) 
presented by the primary author in [4]. 

1.4 The value of coordinating operational research with 
operations  

In order to use new sensor capabilities effectively, it is essential to understand the performance 
characteristics of a sensor in the operating environment in which it is employed. Refining 
estimates of detection probability beyond the level of those provided by the theoretical 
calculations of the design engineers requires using real-world, empirical, performance data. 

Dedicated trials are one way to obtain useful performance data. There are several issues 
associated with trials. Firstly, there can be very expensive to set up and execute, if not 
prohibitively so. Secondly, no matter how carefully a trial is set up, it will never perfectly mimic 
real maritime targets. The amount of data that can be collected from dedicated trials will be 
limited, both in terms of the types of ships observed, and the variety of times and weather 
conditions experienced. 

Hence, the Operational Research Teams have taken the approach of trying to work with the 
military operations staff to structure actual operations in a way that might enable ‘trial quality’ 
data to be collected. For example, surveillance sessions could be set up where surveillance flights 
coincide with the presence of other key sensors, such as Radarsat 2 passes, so that the results 
would provide useful and comparable detection information. This approach has the advantage that 
the data obtained will be representative of future operational use, and can be collected at 
relatively low cost. A disadvantage is that analysis of the data may be difficult due to the general 
‘messiness’ of real-world data in comparison to trial data.  

Another difficulty associated with characterising sensor capability using operational data arises 
from not knowing the underlying sea truth. Knowledge of sea truth is limited to the totality of 
information received from sensors and other sources, and that cannot be expected to be complete. 
In a Rumsfeldian sense, you can’t know what you don’t know, so sea truth is impractical (or 
impossible) to obtain. Hence, the Bayesian mathematics in this report is purposefully developed 
to extract detection probability estimates when full sea truth is not known. In fact, after 
performance estimates for the various sensors have been generated, it is even possible to estimate 
the number of ship targets that were not detected in any given surveillance session. 

The CF conducts ongoing surveillance activity off all coasts in order to detect potential threats to 
Canada [23-25]. It is important to be able to measure and assess the performance and 
effectiveness of these activities. The mathematical methods presented in this report permit 
surveillance activity to be combined with sensor effectiveness values using software called the 
Surveillance Analysis Workbook [26]. 
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1.5 Structuring a surveillance session 

The surveillance sessions conducted to collect data are conducted in such a manner as to collect 
data as close to “trial quality” as practicable. These surveillance activities are currently included 
as part of coastal operational surveillance activities in missions called “RMP Validation 
Missions”. These missions are conducted as follows. 

Firstly, an AOI is established within which the surveillance will be conducted. The size of this 
AOI should be large enough to include sufficient targets for a useful data sample. Conversely, the 
area should be small enough that all of the sensors included in the trial can survey the entire AOI 
over the course of the trial. The location of the trial area also needs to be considered. An 
important factor is the density of targets that can be expected in a given area. An area of very low 
target density will yield few detection samples for the analysis. On the other hand, in an area of 
densely congested targets, it will be more difficult to resolve sensor results and to ensure that 
target detections by different sensors are properly associated to the same target. 

The second major consideration is the time window of the surveillance session. It is typically 
scheduled at a time when the maximum number of sensor platforms will be available to conduct 
surveillance on the area simultaneously. Figure 1 shows a conceptual depiction of how a 
surveillance time window is set to capture overlapping sensors. This will typically involve 
scheduling asset patrols to occur at the same time, for example coordinating an aircraft patrol 
with the time of a satellite pass. The duration of the session is also critical. It must be set such that 
it can match the cadence of the slowest sensor. For example, if an aircraft patrol takes one hour to 
patrol the area, the time window must at least match that hour, even though other sensors may be 
able to perform many detections during that time. It is also important to keep the duration of the 
time window fairly constant for several reasons. One reason for this is in order to achieve 
consistency in the measurement of performance of fast cadence sensors. Another is to match the 
trial time window to be comparable to typical operational timeframes, which ensures that the 
sensor performance measured will be relevant for operational use.  

 

Figure 1: Example of two possible data collection time windows for multiple sensors in a region 
of analysis. Shaded areas indicate periods of sensor coverage. 

When the trial is conducted, relevant environmental conditions that could affect sensor 
performance, such as visibility levels, sea state, and precipitation, should be noted. Then during 
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the trial, all sensor detection are collected, along with any associated information based on the 
sensor. This could include information such as time of detection, location, length of target, and 
any identifying data. 

Once all the sensor results are in, the detection from the various sensors are associated manually. 
The trial operators will then identify all targets in the union of those detected, with the 
understanding that some targets may have been missed by all sensors. They will have to establish 
and record which sensors detected which targets. This process can be relatively straightforward if 
the target density is low and the time window relatively narrow, but may become challenging in 
high traffic conditions with a longer time window. If data association uncertainties are high 
enough, based on the subjective call by expert analysts, then the entire session’s data should be 
rejected for use in estimating sensor detection performance. These target detections associated by 
which sensor detected them will then form the basis for the analysis of sensor detection 
performance described in this paper. 

1.6 Assumptions  

Models are, by definition, simplified representations of reality. As such, they entail assumptions. 
Purely mathematical representations, such as those developed in this report, are abstractions 
created to enable sufficient simplification that useful analysis can be generated - in this case, 
useful in providing comparative assessments of the detection abilities of diverse sensors that 
contribute to the RMP A few fundamental assumptions are clarified first. 

The physical operation of the sensor is not explicitly modelled.  

Rather, we adopt an empirical approximation of sensor effectiveness, deriving effectiveness 
coefficients through measurement and observation. A more robust approach could involve 
physical modelling of the sensors and experimental validation of the models, but that level of 
effort is outside the scope of this approach. 

Sensors are consistent over time.  

That is, although sensor performance may depend on various external factors, it will generally 
perform at the same level tomorrow as it does today. This assumption does not however preclude 
contributions of variance from changing environmental factors such as noise, weather, etc. 

All ships are detectable.  

Even though some sensors may not be able to detect a particular ship, there exists no ship which 
cannot be detected by any sensor. This may seem like a trivial statement, but the mathematics will 
require it, as ships that are not at all detectable cannot influence the results. Undetectable ships 
could be considered as a separate category, or “bin”, which observations based on sensor 
detections cannot give us any information about. 

Other assumptions are required concerning the practicalities of setting up and using the results 
from real world surveillance sessions.  
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Estimated detection probabilities are cumulative values over the entire time window of a 
surveillance session.  

Time is an essential consideration in the calculation of detection probabilities. In general, the 
longer a sensor looks the more likely it will detect the target. As discussed in the previous 
subsection, the time window for a surveillance session is established to meet the requirements of 
the sensor with the slowest cadence. That means sensors with a faster cadence may get multiple 
opportunities to detect the target ship. As discussed, some effort is made to achieve consistency in 
these time windows from surveillance session to session. For mobile fast cadence sensors, such as 
AIS, detection is deemed to occur if a single opportunity is successful during the entire pass of 
the triggering platform over the target. For fixed fast cadence sensors, such as shore-based radar, 
detection occurs if just one sweep of the radar detects the target over the entire time the target was 
within the maximum range of the sensor.  

As an aside, the techniques presented in this report do not consider reducing the cumulative 
probabilities to single detection opportunity values. There are some challenges that must be 
acknowledged if that was to be done, with an assumption of independence being the primary one. 
If the opportunities are assumed to be statistically independent then the reduction calculation is 
straight forward, but the assumption of independence isn’t always a good one at the look-to-look 
level. Conditions influencing detection may be very consistent from opportunity to opportunity, 
causing the likelihood of detecting in one opportunity very much dependent on whether or not the 
target was detected in the previous opportunity. 

Ship length, ship classification, and sea state are the major considerations in ‘binning’ surface 
targets.  

It is important to be able to bin ships into categories of (perceived) equal detectability as much as 
possible. Having too many categories restricts the amount of data in each bin and, hence, the 
utility of the method. Having too few categories will lead to improper comparisons and incorrect 
results. This assumption will be discussed in more detail in Section 2.2.  

A final assumption must be made about the results of the manual process of associating the inputs 
from the various sensors engaged in a surveillance session in updating the RMP. There will 
always be some uncertainties involved. Are two detections by separate sensors looking at the 
same underlying target in the sea truth, or are they in fact two distinct ships?  

All surveillance session uncertainties can be resolved in updating the RMP.  

The more congested the traffic is, or the wider the time separation between detections by the 
different sensors, the more challenging it will be to disentangle the RMP and resolve these 
differences, and the more untenable this assumption may become. Nonetheless, we have to 
proceed on the basis that the experienced operators will produce clear and unequivocal detection 
performance data to feed our calculations. As noted in the previous section, if this assumption is 
deemed to be untenable for any given surveillance session, then the results should be rejected for 
use in estimating sensor detection performance. 

The purpose of the above set of assumptions is to create the same detection ‘playing field’ for all 
sensors that might be engaged, so that they can be fairly compared. 
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2 Empirical evaluation of maritime surveillance 
capabilities  

One of the fundamentals of sensor performance is its ability to detect a target with given 
attributes (e.g., physical size, materials), in given environmental conditions (e.g., sea state, cloud 
cover, day/night), and within a given space and time window. In order to generate a model to 
describe the sensor performance, the following important point is to be noted: 

The ability to detect a specific target is labelled probability of detection, and is defined 
previously in 1.2.r as the probability of the sensor detecting an unknown target under the 
given environmental conditions when presented with sufficient opportunity to do so. For 
the purposes of our model, the definition is simplified to the probability that there is 
one or more detection of a target by a sensor during a surveillance session. This is a 
valid definition if the integrated sensor TDR divided by the total number of targets is 
approximately equal to one. 

The fundamental challenge of characterising sensor capability using operational data is that 
analysts will have limited knowledge of sea truth. This is because our knowledge of sea truth is 
based on information we receive from sensors, and the specific performance characteristics of 
these sensors are unknown. The mathematical approach developed here aims to overcome this 
challenge. 

2.1 Basic principles employed 

The inherent probability of detection associated with sensor A under the given conditions, 
denoted P(A), will be unknown initially. The system engineers who designed and built the sensor 
will understand its basic technological capabilities and will have a sense of the anticipated range 
for the detection probability value. However, P(A) is best estimated empirically – taking the 
sensor into the field and observing its performance. In a trial where there are N potentially 
detectable targets and sensor A detects SA (≤ N) of those targets, it is customary and reasonable to 
use the ratio of these two as an estimate of P(A), denoted )(~ AP , as shown in equation (1). Of 
course, it is assumed that in this trial, the sensor dwell time was sufficient such that all detectable 
targets were registered. Given no additional information, equation (1) provides an unbiased 
estimate of P(A) based on the trial. 

NSAP A /)(~ =  (1) 

The application of Bayesian methods permits knowledge about the value of P(A) to be expanded 
considerably. Empirical observations, combined with any other prior knowledge or evidence of 
what P(A) might be against similar targets in similar conditions, can be rolled together to produce 
not only a point estimate of P(A), such as that presented in (1) above, but an estimate of the full 
probability distribution for P(A). Bayes Theorem [6] will be introduced and employed to develop 
such distributions.  
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Previous attempts to evaluate sensor effectiveness rely heavily on using comparisons of the 
sensor’s performance against the ‘sea truth’, N. Practical limitations, however, result in sea truth 
seldom being available. Note that previously proposed Bayesian methods, such as those in [7], 
rely on the availability of a sea-truthing sensor.  

The methods that are presented here provide a unique view of the evaluation problem. The key to 
the method proposed is to make observations of the same area of ocean using multiple sensor 
types within an overlapping time window1. By reducing the temporal and spatial uncertainty, the 
uncertainty in target associations between sensors is greatly reduced. In this situation, the targets 
detected from the different sensors can then be more easily associated and fused, and then the 
unique or overlapping contribution from each sensor can be recorded.  

It is, of course, vital to note that each sensor is evaluated on the ability to detect targets in time, 
and no other performance aspects. It is important to also consider the method that the association 
is done in order to generate the sensor contribution statistics for each target. The following sensor 
characteristics must be controlled for during the trial: 

a. Sampling rate: The sensor dwell, and length of the overlapping time window must be 
sufficiently long such that no sensor is discriminated against for a slow sampling rate. 
At the same time, a sensor with an extremely high sampling rate may have an unfair 
advantage. The way that the trial is controlled for this is to plan the sensor 
collections. In the case when using RS2 in combination with other sensors, the sensor 
collections would be planned to take place during the pass of the satellite. The 
window would be long enough to cover the entire area by all sensors and short 
enough that it would not be covered multiple times.  

b. Sensor coverage: The area which is surveyed for targets must be overlapping for each 
sensor. Of course for some sensors, such as those on a patrol asset, it may take longer 
to cover an area. This is also controlled for, by planning the patrol area and 
considering the time required to patrol so that the detected targets from the patroller 
sensors are spatially and temporally overlapping with, say, RS2. 

c. Track hold: The problem is further simplified by noting that each sensor must detect 
a target only once. Holding a track on a target is not required for this method as the 
ability for a sensor to maintain the position of the target is a separate metric from a 
sensor’s ability to detect the existence of a target. 

d. Track identification: The ability of a sensor to identify a detected target is not 
required. Since the trial is conducted in a tight spatial and temporal window, the 
association problem is simplified. Note, however, that there is still a possible issue 
where two ships in extremely close vicinity to one another are detected by mutually 
exclusive sets of sensors. In this case, a difficult to detect error of reporting a single 
target instead of two is possible. However, it is assumed for many applications that 
this is unlikely to occur. Nevertheless, the possibility when designing the trial should 
be considered, understood, and controlled for.  

                                                      
1 The length of this time window is chosen such that the dwell time for all of the sensors is sufficiently 
large such that all targets in the joint field of view are detectable. 
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From this data, with some analysis of the overlaps between sensors, useful information can be 
extracted, including individual sensor performance and sensor mix effectiveness. It is even 
possible to estimate what was not detected. 

1. Sensors are assumed to be consistent. That is, although their performance may depend on 
various external factors, the detection performance of the sensors is consistent over time. The 
sensor will perform at the same level tomorrow as it does today. This assumption does not 
however preclude contributions of variance from factors such as noise, weather, etc. 

2. Without neglecting the influence of target lengths and target shapes, it is assumed that targets 
are generally of the same shape, and that targets of similar lengths will have similar effects on 
sensor detections. This means that targets can be categorized so that one can assume that the 
contribution from target length within the category is small. For example, the probability of 
detection with a specific sensor is the same for all “large” ships. 

3. All targets are detectable by at least one sensor. Even though some sensors may not be able to 
detect a particular target, there exists no target which cannot be detected. 

2.2 Identifying key variables 

There are many different approaches to identifying the key variables that influence P(A). One of 
the more rigorous of these methods is Factor Analysis [8]. This method uses the statistical 
correlation between all observable variables to identify any key relationships. This method is used 
when the relationships between the data are not well understood. Unfortunately, this requires a 
significant amount of data and would require data collection over an extended period of time. 
There was not enough data available early on for this type of analysis. The lack of large quantities 
of data is also a problem for similar methods such as Independent Component Analysis or Cluster 
Analysis. 

As an alternative approach for this analysis, a semi-qualitative method was used to identify the 
key variables. A quick survey of the literature [9][10][11] reveals that there are some variables 
that frequently appear in sensor models. The following variables are considered to be the key 
influences affecting sensor detection performance: 

1. Target length or size, 

2. Target category (i.e., Merchant, Fishing, or Naval for ships), and 

3. Environmental conditions; particularly sea state.  

Modelling the sensor detection performance as a function of length ensures that length 
contributions are captured in the analysis. 

Target category affects some sensors more than others. For example, an Automated Identification 
System (AIS) is internationally mandated for vessels over 300 tons or for passenger vessels. 
Many fishing vessels are small enough to be exempt (or perhaps are willing to ignore the rules 
because they do not want to be tracked while fishing).  
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Influences from environmental conditions are not explicitly modelled in this analysis, but are 
instead considered as an influence on detection effectiveness variance. However, during the data 
collection, the environmental influence is controlled by collecting data from all sensors 
simultaneously over the same area and during the same time. 

Following from this discussion on the key variables, the following data should be collected: 

• Ship length 

• Ship ID 

• Ship category 

• Set of sensors 

• Coverage of sensors 

• Environmental conditions 

From this set of data, the majority of the effects are expected to be captured which will then be 
used to calculate the probability of detection. 

2.3 A ‘naïve’ modelling approach 

A simple way to sidestep the problem of not knowing sea truth, N, is to simply ignore those ships 
that go undetected. Make the assumption that the union of all sensor observations, N’, represents 
the sea-truth, (i.e., there are no unknowns after observing with all available sensors). 

The estimated probability of detection for this approach is simply the ratio of the number of 
detections by sensor A to the estimated sea truth, N’, as presented in equation (2). 

NSAP A ′= /)(~  (2) 

Note that (2) will tend to overestimate the value of P(A). The larger the fraction of the population 
observed (and hence the closer N’ is to N) the better this estimate of the probability of detection 
will be [12]. 

The advantage of the naïve method is that it is simple to calculate and does not require a detailed 
understanding of sensor dependencies. The disadvantage is that it will markedly overestimate 
detection probability when the combined sensor mix is poor (and hence N’ is not close to N). 

Section 3 will describe the alternative statistical modelling approach proposed. 
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3 Estimating detection probability - A statistical 
modelling approach  

In this approach we assume that sea truth, N, is not known. However, we have multiple sensors 
observing the same area at the same time. We will also make the assumption that the sensors 
operate independently. 

3.1 Estimating detection probability with two sensors  

Suppose we have two sensors, A and B, operating simultaneously and independently over the area 
and time period of interest, and that all targets detected by each sensor are identified. We assume 
that the detection of a target by each sensor can be modelled as a Bernoulli process so that, given 
N total targets, the number detected by sensors A and B have independent Binomial distributions 
with parameters P(A) and P(B) respectively. In executing this trial each sensor detects some 
number of ships, denoted SA and SB, respectively. Some ships are observed as having been 
detected by both sensors, denoted SAB.  

As before, the following estimators can be put forward.  

NSBAP
NSBP
NSAP

AB

B

A

/)(~
/)(~
/)(~

=
=
=



 (3) 

The underlying probability of detection by both sensors can also be usefully expressed as a 
product involving conditional probabilities and the underlying probabilities of detection by each 
sensor on its own. Using P(B|A) to represent the conditional probability of detection by sensor B 
given detection by sensor A, and vice-versa, we know [13] that: 

)|()(
)|()()(

BAPBP
ABPAPBAP

⋅=
⋅=

 (4) 

The assumption has been made that the sensors are independent of one another. The mathematics 
is always considerably simpler when the independence assumption can be made, so there is a 
strong motivation to consider that assumption. However, care must be taken to ensure that the 
independence assumption is justified and reasonable in the context. Otherwise, the mathematics, 
however elegant it may be, would be incorrect and useless. 

The question of independence is one of deciding if one event has an influence on another. Is 
detection by one sensor dependent on whether another sensor has detected it or not? One would 
logically expect sensors employing different technologies and platforms to be independent. 
Hence, the assumption of independence seems reasonable, as long as the sensors under 
consideration are sufficiently unique.  
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The expanded phrase conditional independence is often applied for clarity (where the ‘condition’ 
is that all other factors external to the two sensors in question are equal). 

A good example of this is the Automatic Identification System (AIS) and the Long Range 
Identification and Tracking (LRIT) system. Both sensors report positions of ships using a 
broadcast. Additionally, both sensors are mandated for large ships (300 gross tonnes and larger) 
and so report for the same subset of ships. AIS is transmitted using Very High Frequency (VHF) 
radio signals, whereas LRIT is transmitted using satellite communications. The information 
reported by the two technologies follows independent channels. If AIS is either not transmitted or 
not detected, it does not preclude detection from LRIT. The same is true vice versa. In other 
words, there is no causality between the two sensors and so they are considered to be 
independent.  

It is important to confirm independence between sensors [14]. This can be accomplished 
computationally from historical data, observing whether two sensors have indeed exhibited 
independent behaviour. It is well known [12] that independent sensors will exhibit the following 
property:  

( ) ( ) ( )BPAPBAP ⋅=  (5) 

A complementary report [4] to this report presents a plot showing many historical pair-wise 
sensor comparisons. The fact that this plot shows the relationship of the number of intersecting 
detections to the product of the individual detections (when normalized) is roughly linear 
provides a strong level of confidence in the assumption of independence. 

Under independence, conditional probabilities become simply the probabilities themselves. That 
is: 

( )
( ) )(|

)(|
APBAP
BPABP

=
=

 (6) 

Under the condition of sensor independence, the third part of Equation (3) can now be updated to 
reflect the model under independence, where now there are two methods of estimating )(~ BAP  : 

2/)(~)(~)(~
/)(~

NSSBPAPBAP

NSBAP

BA

AB

⋅=⋅=

=




 (7) 

The problem with equations (3) and (7) is that they contain the sea truth, N, which is an unknown 
quantity. By equating the right hand sides of the two equations above one can solve for N and 
eliminate it from further consideration, while providing an estimate, Ñ, for N at the same time: 
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AB

BA

S
SSN ⋅

=~  (8) 

Of course, Ñ will not necessarily be an integer number of ships. This approach for estimating N 
and its underlying distribution is discussed in greater detail in Section 4. Substituting (8) into (3) 
now provides estimates for P(A) and P(B) that involve only the measured quantities: 

A

AB

B

AB

S
SBP

S
SAP

=

=

)(~

)(~

 (9) 

All estimators have specific properties. In this case, it is clear that (8) and (9) are only valid if SA, 
SB, and SAB are non-zero. Note that these results can also be derived by applying the method of 
moments, equating each observed variable to its expected value.  

Equations (8) and (9) present a very useful result. Effectively, this approach substitutes a known 
subset of targets (those detected by B) for the unknown sea truth N. Then it estimates the 
performance of A based on how many of this reduced ‘sea truth’ are detected. The reverse applies 
for sensor B.  

It must be kept in mind how variables such as the target length and the environment can influence 
the value of the sensor detection performance. Equation (9) does not account for these variables; 
however, the variables can be controlled in the experiment.  

It is important that for every experiment the value for the intersections and total counts be 
collected under consistent conditions. This is achieved by collecting data over a constrained 
geographic area and during a small time window. In this way, the contribution from 
environmental variation is de-convolved from the measurements. Also, the target set will be 
relatively consistent for all sensors engaged in the experiment. 

By measuring the environmental conditions during each experiment one could, with enough data, 
measure the effect of the environment on the detection performance. Subsequent experiments 
with similar conditions may be compared and data may even be combined. It would be of 
uncertain benefit to combine measurements taken during a hurricane with measurements taken on 
a flat sea. 

To control for target variables, the data is sorted by the major target characteristics: ship size and 
category. The sorted data is analyzed independently providing separate coefficients for each 
target size/category combination adopted. For example, separate probabilities of detection for 
large, medium, and small commercial ships can be derived.  

Bins representing suitable combinations of environmental conditions and target variables will be 
created: for example, ‘large fishing vessels in high seas’, ‘medium vessels of all classes in calm 
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seas’, etc. Creating more bins enhances the resolution of the collective estimates. However, it also 
dilutes the amount of data in each individual bin, which increases uncertainty on the probability 
estimates for targets in that bin.  

3.2 Estimating the uncertainty in sensor detection probability 
using Bayes’ theorem 

For the purposes of simplifying equations, the following variable is defined: 

ABBAB SSf −=  (10) 

This is the number of failures by sensor A on the subset of targets detected by sensor B. That is, 
the number of targets detected by sensor B but not by sensor A. Equation (9) can be re-written as: 

ABAB

AB

fs
sAP
+

=)(~
 (11) 

The new ‘sea truth’ is X, where ( ABAB fsX += ). After X target observations, which are treated 
as a Bernoulli process of independent identical trials each with the probability of detection, P(A), 
by sensor A, the probability of sensor A having s detections and f failures is given by the binomial 
distribution [13]:  

ABAB fs

AB

APAP
s
X

APfsP ))(1()())(|,( −⋅⋅







=  (12) 

This expression gives the probability of any given result of s and f after observing X targets as a 
function of the probability of detection by sensor A. However, since one is trying to measure 
P(A), the inverse of this expression is desired to determine what range of values of P(A) is likely 
given the measured s and f. That is, what is the probability density function for P(A) given 
observations of s and f. One approach to arrive at this distribution for P(A) is to use Bayesian 
theory to infer its value.  

In a Bayesian analysis there are several terms which are commonly used in a technical sense. The 
terms ‘prior’ and ‘posterior’ refer to the distribution of a random variable before (prior) and after 
(posterior) any evidence is observed. Bayes’ Theorem enables the derivation of the posterior 
distribution of a random variable given its prior distribution and the observed evidence, which in 
this case is the number of ship detections by one or more sensors.  

As in the previous section, we assume conditional independence for all the sensors. 

For a hypothesis, H, with evidence, E, Bayes’ Theorem states [6], [22]: 
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)(
)()|()|(

EP
HPHEPEHP ⋅

=  (13) 

In this case, the hypothesis is that P(A) = p, and the evidence is the observed set { sAB, fAB }. P(H) 
is the prior probability density function of the hypothesis H, P(E) is the marginal probability of 
observing evidence E for all hypotheses, and P(E|H) is the probability of seeing the evidence E if 
the hypothesis is correct. In this case, P(E|H) is given by Equation (12).  

For the prior probability density function, P(H), there is usually no evidence to make a reasonable 
guess at what P(A) could be. If one considers any value for P(A) to be equally likely, then P(H) = 
1 (See Chapter 8 in [15] for non-informative priors). Finally, P(E) is the a priori probability of 
witnessing the evidence, which is the sum of the product of the probabilities over all the 
hypothesis (∑ )()|( ii HPHEP ). The value of P(A) given our evidence s and f is then: 

∫ ⋅−⋅⋅








⋅−⋅⋅








== 1

0

1)1(

1)1(
),|)((

dppp
s
X

pp
s
X

fspAPP
ABAB

ABAB

fs

AB

fs

AB
ABAB  (14) 

This can be simplified since the combinatorial function is a constant (i.e., not a function of p) in 
both the numerator and denominator, and hence cancels out of the equation. Also, the integral in 
the denominator is in the form of a recognized special function – the Beta function [16]. The final 
result for the probability density function for P(A) given evidence from observation is then: 

ABAB fs

ABAB
ABAB pp

fsB
fspAPP )1(

)1,1(
1),|)(( −⋅⋅

++
==  (15) 

This is recognized as the Beta distribution. The ‘best’ estimate of P(A) from this is found at the 
maximum of this function, which is the same as the value from equation (9). Using this 
distribution, the uncertainty in that estimate can be easily quantified. Figure 2 illustrates the shape 
of this distribution with s = 8 and f = 2. As expected, the best estimate of P(A) is 8/(8+2) = 0.8. 
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Figure 2: Plot of the probability distribution for the probability of detection of a sensor given an 
observation of s=8 and f=2. 

The value of P(A) has been estimated by a first set of measurements, but this process can be 
iterative. If more data is collected in future experiments, the same Bayesian approach can be used 
to update the posterior probability of P(A) given additional observations. From each trial or set of 
observations, the posterior distribution is updated given new observations of successes, sAB2, and 
failures, fAB2. To do this, Equation (13) is evaluated with P(H) equal to Equation (15): 
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This evaluates to: 

22 )1(
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 (17) 
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Equation (17) is an elegant and powerful result meaning that the most current distribution for the 
probability of detection can be characterized by keeping track of only two variables: successes 
and failures, which are accumulated over time. 

3.3 Generalizing to more sensors 

Up to this point only comparisons between two sensors have been discussed. By expanding the 
definition to multiple sensors, many comparisons can be made. In general, with each of T 
different sensors one can make T-1 pair-wise comparisons to measure the detection performance. 
Figure 3 illustrates an example for three sensors. 

 

Figure 3: Diagram illustrating the sensor comparisons for three sensors. 

Using a Bayesian update identical to the way Equation (17) was derived, the probability density 
for P(A) with comparison to sensors B and C is: 

facfabsacsab

acabacab
acacabab pp

ffssB
fsfspAPP ++ −⋅⋅

++++
== )1(

)1,1(
1),,,|)((  (18) 

Generalizing this result to an arbitrary number of sensors is straightforward: 

fs pp
fsB

pAPP ΣΣ −⋅⋅
+Σ+Σ

== )1(
)1,1(

1))((  (19) 

3.4 Advantages and disadvantages of the statistical method 

The advantages of the statistical method over the ‘naïve’ method are: 

• It does not require knowledge of sea truth; 

• It provides a distribution for unknown detection probabilities. and a measure of uncertainty. 

The primary disadvantage of the statistical method is that it requires the coordination of two or 
more sensors. 



  
  

20 DRDC-RDDC-2014-R56 
 
 
  
  

4 Estimating sea truth 

Using a similar approach, one can estimate the number of missed detections and the distribution 
of that number. Effectively, one can estimate the sea-truth, N. 

Another group has applied a Bayesian method to predict the number of missed mines based on 
sensor performance [17]. The problem of detecting ships follows the same formulation. In their 
formulation, they are unable to obtain a closed form solution, and must make approximations due 
to the method they chose to define their multi-sensor detections2. However, it is shown here that 
by choosing a non-informative Bayesian prior with the multinomial mix, a distribution for 
estimating the sea truth can be derived in closed form. Additionally, by using the conditional 
independence assumption, one can also derive a closed-form solution to estimate N without the 
requirement of a prior estimate of sensor performance. 

4.1 The two sensor case 

This derivation will be explained starting with the two sensor case, and then generalized for any 
number of sensors. For two sensors, A and B, which are observing an unknown number of ships, 
N, there are exactly three measurable sets of observations: ships observed by A (SA), ships 
observed by B (SB), and ships observed by both A and B (SA∩SB). From these measurements, for 
the N ships, each ship can be partitioned into one of four sets: 

 

Figure 4: Partition of sets from observations of two sensors. 

where: 

• oA: is only A BAA SSS −=  

• oB: only B BAB SSS −=  

• AB: both A & B BA SS =  

• ~AB: neither A nor B ABoBoAN −−−=  
                                                      
2 The paper uses a Dirichlet-Multinomial mixture, which makes the calculation of the marginal probability 
P(E) difficult. 
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The sum of the four sets is always going to be equal to the sea truth, which we want to estimate. 

,~ NABABoBoA =+++  (20) 

In order to apply the Bayesian inference method, as was done for the measurement of the 
probability of detection, one needs to describe P(E|H) in Bayes formula (13). For the four 
possible outcomes, the probability that any given subset is observed is described by a multinomial 
distribution [18]. This distribution is: 

AB
AB

AB
AB

oB
oB

oA
oAba pppp

ABABoBoA
NppNEP ~

~!~!!!
!),,|( =  (21) 

where the four p’s are the probabilities that a given ship falls within the given set, and sum to one. 
These probabilities can be written in terms of P(A) (also denoted as pa) and P(B) (denoted pb). 
Note that: 

• )1( baoA ppP −⋅= ,  

• )1( aboB ppP −⋅= ,  

• baAB ppP ⋅= , and  

• )1()1(~ abAB ppp −⋅−= .  

At this point, it is important to note that the estimates for pa and pb cannot come solely from the 
current experiment for which we are trying to estimate N. That is, we cannot substitute (9) for pa 
and pb. The reader will note the circularity in estimating pa and pb from observed detections (with 
other non-detections unknown but implicit) and then turning those values around to estimate non-
detections. The estimates for pa and pb must come from previously derived information.  

Continuing, equation (21) can then be re-written (see details in Annex A) as: 

BABA SN
b

SN
a

S
b

S
aba pppp

ABABoBoA
NppNEP −− −−= )1()1(

!~!!!
!),,|(  (22) 

Returning to Bayes’ Theorem and equation (13), P(E|H) is well defined by (22).  

The fraction P(H)/P(E) is the next part that needs to be defined. P(H) is the a priori probability 
that the hypothesis is correct, and P(E) is the sum ∑ )()|( ii HPHEP  over all possible 
hypotheses.  
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This type of summation is generally difficult for estimating a hypothesis where N can be any 
number from 0 to infinity. If one has some information that would indicate the likely range of 
values of N, an informative prior distribution could be defined. In the absence of such information 
one can use a non-informative prior. Although there is some philosophical debate on the use and 
form of non-informative priors [19], it is argued here that without prior information, assuming all 
possible values of N are equally probable - a uniform distribution - is reasonable. Another 
accepted non-informative prior is a function that decreases in proportion to 1/N, which despite 
seeming ‘informative’ relies on the argument that very large values of N must be less likely. With 
either choice, the risk of choosing a mis-specified prior (very different than the distribution one is 
measuring), which can have a major effect on the outcome [20], should be avoided. 

Also, it should be noted that both the uniform or reducing (proportional to 1/N) priors are 
improper distributions, as they cannot be made to sum to 1 unless an upper bound on N is 
assumed. Because of the mathematics of the Bayesian analysis an improper prior causes no 
difficulties in the final calculations. 

It will be shown that by choosing the uniform distribution as a prior a closed form solution for 
P(E) can be determined. 

Since during an experiment one observes SA+ SB - SA∩B ships in total, it is not possible that N is 
less than this value3. This means that the summation does not have to start at zero. Using this 
information, and that the probability of any N above the number of ships observed is equally 
probable, the summation becomes: 
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
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1
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(24) 

Substituting in Equation (22) and performing the summation (see Annex A), one finds that the 
value converges to: 
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!!!
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 (25) 

                                                      
3 This is assuming no false detections. The effect of false detection will be discussed at the end of the 
section. 
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Putting Equation (22) and (25) together (see Annex A) and simplifying results in an elegant 
solution: 

[ ] 1)(~1)(~)|( +− −⋅







== BABA SSSSN

BA

DPDP
SS

n
EnNP 


 (26) 

Where P(~D) is the probability of not detecting a target ship defined as P(~D) = (1-pa)(1-pb). This 
is recognizable as the Negative Binomial distribution [13]. 

The Negative Binomial distribution naturally represents the case of estimating the number of 
independent Bernoulli trials (with given probability, p, of success) required to produce a fixed 
number, s, successes, denoted NB(s,p). While similar, our detection problem has a distinct 
difference: one does not know when a failure has occurred (i.e., a ship goes undetected). The 
solution (26) is distributed as NB( SAUSB + 1, P(~D) ), which would be the distribution of the 
number of trials required (i.e., the sea truth) to produce SAUSB + 1 successes if one knows when a 
failure has occurred. The fact that one does not know when failures occur seems to introduce the 
requirement for an extra ‘pseudo-success’. Future work (and the reader might like to help out) 
will try to define the probabilistic logic that supports this “plus 1” phenomenon. 

Interestingly, another group has arrived at a Negative Binomial distribution using different 
distributions and priors for detecting submarines [19]. Their method discussed the prediction of 
the number of submarines one would expect to detect given some previous observations. Their 
formulation discusses a measurement of the expected number of submarines which will be 
observed on a given patrol using information from multiple previous observations (a method 
which can be considered analogous to repeated observations by sensors). They defined detection 
probabilities in terms of a rate of submarine detections in a Poisson process4 instead of the 
sensor’s probability of detection. However, the end result was still the same distribution. Their 
approach is effective when the chance of detecting a ship for any given observation or patrol is 
small. In the case of the modern RMP, ship detections are more frequent, and so the method used 
here can be applied. 

4.2 Extending to three or more sensors 

The elegance of (26) is striking. It involves only the probability of any sensor detecting the target 
or not. The total number of sensors involved is not really a factor at all. This permits the same 
expression to be employed for three or more sensors: 

[ ] 1)(~1)(~)( +− −⋅







== ii SSN

i

DPDP
S

n
nNP 


 (27) 

                                                      
4 That is, the longer you observe, the more likely you will detect a submarine. 
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Equation (27) is straightforward to compute, and provides an estimate of N including confidence 
intervals. For example, given three sensors with probabilities of detection of 0.4, 0.5, and 0.8, and 
one observes iS = 30 ships, the estimation for N can be illustrated as shown in Figure 5. 

 

Figure 5: Estimation of missed ships given 30 detections and 3 sensors p=0.4, 0.5, and 0.8. 

The interpretation of Figure 5 is that there is most likely to be 31 ships (one missed), and with 
95% confidence, there were zero to four ships not detected. 

Mr. Emond, one of the co-authors, has developed a Monte Carlo simulation of the broader 
Bayesian analysis. This tool is described in detail in Annex B, along with a detailed example. 
This numerical approach permits the use of any desired prior distributions for N, any desired 
number of sensors, and Beta-distributed prior distributions for each sensor’s detection 
probabilities, P(A), P(B), P(C), etc. It then numerically calculates the posterior distribution for N 
based on the number of individual ship detections observed. Mr. Emond would be pleased to 
make this software available to any interested readers.  

The example in Annex B.3 gives excellent insight into how assumptions on prior distributions 
will influence the shape of the posterior distribution. 

4.3 Impact of false targets 

False targets have not been considered in the analysis to this point. If a sensor generates false 
detections, then these are ‘targets’ that other sensors (presumably) would not detect. The 
estimates of sensor performance of other sensors will be reduced somewhat and the estimate for 
undetected targets must increase.  
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False alarm rates for sensors are usually well understood and assumed to be low. In any event, 
they can probably be measured. Repeating the derivation considering false alarm rates of sensors 
would allow for adjustment of the estimation to account for typical sensing conditions. 

The impact of false alarm rates on the distribution given in Equation (27) is, however, well 
understood. The mean and variance of the distribution are: 

( )
)(~1

)(~1
DP

DPSin −
⋅+= µ , ( )

( )2
2

)(~1
)(~1

DP
DPSin

−
⋅+= σ  (28) 

Incrementing iS  by one (one sensor generated a false detection) will increase the mean number 
of missed targets by an amount P(~D) / (1 - P(~D)) and the variance by P(~D) / (1 - P(~D))2. 
Note that if the total sensor quality degrades, the impact of false alarms will increase. 

To mitigate the impact of false alarms, a simple statistical test to detect false alarms can be 
defined. Since a false alarm impacts only one sensor, one can test the occurrence of ships detected 
by only that one sensor and not by any of the others. This permits the flagging of this subset of 
detections as likely to be including one or more false targets.  
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5 Conclusion  

This report has presented and discussed a body of work under DRDC ARP 11hn aimed at 
improving maritime surveillance. The key conclusions and main points of discussions are 
summarized here. 

The methodologies developed here for application in maritime surveillance should also find 
utility in other areas, such as minesweeping and estimation of populations. 

5.1 Estimating detection probability using a multi-sensor 
approach 

Any individual sensor has its detection performance limited by the technology it employs, the 
characteristics of the target, and the environmental conditions at the time. But given a set of 
conditions, detection of surface shipping on the open seas will always be very much a random 
phenomenon. The best way to determine a sensor’s operational capability is to observe 
performance empirically in trials. The biggest problem, however, is that one does not know when 
a detection failure has occurred. Other than in very well controlled trials, sea truth generally will 
not be known.  

This research has demonstrated the value of using multiple sensors in estimating sensor 
performance. The logic is to take the subset of targets detected by one sensor as a substitute for 
sea truth and examine how the other sensors perform on that subset. Under the assumption of 
sensor independence, argued here as not being unreasonable, one can generate simple point 
estimates of each sensor’s performance.  

Further, the application of Bayes’ Theorem permits the distribution of these estimated 
probabilities to be calculated as well. A closed form solution has been derived in this report, 
which is in the form of the Beta distribution. 

When employing this Beta distribution as the prior distribution for detection probability in a 
subsequent trial, the recalculated solution is also a Beta distribution but with parameters adjusted 
to reflect the new sensor performances. This elegant result permits the accumulation of detection 
opportunities and successes as trials with similar conditions occur over time to estimate detection 
probability (and its distribution). 

5.2 Estimating sea truth  

A major side-benefit of the Bayesian approach when applied to sensor mix analysis is that it can 
also be used to estimate the (generally unknown) sea-truth. A closed form solution has been 
derived for the distribution of the total number of targets that may have been out there in any 
given multi-sensor trial (the union of all detections plus the undetected targets). This solution is in 
the form of the Negative Binomial distribution. This provides a very useful estimate of the 
performance of any given collection of sensors employed to feed the RMP. 
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One of the elegant features of the Negative Binomial solution is that the calculation for the 
distribution of total number of targets is equally simple for any number of sensors being 
employed. The key detection probability employed is the probability of all sensors not detecting a 
given target. 

This closed form solution relies on the assumption of a uniform distribution as the non-
informative prior distribution for the sea truth variable, N. A numerical Bayesian analysis tool is 
also presented in this report for use with any form of more informative prior distribution for N. 

5.3 Operational use 

The purpose of developing this theoretical framework for analyzing multi-sensor detection 
performance is to support operational missions of the Canadian Forces. The Bayesian method has 
had an operational impact in two primary ways: changing operational processes to permit data 
collection to support analysis, and then using the results of the analysis to support command 
surveillance goals. 

In order to allow for more effective collection of sensor performance data, the mission profiles of 
surveillance missions have been modified to facilitate data collection. This has been done by 
creating a procedure for a type of patrol called an “RMP Validation Mission”. This mission 
involves coordinating an aerial patrol covering a certain area with as many other sensors 
simultaneously collecting data from the same area. In this way, data can be collected which can 
then be analyzed using the Bayesian method to ascertain the effectiveness of each sensor. 

The CF conducts ongoing surveillance activity off all coasts in order to detect potential threats to 
Canada [23-25]. It is important to be able to measure and assess the performance and 
effectiveness of these activities. The mathematical methods presented in this report permit 
surveillance activity to be combined with sensor effectiveness values using software called the 
Surveillance Analysis Workbook [26]. 
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Annex A Derivation of the closed-form Bayesian 
multisensor estimate of missed detections 

This annex describes in more detail the derivations presented in section 4.  

A.1 The conditional probability 

For two sensors, A and B, the probability of observing a given number of ships was defined by the 
multinomial distribution:  

AB
AB

AB
AB

oB
oB

oA
oAba pppp

ABABoBoA
NppNEP ~

~!~!!!
!),,|( =  (A.1) 

Where the following identities are defined: 

• oA: only A BAA SSS −=  

• oB: only B BAB SSS −=  

• AB: both A & B BA SS =  

• ~AB: neither A nor B ABoBoAN −−−=  

• Probability of only A: )1( baoA ppp −⋅=  

• Probability of only B: )1( aboB ppp −⋅=  

• Probability of A & B: abAB ppp ⋅=  

• Probability of neither A nor B: )1()1(~ abAB ppp −⋅−=  

Substituting the probability values into last four multiplicands and their exponents in equation 
(A.1) gives: 
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Expanding out and collecting exponents gives: 
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Simplifying the above results in: 
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Finally, re-substituting into Equation (A.1) gives:  
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A.2 The marginal probability 

To evaluate the marginal probability, one must sum Equation (A.5) over all possible values of N. 
Given the set of observations from the sensor, the minimum value of N is taken to be the union of 
the ships observed by all sensors, USi, which will be represented by the variable U for clarity. 
The sum will run from U to infinity: 
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To evaluate this infinite sum, first, the constants are pulled out of the summation. Also, note that 
~AB = N - U. The equation becomes: 
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To simplify this equation, note that the product [(1 – pa)(1 – pb)]N is, in fact, the probability of not 
detecting a target, which will be denoted as P(~D). In addition, a change of variables is 
introduced where k = N - U. The range of integration is now from k = 0 to infinity. To de-clutter 
the equation further, the terms outside the summation will be denoted by a variable C. 
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Next, the factorials can be re-written as a binomial coefficient by noting that: 
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Pulling the constants out of the sum, and substituting in Equation (A.9) gives:  
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The sum can be evaluated by noting the Taylor [20] expansion of the following function centered 
on zero5.  
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Using Equation (A.11), the infinite series from (A.10) is straightforward to evaluate resulting in 
the following solution:  
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Re-substituting the constant results in:  
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A.3 The posterior probability 
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HPHEPEnNP ⋅

==  (A.14) 

Using Equations (A.13), (A.1) and (13), the posterior probability is: 

                                                      
5 This is the Maclaurin Series, or just power series. 
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This is simplified by noting that ~AB! = (N-U)! and that P(~D) = )1()1( ba pp −⋅− : 
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This is re-arranged and simplified to:  
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The resulting closed-form solution, which is the same as Equation (27), is: 
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Annex B A computational Bayesian model for number 
of targets in a multi-sensor environment 

Let N be the total number of targets present in the area/time window. In a Bayesian statistical 
model, we treat N as a random variable with distribution function f(N) whose domain is the set of 
non-negative integers: { 0, 1, 2, … }. The aim of a Bayesian analysis is to derive the posterior 
distribution of the random variable N given the evidence of the number of detections by one or 
more sensors using Bayes’ Theorem. 

In a Bayesian analysis there are several terms which are commonly used in a technical sense. The 
terms prior and posterior refer to the distribution of a random variable before (prior) and after 
(posterior) any evidence is observed. Bayes’ Theorem enables the derivation of the posterior 
distribution of a random variable given its prior distribution and the observed evidence which in 
this case is the number of target detections by one or more sensors.  

Another term used in a Bayesian analysis is hierarchical model. In a hierarchical model one or 
more unknown parameters required for the main model are treated as random variables and given 
prior distributions in order to allow calculation of the random variables of interest in the main 
model. This type of model is also referred to as a complete Bayesian analysis. Reference [22] is a 
recommended source for information on Bayesian modelling. 

B.1 Mathematical preliminaries 

As in the previous section, we assume conditional independence for all the sensors. That is, given 
N total targets in the area/time window, the number detected by each sensor is independent of the 
number detected by any of the others. We also assume that the targets are sufficiently similar that 
the detection of targets by any sensor can be treated as a Bernoulli process of independent 
identical trials, each with a fixed probability of success.  

Let the number of independent sensors be denoted by K where K is a positive integer. Let the 
number of detections by sensor i be denoted by Si where Si is a non-negative integer value.  

Given the values S1 , S2 , … , SK we wish to estimate the total number of targets N in the area and 
time of interest. First we note that N must be at least as large as the largest number of detections 
by any of the K sensors. If the sensors provide target identification, then the constraint on N is 
given by the number of unique targets detected by the K sensors. In either case, we denote the 
minimum value of N by Nmin where Nmin is a non-negative integer value. Note that just as the 
pattern of individual detections by the K sensors provides a way to estimate N (as shown in the 
previous section), it enters into the Bayesian analysis both by determining Nmin and by way of the 
calculation of the posterior distribution using Bayes’ Theorem as shown below. However the 
overlapping identification of individual targets does not otherwise influence the resulting 
posterior distribution in a Bayesian analysis due to the assumptions of conditional independence 
between sensors and Bernoulli trial detections by each sensor. 
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B.2 The Bayesian model 

Under the assumption of Bernoulli trials for each sensor, we can write the probability density 
function for the number of targets Si detected by sensor i as a Binomial distribution as follows. 
The variable Pi is the probability of detection of an individual target by sensor i.  
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ii ...,,1,0)1(.)|( =−∗∗= −    (B.1) 

The likelihood function for the observations S1 , S2 , … , SK may then be written as follows. 
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If we denote the prior distribution of N as π(N), we can use Bayes’ Theorem to write the posterior 
distribution of N given the evidence S1 , S2 , … , SK as follows. (A detailed discussion of the prior 
distribution will be given below). 

 
(B.3) 

 

The prior distribution π(N) represents the known distribution of the number of targets present in 
the area/time window in a general way, before any information from the sensors is considered. In 
many cases a non-informative prior is used either because no information is available or because 
a conservative estimate of the distribution of N is required. If prior information about N is 
available either from other sources or from historical data, this can be incorporated into π(N) 
directly. This is a major advantage of a Bayesian analysis. 

The non-informative prior for the random variable N is given below. 

,1)( minNNfor
N

N =απ     (B.4) 

Note that this prior is improper because it cannot be made to sum to 1 unless an upper bound on N 
is assumed. Because of the mathematics of the Bayesian analysis an improper prior causes no 
difficulties in the final calculations.  

Given a specific form for π(N) either from past data or as a non-informative prior, we could use 
the above equations to calculate the posterior distribution of N given the evidence S1 , S2 , … , SK, 
assuming that the detection probabilities P1 , P2 , … , PK are known. If these probabilities are not 
known, we proceed to apply a complete Bayesian analysis by incorporating these values as 
random variables and integrating over them to find the required posterior distribution of N. 

Incorporating the detection probabilities as random variables 

We consider the individual sensor detection probabilities to be independent random variable in 
the Bayesian sense, each with a prior distribution Zi(Pi). As above, if specific information about Pi 
is known it can be incorporated directly into Zi(Pi). Otherwise a non-informative prior can be 
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used. In this case the non-informative prior is the uniform or rectangular distribution on the 
interval (0,1).  

While a non-informative prior is often preferred for N, it is less desirable for the detection 
probabilities. One of the most popular informative prior distributions for detection probability is 
the Beta distribution.  

Beta prior distribution for the sensor probability of detection 

As noted earlier, we make the assumption that given N targets in the area and time interval of 
interest, the number of targets detected by sensor i can be modeled as a Binomial distribution with 
parameter Pi . 

NSforPPConstNSf i
SN

i
S

ii
ii ...,,1,0)1(.)|( =−∗∗= −   (B.5) 

Suppose that from a previous exercise where the number of targets, M (also known as ground 
truth) was known, we have the information that m targets were detected. If we assume a uniform 
(non-informative) prior distribution for Pi then using Bayes’ Theorem we can write the posterior 
distribution of Pi as follows. 

10)1(.)|( ≤≤−∗∗= −
i

mM
i

m
ii PwherePPConstMofoutmPf  (B.6) 

The above distribution is a Beta distribution with parameters (α,β) equal to (m+1, M-m+1). 

Even in the case where no information from a prior exercise is known, it is convenient to use the 
Beta distribution as the default prior for Pi due to its ease of use mathematically and because its 
interpretation in terms of previous experience is clear. It is particularly helpful if both of the 
parameters of the Beta prior are integers. This fits in well with the interpretation of previous trial 
experience with the sensor.  

The form of the Beta distribution usually used in statistics in terms of its parameters α and β is 
given below. 

10)1(.)( 11 ≤≤−∗∗= −−
iiii PwherePPConstPf βα   (B.7) 

The mean, variance and mode of the Beta distribution are given below. 
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Posterior distribution of the number of targets - complete Bayesian model 

We are now in a position to use Bayes’ Theorem to write the posterior distribution of the number 
of targets N in the area and time of interest given S1 , S2 , … , SK detections by the K sensors. The 
general form is given below where we write the prior distribution of N as π(N) and the prior 
distributions of the K sensor detection probabilities as πι(Pi ) for i = 1, 2, … , K.  
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The above formula appears daunting at first glance but in fact it can be readily evaluated 
numerically for all values of N by using Monte Carlo integration. This technique is self-weighting 
in that values of Pi are chosen randomly from their respective distributions rather than evaluating 
all possible combinations. Note that having evaluated the above formula for all values of N up to 
some upper limit, it is a simple matter to normalize the distribution afterwards. This will be 
illustrated in an example below.  

One last detail to be discussed before giving a detailed example is the problem of choosing a 
random value from a given Beta distribution.  

Sampling from a beta distribution 

Let B be a random variable which follows a Beta distribution with parameters α and β.  We 
assume that α and β are both integer values as discussed earlier. We also assume the availability 
of a routine that generates independent random values from the Uniform (0,1) distribution as well 
as a routine that generates independent random values from the Standard Normal (0,1) 
distribution. Both of these routines are readily available on most computer software packages or 
can be downloaded from the Internet.  

First we note that the sum of X independent values from the standard Normal (0,1) distribution 
follows the Chi-square distribution with K degrees of freedom. Accordingly, we create Xα and Xβ 
as chi-square distributed random variables with 2α and 2β degrees of freedom respectively by 
sampling 2α and 2β times respectively from the standard Normal (0,1) distribution. We square 
each of the standard Normal values and add them to produce Xα and Xβ.  

We then use the following to create the value B which is a randomly sampled value from a Beta 
distribution with parameters α and β.   
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B.3 A numerical example 

Let K be the number of sensors. In this example we take K = 3. Let N be the (unknown) number 
of targets in the region/time of interest. Let the observed data be as follows. 

Let S1 be the number of targets observed by sensor 1. In this example we take S1 = 3. Let S2 be the 
number of targets observed by sensor 2. In this example we take S2 = 7. Let S3 be the number of 
targets observed by sensor 3. In this example we take S3 = 10. 

We assume that there is target identification for all sensors and that 13 unique targets are 
detected. The minimum value of N is thus 13 in the analysis below (Nmin = 13).o 

Analysis using non-informative prior distributions 

We first consider the analysis when all prior distributions are non-informative. 

We assume that the number of targets detected by sensor i, given that there are N = n targets in 
the region and time period of interest, follows a Binomial distribution with parameter Pi. The 
unknown parameter Pi is considered to be a random variable in a complete Bayesian analysis. The 
non-informative prior for Pi is a uniform distribution on (0,1), illustrated in Figure B.1. 

 

Figure B.1: Uniform non-informative prior distribution for Pi. 

It is also necessary to provide a prior distribution for the unknown number of targets, N. Figure 
B.2 presents a reasonable non-informative prior for N. 

,1,1)(Pr minmin +=== NNnfor
n

nN   (B.12) 
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Figure B.2: Non-informative prior distribution for N. 

We assume conditional independence between the sensors. This means that the number of targets 
detected by each sensor depends only on how many targets are in the area/time window. Given 
the number of targets, the number of targets detected by sensor i depends only on the Binomial 
parameter Pi associated with that sensor.  

We can now use (B9) to calculate the posterior relative likelihood for each possible value of N. 
The multiple integrals are evaluated using Monte Carlo integration. For each of several thousand 
iterations values of P1, P2, P3, and N are drawn at random from their respective prior distributions 
and the expression in the equation below is evaluated. Note that this process is self-weighting so 
that the posterior relative likelihood for each value of N is simply the sum of the values calculated 
for the several thousand iterations. Note also that the posterior probability distribution for N is 
derived by normalizing the posterior relative likelihood distribution. 

A practical upper limit for N must also be chosen. In this case an upper limit of 60 targets was 
assumed. As can be seen below the likelihood that N exceeds 60 becomes vanishingly small. 

For these selected non-informative priors, the results of the numerical analysis are illustrated in 
Figure B.3. The number of iterations in the Monte Carlo integration was 10,000.  
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Figure B.3: Posterior distribution for N with non-informative priors. 

The modal value for N is 13. The mean is 18.5 and the median is 15.5. The upper 95% confidence 
limit for N based on the posterior distribution is 33.  

Given the nature of the posterior distribution (severely skewed to the right), it is recommended 
that the median and 95th percentile be chosen as descriptive statistics for comparison purposes. 
The conclusion would then be: based only on the current detections the number of targets in the 
area is estimated to be 15.5 with a minimum of 13 and an upper 95% confidence limit of 33. 

Analysis using mildly-informative prior distributions 

In order to assess the effect of prior knowledge on the results, we next perform the analysis with 
mildly informative prior distributions for the unknown sensor detection probabilities P1, P2, and 
P3. We continue to use the same non-informative prior distribution for N.  

We assume that little is known about the detection probability of Sensor 1 except that it may be 
assumed to be closer to 0.50 than to either 0 or 1. In this case a mildly informative prior is a beta 
distribution with parameters α = 2 and β = 2. This distribution is shown in Figure B.4. It has a 
modal value of 0.5 and drops to zero at both 0 and 1. 
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Figure B.4: Mildly informative prior for P1 (Mode = 0.50). 

For Sensor 2, we suppose that there is evidence from a live trial under conditions sufficiently 
similar to the current example. In this live trial, Sensor 2 detected and identified two targets out of 
three. We can incorporate this prior knowledge in the analysis by using a Beta prior for the 
Sensor 2 detection probability with parameters α = 3 and β = 2. This distribution has a modal 
value at 0.67. It is illustrated in Figure B.5. 

 

Figure B.5: Mildly informative prior for P2 (Mode = 0.67). 

Finally, for Sensor 3 we again suppose that there is evidence from a live trial in which Sensor 3 
successfully detected and identified 4 out of 5 known targets. We can incorporate the prior 
knowledge into the analysis by using a Beta prior for the Sensor 3 detection probability with 
parameters α = 5 and β = 2, and a modal value at 0.80. It is illustrated in Figure B.6. 
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Figure B.6: Mildly informative prior for P3 (Mode = 0.80). 

Results…… 

Using the same numerical procedure as above, the posterior distribution of N was calculated and 
is shown in Figure B.7. 

 

Figure B.7: Posterior distribution for N with mildly informative priors. 

The effect of even mildly informative prior knowledge on the sensor detection probabilities is 
evident. The median value is now 13.6 as compared to the previous value of 15.5. Even more 
dramatic is the reduction in the upper 95% confidence limit to 20 from the previous value of 33. 
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List of symbols/abbreviations/acronyms/initialisms  

AIS Automatic Identification System 

AOI Area of Interest 

ARP Advanced Research Project 

CF Canadian Forces 

CORA Centre for Operational Research and Analysis 

DND Department of National Defence 

DRDC Defence Research & Development Canada 

JTFP Joint Task Force Pacific 

LRIT Long Range Identification & Tracking 

MCPG Maritime Capability Planning Guidance 

MDA Maritime Domain Awareness 

NB() Negative Binomial 

RMP Recognized Maritime Picture 

RS2 RADARSAT 2 

SA Situational Awareness 

SAW Surveillance Analysis Workbook 

VHF Very High Frequency 
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