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Abstract 

During the scope of two DRDC projects related to wireless sensor networks 
(SASNet, Self-Healing Autonomous Network, 2007-2011 and WRSN, Wireless 
Radiation Sensor Network, 2012-2014), CRC designed a transport protocol called 
CRCTP (CRC Transport Protocol).  
A Transport Protocol for Resource Constrained Nodes: CRCTP - Protocol Design 
The two de-facto transport protocols typically found in IP networks are TCP 
(Transmission Control Protocol) and UDP (User Datagram Protocol). UDP does not 
provide guarantee of delivery, but it is useful when low latency is required. TCP 
does provide guaranteed delivery. The mechanism that TCP uses to provide its 
guaranty of delivery operates end-to-end, i.e. only the two communicating 
endpoints are involved. This means that a failed transmission, even though it fails at 
the last hop before the destination, is restarted completely. Also, TCP uses a 
congestion control mechanism that causes unnecessary delays in wireless networks, 
and particularly in multi-hop networks. These two reasons make TCP inefficient 
under some circumstances, and the latency introduced is unacceptable for some 
applications. 
 
CRCTP was designed with the objective of having a transport protocol that provides 
guaranteed delivery with the lowest latency and overhead possible. It is designed to 
operate on resource constrained nodes and networks with restricted bandwidth. 
Various techniques are used to lower the overhead, latency and memory 
consumption, such as: hop-by-hop delivery guarantee mechanism, hybrid ACK and 
NACK confirmation, no congestion control at all, etc. 
 
This document presents the design of CRCTP. The design is generic such that the 
protocol can be implemented in most typical communications stack. 
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Résumé 

Dans le cadre de deux projets de RDDC (SASNet, Self-Healing Autonomous 
Network, 2007-2011 et WRSN, Wireless Radiation Sensor Network, 2012-2014) 
étudiants des réseaux de capteurs sans fils, le CRC a fait la conception d’un 
protocole de transport appelé CRCTP (CRC Transport Protocol). 
 
On retrouve deux protocoles de transport qui sont largement utilisés dans les 
réseaux IP communs : TCP (Transmission Control Protocol) et UDP (User 
Datagram Protocol). UDP est un protocole qui ne fournit pas de garantie de 
livraison, mais il est fort utile quand l’application demande des transmissions de 
données avec de courts délais. À l’inverse, TCP fournit une garantie de livraison. Le 
mécanisme qu’utilise TCP pour confirmer la livraison des paquets fonction bout-à-
bout, c'est-à-dire que seules la source et la destination sont impliquées. Donc, si un 
paquet n’est pas reçu correctement lors de la dernière retransmission avant la 
destination, tout est à recommencer, de la source à la destination finale. De plus, 
TCP utilise un mécanisme de contrôle de la congestion du réseau qui cause des 
délais inutiles sur les réseaux sans fil, et particulièrement dans les réseaux multi-
sauts. Ces deux raisons font que TCP est particulièrement inefficace sous certaines 
circonstances, et les délais qui en résultent ne sont pas acceptables pour certaines 
applications. 
 
CRCTP a été conçu avec comme objectif premier d’avoir un protocole de transport 
qui fournit une garantie de livraison tout en gardant les délais courts, et en 
minimisant les coûts sur le réseau. Il a été conçu pour opérer sur des appareils qui 
sont limités en ressources, et sur des réseaux limités en bande passante. Plusieurs 
techniques ont été utilisées pour minimiser les coûts sur le réseau, le délai et la 
demande de mémoire, tel que : mécanisme de confirmation qui opère entre chaque 
sauts (plutôt que bout-à-bout), mécanisme hybride de ACK et NACK, pas de 
contrôle de la congestion, etc. 
 
Ce document présente la conception du protocole CRCTP. La conception est 
générique de sorte que le protocole pourrait être implanté dans la plupart des 
systèmes de communication communs. 
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Executive Summary 

Background: During the scope of two DRDC projects related to wireless sensor 
networks (SASNet, Self-Healing Autonomous Network, 2007-2011 and WRSN, 
Wireless Radiation Sensor Network, 2012-2014), CRC designed a transport 
protocol called CRCTP (CRC Transport Protocol).  
The two de-facto transport protocols typically found in IP networks are TCP 
(Transmission Control Protocol) and UDP (User Datagram Protocol). UDP does not 
provide guarantee of delivery, but it is useful when low latency is required. TCP 
does provide guaranteed delivery. The mechanism that TCP uses to provide its 
guaranty of delivery operates end-to-end, i.e. only the two communicating 
endpoints are involved. This means that a failed transmission, even though it fails at 
the last hop before the destination, is restarted completely. Also, TCP uses a 
congestion control mechanism that causes unnecessary delays in wireless networks, 
and particularly in multi-hop networks. These two reasons make TCP inefficient 
under some circumstances, and the latency introduced is unacceptable for some 
applications. 
CRCTP was designed with the objective of having a transport protocol that provides 
guaranteed delivery with the lowest latency and overhead possible. It is designed to 
operate on resource constrained nodes and networks with restricted bandwidth. 
Various techniques are used to lower the overhead, latency and memory 
consumption, such as: hop-by-hop delivery guarantee mechanism, hybrid ACK and 
NACK confirmation, no congestion control at all, etc. 
This document presents the design of CRCTP. The design is generic such that the 
protocol can be implemented in most typical communications stack 
Results: This is a protocol design document, as such there is not result presented. 
Significance: This document presents the design of a transport protocol. It was 
designed in the scope of two DRDC projects related to wireless sensor networks 
(SASNet, Self-Healing Autonomous Network, 2007-2011 and WRSN, Wireless 
Radiation Sensor Network, 2012-2014). During the WRSN project, an 
implementation of CRCTP in the Qualnet network simulator was done. CRCTP has 
the potential to provide guaranteed delivery at low overhead and latency cost – 
these characteristics make the protocol attractive for a variety of networks, in 
particular wireless sensor networks. 
Future Plans: Although no follow-on project is presently planned, the logical next 
step is to refine the protocol design based on hands-on experience in simulation, and 
to port the CRCTP simulation implementation to an implementation on a real 
device. 
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Sommaire 

Introduction ou contexte : Dans le cadre de deux projets de RDDC (SASNet, Self-
Healing Autonomous Network, 2007-2011 et WRSN, Wireless Radiation Sensor 
Network, 2012-2014) étudiants des réseaux de capteurs sans fils, le CRC a fait la 
conception d’un protocole de transport appelé CRCTP (CRC Transport Protocol). 
On retrouve deux protocoles de transport qui sont largement utilisés dans les 
réseaux IP communs : TCP (Transmission Control Protocol) et UDP (User 
Datagram Protocol). UDP est un protocole qui ne fournit pas de garantie de 
livraison, mais il est fort utile quand l’application demande des transmissions de 
données avec de courts délais. À l’inverse, TCP fournit une garantie de livraison. Le 
mécanisme qu’utilise TCP pour confirmer la livraison des paquets fonction bout-à-
bout, c'est-à-dire que seules la source et la destination sont impliquées. Donc, si un 
paquet n’est pas reçu correctement lors de la dernière retransmission avant la 
destination, tout est à recommencer, de la source à la destination finale. De plus, 
TCP utilise un mécanisme de contrôle de la congestion du réseau qui cause des 
délais inutiles sur les réseaux sans fil, et particulièrement dans les réseaux multi-
sauts. Ces deux raisons font que TCP est particulièrement inefficace sous certaines 
circonstances, et les délais qui en résultent ne sont pas acceptables pour certaines 
applications. 
CRCTP a été conçu avec comme objectif premier d’avoir un protocole de transport 
qui fournit une garantie de livraison tout en gardant les délais courts, et en 
minimisant les coûts sur le réseau. Il a été conçu pour opérer sur des appareils qui 
sont limités en ressources, et sur des réseaux limités en bande passante. Plusieurs 
techniques ont été utilisées pour minimiser les coûts sur le réseau, le délai et la 
demande de mémoire, tel que : mécanisme de confirmation qui opère entre chaque 
sauts (plutôt que bout-à-bout), mécanisme hybride de ACK et NACK, pas de 
contrôle de la congestion, etc. 
Ce document présente la conception du protocole CRCTP. La conception est 
générique de sorte que le protocole pourrait être implanté dans la plupart des 
systèmes de communication communs.  
Résultats : Ce document est un document de conception d’un protocole de 
transport, donc aucun résultat n’est fourni dans le cadre de ce document. 
Importance : Ce document présente la conception d’un protocole de transport. Il a 
été conçu dans le cadre de deux projets de DRDC reliés aux réseaux de capteurs 
sans fils (SASNet, Self-Healing Autonomous Network, 2007-2011 et WRSN, 
Wireless Radiation Sensor Network, 2012-2014).  Durant le projet WRSN, une 
implantation de CRCTP a été faite dans le simulateur de réseau Qualnet. CRCTP a 
le potentiel d’offrir une garantie de livraison à faible coût pour le réseau, tout en 
gardant les délais courts. Ces caractéristiques le rendent attrayant pour une variété 
de réseaux, notamment les réseaux de capteurs sans fils. 
Perspectives : Bien qu’il n’y ait pas de suite immédiate à ce projet, la suite logique 
serait de raffiner la conception du protocole en se basant sur l’expérience pratique 
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obtenue lors des simulations, eu aussi de transférer l’implantation du simulateur 
vers un vrai appareil de communication. 
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1 Introduction 

In recent years, sensor networks have been widely studied in the research 
community. Miniaturization of processing units combined with increases in 
processing speed, improvements in battery technologies and advances in low power 
wireless technologies have enabled the feasibility to develop innovative networks 
composed of tens or hundreds of small sensors forming an ad hoc network.  
 
Such networks have constraints that are typically not found in regular wired or 
wireless networks: low memory devices, low processing speed devices, energy-
constrained devices, etc. In the IETF jargon, there is a name for such networks: 
L2N, for “low power, lossy networks”. In this context, the term “low power” is used 
to describe the devices of the network, and “lossy” is used to qualify the links of the 
network. All these characteristics of L2N force designers to re-think the networking 
aspect of communications (addressing, routing protocol, MAC and link layer 
protocol, etc). 
 
The two de-facto transport protocols typically found in IP networks are TCP [3] 
(Transmission Control Protocol) and UDP [2] (User Datagram Protocol). UDP does 
not provide guarantee of delivery, but it is useful when low latency is required. TCP 
does provide guaranteed delivery. The mechanism that TCP uses to provide its 
guaranty of delivery operates end-to-end, i.e. only the two communicating nodes are 
involved. This means that a failed transmission, even though it fails at the last hop 
before the destination, it restarted completely. Also, TCP uses a congestion control 
mechanism that causes unnecessary delays in wireless networks, and particularly in 
multi-hop networks. These two reasons make TCP inefficient under some 
circumstances, and the latency introduced is unacceptable for some applications. 
 
Earlier, we surveyed transport protocol for sensor networks [1]. We investigated 
more thoroughly one protocol that had met many requirements of wireless sensor 
networks: PSFQ. PSFQ, although a good protocol for some sensor network 
applications, consumed a lot of memory. In this document, based on our previous 
work and experience, we design a new transport protocol suitable for sensors nodes 
with constrained resources. It provides reliability for both unicast and 
broadcast/multicast traffic. 
 
The new protocol was designed with the objective of having a transport protocol 
that provides guaranteed delivery with the lowest latency and overhead possible. It 
is designed to operate on resource constrained nodes and networks with restricted 
bandwidth. Various techniques are used to lower the overhead, latency and memory 
consumption, such as: hop-by-hop delivery guarantee mechanism, hybrid ACK and 
NACK confirmation, no congestion control at all, etc. 
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This document starts directly with the design of the new protocol. The purpose of 
this document is to describe in details the protocol. Care is taken to keep the 
protocol generic so it can be implemented in the network protocol stack of any 
network. The design of this protocol was initiated in a DRDC project called 
SASNet (Self-Healing Autonomous Sensor Network, 2007-2011), and was 
completed in a follow-on smaller project called WRSN (Wireless radiation Sensor 
Network, 2012-2014) 
 
For the remainder of this document, we will call the designed transport protocol 
CRCTP (CRC Transport Protocol). 
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2 CRCTP Protocol Design 

This section will present the complete design of CRCTP. 

2.1 Overview 

 
The main purpose of a transport protocol is to provide a transparent transfer of 
packets between the originator and the destination. It may or may not provide a 
guarantee that packets are received correctly at the other end – making it a reliable 
or unreliable transport protocol. 
 
Additional roles of a transport protocol may include fragmentation and reassembly, 
flow control, port service and congestion control. In the ideal OSI layered network 
model, the transport protocol is located between session and network layer. This is 
illustrated in Figure 1. 
 

 
Figure 1 OSI Layered Network Stack

 
CRCTP provides the following capabilities: 

 Reliable Transport 
 Unreliable Transport 
 Fragmentation/Reassembly of Packets too large to fit in a single MAC 

Frame 
 Ports Services 

 
Providing reliability is the key challenge; the other capabilities are simpler to 
implement. Reliability is normally easy to provide. However reliability is a real 
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challenge in our case because of very low bandwidth links with potentially high 
error rates, and also because the nodes are CPU, memory and power constrained.  
 
Fragmentation/Reassembly introduces some overhead. With CRCTP, this overhead 
is simultaneously used to provide reliability. This improves overall overhead. 
 
CRCTP provides no congestion control – this is left to other layers of the 
networking stack. Practically, if CRCTP cannot receive a new packet from a higher 
layer, the higher layer is made aware of it. This is a simple and crude form of 
congestion control. 
 
There are different ways of classifying reliable transport protocols. One of them is 
whether they provide end-to-end or hop-by-hop reliability. TCP is a very popular 
end-to-end reliable transport protocol. End-to-end protocols perform poorly on 
multi-hop networks that have links where frame losses are likely to occur. The 
reason is that if a frame is lost on just one hop, the transmission of that frame is 
restarted from the originator (the source) of the frame, causing a waste of network 
resources. Moreover, the higher the error rate is the worse the situation becomes. 
Hop by hop is therefore a better solution for these networks. Therefore, CRCTP is a 
hop-by-hop reliable transport protocol. 
 
The danger with hop-by-hop protocol is that when an originator node sends a frame 
and it is convinced that the next hop received it, it concludes that the whole 
transmission up to the final destination is successful. But what if something 
unexpected happens later as the frame travels toward its final destination (lost route, 
a relay node becoming isolated, etc)? The responsibility for relay nodes is high. 
CRCTP must be robust enough to handle this situation. 
 
Another method of classifying reliable transport protocols is whether they use 
positive acknowledgement (typically called ACK) or negative acknowledgement 
(NACK). A positive acknowledgement is requested by a sender, to confirm the 
reception of a frame previously sent. A negative acknowledgement is sent by a 
receiver that detected a transmission error. The advantage of negative 
acknowledgement is that only erroneous situations cause overhead. With positive 
acknowledgement, every successful frame cause overhead (ACK) and erroneous 
situations are detected on failure of reception of an ACK. This is more costly in 
term of overhead but errors are immediately detected. The disadvantage of NACK 
is its inability to cope with small (i.e. packet size = 1 frame payload or less) packets, 
or to detect errors in the last fragment of a multiple-fragments packet. Also, with 
NACK, it takes a successful transmission to detect previous errors: this may lead to 
long frame error recovery time in some cases. 
 
CRCTP provides reliability through a hop-by-hop mechanism that uses a hybrid 
combination of ACK and NACK. It achieves its reliability by doing in-sequence 
forwarding, and it supports unicast, broadcast and multicast.  
 



COMMUNICATIONS RESEARCH CENTRE CANADA 
                                                                                                                 

2.2 Position in the Network Architecture 

 
As seen in Figure 1, ideally the transport protocol is between the session and 
network layers. This is not always feasible in practice. For example, with TCP, 
traditionally TCP works dependently with IP (a network protocol), and the result is 
called the TCP/IP protocol suite, where IP addresses are used by the transport 
protocol to identify flows. 
 
Like TCP, CRCTP also needs to be addresses aware (source, final destination, 
previous hop and next hop addresses). In addition, CRCTP needs to examine each 
incoming data frame from the lower layers, even if these frames do not finish their 
network journey in the local node. This is because CRCTP provides hop-by-hop 
reliability. Therefore, missed frames need to be identified at every hop when a 
packet travels, so appropriate action(s) are taken. This is why CRCTP, although 
strictly speaking a transport protocol, is not totally independent from the network 
layer.  
 
Figure 2 shows how the OSI stack is modified to accommodate CRCTP. Figure 3 
shows how CRCTP is implemented in the typical networking stack. 
 

 
Figure 2 OSI Modified to Accommodate CRCTP
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Figure 3 CRCTP in a typical Networking Stack
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2.3 Data Frame Format 

The following terminology is used throughout this document. A packet arrives from 
the higher layers and it enters the transport protocol. Once inside the transport 
protocol, it is called a transport layer frame, or simply a frame. A large packet is 
fragmented into multiple frames by the transport protocol: those frames can also be 
called fragments. Transport layer frames are constructed to fit into a single MAC 
layer frame. Therefore, at both layers (transport and data link), it‘s called a frame 
(transport layer frames are the same as MAC frames, but the MAC layer adds its 
own header and footer to them).  
 

 
Figure 4 From Packets to Frames

 

The data frame format of CRCTP is illustrated in Figure 5. The fields shown in 
green are actually addressing and MAC layers fields, but they are used by CRCTP 
to identify flows and missing frames. The next hop address is a field that is 
populated by the forwarding engine, with the information from the routing protocol. 
Table 1 explains each field of CRCTP frame. 
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Figure 5 CRCTP General Frame Format

As seen in Figure 5, CRCTP requires information from other layers of the 
communication stack to operate. This requires what is called a cross-layer design. 
Cross-layer design is a technique often used in wireless networks where the layers 
of the communication stack, normally independent from each other, share 
information to optimize the performance of the protocols. This document does not 
provide information on how to implement such cross-layer design because it is 
dependent on specific stack. The exact “how to” would typically be done at the 
software design stage. 
 

Field Size Bits Function 
Source TBD  The address of the source node, i.e. the node 

that generated the frame. 
The value of this field remains unchanged as 
the frame travels in the network. 

Destination TBD  The final destination address, i.e. the address 
of the node(s) that are intended receiver(s). 
The value of this field remains unchanged as 
the frame travels in the network. 
Multicast and broadcast frames are identified 
by the content of this field. 

Type (B1)  
0 Data Frame 
1 Control Frame 
Mode (B2) (for 
data frames only) 

 

Type/ 
Mode/ 
Flags 

1 Byte 

0 Unreliable 
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Field Size Bits Function 
1 Reliable 
Flags 
(B3B4B5B6) (for 
all data frames) 

 

B3 Set: First Fragment 
B4 Set: Last Fragment 
B5 Set: Full Size Frame 
B6 Set: New Topology Indication 
Flags (B7B8) (for 
reliable data 
frames only) 

 

B7 Set: More Frames 
B8 Set: ACK REQ 
Flags (B7B8) (for 
unreliable data 
frames only) 

 

B7 Set: A Fragment 
B8 Unused 
Control Frame 
Sub-Type 
(B2B3B4) 
(Control Frames 
Only) 

 

000 ACK 
001 NACK 
010 DROP TX 
011 DROP TX CONF 
100 Unused 
101 Unused 
110  
Flags 
(B5B6B7B8) 
(for “Drop TX” 
and “Drop TX 
Conf” Control 
Frames Only) 

 

B5 Unused 
B6 Set: New Topology Indication 
B7 Set: More Frames 
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Field Size Bits Function 
  B8 Set: ACK REQ 
Sequence 
Number 

TBD1  Cyclic counter. 
For each source/destination pair, there is one 
counter for reliable mode and one counter for 
unreliable mode. 
Incremented by one for each frame (may be a 
fragment) sent to a destination. 

Port TBD  To provide port service. 
Two bits may be enough TBD 

TTL TBD  Optional 
May be useful for systems carrying audio 
payload, and for systems with large maximum 
frame size (where the cost of the extra bits 
transmitted would not be so high). 
Used to eliminate outdated frames instead of 
transmitting persistently to reach final 
destination. 
In units of hops or timeslots? 

Payload 
Size 

1 Byte  This is used only when the Full Size Frame 
bit is not set (i.e. only when the payload is not 
to the maximum value) 
It’s ok to consume one full byte to indicate 
the size of the payload, since the payload is 
not fully used anyway. 
When the “Full Size Frame” bit is set, this 
field is absent, and the payload size is one 
byte larger. 

Sender TBD  The address of the node currently sending the 
frame (it may be the originator or a 
forwarder) 

Next Hop TBD  The address of the “Next Hop” to which the 
frame is sent. (decided by the routing 
protocol) 

Table 1 CRCTP Fields Details

                                                 
 
 
1 It must be big enough to have one number per in-transit packet. It can be made 
smaller at the cost of more positive ACK. 
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2.4 Sequence Number 

 
At each node, a sequence number is increased by one for each generated fragment 
or frame sent to a destination (sequence number makes no distinction between 
frames and fragments). Sequence number is not increased for forwarded frame, 
since sequence number applies to source/destination pair. Also please note that we 
do not include the port in the algorithm to increase the sequence number. Therefore, 
two packets with different ports but with the same source & destination address 
share the same sequence counter.2 
  
All frames to a given destination address sent in reliable mode share the same 
sequence number counter. Similarly, all frames to a given destination address sent 
in unreliable mode share the same sequence number counter. Therefore, two 
sequence numbers per destination address are maintained, at each node. 
 
When a sequence number reaches its maximum value, it goes back to zero (it’s a 
cyclic counter). In reliable mode, a frame sent with a sequence number set to the 
maximum value is also sent with the “ACK REQ” bit set.  
 

 
 
 
2 It is important to point out here that all application layer flows or packets that 
shares the same Source & Destination address will share the same Sequence 
Number in the transport protocol (actually they will share two sequence numbers: 
one for reliable mode, and one for unreliable mode). 
This is done to increase the likelihood of error detection with the NACK 
mechanism. The NACK mechanism works optimally when frames are regrouped. 
Therefore, CRCTP aggregates together all flows and packets from the application 
layer (with the same source and destination address) for the purpose obtaining 
reliability at a lower cost. At the destination, together with the re-assembly 
mechanism, flows and packets will be reconstructed again before being sent to the 
higher layers. 
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2.5 Addressing & Forwarding 

 
Although addressing and forwarding are not strictly transport protocol features, they 
are described here. Because of the way CRCTP works, forwarding is handled in 
cooperation with the transport protocol. The reason for this is that the protocol must 
do in-order forwarding, and missed frames are detected by the transport protocol. 
Also, reliability is handled hop-by-hop; therefore the transport protocol has to 
inspect frames at each hop to perform its task. 
 
Source and destination address fields are populated by the node that generates the 
packet. They remain unchanged as packets travel from node to node until they reach 
their final destination(s). These fields are populated in the frames by the transport 
protocol; the content of the destination address is based on what the application is 
requesting. All frames built from the same packet will use the same source and 
destination address, obviously. 
 
The forwarding engine is responsible for populating the next hop address field, 
frame by frame. It does so in the same manner whether the frame is locally 
generated or not (i.e. whether it comes from the higher or lower layers). The 
forwarding engine asks the routing protocol what is the next hop address, based on 
the destination address. The forwarding engine populates the next hop address field 
based on the answer from the routing protocol. The forwarding engine must keep 
track of the last used “next hop address” to a given destination address. Once it 
detects a change, it must perform extra steps as described in section 2.11 (
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Dynamic Network Topology Issues). 
 
Frames coming from lower layers for forwarding are inspected by CRCTP. As a 
result of the frame inspection, the transport protocol may send a control message 
(ACK, NACK, REFUSE) before forwarding the frame. It may also delay the 
forwarding to a later time due detected missed frames. The reason for this is that the 
protocol does in-sequence forwarding. If the local node is the (or a) destination, the 
frame is passed to higher layers or buffered for re-assembly as required. All frames 
forwarded are also buffered until the node is guaranteed that no retransmission will 
be requested for this frame. 
 

Performing in-sequence forwarding has the advantage of minimizing overall 
network usage and minimizing memory consumption especially when considering 
re-assembly mechanisms. If a node was to send a frame out-of-sequence, it is 
guaranteed to receive a NACK from the receiver. This could be worked around by 
having the sender tell the receiver to temporarily accept out-of-sequence forwarding 
(i.e. do not request a retransmission immediately after detecting a missed frame). 
This is not allowed in the current design but may be explored in the future 
(however, in the current design, NACK are sent after waiting some reasonable time 
to accommodate MAC layer recovery procedure, and network turnaround time). 
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2.6 Port Service 

 
When an application wants to send to an application on another node, it opens a 
dialogue with the presentation layer. This is where the port number is determined. 
The “Port” field is populated by CRCTP in the frame. At the receiver, the port 
number is used to determine to which application packets should be directed. All 
frames resulting from a single packets use the same port number. If port service is 
already implemented elsewhere in the communications stack, CRCTP only needs to 
retain the appropriate frame fields. 
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2.7 Reliability 

 
CRCTP provides hop-by-hop reliability through a mix of positive and negative 
acknowledgements. It mixes the two methods to achieve the low overhead of 
negative acknowledgement, while maintaining the guaranteed reliability and low 
memory requirements brought by positive acknowledgment. We believe this is an 
appropriate compromise between the constraints and requirements of some sensor 
networks.  
 

2.7.1 The Negative Acknowledgement Method 
 
With the negative acknowledgement method, missed frames are detected by the 
receiver by looking at a sequence number. If it detects a gap in sequence number, it 
means that one or more fragments have not been received. When this happens, a 
request for retransmission of the missed frames is sent to the previous hop through a 
NACK. This method may also be called passive NACK, but is simply called NACK 
in this document. 
 
The advantage of this method is that overhead occurs only when recovery is 
required.  
 
There are several disadvantages to this method: 

 A single frame error cannot be detected. We call this “Problem P1”. 
 The situation where a node is sending frames to a node that has moved away 

or is unresponsive is not handled properly. In this case the receiver node will 
never send a NACK, and the sender will assume the receiver received 
everything correctly, when this is obviously not the case. We call this 
“Problem P2”. 

 The time it takes to recover from an error is unknown: it may be short if 
only one frame is lost, but it may be long if many frames are lost before a 
receiver detects a gap in sequence number.  

 The sender node must keep in memory everything it sent to handle eventual 
request for retransmissions. Since it never receives positive confirmation of 
reception, it has to guess when history frames can be deleted from memory. 
This leads to a protocol that requires large memory size to execute. We call 
this Problem P3”. 

 
Therefore, this method by itself does not work well in networks where small packets 
occur often or on networks with high mobility or on networks where there is a great 
variation in link quality. 
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2.7.2 The Positive Acknowledgement Method 
 
With positive acknowledgment, errors are detected when the sender does not 
receive the confirmation message from the receiver that it received a frame.  
 
This method has the following advantages: 

 Errors are always rapidly detected.  
 The sender may delete from memory frames for which the successful 

reception is confirmed. This leads to low memory requirements. 
 It handles correctly both small single frames and long streams. 

 
The main disadvantage of this method is that overhead (ACK) occurs for every 
successful frame, resulting in high overhead. We call this “Problem P4”. 
 

2.7.3 Hybrid Positive-Negative Acknowledgement Method 
 
The method we propose uses both positive and negative acknowledgments together. 
It keeps a great part of their respective advantages while minimizing their 
disadvantages. We will explain here how it works and how problems P1 to P4 are 
eliminated or minimized. 
 
The NACK portion of the hybrid approach 
 
Errors are normally detected using the usual negative acknowledgment method, i.e. 
by inspecting frame sequence numbers to detect missed frames. Whenever one or 
more missed frames or fragments are detected, a node starts the TBeforeNACK

3 timer 
(if it was not previously started). If it does receive one missed frame before the 
timer reaches TBeforeNACK, then it resets the timer to zero and updates its list of 
missed frames. It repeats this until TBeforeNACK is reached. If the timer ever reaches 
TBeforeNACK, while there are still missed fragments, a NACK is sent. The format of a 
NACK is discussed later. 
 
If a node has detected a missed frame and is waiting TBeforeNACK before sending a 
NACK, as described above, it may in the mean time receive other frames from that 
source/destination pair (that are not in the current list of missed frames), and it may 
                                                 
 
 
3 TBeforeNACK is a timer used to let a detected missed frames arrive by itself. For 
example, a MAC layer may receive multiples out-of-sequence frames in burst mode 
from a node. Also, some MAC layers may have built-in retransmission mechanism. 
These mechanisms must have enough time to complete before a transport layer 
recovery is attempted through a NACK. 
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or may not realize that it is missing more frames. In this case, it does not reset the 
TBeforeNACK timer and it continues the procedure as described in the previous 
paragraph, but with the updated list of missed frames. At any node, there can be at 
most one TBeforeNACK timer per source/destination pair. 
 
When a node sends a NACK, it request a retransmission for all missed frames that 
have been reported missing, for the given source/destination pair, before the 
TBeforeNACK timer was last reset. This is to avoid requesting retransmission for 
missed frames that may still be in transit. After sending a NACK, if there are still 
missed frames for which no retransmission was requested, the TBeforeNACK timer is 
reset; otherwise, the timer can be stopped (deleted). Doing a reset of the timer at this 
point ensures that CRCTP does not request missed frames one by one, in the event 
that they occur regularly and periodically. 
 
 
After sending a NACK, the sender of the NACK waits for a period of TNACK. If it 
did not receive any requested missed frame within that period, is sends a NACK 
again, with the updated list of missed frames, as long as the list of frames ready to 
be requested is not empty. A node may request more than one missed fragment in a 
single NACK. Every time a missed fragment is received (i.e. recovered), TNACK is 
reset. If TNACK is reached, another NACK is sent. A retransmission request for a 
given frame must not be tried more than NNACK times. Therefore, for each frame a 
retransmission count is kept in memory to ensure that a given frame is not requested 
more than NNACK times. Frames that have been requested more than NNACK times 
are flagged as such and are no longer requested in NACKs. 
 

Therefore, NACKs are sent whenever TBeforeNACK or TNACK expires. Whenever this 
happens, a new NACK is generated, requesting a retransmission for all missed 
frames for which it is time to request a retransmission. 
 
A great advantage of this approach compared to traditional NACK approaches is 
that normally sequence numbers are used only for fragments of a packet, or for 
“stream” type of flows4. This limits this overhead-efficient method to only this type 
of traffic. We propose to extend the method to any outgoing frame with the same 
source-destination address. Therefore, the sequence number is increased for each 

 
 
 
4 Therefore, application layer packets and flows are aggregated into one single 
transport layer sequence of frames. Only one sequence number is shared for all 
application layer traffic, and forwarder nodes allocate memory for all active 
“Source/Destination” pair they encounter. Forwarder nodes may release this 
memory when the “Source/Destination” pair is no longer active on this forwarder. 
Application layer packets and flows are re-constructed with the re-assembly 
mechanism. This process is independent for reliable and unreliable traffic. 
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outgoing frame from a node to a same destination. The only requirement for the 
proposed method to function is to be confident that there are more frames to be 
transmitted (frames with the same source/destination pair). This is determined by 
the source node through an examination of the frames/fragments awaiting 
transmission. If there are such frames, this is indicated by setting the “More 
Frames” flag. The receiver therefore knows that more frames are expected to arrive 
from that source (this information may be used to react to topology changes, see 
section 2.11). When the source node detects that no more frames are ready or 
expected to be sent the destination, it sets the “More Frames” flag to zero and set 
the “ACK REQ” bit to one. The receiver will then positively acknowledge this last 
frame, and the sender and receiver can clear their buffer for these frames. 
 
The negative acknowledgement approach is the most efficient approach to provide 
reliability in term of overhead. With our approach, the negative acknowledgement 
method is used potentially more often that with traditional NACK protocols. This 
technique greatly minimizes the overhead associated with positive 
acknowledgement, that we called problem P4 earlier.  
 
The ACK portion of the hybrid approach 
 
With CRCTP, at specific times, a sender node requests from the receiver a positive 
acknowledgement of a frame. This is necessary to overcome the deficiencies of the 
pure negative acknowledgement approach. Positive acknowledgments are requested 
by setting the “ACK REQ” bit to one. A sender must set the “ACK REQ” bit on the 
following occasions: 

A. When the “More Frames” bit is not set 
B. After sending NFrACK frames (with the same source/destination address) 

without the “ACK bit” set 
Or, whichever occurs first: 
C. When a period of TFrACK elapsed since the last frame with the same 

source/destination address and with the “ACK REQ” bit set was sent  
D. When a sender (originator node or forwarder node) must release some 

memory 
 
A, B and C above effectively solves Problem P1 and P2 (about missed frames never 
detected) mentioned earlier. B, C and D effectively solve the memory problem P3 
discussed earlier. 
 
When a receiver receives a frame with the ACK REQ bit set, it first verifies if it is 
missing any frames by inspecting the sequence numbers. If it is missing any frame, 
it sends a NACK requesting all of them (regardless of the value of the TBeforeNACK or 
TNACK timers). When all frames are received up to the one that was received with 
the ACK REQ bit set, the receiver node must send an ACK frame. ACK frame 
format is discussed later in this document. 
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After requesting an ACK, a sender starts a timer called TACK. The TACK timer is 
reset to zero upon reception of a NACK (for frames with the same 
source/destination address and with a sequence number less than or equal to the one 
of the frame for which an ACK as requested). The TACK timer is also reset every 
time the ACK sender does a retransmission of frame whose sequence number is 
lower than or equal to the one of the frame for which an ACK as requested. The 
TACK timer continues its count/reset procedure until the ACK is finally received. If 
the TACK timer reaches TACK and has never received the ACK, the frame with the 
“ACK REQ” bit set is sent again, and the timer is reset. The sender node may try 
this for a maximum of NACK times, after which it gives up. 
 
This method of requesting a positive acknowledgment once in a while enables 
nodes to reduce and control their memory consumption. After reception of an ACK, 
a node is guaranteed that the next hop receiver received all previous frames with the 
same source/destination addresses. Therefore, it no longer needs to store these 
frames in memory. Moreover, adjusting NFrACK and TFrACK has the effect of giving a 
boundary to the maximum per/hop worst case frame latency. These advantages 
come at the cost of the overhead of transmitting ACK frames once in a while. 
 
The effect of mixing the two approaches 
 
As explained before, with the NACK approach, no overhead occurs until errors are 
detected. Therefore, the performance of such a method approaches that of a circuit 
switched network when there are few errors. However, it may lead to high memory 
consumption due to potential long error discovery time, plus it can’t provide 
guaranteed reliability for small packets. On the other hand, pure ACK results in low 
memory consumption due to rapid error recovery.  
 
Mixing the two approaches allows us to consume a certain controllable amount of 
memory, to improve network performance in term of control frame overhead. 
Worded differently, it allows us to consume a certain amount of network resources 
to save on device memory resources. This mix is configurable, and potentially 
dynamically configurable. Also, because the approach is hop-by-hop and not end-
to-end, error recovery is done more rapidly and consumes much less network 
resources. Mixing ACK and NACK also has the advantageous inherent effect of 
distributing memory consumption among the forwarder nodes between the source 
and the destination (in the case of large packets, streams or continuous frame 
transmission). 
 

2.7.4 Proactive Negative Acknowledgement 
 
As explained before, a node sends a negative acknowledgement when it detects a 
missed frame by inspection of the “Sequence Number”. We call this the passive 
negative acknowledgement. 



COMMUNICATIONS RESEARCH CENTRE CANADA 

24  TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 
 

 
A proactive negative acknowledgement is one where a receiver knows that there are 
more frames to come (in the case of our protocol, by inspecting the “More Frames” 
bit), but they don’t receive any after some long delay, and there has been no missed 
frames detected. Therefore, under the rules of the passive negative 
acknowledgement, a NACK is not allowed to be sent in this case. A proactive 
NACK could be sent in this case. However, with CRCTP, this is not necessary since 
the sender requests positive ACK periodically. 
 
Therefore, proactive NACK is not allowed with CRCTP. 
 
The “More Frames” bit is used for other purpose in CRCTP (see section 2.11). 
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2.8 Un-Reliability 

 

Sending in unreliable mode is possible with our proposed protocol. The frame 
format is the same, but meaning of the flags is different than for reliable frames (see 
Table 1). The “ACK REQ” and “More Frame” bits are not used.  
  
In the unreliable mode, it is not necessary to inspect the “Sequence Number” to 
detect missed frames or fragments. It is only necessary to inspect them for packet 
re-assembly purpose. 
 
Finally, in the unreliable mode, receiver and forwarder nodes never send ACK or 
NACK. Forwarders never buffer any frame or fragment – they just pass them 
trough. Receivers (final destination only) use buffering of frames only if these are 
fragments of packets, for re-assembly purpose. 
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2.9 Fragmentation 

 
Locally generated packets enter the transport protocol from higher layers. If a 
packet, including transport header and footer, fits into one single MAC frame, it 
does not have to be fragmented. Otherwise, the transport protocol fragments the 
packet into multiple fragments. Because the protocol does in-sequence forwarding, 
fragments of a packet are sent in sequence. Fragments from packets coming 
different ports can be interlaced (but they share the same sequence number). The 
reassembly mechanism will perform reassembly on a source/destination address-
port number basis.  
 
The first fragment of a packet is sent with the “First Fragment” bit set; this bit is set 
to zero for all other frames. The last fragment is sent with the “Last Fragment” bit 
set; this bit is set to zero for all other frames. In unreliable mode, all other fragments 
of a packet are sent with the “A Fragment” bit set (this bit does not exist in reliable 
mode). Frames of packets that are not fragmented are sent with these bits set to 
zero. 
 



COMMUNICATIONS RESEARCH CENTRE CANADA 
                                                                                                                 

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 27
 

2.10 Reassembly 

 
The reassembly process takes place at the destination only. It does not take place at 
the forwarder nodes, unless a forwarder is also a destination (in the case of 
broadcast or multicast). The reassembly process is different for reliable and 
unreliable mode. In both modes, a node knows that it is receiving one or more 
fragmented packets by seeing at least one frame received with the “First Fragment”, 
“A Fragment” or “Last Fragment” bit. In all cases, it starts to buffer these fragments 
for re-assembly purpose.  
 
Formally, a reassembly process is started as soon as all the following conditions are 
met: 

1. The transport protocol receives a frame with the “First Fragment”, 
“A Fragment” or “Last Fragment bit set. 

2. The destination address is the local node (this frame is now at its 
intended destination) 

3. A reassembly process was not already started for this 
Source/Destination/Port combination. 

 
Once a packet is re-assembled, it no longer needs to be buffered for re-assembly 
purpose (but may still need to be buffered for reliability reasons, see 2.7) 
 
One could argue that in reliable mode, if a node receives the “Last Fragment” first, 
it may not have buffered the previous, but not first, fragments because the “A 
Fragment” bit is not used in reliable mode. However, missed frames are buffered at 
least until the First Fragment is received, since the protocol does in sequence 
forwarding (see 2.7). 
 
In reliable mode, at the final destination, a packet is immediately re-assembled once 
the “First Fragment”, “Last Fragment” (with the same source/destination/port) AND 
all fragments in between (with or without the same port) have been successfully 
received. Note that this does not prevent multiple packets to be interlaced together 
in transport frames. However, there may be some situations where all frames of an 
application layer packet are correctly received but cannot be re-assembled until 
some frames of another packet are successfully received (because they share the 
same sequence number). 
 
In unreliable mode, the situation is a little bit more complicated. Whenever a 
fragment of a new packet is received at a final destination in unreliable mode, a 
reassembly timer TReassembly is started (if it’s a newly encountered packet) or reset (in 
the case where this is not the first fragment of the packet). When the last fragment 
of a packet is received in unreliable mode, the packet is immediately re-assembled if 
all fragments were received. If some fragments were not received, the reassembly 
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timer is reset. If the reassembly timer ever reaches TReassembly, then the associated 
packet is re-assembled, even if some frames are missing. Known missed fragments 
are zero padded in the re-constructed packet. If the last fragment was never 
received, the frame with the latest sequence number is treated as the last one. If the 
first fragment was never received, the fragment with the “A fragment” bit set that 
has the lowest sequence number is treated as the first one. In all cases where a 
packet is reassembled but with missed fragments, the re-assembled packet is sent to 
higher layers with an indication of erroneous packet. We note that with this 
algorithm, there is a possibility that, if a last fragment is never received and the first 
fragment of the next packet is also never received, these two consecutive packets 
get treated as only one, and it is erroneous. However, this is in the unreliable mode 
only, and in this case the protocol operates in “best effort” mode anyway. For 
specific implementation, the designer may want to implement a checksum or a 
cyclic redundancy check to detect such erroneous frames. This is not specified in 
the base specification of CRCTP because it was considered that the extra overhead 
was not necessary, given that this is for unreliable mode only. 
 
 
Therefore by using this scheme, in sequence reception is not required for either 
frames (fragments) or packets. Also, multiple fragmented packets can be received 
concurrently from the same source without confusion. 
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2.11 Dynamic Network Topology Issues 

 
An important situation to consider is when the forwarder nodes are changed during 
the course of a transmission. Let’s consider the following situation. A source node 
A is sending to node D. In the beginning of the transmission, B acts as relay 
between A and D. Later on, this is changed and C becomes the relay. This is 
illustrated in Figure 6.  
 

 
Figure 6 Topology Change

 
There are two issues to consider. 

1. Node C becomes involved in the transmission sometimes after it has started 
but before it ended. The first frame it sees is not the first frame or fragment. 
Normally, according to NACK rules, it would request the missing previous 
frames, but it should not in this special case. But how does it know that it is 
a new relay for an ongoing transmission? It may think that it missed all 
previous frames and has always been the selected relay. 

2. Node B stops its involvement in the transmission. How does it know it is no 
longer responsible for this flow? How does it know that that it is acceptable 
to not receive a requested positive ACK from the next hop receiver? How 
does it know that it can drop the buffers for that transmission? 

 
Both of these issues have to be addressed. The first node to be aware of the 
changing situation is node A. When node A requests the “Next Hop” address from 
the forwarder, it monitors for a change from the previously used “Next Hop 
address”. If a change is detected, the following actions are taken: 

1. Node A informs B that it is no longer involved in this transmission by 
sending it a “DROP TX” frame. Note that B may no longer be a 
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neighbor (therefore the “DROP_TX” is treated like a data packet and 
may be routed). The format of the “DROP TX” frame is detailed later.  

 On reception of this “DROP TX” frame, node B replies with a 
DROP TX CONF” frame. 

 The transmission of the actual data frame on the new route can 
take place right after the first “DROP TX” has been sent. It is not 
necessary to wait for reception of the “DROP TX CONF” frame. 

 The “DROP TX” and “DROP TX CONF” are control frames, but 
are treated like reliable data frames (they are routed). Therefore, 
it can be assumed that they will successfully reach their 
destination. 

2. Node A informs node C that it is a new forwarder of an ongoing 
transmission, by sending (to node C) the next frame with the “New 
Topology Indication” bit set. In this case the “ACK REQ” bit is also set. 

 Node C immediately forwards the frame to node D, with the 
“ACK REQ” bit set. It waits for the positive ACK from D before 
sending its own positive ACK to A. To allow enough time for 
this extra exchange to take place, node A waits longer than it 
normally does for the reception of the ACK from C. It should 
wait TACKTopologyChange. 

 If node C instead receives a NACK from D, it cannot handle it 
because it does not have yet any frames buffered for that 
transmission. In this case, instead of sending an ACK to node A, 
it sends an NACK requesting the missing frames. After this, 
normal procedures commence. 

 If node C hears a NACK from node D to node B for the 
source/destination flow for which it is now responsible, it must 
respond to it (with the mechanism described in the previous 
paragraph). This may happen when node D is sending a NACK 
before it has realized that the new previous hop is node C. 

 
Node D observes the change by inspecting the address of the previous hop. It 
always uses the “last” previous hop observed to send control messages (ACK, 
NACK). 
 
When node B becomes aware that it is no longer a forwarder for the transmission, it 
can drop any ongoing procedure or buffer related to that transmission. 
 
Step 1 above works well in networks where routes are rapidly constructed or 
proactively maintained, such as the TinyOS implementation of sensor network by 
RASN. In the case of the Newtrax nodes, having node A send a message (the 
DROP_TX) to node B when the route between them has to be reconstructed may 
not be a good idea since the new route may take long to be alive. It is suggested to 
use the following alternative approach instead: 

1. Node B knows that a transmission is not over when the last frame was 
received with the “More Frames” bit set.  
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 If it did not hear any activity on this transmission for a period of 
T opologyChange, it can conclude that it is no longer involved in that 
transmission and it may release its buffer for all concerned 
frames. It may also give up any process related to this 
transmission (ACK, NACK). 

T

 Node B does not necessarily have to abandon the transmission 
right at TTopologyChange of inactivity, but it can abandon it from this 
point on. Abandoned transmissions may be checked for 
periodically, or when memory becomes low.  

 
In conclusion, when a relay node is modified on the fly, the overhead penalty is two 
control messages being sent: “DROP TX” and “DROP TX ACK”. Another penalty 
that may occur is a longer recovery time of frame lost, because the new forwarder 
may not have them in memory: the recovery has to go one hop further. As for the 
flow itself, it can continue flowing on the new route almost immediately. 
 
In the case where the alternate solution is implemented instead, the penalty is 
(instead of the overhead of “DROP TX” & “DROP TX CONF”) the overhead of 
node B continuing its ACK and NACK procedures related to the transmissions in 
which it is no longer involved (these procedures are abandoned after a while by 
node B, after the maximum number of attempts). 
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2.12 Broadcast – Multicast 

 
The capability of CRCTP to provide reliable transport for broadcast and multicast 
depends on the cooperation that it can achieve with the routing protocol or the MAC 
layer. We will therefore consider two scenarios. The first scenario is when CRCTP 
can learn from the routing protocol or the MAC layer who the next hop receivers of 
multicast or broadcast frames are. The second scenario is when it cannot obtain this 
information (independent operation of the transport protocol). 
 
Cooperation with the routing protocol is highly desirable. Without it the design is 
not optimal. 
 
In the case where broadcast/multicast is not supported by the routing protocol or by 
an independent multicast protocol, CRCTP implements a simple pure flooding 
protocol, implemented inside the forwarder. 
 
We note that multicast and broadcast frames are identified by inspecting the 
destination address. Multicast and broadcast addresses must be identifiable. 
 

2.12.1 Scenario 1 – Cooperation with the Routing or MAC Layer 
(Recommended) 

 
In this scenario, we assume that CRCTP knows who the next hop receivers of 
broadcast/multicast frames are. This information may be given by the routing 
protocol or by the MAC layer, depending on how the networking stack is designed. 
 
When CRCTP sends a broadcast/multicast frame, it does so with the same 
mechanism as described for unicast frames, in term of reliability mechanism (ACK, 
NACK, sequence numbers, flags, etc). However, there are two differences. 
 
The first difference is when the forwarder receives a frame from the lower layers, 
the decision to forward it or not is left to the routing protocol if it has built-in 
support for multicast/broadcast or to an external multicast protocol. If the routing 
protocol does not support it and there is no external multicast protocol, then the 
frame is forwarded once only, and that decision is taken by the forwarder itself (in 
other words, the forwarder supports flooding, but if the routing protocol or multicast 
protocol has a better mechanism, it may be used instead). 
 
The second difference is that after sending a multicast/broadcast frame with the 
“ACK REQ” bit set, the sender expects to receive an ACK from each of its 
neighbours. There is only one TACK timer started, and all ACKs have to be received 
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before its expiry to avoid a retry, as per the unicast mechanism explained earlier in 
this document. Actually, the mechanism for waiting for an ACK is the same as for 
unicast except that it waits for more than one ACK. If one or more ACKs never 
arrive, the frame is sent again as per the unicast rules (for example, if three ACKs 
never arrive, the frame is retransmitted only once on this attempt, not three times, 
obviously). We assume that the MAC layer resolves the collisions between the 
many ACKs that are generated at the same time. We note that the configuration of 
the ratio between ACK/NACK is important especially when considering 
broadcast/multicast, because the cost in overhead of requesting a positive ACK is 
more important compared to unicast. 
 
Receivers of broadcast/multicast frames behave just the same as for unicast. They 
therefore send ACK and NACK as described in the unicast section of this 
document. The only difference is that a receiver may also be a forwarder, in which 
case they also act as forwarder as described earlier in this section. 
 

2.12.2 A Note on Flooding 
As mentioned in the previous section, if there is no multicast protocol and if the 
routing protocol does not directly support multicasting, then the forwarder is 
capable of falling back to a pure flooding mechanism. 
 
In this case, every broadcast/multicast frame is normally rebroadcasted only once. 
This means that a node must keep track of the broadcast/multicast frames it sent in 
order not to send them more than once (the exception if for retransmission requested 
by NACKs). Because CRCTP does in-sequence forwarding, it is very easy to know 
if a frame was already transmitted or not. CRCTP only needs to keep in memory the 
sequence number of the last broadcast/multicast frame sent. If a frame arrives and 
its sequence number is lower than the last one sent, then CRCTP is sure that this 
frame has been already transmitted at least once. Therefore, in term of extra 
memory consumption to support this flooding mechanism, CRCTP only needs to 
keep in memory the sequence number of the last frame sent for every 
source/destination pair of multicast or broadcast frames. CRCTP can release the 
“last sequence number” in memory for a source/destination pair when a frame 
arrives with the “More Frames” bit not set. We can therefore conclude that the 
added memory consumption to support flooding for reliable traffic is minimal; most 
of the memory consumption is related to providing reliability and re-assembly. 
 

2.12.3 A Note on Unreliable Broadcast/Multicast 
 
As mentioned in the previous section, if there is no multicast protocol and if the 
routing protocol does not directly support multicasting, then the forwarder is 
capable of falling back to a pure flooding mechanism. 
 



COMMUNICATIONS RESEARCH CENTRE CANADA 

34  TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 
 

Akin unicast, with broadcast and multicast in unreliable mode, frames are just 
forwarded as they arrive, and none of the reliability mechanisms (ACK, NACK) 
operates. 
 
If there is a multicast protocol, or if the routing protocol supports it, the decision to 
forward or a not an unreliable broadcast/multicast frame remains to those entities. If 
there is no such entity, then CRCTP’s forwarder is responsible for performing pure 
flooding. Therefore, every frame is re-broadcasted only once. Because in the case of 
unreliable mode the forwarding is not necessarily done in-sequence, CRCTP must 
keep track of all multicast/broadcast frames transmitted for each pair of 
source/destination it encounters. This is done by keeping a vector of sequence 
numbers that were already transmitted for each pair of source/destination. However, 
keeping in memory the sequence number of every multicast/broadcast frames sent 
in unreliable mode results in constantly increasing memory consumption. To avoid 
problems of memory, the following techniques are used: 

1. Sequence numbers of frames older than TReassembly can be deleted from 
memory. This means that these sequence numbers may be deleted if they 
are older than TReassembly, but it is not necessary to do it as soon as TReassembly 
is reached. Memory “cleaning” can be done periodically or as required. 

2. Memory space can be saved by using the same technique as for 
representing missed fragments in NACK (i.e. out of sequence “Sequence 
Number” means a range of frames) (see 2.14.2). 

3. It is assumed that all frames lower than the lowest stored sequence numbers 
have been transmitted once 

 
Other than that, operation of unreliable mode is the same as for unicast. We refer to 
section 2.8 for operation of fragmentation/reassembly of multicast/broadcast frames, 
since it is the same as for unicast. 
 
 

2.12.4 Scenario 2 – Independent Operation 
 
If cooperation with other layers is impossible to learn the next hop receivers of 
broadcast/multicast frames, the operation is very similar but the difference is that 
positive ACK are never requested (the “ACK REQ bit is never set). Only the 
mechanism with NACK is enabled.  
 
It should be noted that this scenario is not optimal. 100% reliability cannot be 
guaranteed, especially for small packets. The bigger the packets are, the better the 
reliability becomes. This is a fallback mechanism that should be implemented only 
when cooperation with other layers is impossible. 
 
Please note that this is the only option; there are ways to make it better.  A 
possibility is to request ACK for the first few frames of a packet. After receiving 
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ACKs for a certain number of frames, a node can have a good idea of who its 
neighbors are. More frames sent with ACK requested actually means a greater 
probability of having the correct picture of the neighborhood. However, this 
becomes probabilistic reliability, not 100% reliability, and it still does not cope well 
with small frames and highly dynamic topology. An independent neighbor 
discovery could also be implemented at the transport layer, however this is grossly 
inefficient. 
 
Finally, if an independent operation must be implemented, proactive NACKs should 
be implemented, by having receiver nodes inspect the “More Frames” bit and by 
having a timer triggers a proactive NACK when it expires. 
 
To conclude, if we must fall back to this non optimal approach, this section of the 
document will be revised so the mechanisms are described more formally. 
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2.13 Scheduler 

 
As seen in Figure 3, the transport protocol does not communicate directly with the 
data link layer: frames must pass through a scheduler. In term of real 
implementation, this does not need not to be a separate layer. It could be 
implemented within the transport protocol itself, or with the appropriate forwarding 
layer of a communications stack. 
 

 
Figure 7 CRCTP Scheduler

 
The scheduler, as required by this protocol, is simple. It is illustrated in Figure 7. It 
is meant only to give higher priority to control frames over data frames. The actual 
priority is the following (one being the highest). 
 

1. Routing 
2. “DROP TX” & “DROP TX CONF” 
3. ACK 
4. NACK 
5. Data 

 

The highest priority is given to routing traffic, since the transport protocol rely on it 
for its operation. Even though routing may be considered as data from the view of 
the transport protocol, it should be distinguished for scheduling purpose (in other 
word, routing traffic may use reliable or unreliable mode, but these data frames 
should be identified so they are given high priority). 
 
The next highest priority is given to “DROP TX” and “DROP TX CONF” since 
receiving them in time could potentially save network resources. 
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ACK and NACK are given higher priority than data since their role is to ensure 
proper data transport. ACK is given a higher priority than NACK since its 
successful delivery may result in a node being able to release precious memory that 
it needs for other frames or flows. 
 
The scheduler de-queues frames with a pure priority scheme. Eventual refinements 
could be brought to the scheduler, where data could be further categorized and 
prioritized. Also, scheduling other than pure priority may be considered for the 
different categories data frames. 
 



COMMUNICATIONS RESEARCH CENTRE CANADA 

2.14 Control Frame Format 

In this section, the frame format of the control frames is illustrated and described. 

2.14.1 ACK Frame Format 

 
Figure 8 ACK Frame Format

We note that the ACK frame has no port field. This is because the port field is not 
necessary to uniquely identify fragments and frames, since frames coming from all 
applications, regardless of their port numbers, share the same sequence number in 
CRCTP (unlike UDP and TCP). Furthermore, a single ACK can be used to 
acknowledge frames with different port numbers.  
 
Field Size Bits Function 
Source TBD  This is the source address of the frame being 

acknowledged 
Destination TBD  This is the final destination address of the frame 

being acknowledged 
Type (B1)  
Set to 1 To indicate a Control Frame 
Control 
Frame 
Sub-Type 
(B2B3B4) 

 

Set to 010 To indicate a “DROP TX” Frame 
B5 Unused 
B6 Unused 
B7 Unused 

Type/ 
Mode/ 
Flags 

1 
Byte 

B8 Unused 
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Field Size Bits Function 
Sequence 
Number 

TBD  Same as for a data packet (this frame is treated as 
a data packet with the ACK REQ bit set) 

Sender TBD  This is the address of the node that is generating 
the ACK 

Next Hop TBD  This is the address of the node that requested the 
ACK 

Table 2 Description of the Fields of ACK Frames

2.14.2 NACK Frame Format 

 
Figure 9 NACK Frame Format

 
It is important to note that more than multiple frame retransmission can be 
requested in a single NACK frame. It is also possible to request retransmission for 
range(s) of frames. 
 
The frames for which a retransmission is requested are uniquely identified in the 
NACK packet by their “Sequence Number”. The frames for which a retransmission 
is requested are listed in order in the NACK frame. 
 
When a retransmission for range of frames is requested, this is done by inserting the 
boundaries of the range in the reverse order. 
 
For example, let’s say we have frames 1 to 10. The receiver node discovers that it is 
missing frames 2, 5, 6, 7 and 9. Then, it lists the frame IDs in the following order in 
the NACK frame: “2, 7, 5, 9”. The receiver of the NACK frame therefore knows 
that the pair “7, 5” actually represent a range (5 to 7) because it is in reverse order. 
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We note that the NACK frame has no port field. This is because the port field is not 
necessary to uniquely identify fragments and frames, since frames coming from all 
applications, regardless of their port numbers, share the same sequence number in 
CRCTP (unlike UDP and TCP). Furthermore, a single NACK can be used to report 
missing frames that have different port numbers.  
 
 
Field Size Bits Function 
Source TBD  This is the source address of the frame(s) for 

which a NACK is sent (i.e. source address of the 
frame(s) for which a retransmission is requested) 

Destination TBD  This is the final destination address of the 
frame(s) for which a NACK is sent (i.e. 
destination address of the frame(s) for which a 
retransmission is requested) 

Type (B1)  
Set to 1 To indicate a Control Frame 
Control Frame 
Sub-Type 
(B2B3B4) 

 

Set to 001 To indicate an ACK Frame 
B5 Unused 
B6 Unused 
B7 Unused 

Type/ 
Mode/ 
Flags 

1 Byte 

B8 Unused 
# of Frame 
IDs 

1 Byte  A number that indicates the number of frame IDs 
to follow 
If NACK is 16 or less, B5B6B7 B8 from the 
“Type/Mode/Flag” field can be used instead of 
using a separate field 

Sequence 
Number 

TBD  
 
 

Used to identify a frame. Set to the value of the 
Sequence Number of the frame for which a 
retransmission is requested 
Note: A sequence number, source address and 
destination address of a frame form its frame ID 
(with these the frame can be uniquely identified) 

Sender TBD  This is the address of the node that is generating 
the NACK (i.e. the node that is requesting 
retransmission(s)) 

Next Hop TBD  This is the address of the node to which the 
NACK is sent (i.e. the node from which we are 
requesting a retransmission) 

Table 3 Description of the Fields of NACK Frames
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2.14.3 DROP TX Frame Format 
A “DROP TX” frame is essentially treated like a data frame (i.e. it is routed). The 
difference is that its payload carries transport protocol control information, therefore 
it is called a control frame. This frame is also a little different in its 
“Type/Frame/Flag” field (it uses a portion of the control and a portion of the data 
flags). It shares the sequence number with the data frames. 
 
Its payload carries the source and destination address of the transmission to be 
dropped by the destination of this frame. With the source and destination address of 
the flow to be dropped, the flow to be dropped is uniquely identifiable.  
 
Please note that in this section we refer to a flow as a sequence of frames that share 
a common “source/destination”. 
 

 
Figure 10 DROP TX Frame Format

 
Field Size Bits Function 
Source TBD  This is the address of the node that generates 

the “DROP TX” frame. (NB same definition 
as for data frame) 

Destination TBD  This is the final destination of the “DROP 
TX” frame. In other words, this is the address 
of the node that is no longer involved in a 
transmission, or the “previous forwarder”. 
(NB Same definition as for a data frame) 

Type/ 1 Byte Type (B1)  
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Field Size Bits Function 
Set to 1 To indicate a Control Frame 
Control Frame Sub-
Type (B2B3B4) 

 

Set to 010 To indicate an DROP TX Frame 
B5 (MORE FRAME) Set to 0 or 1 as per rules described in 2.7.3. 
B6 (ACK REQ) Set to 0 or 1 as per rules described in 2.7.3.  
B7(Full Frame Size) Set to zero (this frame is never a full size 

frame, its payload is known and small) 

Mode/ 
Flags 

B8 (New Topology 
Indication) 

Set: New Topology Indication (same rules as 
for data frame, see 2.11) (even though this 
frame is to control a topology change, it may 
serve to indicate another new topology change 
along its way, just like a data frame could) 

Sequence 
Number 

TBD  
 

As if it was a data frame 

Port   Zero (unused since this is a control frame) 
Source (of 
the dropped 
flow) 

TBD  The source address of the flow to be dropped. 

Destination 
(of the 
dropped 
flow) 

TBD  The destination address of the flow to be 
dropped. 

Sender TBD  As if it was a data frame 
Next Hop TBD  As if it was a data frame 

Table 4 Description of the Fields of "DROP TX" Frames

 

2.14.4 DROP TX CONF Frame Format 
 
Like a “DROP TX” frame, a “DROP TX CONF” frame is essentially treated like a 
data frame (and it is routed). Here again, the difference is that its payload carries 
transport protocol control information, therefore it is called a control frame. This 
frame is also a little different from the data frame in its “Type/Frame/Flag” field (it 
uses a portion of the control and a portion of the data flags). It shares the sequence 
number with the data frames. 
 
Its payload carries the source and destination address of the transmission that was 
dropped by the node that generates this frame. With the source and destination 
address of the flow that was dropped, the flow to be dropped is uniquely 
identifiable.  
 



COMMUNICATIONS RESEARCH CENTRE CANADA 
                                                                                                                 

Please note that in this section we refer to a flow as a sequence of frames that share 
a common “source/destination”. 
 

 
Figure 11 DROP TX CONF Frame Format

 
Field Size Bits Function 
Source TBD  This is the address of the node that generates 

the “DROP TX CONF” frame, i.e. the address 
of the node that just dropped its role as a 
forwarder of a flow (NB same definition as 
for data frame) 

Destination TBD  This is the final destination of the “DROP TX 
CONF” frame. In other words, this is the 
address of the node that initially sent the 
“DROP TX” frame. 

Type (B1)  
Set to 1 To indicate a Control Frame 
Control Frame Sub-
Type (B2B3B4) 

 

Set to 011 To indicate an “DROP TX CONF” Frame 
B5 (MORE FRAME) Set to 0 or 1 as per rules described in 2.7.3. 
B6 (ACK REQ) Set to 0 or 1 as per rules described in 2.7.3.  

Type/ 
Mode/ 
Flags 

1 Byte 

B7(Full Frame Size) Set to zero (this frame is never a full size 
frame, its payload is known and small) 
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Field Size Bits Function 
B8 (New Topology 
Indication) 

Set: New Topology Indication (same rules as 
for data frame, see 2.11) (even though this 
frame is to control a topology change, it may 
serve to indicate another new topology change 
along its way, just like a data frame could) 

Sequence 
Number 

TBD  
 

As if it was a data frame 

Port   Zero (unused since this is a control frame) 
Source (of 
the dropped 
flow) 

TBD  The source address of the flow that was 
dropped. 

Destination 
(of the 
dropped 
flow) 

TBD  The destination address of the flow that was 
dropped. 

Sender TBD  As if it was a data frame 
Next Hop TBD  As if it was a data frame 

Table 5 Description of the Fields of "DROP TX CONF" Frames
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2.15 Timer & Counter Values 

 
In this section all timers and counters of CRCTP are explained and their 
recommended values are given. 
 
We define the following values for proper understanding of this section. 
 
NMACRetries: The maximum number of attempts of transmission at a MAC layer 
TMAC: The maximum time it takes for a MAC layer to transmit a frame once it starts 
its transmit procedure for a frame (includes RTS, CTS, ACK, interframe space, time 
waiting to access medium, retransmissions, etc) 
TTransData: The transmission time of a data frame (related to modulation and frame 
size and overhead) 
TTransNACK: The transmission time of a NACK frame (related to modulation and 
frame size and overhead) 
TTransACK: The transmission time of an ACK frame (related to modulation and 
frame size and overhead) 
TProp: The propagation time of the frame, in the air. For small distances, we may 
assume this to be close to zero. 
 
The timers and counters defined in the following sections are those of CRCTP. 
 

2.15.1 TBeforeNACK 

 
When a node detects a missed frame by inspection of the sequence number, it starts 
the TBeforeNACK timer, if it was not done already. Only when this timer reaches its 
target value does a node send a NACK. This is necessary to let frames that may still 
be in transit arrive out-of-sequence. Even though CRCTP does in-sequence 
forwarding, out-of-sequence reception is possible for example when a MAC layer 
makes multiple attempts for a transmission.  
 
Therefore, when this timer expires, we are confident that the missed frame is no 
longer in transit and that the sender gave up. 
 
TBeforeNACK = (NMACRetries -1) x (TMAC + TTransData + TProp) 
 

2.15.2 TNACK 

After sending a NACK to the MAC layer, a node expects to start receiving soon the 
requested missed frames. If it did not receive any before TNACK, it sends the NACK 



COMMUNICATIONS RESEARCH CENTRE CANADA 

46  TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 
 

again. Therefore, when this timer expires, we are confident that either the NACK 
was lost, or that one of the missed frames failed in its retransmission. 
 
TNACK = NMACRetries x (TMAC + TTransNACK + TProp) + NMACRetries x (TMAC + TTransData + 
TProp) 
 = NMACRetries x (2TMAC + 2TProp + TTransNACK + TTransData) 
 

2.15.3 NFrACK 

 
This is a configurable parameter. It is the maximum number of frames between each 
request for a positive acknowledgement. The higher its value, the lower the 
overhead is since less positive acknowledgements are sent. However, the memory 
consumption of the transport protocol is proportional to this value. Also, lower 
NFRACK will lower the worse case frame latency. 
 
The value of NFRACK will be determined empirically or estimated based on memory 
availability and worse traffic and topology predictions. 
 

2.15.4 TFrACK 

Under different conditions, a node requests a positive acknowledgment. One of 
them is after sending a certain number of frames. If there are not enough subsequent 
frames, a positive acknowledgement is required after a while to ensure proper 
transmission of previous frames. This is the purpose of the TFRACK timer. 
 
TFRACK  NFrACK x (TMAC + TTransData + TProp) x NMACRetries x ß 
 
Where ß is a configurable or dynamic parameter. 
 
If ß is configurable, the following guidelines should be used: 

 0 < ß  1 
 ß should be set to values close to one on networks where high errors 

rates are expected to be typical. 
 ß should be set to around 0.5 on networks where 50% frame errors are 

expected to be typical. 
 ß should be set to a value lower than 0.5 on networks where low error 

rate is expected to be typical. 
 
If ß is dynamic, then the MAC layer should inform the transport protocol about 
current average number or retransmission per frame. Then, ß is set to  

 ß =  (Current average Number of MAC retransmission per frame) / 
NMACRetries 
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2.15.5 TACK 

 

When this timer expires, a node that requested a positive ACK retransmits 
the frame in which the ACKREQ bit was set. In other words, after requesting 
an ACK, a node should have received it within TACK, otherwise it requests it 
again. 
 

TACK = NMACRetries x (TMAC + TTransData + TProp) + NMACRetries x (TMAC + TTransACK + 
TProp) 
 = NMACRetries x (2TMAC + 2TProp + TTransACK + TTransData) 
 

2.15.6 TACKTopologyChange 
After requesting an ACK just after a topology change to the next hop to the 
destination, a node should have received the ACK within TACKTopologyChange, 
otherwise it requests it again. This replaces momentarily TACK. 
 

TACKTopologyChange = NACK x TACK + TACK = TACK x (1 + NACK) 
 

2.15.7 TReassembly 

 
In unreliable mode, a packet not fully received is re-assembled if the TReassembly 
timer expires, whether or not there are missed frames in the packet. It should be 
long enough such that we are sure the frames are no longer in transit. 
 
The following guideline is given: 
TReassembly > TMAC + TTransData + TProp 
 

2.15.8 NNACK 
This is the maximum number of attempts of retransmissions of a frame by receiver, 
through NACKs. The value of this number should be high enough to ensure high 
reliability. It should be tested that this timer almost never expires. This counter 
should be high enough to handle frame errors, but it does not need to handle 
topology changes since this is handled by another mechanism. 
 

2.15.9 NACK 
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This is the maximum number of times that a request for a positive acknowledgment 
can be attempted for a given frame. It should be tested that this almost never 
expires. 
 

2.15.10 TTopologyChange 
In the case of an implementation where forwarders are not informed of topology 
changes, they can only count on themselves to conclude that they no longer are 
involved in a transmission. This decision is taken if no activity is detected for a 
certain period on a given unique pair of source/destination. This is analysed 
separately for reliable and unreliable traffic – but expiry of TTopologyChange for both 
types of traffic must happen to conclude to a topology change).  When TTopologyChange 
expires, a node is confident that it is no longer involved in any transmission 
between a pair of source/destination. 
 
The following guideline is given: 
TTopologyChange >>> TMAC + TTransData + TProp 
TTopologyChange > TFRACK + (TMAC + TTransData + TProp) x NMACRetries x NACK 

(We know that after TFRACK an ACK is requested in the next frame. We add 
to it the maximum time it can take for that frame to reach the forwarder – if 
there are no other frames to come, the last one would have been sent with 
the ACKREQ bit anyway) 
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3 Acronyms 

 
ACK   Positive Acknowledgement 

COTS   Commercial Off-The-Shelf Equipment 

CRCTP  CRC Transport Protocol 

L2N   Low bandwidth, Lossy Network 

MAC   Medium Access Layer 

NACK   Negative Acknowledgement 

OSI   Open Systems Interconnection 

PHY   Physical Layer 

PSFQ   Pump Slowly, Fetch Quickly 

SASNet  Self-Healing Autonomous Sensor Network 

TCP   Transmission Control Protocol 

WRSN   Wireless Radiation Sensor Network 
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