

A Reliable Transport Protocol for

Resource Constrained Nodes: CRCTP -
Protocol Design

Un Protocole de transport avec garantie

de livraison pour les appareils de
communications aux ressources limitées :

CRCTP – Conception du protocole

Prepared by :
Mathieu Déziel, Eng.

Avril 2014

CRC Technical Note No. CRC-TN-2014-001
Note Technique du CRC # CRC-TN-2014-001

Prepared for:
David Waller

Defence Scientist
Telephone: (613) 998-9985

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and the
contents do not necessarily have the approval or endorsement of the Department of National Defence of Canada.

ATTENTION
Ces renseignements sont fournis à la
condition expresse que les droits de
propriété et les droits de brevet soient
protégés.

CAUTION
This information is provided with the
express understanding that
proprietary and patent rights will be
protected

DRDC-RDDC-2014-C109
June 2014

COMMUNICATIONS RESEARCH CENTRE CANADA

ii TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 iii

Abstract

During the scope of two DRDC projects related to wireless sensor networks
(SASNet, Self-Healing Autonomous Network, 2007-2011 and WRSN, Wireless
Radiation Sensor Network, 2012-2014), CRC designed a transport protocol called
CRCTP (CRC Transport Protocol).
A Transport Protocol for Resource Constrained Nodes: CRCTP - Protocol Design
The two de-facto transport protocols typically found in IP networks are TCP
(Transmission Control Protocol) and UDP (User Datagram Protocol). UDP does not
provide guarantee of delivery, but it is useful when low latency is required. TCP
does provide guaranteed delivery. The mechanism that TCP uses to provide its
guaranty of delivery operates end-to-end, i.e. only the two communicating
endpoints are involved. This means that a failed transmission, even though it fails at
the last hop before the destination, is restarted completely. Also, TCP uses a
congestion control mechanism that causes unnecessary delays in wireless networks,
and particularly in multi-hop networks. These two reasons make TCP inefficient
under some circumstances, and the latency introduced is unacceptable for some
applications.

CRCTP was designed with the objective of having a transport protocol that provides
guaranteed delivery with the lowest latency and overhead possible. It is designed to
operate on resource constrained nodes and networks with restricted bandwidth.
Various techniques are used to lower the overhead, latency and memory
consumption, such as: hop-by-hop delivery guarantee mechanism, hybrid ACK and
NACK confirmation, no congestion control at all, etc.

This document presents the design of CRCTP. The design is generic such that the
protocol can be implemented in most typical communications stack.

COMMUNICATIONS RESEARCH CENTRE CANADA

iv TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

Résumé

Dans le cadre de deux projets de RDDC (SASNet, Self-Healing Autonomous
Network, 2007-2011 et WRSN, Wireless Radiation Sensor Network, 2012-2014)
étudiants des réseaux de capteurs sans fils, le CRC a fait la conception d’un
protocole de transport appelé CRCTP (CRC Transport Protocol).

On retrouve deux protocoles de transport qui sont largement utilisés dans les
réseaux IP communs : TCP (Transmission Control Protocol) et UDP (User
Datagram Protocol). UDP est un protocole qui ne fournit pas de garantie de
livraison, mais il est fort utile quand l’application demande des transmissions de
données avec de courts délais. À l’inverse, TCP fournit une garantie de livraison. Le
mécanisme qu’utilise TCP pour confirmer la livraison des paquets fonction bout-à-
bout, c'est-à-dire que seules la source et la destination sont impliquées. Donc, si un
paquet n’est pas reçu correctement lors de la dernière retransmission avant la
destination, tout est à recommencer, de la source à la destination finale. De plus,
TCP utilise un mécanisme de contrôle de la congestion du réseau qui cause des
délais inutiles sur les réseaux sans fil, et particulièrement dans les réseaux multi-
sauts. Ces deux raisons font que TCP est particulièrement inefficace sous certaines
circonstances, et les délais qui en résultent ne sont pas acceptables pour certaines
applications.

CRCTP a été conçu avec comme objectif premier d’avoir un protocole de transport
qui fournit une garantie de livraison tout en gardant les délais courts, et en
minimisant les coûts sur le réseau. Il a été conçu pour opérer sur des appareils qui
sont limités en ressources, et sur des réseaux limités en bande passante. Plusieurs
techniques ont été utilisées pour minimiser les coûts sur le réseau, le délai et la
demande de mémoire, tel que : mécanisme de confirmation qui opère entre chaque
sauts (plutôt que bout-à-bout), mécanisme hybride de ACK et NACK, pas de
contrôle de la congestion, etc.

Ce document présente la conception du protocole CRCTP. La conception est
générique de sorte que le protocole pourrait être implanté dans la plupart des
systèmes de communication communs.

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 v

Executive Summary

Background: During the scope of two DRDC projects related to wireless sensor
networks (SASNet, Self-Healing Autonomous Network, 2007-2011 and WRSN,
Wireless Radiation Sensor Network, 2012-2014), CRC designed a transport
protocol called CRCTP (CRC Transport Protocol).
The two de-facto transport protocols typically found in IP networks are TCP
(Transmission Control Protocol) and UDP (User Datagram Protocol). UDP does not
provide guarantee of delivery, but it is useful when low latency is required. TCP
does provide guaranteed delivery. The mechanism that TCP uses to provide its
guaranty of delivery operates end-to-end, i.e. only the two communicating
endpoints are involved. This means that a failed transmission, even though it fails at
the last hop before the destination, is restarted completely. Also, TCP uses a
congestion control mechanism that causes unnecessary delays in wireless networks,
and particularly in multi-hop networks. These two reasons make TCP inefficient
under some circumstances, and the latency introduced is unacceptable for some
applications.
CRCTP was designed with the objective of having a transport protocol that provides
guaranteed delivery with the lowest latency and overhead possible. It is designed to
operate on resource constrained nodes and networks with restricted bandwidth.
Various techniques are used to lower the overhead, latency and memory
consumption, such as: hop-by-hop delivery guarantee mechanism, hybrid ACK and
NACK confirmation, no congestion control at all, etc.
This document presents the design of CRCTP. The design is generic such that the
protocol can be implemented in most typical communications stack
Results: This is a protocol design document, as such there is not result presented.
Significance: This document presents the design of a transport protocol. It was
designed in the scope of two DRDC projects related to wireless sensor networks
(SASNet, Self-Healing Autonomous Network, 2007-2011 and WRSN, Wireless
Radiation Sensor Network, 2012-2014). During the WRSN project, an
implementation of CRCTP in the Qualnet network simulator was done. CRCTP has
the potential to provide guaranteed delivery at low overhead and latency cost –
these characteristics make the protocol attractive for a variety of networks, in
particular wireless sensor networks.
Future Plans: Although no follow-on project is presently planned, the logical next
step is to refine the protocol design based on hands-on experience in simulation, and
to port the CRCTP simulation implementation to an implementation on a real
device.

COMMUNICATIONS RESEARCH CENTRE CANADA

vi TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

Sommaire

Introduction ou contexte : Dans le cadre de deux projets de RDDC (SASNet, Self-
Healing Autonomous Network, 2007-2011 et WRSN, Wireless Radiation Sensor
Network, 2012-2014) étudiants des réseaux de capteurs sans fils, le CRC a fait la
conception d’un protocole de transport appelé CRCTP (CRC Transport Protocol).
On retrouve deux protocoles de transport qui sont largement utilisés dans les
réseaux IP communs : TCP (Transmission Control Protocol) et UDP (User
Datagram Protocol). UDP est un protocole qui ne fournit pas de garantie de
livraison, mais il est fort utile quand l’application demande des transmissions de
données avec de courts délais. À l’inverse, TCP fournit une garantie de livraison. Le
mécanisme qu’utilise TCP pour confirmer la livraison des paquets fonction bout-à-
bout, c'est-à-dire que seules la source et la destination sont impliquées. Donc, si un
paquet n’est pas reçu correctement lors de la dernière retransmission avant la
destination, tout est à recommencer, de la source à la destination finale. De plus,
TCP utilise un mécanisme de contrôle de la congestion du réseau qui cause des
délais inutiles sur les réseaux sans fil, et particulièrement dans les réseaux multi-
sauts. Ces deux raisons font que TCP est particulièrement inefficace sous certaines
circonstances, et les délais qui en résultent ne sont pas acceptables pour certaines
applications.
CRCTP a été conçu avec comme objectif premier d’avoir un protocole de transport
qui fournit une garantie de livraison tout en gardant les délais courts, et en
minimisant les coûts sur le réseau. Il a été conçu pour opérer sur des appareils qui
sont limités en ressources, et sur des réseaux limités en bande passante. Plusieurs
techniques ont été utilisées pour minimiser les coûts sur le réseau, le délai et la
demande de mémoire, tel que : mécanisme de confirmation qui opère entre chaque
sauts (plutôt que bout-à-bout), mécanisme hybride de ACK et NACK, pas de
contrôle de la congestion, etc.
Ce document présente la conception du protocole CRCTP. La conception est
générique de sorte que le protocole pourrait être implanté dans la plupart des
systèmes de communication communs.
Résultats : Ce document est un document de conception d’un protocole de
transport, donc aucun résultat n’est fourni dans le cadre de ce document.
Importance : Ce document présente la conception d’un protocole de transport. Il a
été conçu dans le cadre de deux projets de DRDC reliés aux réseaux de capteurs
sans fils (SASNet, Self-Healing Autonomous Network, 2007-2011 et WRSN,
Wireless Radiation Sensor Network, 2012-2014). Durant le projet WRSN, une
implantation de CRCTP a été faite dans le simulateur de réseau Qualnet. CRCTP a
le potentiel d’offrir une garantie de livraison à faible coût pour le réseau, tout en
gardant les délais courts. Ces caractéristiques le rendent attrayant pour une variété
de réseaux, notamment les réseaux de capteurs sans fils.
Perspectives : Bien qu’il n’y ait pas de suite immédiate à ce projet, la suite logique
serait de raffiner la conception du protocole en se basant sur l’expérience pratique

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 vii

obtenue lors des simulations, eu aussi de transférer l’implantation du simulateur
vers un vrai appareil de communication.

TABLE OF CONTENT

Abstract .. iii

Résumé... iv

Executive Summary... v

Sommaire ... vi

TABLE OF CONTENT ...1

TABLE OF FIGURES..3

Acknowledgements ...4

1 Introduction ...5

2 CRCTP Protocol Design...7
2.1 Overview ... 7
2.2 Position in the Network Architecture.. 9
2.3 Data Frame Format .. 11
2.4 Sequence Number.. 15
2.5 Addressing & Forwarding.. 16
2.6 Port Service ... 18
2.7 Reliability... 19

2.7.1 The Negative Acknowledgement Method ... 19
2.7.2 The Positive Acknowledgement Method ... 20
2.7.3 Hybrid Positive-Negative Acknowledgement Method 20
2.7.4 Proactive Negative Acknowledgement ... 23

2.8 Un-Reliability ... 25
2.9 Fragmentation ... 26
2.10 Reassembly .. 27
2.11 Dynamic Network Topology Issues ... 29
2.12 Broadcast – Multicast .. 32

2.12.1 Scenario 1 – Cooperation with the Routing or MAC Layer
(Recommended) .. 32
2.12.2 A Note on Flooding.. 33
2.12.3 A Note on Unreliable Broadcast/Multicast.. 33
2.12.4 Scenario 2 – Independent Operation .. 34

2.13 Scheduler ... 36
2.14 Control Frame Format ... 38

2.14.1 ACK Frame Format .. 38
2.14.2 NACK Frame Format.. 39
2.14.3 DROP TX Frame Format .. 41

COMMUNICATIONS RESEARCH CENTRE CANADA

2 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

2.14.4 DROP TX CONF Frame Format ..42
2.15 Timer & Counter Values..45

2.15.1 TBeforeNACK ..45
2.15.2 TNACK ..45
2.15.3 NFrACK..46
2.15.4 TFrACK ..46
2.15.5 TACK..47
2.15.6 TACKTopologyChange ...47
2.15.7 TReassembly...47
2.15.8 NNACK ...47
2.15.9 NACK..47
2.15.10 TTopologyChange ...48

3 Acronyms ... 49

4 References ... 50

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 3

TABLE OF FIGURES

FIGURE 1 - OSI LAYERED NETWORK STACK.. 7
FIGURE 2 - OSI MODIFIED TO ACCOMMODATE CRCTP ... 9
FIGURE 3 - CRCTP IN A TYPICAL NETWORKING STACK.. 10
FIGURE 4 - FROM PACKETS TO FRAMES.. 11
FIGURE 5 - CRCTP GENERAL FRAME FORMAT ... 12
FIGURE 6 - TOPOLOGY CHANGE ... 29
FIGURE 7 - CRCTP SCHEDULER... 36
FIGURE 8 - ACK FRAME FORMAT.. 38
FIGURE 9 - NACK FRAME FORMAT ... 39
FIGURE 10 - DROP TX FRAME FORMAT .. 41
FIGURE 11 - DROP TX CONF FRAME FORMAT ... 43

COMMUNICATIONS RESEARCH CENTRE CANADA

4 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

Acknowledgements

The work reported herein was supported by Defence Research and Development Canada

(DRDC).

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 5

1 Introduction

In recent years, sensor networks have been widely studied in the research
community. Miniaturization of processing units combined with increases in
processing speed, improvements in battery technologies and advances in low power
wireless technologies have enabled the feasibility to develop innovative networks
composed of tens or hundreds of small sensors forming an ad hoc network.

Such networks have constraints that are typically not found in regular wired or
wireless networks: low memory devices, low processing speed devices, energy-
constrained devices, etc. In the IETF jargon, there is a name for such networks:
L2N, for “low power, lossy networks”. In this context, the term “low power” is used
to describe the devices of the network, and “lossy” is used to qualify the links of the
network. All these characteristics of L2N force designers to re-think the networking
aspect of communications (addressing, routing protocol, MAC and link layer
protocol, etc).

The two de-facto transport protocols typically found in IP networks are TCP [3]
(Transmission Control Protocol) and UDP [2] (User Datagram Protocol). UDP does
not provide guarantee of delivery, but it is useful when low latency is required. TCP
does provide guaranteed delivery. The mechanism that TCP uses to provide its
guaranty of delivery operates end-to-end, i.e. only the two communicating nodes are
involved. This means that a failed transmission, even though it fails at the last hop
before the destination, it restarted completely. Also, TCP uses a congestion control
mechanism that causes unnecessary delays in wireless networks, and particularly in
multi-hop networks. These two reasons make TCP inefficient under some
circumstances, and the latency introduced is unacceptable for some applications.

Earlier, we surveyed transport protocol for sensor networks [1]. We investigated
more thoroughly one protocol that had met many requirements of wireless sensor
networks: PSFQ. PSFQ, although a good protocol for some sensor network
applications, consumed a lot of memory. In this document, based on our previous
work and experience, we design a new transport protocol suitable for sensors nodes
with constrained resources. It provides reliability for both unicast and
broadcast/multicast traffic.

The new protocol was designed with the objective of having a transport protocol
that provides guaranteed delivery with the lowest latency and overhead possible. It
is designed to operate on resource constrained nodes and networks with restricted
bandwidth. Various techniques are used to lower the overhead, latency and memory
consumption, such as: hop-by-hop delivery guarantee mechanism, hybrid ACK and
NACK confirmation, no congestion control at all, etc.

COMMUNICATIONS RESEARCH CENTRE CANADA

6 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

This document starts directly with the design of the new protocol. The purpose of
this document is to describe in details the protocol. Care is taken to keep the
protocol generic so it can be implemented in the network protocol stack of any
network. The design of this protocol was initiated in a DRDC project called
SASNet (Self-Healing Autonomous Sensor Network, 2007-2011), and was
completed in a follow-on smaller project called WRSN (Wireless radiation Sensor
Network, 2012-2014)

For the remainder of this document, we will call the designed transport protocol
CRCTP (CRC Transport Protocol).

COMMUNICATIONS RESEARCH CENTRE CANADA

2 CRCTP Protocol Design

This section will present the complete design of CRCTP.

2.1 Overview

The main purpose of a transport protocol is to provide a transparent transfer of
packets between the originator and the destination. It may or may not provide a
guarantee that packets are received correctly at the other end – making it a reliable
or unreliable transport protocol.

Additional roles of a transport protocol may include fragmentation and reassembly,
flow control, port service and congestion control. In the ideal OSI layered network
model, the transport protocol is located between session and network layer. This is
illustrated in Figure 1.

Figure 1 OSI Layered Network Stack

CRCTP provides the following capabilities:

 Reliable Transport
 Unreliable Transport
 Fragmentation/Reassembly of Packets too large to fit in a single MAC

Frame
 Ports Services

Providing reliability is the key challenge; the other capabilities are simpler to
implement. Reliability is normally easy to provide. However reliability is a real

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 7

COMMUNICATIONS RESEARCH CENTRE CANADA

8 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

challenge in our case because of very low bandwidth links with potentially high
error rates, and also because the nodes are CPU, memory and power constrained.

Fragmentation/Reassembly introduces some overhead. With CRCTP, this overhead
is simultaneously used to provide reliability. This improves overall overhead.

CRCTP provides no congestion control – this is left to other layers of the
networking stack. Practically, if CRCTP cannot receive a new packet from a higher
layer, the higher layer is made aware of it. This is a simple and crude form of
congestion control.

There are different ways of classifying reliable transport protocols. One of them is
whether they provide end-to-end or hop-by-hop reliability. TCP is a very popular
end-to-end reliable transport protocol. End-to-end protocols perform poorly on
multi-hop networks that have links where frame losses are likely to occur. The
reason is that if a frame is lost on just one hop, the transmission of that frame is
restarted from the originator (the source) of the frame, causing a waste of network
resources. Moreover, the higher the error rate is the worse the situation becomes.
Hop by hop is therefore a better solution for these networks. Therefore, CRCTP is a
hop-by-hop reliable transport protocol.

The danger with hop-by-hop protocol is that when an originator node sends a frame
and it is convinced that the next hop received it, it concludes that the whole
transmission up to the final destination is successful. But what if something
unexpected happens later as the frame travels toward its final destination (lost route,
a relay node becoming isolated, etc)? The responsibility for relay nodes is high.
CRCTP must be robust enough to handle this situation.

Another method of classifying reliable transport protocols is whether they use
positive acknowledgement (typically called ACK) or negative acknowledgement
(NACK). A positive acknowledgement is requested by a sender, to confirm the
reception of a frame previously sent. A negative acknowledgement is sent by a
receiver that detected a transmission error. The advantage of negative
acknowledgement is that only erroneous situations cause overhead. With positive
acknowledgement, every successful frame cause overhead (ACK) and erroneous
situations are detected on failure of reception of an ACK. This is more costly in
term of overhead but errors are immediately detected. The disadvantage of NACK
is its inability to cope with small (i.e. packet size = 1 frame payload or less) packets,
or to detect errors in the last fragment of a multiple-fragments packet. Also, with
NACK, it takes a successful transmission to detect previous errors: this may lead to
long frame error recovery time in some cases.

CRCTP provides reliability through a hop-by-hop mechanism that uses a hybrid
combination of ACK and NACK. It achieves its reliability by doing in-sequence
forwarding, and it supports unicast, broadcast and multicast.

COMMUNICATIONS RESEARCH CENTRE CANADA

2.2 Position in the Network Architecture

As seen in Figure 1, ideally the transport protocol is between the session and
network layers. This is not always feasible in practice. For example, with TCP,
traditionally TCP works dependently with IP (a network protocol), and the result is
called the TCP/IP protocol suite, where IP addresses are used by the transport
protocol to identify flows.

Like TCP, CRCTP also needs to be addresses aware (source, final destination,
previous hop and next hop addresses). In addition, CRCTP needs to examine each
incoming data frame from the lower layers, even if these frames do not finish their
network journey in the local node. This is because CRCTP provides hop-by-hop
reliability. Therefore, missed frames need to be identified at every hop when a
packet travels, so appropriate action(s) are taken. This is why CRCTP, although
strictly speaking a transport protocol, is not totally independent from the network
layer.

Figure 2 shows how the OSI stack is modified to accommodate CRCTP. Figure 3
shows how CRCTP is implemented in the typical networking stack.

Figure 2 OSI Modified to Accommodate CRCTP

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 9

COMMUNICATIONS RESEARCH CENTRE CANADA

Figure 3 CRCTP in a typical Networking Stack

10 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

COMMUNICATIONS RESEARCH CENTRE CANADA

2.3 Data Frame Format

The following terminology is used throughout this document. A packet arrives from
the higher layers and it enters the transport protocol. Once inside the transport
protocol, it is called a transport layer frame, or simply a frame. A large packet is
fragmented into multiple frames by the transport protocol: those frames can also be
called fragments. Transport layer frames are constructed to fit into a single MAC
layer frame. Therefore, at both layers (transport and data link), it‘s called a frame
(transport layer frames are the same as MAC frames, but the MAC layer adds its
own header and footer to them).

Figure 4 From Packets to Frames

The data frame format of CRCTP is illustrated in Figure 5. The fields shown in
green are actually addressing and MAC layers fields, but they are used by CRCTP
to identify flows and missing frames. The next hop address is a field that is
populated by the forwarding engine, with the information from the routing protocol.
Table 1 explains each field of CRCTP frame.

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 11

COMMUNICATIONS RESEARCH CENTRE CANADA

Figure 5 CRCTP General Frame Format

As seen in Figure 5, CRCTP requires information from other layers of the
communication stack to operate. This requires what is called a cross-layer design.
Cross-layer design is a technique often used in wireless networks where the layers
of the communication stack, normally independent from each other, share
information to optimize the performance of the protocols. This document does not
provide information on how to implement such cross-layer design because it is
dependent on specific stack. The exact “how to” would typically be done at the
software design stage.

Field Size Bits Function
Source TBD The address of the source node, i.e. the node

that generated the frame.
The value of this field remains unchanged as
the frame travels in the network.

Destination TBD The final destination address, i.e. the address
of the node(s) that are intended receiver(s).
The value of this field remains unchanged as
the frame travels in the network.
Multicast and broadcast frames are identified
by the content of this field.

Type (B1)
0 Data Frame
1 Control Frame
Mode (B2) (for
data frames only)

Type/
Mode/
Flags

1 Byte

0 Unreliable

12 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 13

Field Size Bits Function
1 Reliable
Flags
(B3B4B5B6) (for
all data frames)

B3 Set: First Fragment
B4 Set: Last Fragment
B5 Set: Full Size Frame
B6 Set: New Topology Indication
Flags (B7B8) (for
reliable data
frames only)

B7 Set: More Frames
B8 Set: ACK REQ
Flags (B7B8) (for
unreliable data
frames only)

B7 Set: A Fragment
B8 Unused
Control Frame
Sub-Type
(B2B3B4)
(Control Frames
Only)

000 ACK
001 NACK
010 DROP TX
011 DROP TX CONF
100 Unused
101 Unused
110
Flags
(B5B6B7B8)
(for “Drop TX”
and “Drop TX
Conf” Control
Frames Only)

B5 Unused
B6 Set: New Topology Indication
B7 Set: More Frames

COMMUNICATIONS RESEARCH CENTRE CANADA

14 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

Field Size Bits Function
 B8 Set: ACK REQ
Sequence
Number

TBD1 Cyclic counter.
For each source/destination pair, there is one
counter for reliable mode and one counter for
unreliable mode.
Incremented by one for each frame (may be a
fragment) sent to a destination.

Port TBD To provide port service.
Two bits may be enough TBD

TTL TBD Optional
May be useful for systems carrying audio
payload, and for systems with large maximum
frame size (where the cost of the extra bits
transmitted would not be so high).
Used to eliminate outdated frames instead of
transmitting persistently to reach final
destination.
In units of hops or timeslots?

Payload
Size

1 Byte This is used only when the Full Size Frame
bit is not set (i.e. only when the payload is not
to the maximum value)
It’s ok to consume one full byte to indicate
the size of the payload, since the payload is
not fully used anyway.
When the “Full Size Frame” bit is set, this
field is absent, and the payload size is one
byte larger.

Sender TBD The address of the node currently sending the
frame (it may be the originator or a
forwarder)

Next Hop TBD The address of the “Next Hop” to which the
frame is sent. (decided by the routing
protocol)

Table 1 CRCTP Fields Details

1 It must be big enough to have one number per in-transit packet. It can be made
smaller at the cost of more positive ACK.

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 15

2.4 Sequence Number

At each node, a sequence number is increased by one for each generated fragment
or frame sent to a destination (sequence number makes no distinction between
frames and fragments). Sequence number is not increased for forwarded frame,
since sequence number applies to source/destination pair. Also please note that we
do not include the port in the algorithm to increase the sequence number. Therefore,
two packets with different ports but with the same source & destination address
share the same sequence counter.2

All frames to a given destination address sent in reliable mode share the same
sequence number counter. Similarly, all frames to a given destination address sent
in unreliable mode share the same sequence number counter. Therefore, two
sequence numbers per destination address are maintained, at each node.

When a sequence number reaches its maximum value, it goes back to zero (it’s a
cyclic counter). In reliable mode, a frame sent with a sequence number set to the
maximum value is also sent with the “ACK REQ” bit set.

2 It is important to point out here that all application layer flows or packets that
shares the same Source & Destination address will share the same Sequence
Number in the transport protocol (actually they will share two sequence numbers:
one for reliable mode, and one for unreliable mode).
This is done to increase the likelihood of error detection with the NACK
mechanism. The NACK mechanism works optimally when frames are regrouped.
Therefore, CRCTP aggregates together all flows and packets from the application
layer (with the same source and destination address) for the purpose obtaining
reliability at a lower cost. At the destination, together with the re-assembly
mechanism, flows and packets will be reconstructed again before being sent to the
higher layers.

COMMUNICATIONS RESEARCH CENTRE CANADA

16 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

2.5 Addressing & Forwarding

Although addressing and forwarding are not strictly transport protocol features, they
are described here. Because of the way CRCTP works, forwarding is handled in
cooperation with the transport protocol. The reason for this is that the protocol must
do in-order forwarding, and missed frames are detected by the transport protocol.
Also, reliability is handled hop-by-hop; therefore the transport protocol has to
inspect frames at each hop to perform its task.

Source and destination address fields are populated by the node that generates the
packet. They remain unchanged as packets travel from node to node until they reach
their final destination(s). These fields are populated in the frames by the transport
protocol; the content of the destination address is based on what the application is
requesting. All frames built from the same packet will use the same source and
destination address, obviously.

The forwarding engine is responsible for populating the next hop address field,
frame by frame. It does so in the same manner whether the frame is locally
generated or not (i.e. whether it comes from the higher or lower layers). The
forwarding engine asks the routing protocol what is the next hop address, based on
the destination address. The forwarding engine populates the next hop address field
based on the answer from the routing protocol. The forwarding engine must keep
track of the last used “next hop address” to a given destination address. Once it
detects a change, it must perform extra steps as described in section 2.11 (

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 17

Dynamic Network Topology Issues).

Frames coming from lower layers for forwarding are inspected by CRCTP. As a
result of the frame inspection, the transport protocol may send a control message
(ACK, NACK, REFUSE) before forwarding the frame. It may also delay the
forwarding to a later time due detected missed frames. The reason for this is that the
protocol does in-sequence forwarding. If the local node is the (or a) destination, the
frame is passed to higher layers or buffered for re-assembly as required. All frames
forwarded are also buffered until the node is guaranteed that no retransmission will
be requested for this frame.

Performing in-sequence forwarding has the advantage of minimizing overall
network usage and minimizing memory consumption especially when considering
re-assembly mechanisms. If a node was to send a frame out-of-sequence, it is
guaranteed to receive a NACK from the receiver. This could be worked around by
having the sender tell the receiver to temporarily accept out-of-sequence forwarding
(i.e. do not request a retransmission immediately after detecting a missed frame).
This is not allowed in the current design but may be explored in the future
(however, in the current design, NACK are sent after waiting some reasonable time
to accommodate MAC layer recovery procedure, and network turnaround time).

COMMUNICATIONS RESEARCH CENTRE CANADA

18 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

2.6 Port Service

When an application wants to send to an application on another node, it opens a
dialogue with the presentation layer. This is where the port number is determined.
The “Port” field is populated by CRCTP in the frame. At the receiver, the port
number is used to determine to which application packets should be directed. All
frames resulting from a single packets use the same port number. If port service is
already implemented elsewhere in the communications stack, CRCTP only needs to
retain the appropriate frame fields.

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 19

2.7 Reliability

CRCTP provides hop-by-hop reliability through a mix of positive and negative
acknowledgements. It mixes the two methods to achieve the low overhead of
negative acknowledgement, while maintaining the guaranteed reliability and low
memory requirements brought by positive acknowledgment. We believe this is an
appropriate compromise between the constraints and requirements of some sensor
networks.

2.7.1 The Negative Acknowledgement Method

With the negative acknowledgement method, missed frames are detected by the
receiver by looking at a sequence number. If it detects a gap in sequence number, it
means that one or more fragments have not been received. When this happens, a
request for retransmission of the missed frames is sent to the previous hop through a
NACK. This method may also be called passive NACK, but is simply called NACK
in this document.

The advantage of this method is that overhead occurs only when recovery is
required.

There are several disadvantages to this method:

 A single frame error cannot be detected. We call this “Problem P1”.
 The situation where a node is sending frames to a node that has moved away

or is unresponsive is not handled properly. In this case the receiver node will
never send a NACK, and the sender will assume the receiver received
everything correctly, when this is obviously not the case. We call this
“Problem P2”.

 The time it takes to recover from an error is unknown: it may be short if
only one frame is lost, but it may be long if many frames are lost before a
receiver detects a gap in sequence number.

 The sender node must keep in memory everything it sent to handle eventual
request for retransmissions. Since it never receives positive confirmation of
reception, it has to guess when history frames can be deleted from memory.
This leads to a protocol that requires large memory size to execute. We call
this Problem P3”.

Therefore, this method by itself does not work well in networks where small packets
occur often or on networks with high mobility or on networks where there is a great
variation in link quality.

COMMUNICATIONS RESEARCH CENTRE CANADA

20 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

2.7.2 The Positive Acknowledgement Method

With positive acknowledgment, errors are detected when the sender does not
receive the confirmation message from the receiver that it received a frame.

This method has the following advantages:

 Errors are always rapidly detected.
 The sender may delete from memory frames for which the successful

reception is confirmed. This leads to low memory requirements.
 It handles correctly both small single frames and long streams.

The main disadvantage of this method is that overhead (ACK) occurs for every
successful frame, resulting in high overhead. We call this “Problem P4”.

2.7.3 Hybrid Positive-Negative Acknowledgement Method

The method we propose uses both positive and negative acknowledgments together.
It keeps a great part of their respective advantages while minimizing their
disadvantages. We will explain here how it works and how problems P1 to P4 are
eliminated or minimized.

The NACK portion of the hybrid approach

Errors are normally detected using the usual negative acknowledgment method, i.e.
by inspecting frame sequence numbers to detect missed frames. Whenever one or
more missed frames or fragments are detected, a node starts the TBeforeNACK

3 timer
(if it was not previously started). If it does receive one missed frame before the
timer reaches TBeforeNACK, then it resets the timer to zero and updates its list of
missed frames. It repeats this until TBeforeNACK is reached. If the timer ever reaches
TBeforeNACK, while there are still missed fragments, a NACK is sent. The format of a
NACK is discussed later.

If a node has detected a missed frame and is waiting TBeforeNACK before sending a
NACK, as described above, it may in the mean time receive other frames from that
source/destination pair (that are not in the current list of missed frames), and it may

3 TBeforeNACK is a timer used to let a detected missed frames arrive by itself. For
example, a MAC layer may receive multiples out-of-sequence frames in burst mode
from a node. Also, some MAC layers may have built-in retransmission mechanism.
These mechanisms must have enough time to complete before a transport layer
recovery is attempted through a NACK.

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 21

or may not realize that it is missing more frames. In this case, it does not reset the
TBeforeNACK timer and it continues the procedure as described in the previous
paragraph, but with the updated list of missed frames. At any node, there can be at
most one TBeforeNACK timer per source/destination pair.

When a node sends a NACK, it request a retransmission for all missed frames that
have been reported missing, for the given source/destination pair, before the
TBeforeNACK timer was last reset. This is to avoid requesting retransmission for
missed frames that may still be in transit. After sending a NACK, if there are still
missed frames for which no retransmission was requested, the TBeforeNACK timer is
reset; otherwise, the timer can be stopped (deleted). Doing a reset of the timer at this
point ensures that CRCTP does not request missed frames one by one, in the event
that they occur regularly and periodically.

After sending a NACK, the sender of the NACK waits for a period of TNACK. If it
did not receive any requested missed frame within that period, is sends a NACK
again, with the updated list of missed frames, as long as the list of frames ready to
be requested is not empty. A node may request more than one missed fragment in a
single NACK. Every time a missed fragment is received (i.e. recovered), TNACK is
reset. If TNACK is reached, another NACK is sent. A retransmission request for a
given frame must not be tried more than NNACK times. Therefore, for each frame a
retransmission count is kept in memory to ensure that a given frame is not requested
more than NNACK times. Frames that have been requested more than NNACK times
are flagged as such and are no longer requested in NACKs.

Therefore, NACKs are sent whenever TBeforeNACK or TNACK expires. Whenever this
happens, a new NACK is generated, requesting a retransmission for all missed
frames for which it is time to request a retransmission.

A great advantage of this approach compared to traditional NACK approaches is
that normally sequence numbers are used only for fragments of a packet, or for
“stream” type of flows4. This limits this overhead-efficient method to only this type
of traffic. We propose to extend the method to any outgoing frame with the same
source-destination address. Therefore, the sequence number is increased for each

4 Therefore, application layer packets and flows are aggregated into one single
transport layer sequence of frames. Only one sequence number is shared for all
application layer traffic, and forwarder nodes allocate memory for all active
“Source/Destination” pair they encounter. Forwarder nodes may release this
memory when the “Source/Destination” pair is no longer active on this forwarder.
Application layer packets and flows are re-constructed with the re-assembly
mechanism. This process is independent for reliable and unreliable traffic.

COMMUNICATIONS RESEARCH CENTRE CANADA

22 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

outgoing frame from a node to a same destination. The only requirement for the
proposed method to function is to be confident that there are more frames to be
transmitted (frames with the same source/destination pair). This is determined by
the source node through an examination of the frames/fragments awaiting
transmission. If there are such frames, this is indicated by setting the “More
Frames” flag. The receiver therefore knows that more frames are expected to arrive
from that source (this information may be used to react to topology changes, see
section 2.11). When the source node detects that no more frames are ready or
expected to be sent the destination, it sets the “More Frames” flag to zero and set
the “ACK REQ” bit to one. The receiver will then positively acknowledge this last
frame, and the sender and receiver can clear their buffer for these frames.

The negative acknowledgement approach is the most efficient approach to provide
reliability in term of overhead. With our approach, the negative acknowledgement
method is used potentially more often that with traditional NACK protocols. This
technique greatly minimizes the overhead associated with positive
acknowledgement, that we called problem P4 earlier.

The ACK portion of the hybrid approach

With CRCTP, at specific times, a sender node requests from the receiver a positive
acknowledgement of a frame. This is necessary to overcome the deficiencies of the
pure negative acknowledgement approach. Positive acknowledgments are requested
by setting the “ACK REQ” bit to one. A sender must set the “ACK REQ” bit on the
following occasions:

A. When the “More Frames” bit is not set
B. After sending NFrACK frames (with the same source/destination address)

without the “ACK bit” set
Or, whichever occurs first:
C. When a period of TFrACK elapsed since the last frame with the same

source/destination address and with the “ACK REQ” bit set was sent
D. When a sender (originator node or forwarder node) must release some

memory

A, B and C above effectively solves Problem P1 and P2 (about missed frames never
detected) mentioned earlier. B, C and D effectively solve the memory problem P3
discussed earlier.

When a receiver receives a frame with the ACK REQ bit set, it first verifies if it is
missing any frames by inspecting the sequence numbers. If it is missing any frame,
it sends a NACK requesting all of them (regardless of the value of the TBeforeNACK or
TNACK timers). When all frames are received up to the one that was received with
the ACK REQ bit set, the receiver node must send an ACK frame. ACK frame
format is discussed later in this document.

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 23

After requesting an ACK, a sender starts a timer called TACK. The TACK timer is
reset to zero upon reception of a NACK (for frames with the same
source/destination address and with a sequence number less than or equal to the one
of the frame for which an ACK as requested). The TACK timer is also reset every
time the ACK sender does a retransmission of frame whose sequence number is
lower than or equal to the one of the frame for which an ACK as requested. The
TACK timer continues its count/reset procedure until the ACK is finally received. If
the TACK timer reaches TACK and has never received the ACK, the frame with the
“ACK REQ” bit set is sent again, and the timer is reset. The sender node may try
this for a maximum of NACK times, after which it gives up.

This method of requesting a positive acknowledgment once in a while enables
nodes to reduce and control their memory consumption. After reception of an ACK,
a node is guaranteed that the next hop receiver received all previous frames with the
same source/destination addresses. Therefore, it no longer needs to store these
frames in memory. Moreover, adjusting NFrACK and TFrACK has the effect of giving a
boundary to the maximum per/hop worst case frame latency. These advantages
come at the cost of the overhead of transmitting ACK frames once in a while.

The effect of mixing the two approaches

As explained before, with the NACK approach, no overhead occurs until errors are
detected. Therefore, the performance of such a method approaches that of a circuit
switched network when there are few errors. However, it may lead to high memory
consumption due to potential long error discovery time, plus it can’t provide
guaranteed reliability for small packets. On the other hand, pure ACK results in low
memory consumption due to rapid error recovery.

Mixing the two approaches allows us to consume a certain controllable amount of
memory, to improve network performance in term of control frame overhead.
Worded differently, it allows us to consume a certain amount of network resources
to save on device memory resources. This mix is configurable, and potentially
dynamically configurable. Also, because the approach is hop-by-hop and not end-
to-end, error recovery is done more rapidly and consumes much less network
resources. Mixing ACK and NACK also has the advantageous inherent effect of
distributing memory consumption among the forwarder nodes between the source
and the destination (in the case of large packets, streams or continuous frame
transmission).

2.7.4 Proactive Negative Acknowledgement

As explained before, a node sends a negative acknowledgement when it detects a
missed frame by inspection of the “Sequence Number”. We call this the passive
negative acknowledgement.

COMMUNICATIONS RESEARCH CENTRE CANADA

24 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

A proactive negative acknowledgement is one where a receiver knows that there are
more frames to come (in the case of our protocol, by inspecting the “More Frames”
bit), but they don’t receive any after some long delay, and there has been no missed
frames detected. Therefore, under the rules of the passive negative
acknowledgement, a NACK is not allowed to be sent in this case. A proactive
NACK could be sent in this case. However, with CRCTP, this is not necessary since
the sender requests positive ACK periodically.

Therefore, proactive NACK is not allowed with CRCTP.

The “More Frames” bit is used for other purpose in CRCTP (see section 2.11).

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 25

2.8 Un-Reliability

Sending in unreliable mode is possible with our proposed protocol. The frame
format is the same, but meaning of the flags is different than for reliable frames (see
Table 1). The “ACK REQ” and “More Frame” bits are not used.

In the unreliable mode, it is not necessary to inspect the “Sequence Number” to
detect missed frames or fragments. It is only necessary to inspect them for packet
re-assembly purpose.

Finally, in the unreliable mode, receiver and forwarder nodes never send ACK or
NACK. Forwarders never buffer any frame or fragment – they just pass them
trough. Receivers (final destination only) use buffering of frames only if these are
fragments of packets, for re-assembly purpose.

COMMUNICATIONS RESEARCH CENTRE CANADA

26 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

2.9 Fragmentation

Locally generated packets enter the transport protocol from higher layers. If a
packet, including transport header and footer, fits into one single MAC frame, it
does not have to be fragmented. Otherwise, the transport protocol fragments the
packet into multiple fragments. Because the protocol does in-sequence forwarding,
fragments of a packet are sent in sequence. Fragments from packets coming
different ports can be interlaced (but they share the same sequence number). The
reassembly mechanism will perform reassembly on a source/destination address-
port number basis.

The first fragment of a packet is sent with the “First Fragment” bit set; this bit is set
to zero for all other frames. The last fragment is sent with the “Last Fragment” bit
set; this bit is set to zero for all other frames. In unreliable mode, all other fragments
of a packet are sent with the “A Fragment” bit set (this bit does not exist in reliable
mode). Frames of packets that are not fragmented are sent with these bits set to
zero.

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 27

2.10 Reassembly

The reassembly process takes place at the destination only. It does not take place at
the forwarder nodes, unless a forwarder is also a destination (in the case of
broadcast or multicast). The reassembly process is different for reliable and
unreliable mode. In both modes, a node knows that it is receiving one or more
fragmented packets by seeing at least one frame received with the “First Fragment”,
“A Fragment” or “Last Fragment” bit. In all cases, it starts to buffer these fragments
for re-assembly purpose.

Formally, a reassembly process is started as soon as all the following conditions are
met:

1. The transport protocol receives a frame with the “First Fragment”,
“A Fragment” or “Last Fragment bit set.

2. The destination address is the local node (this frame is now at its
intended destination)

3. A reassembly process was not already started for this
Source/Destination/Port combination.

Once a packet is re-assembled, it no longer needs to be buffered for re-assembly
purpose (but may still need to be buffered for reliability reasons, see 2.7)

One could argue that in reliable mode, if a node receives the “Last Fragment” first,
it may not have buffered the previous, but not first, fragments because the “A
Fragment” bit is not used in reliable mode. However, missed frames are buffered at
least until the First Fragment is received, since the protocol does in sequence
forwarding (see 2.7).

In reliable mode, at the final destination, a packet is immediately re-assembled once
the “First Fragment”, “Last Fragment” (with the same source/destination/port) AND
all fragments in between (with or without the same port) have been successfully
received. Note that this does not prevent multiple packets to be interlaced together
in transport frames. However, there may be some situations where all frames of an
application layer packet are correctly received but cannot be re-assembled until
some frames of another packet are successfully received (because they share the
same sequence number).

In unreliable mode, the situation is a little bit more complicated. Whenever a
fragment of a new packet is received at a final destination in unreliable mode, a
reassembly timer TReassembly is started (if it’s a newly encountered packet) or reset (in
the case where this is not the first fragment of the packet). When the last fragment
of a packet is received in unreliable mode, the packet is immediately re-assembled if
all fragments were received. If some fragments were not received, the reassembly

COMMUNICATIONS RESEARCH CENTRE CANADA

28 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

timer is reset. If the reassembly timer ever reaches TReassembly, then the associated
packet is re-assembled, even if some frames are missing. Known missed fragments
are zero padded in the re-constructed packet. If the last fragment was never
received, the frame with the latest sequence number is treated as the last one. If the
first fragment was never received, the fragment with the “A fragment” bit set that
has the lowest sequence number is treated as the first one. In all cases where a
packet is reassembled but with missed fragments, the re-assembled packet is sent to
higher layers with an indication of erroneous packet. We note that with this
algorithm, there is a possibility that, if a last fragment is never received and the first
fragment of the next packet is also never received, these two consecutive packets
get treated as only one, and it is erroneous. However, this is in the unreliable mode
only, and in this case the protocol operates in “best effort” mode anyway. For
specific implementation, the designer may want to implement a checksum or a
cyclic redundancy check to detect such erroneous frames. This is not specified in
the base specification of CRCTP because it was considered that the extra overhead
was not necessary, given that this is for unreliable mode only.

Therefore by using this scheme, in sequence reception is not required for either
frames (fragments) or packets. Also, multiple fragmented packets can be received
concurrently from the same source without confusion.

COMMUNICATIONS RESEARCH CENTRE CANADA

2.11 Dynamic Network Topology Issues

An important situation to consider is when the forwarder nodes are changed during
the course of a transmission. Let’s consider the following situation. A source node
A is sending to node D. In the beginning of the transmission, B acts as relay
between A and D. Later on, this is changed and C becomes the relay. This is
illustrated in Figure 6.

Figure 6 Topology Change

There are two issues to consider.

1. Node C becomes involved in the transmission sometimes after it has started
but before it ended. The first frame it sees is not the first frame or fragment.
Normally, according to NACK rules, it would request the missing previous
frames, but it should not in this special case. But how does it know that it is
a new relay for an ongoing transmission? It may think that it missed all
previous frames and has always been the selected relay.

2. Node B stops its involvement in the transmission. How does it know it is no
longer responsible for this flow? How does it know that that it is acceptable
to not receive a requested positive ACK from the next hop receiver? How
does it know that it can drop the buffers for that transmission?

Both of these issues have to be addressed. The first node to be aware of the
changing situation is node A. When node A requests the “Next Hop” address from
the forwarder, it monitors for a change from the previously used “Next Hop
address”. If a change is detected, the following actions are taken:

1. Node A informs B that it is no longer involved in this transmission by
sending it a “DROP TX” frame. Note that B may no longer be a

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 29

COMMUNICATIONS RESEARCH CENTRE CANADA

30 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

neighbor (therefore the “DROP_TX” is treated like a data packet and
may be routed). The format of the “DROP TX” frame is detailed later.

 On reception of this “DROP TX” frame, node B replies with a
DROP TX CONF” frame.

 The transmission of the actual data frame on the new route can
take place right after the first “DROP TX” has been sent. It is not
necessary to wait for reception of the “DROP TX CONF” frame.

 The “DROP TX” and “DROP TX CONF” are control frames, but
are treated like reliable data frames (they are routed). Therefore,
it can be assumed that they will successfully reach their
destination.

2. Node A informs node C that it is a new forwarder of an ongoing
transmission, by sending (to node C) the next frame with the “New
Topology Indication” bit set. In this case the “ACK REQ” bit is also set.

 Node C immediately forwards the frame to node D, with the
“ACK REQ” bit set. It waits for the positive ACK from D before
sending its own positive ACK to A. To allow enough time for
this extra exchange to take place, node A waits longer than it
normally does for the reception of the ACK from C. It should
wait TACKTopologyChange.

 If node C instead receives a NACK from D, it cannot handle it
because it does not have yet any frames buffered for that
transmission. In this case, instead of sending an ACK to node A,
it sends an NACK requesting the missing frames. After this,
normal procedures commence.

 If node C hears a NACK from node D to node B for the
source/destination flow for which it is now responsible, it must
respond to it (with the mechanism described in the previous
paragraph). This may happen when node D is sending a NACK
before it has realized that the new previous hop is node C.

Node D observes the change by inspecting the address of the previous hop. It
always uses the “last” previous hop observed to send control messages (ACK,
NACK).

When node B becomes aware that it is no longer a forwarder for the transmission, it
can drop any ongoing procedure or buffer related to that transmission.

Step 1 above works well in networks where routes are rapidly constructed or
proactively maintained, such as the TinyOS implementation of sensor network by
RASN. In the case of the Newtrax nodes, having node A send a message (the
DROP_TX) to node B when the route between them has to be reconstructed may
not be a good idea since the new route may take long to be alive. It is suggested to
use the following alternative approach instead:

1. Node B knows that a transmission is not over when the last frame was
received with the “More Frames” bit set.

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 31

 If it did not hear any activity on this transmission for a period of
T opologyChange, it can conclude that it is no longer involved in that
transmission and it may release its buffer for all concerned
frames. It may also give up any process related to this
transmission (ACK, NACK).

T

 Node B does not necessarily have to abandon the transmission
right at TTopologyChange of inactivity, but it can abandon it from this
point on. Abandoned transmissions may be checked for
periodically, or when memory becomes low.

In conclusion, when a relay node is modified on the fly, the overhead penalty is two
control messages being sent: “DROP TX” and “DROP TX ACK”. Another penalty
that may occur is a longer recovery time of frame lost, because the new forwarder
may not have them in memory: the recovery has to go one hop further. As for the
flow itself, it can continue flowing on the new route almost immediately.

In the case where the alternate solution is implemented instead, the penalty is
(instead of the overhead of “DROP TX” & “DROP TX CONF”) the overhead of
node B continuing its ACK and NACK procedures related to the transmissions in
which it is no longer involved (these procedures are abandoned after a while by
node B, after the maximum number of attempts).

COMMUNICATIONS RESEARCH CENTRE CANADA

32 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

2.12 Broadcast – Multicast

The capability of CRCTP to provide reliable transport for broadcast and multicast
depends on the cooperation that it can achieve with the routing protocol or the MAC
layer. We will therefore consider two scenarios. The first scenario is when CRCTP
can learn from the routing protocol or the MAC layer who the next hop receivers of
multicast or broadcast frames are. The second scenario is when it cannot obtain this
information (independent operation of the transport protocol).

Cooperation with the routing protocol is highly desirable. Without it the design is
not optimal.

In the case where broadcast/multicast is not supported by the routing protocol or by
an independent multicast protocol, CRCTP implements a simple pure flooding
protocol, implemented inside the forwarder.

We note that multicast and broadcast frames are identified by inspecting the
destination address. Multicast and broadcast addresses must be identifiable.

2.12.1 Scenario 1 – Cooperation with the Routing or MAC Layer
(Recommended)

In this scenario, we assume that CRCTP knows who the next hop receivers of
broadcast/multicast frames are. This information may be given by the routing
protocol or by the MAC layer, depending on how the networking stack is designed.

When CRCTP sends a broadcast/multicast frame, it does so with the same
mechanism as described for unicast frames, in term of reliability mechanism (ACK,
NACK, sequence numbers, flags, etc). However, there are two differences.

The first difference is when the forwarder receives a frame from the lower layers,
the decision to forward it or not is left to the routing protocol if it has built-in
support for multicast/broadcast or to an external multicast protocol. If the routing
protocol does not support it and there is no external multicast protocol, then the
frame is forwarded once only, and that decision is taken by the forwarder itself (in
other words, the forwarder supports flooding, but if the routing protocol or multicast
protocol has a better mechanism, it may be used instead).

The second difference is that after sending a multicast/broadcast frame with the
“ACK REQ” bit set, the sender expects to receive an ACK from each of its
neighbours. There is only one TACK timer started, and all ACKs have to be received

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 33

before its expiry to avoid a retry, as per the unicast mechanism explained earlier in
this document. Actually, the mechanism for waiting for an ACK is the same as for
unicast except that it waits for more than one ACK. If one or more ACKs never
arrive, the frame is sent again as per the unicast rules (for example, if three ACKs
never arrive, the frame is retransmitted only once on this attempt, not three times,
obviously). We assume that the MAC layer resolves the collisions between the
many ACKs that are generated at the same time. We note that the configuration of
the ratio between ACK/NACK is important especially when considering
broadcast/multicast, because the cost in overhead of requesting a positive ACK is
more important compared to unicast.

Receivers of broadcast/multicast frames behave just the same as for unicast. They
therefore send ACK and NACK as described in the unicast section of this
document. The only difference is that a receiver may also be a forwarder, in which
case they also act as forwarder as described earlier in this section.

2.12.2 A Note on Flooding
As mentioned in the previous section, if there is no multicast protocol and if the
routing protocol does not directly support multicasting, then the forwarder is
capable of falling back to a pure flooding mechanism.

In this case, every broadcast/multicast frame is normally rebroadcasted only once.
This means that a node must keep track of the broadcast/multicast frames it sent in
order not to send them more than once (the exception if for retransmission requested
by NACKs). Because CRCTP does in-sequence forwarding, it is very easy to know
if a frame was already transmitted or not. CRCTP only needs to keep in memory the
sequence number of the last broadcast/multicast frame sent. If a frame arrives and
its sequence number is lower than the last one sent, then CRCTP is sure that this
frame has been already transmitted at least once. Therefore, in term of extra
memory consumption to support this flooding mechanism, CRCTP only needs to
keep in memory the sequence number of the last frame sent for every
source/destination pair of multicast or broadcast frames. CRCTP can release the
“last sequence number” in memory for a source/destination pair when a frame
arrives with the “More Frames” bit not set. We can therefore conclude that the
added memory consumption to support flooding for reliable traffic is minimal; most
of the memory consumption is related to providing reliability and re-assembly.

2.12.3 A Note on Unreliable Broadcast/Multicast

As mentioned in the previous section, if there is no multicast protocol and if the
routing protocol does not directly support multicasting, then the forwarder is
capable of falling back to a pure flooding mechanism.

COMMUNICATIONS RESEARCH CENTRE CANADA

34 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

Akin unicast, with broadcast and multicast in unreliable mode, frames are just
forwarded as they arrive, and none of the reliability mechanisms (ACK, NACK)
operates.

If there is a multicast protocol, or if the routing protocol supports it, the decision to
forward or a not an unreliable broadcast/multicast frame remains to those entities. If
there is no such entity, then CRCTP’s forwarder is responsible for performing pure
flooding. Therefore, every frame is re-broadcasted only once. Because in the case of
unreliable mode the forwarding is not necessarily done in-sequence, CRCTP must
keep track of all multicast/broadcast frames transmitted for each pair of
source/destination it encounters. This is done by keeping a vector of sequence
numbers that were already transmitted for each pair of source/destination. However,
keeping in memory the sequence number of every multicast/broadcast frames sent
in unreliable mode results in constantly increasing memory consumption. To avoid
problems of memory, the following techniques are used:

1. Sequence numbers of frames older than TReassembly can be deleted from
memory. This means that these sequence numbers may be deleted if they
are older than TReassembly, but it is not necessary to do it as soon as TReassembly
is reached. Memory “cleaning” can be done periodically or as required.

2. Memory space can be saved by using the same technique as for
representing missed fragments in NACK (i.e. out of sequence “Sequence
Number” means a range of frames) (see 2.14.2).

3. It is assumed that all frames lower than the lowest stored sequence numbers
have been transmitted once

Other than that, operation of unreliable mode is the same as for unicast. We refer to
section 2.8 for operation of fragmentation/reassembly of multicast/broadcast frames,
since it is the same as for unicast.

2.12.4 Scenario 2 – Independent Operation

If cooperation with other layers is impossible to learn the next hop receivers of
broadcast/multicast frames, the operation is very similar but the difference is that
positive ACK are never requested (the “ACK REQ bit is never set). Only the
mechanism with NACK is enabled.

It should be noted that this scenario is not optimal. 100% reliability cannot be
guaranteed, especially for small packets. The bigger the packets are, the better the
reliability becomes. This is a fallback mechanism that should be implemented only
when cooperation with other layers is impossible.

Please note that this is the only option; there are ways to make it better. A
possibility is to request ACK for the first few frames of a packet. After receiving

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 35

ACKs for a certain number of frames, a node can have a good idea of who its
neighbors are. More frames sent with ACK requested actually means a greater
probability of having the correct picture of the neighborhood. However, this
becomes probabilistic reliability, not 100% reliability, and it still does not cope well
with small frames and highly dynamic topology. An independent neighbor
discovery could also be implemented at the transport layer, however this is grossly
inefficient.

Finally, if an independent operation must be implemented, proactive NACKs should
be implemented, by having receiver nodes inspect the “More Frames” bit and by
having a timer triggers a proactive NACK when it expires.

To conclude, if we must fall back to this non optimal approach, this section of the
document will be revised so the mechanisms are described more formally.

COMMUNICATIONS RESEARCH CENTRE CANADA

2.13 Scheduler

As seen in Figure 3, the transport protocol does not communicate directly with the
data link layer: frames must pass through a scheduler. In term of real
implementation, this does not need not to be a separate layer. It could be
implemented within the transport protocol itself, or with the appropriate forwarding
layer of a communications stack.

Figure 7 CRCTP Scheduler

The scheduler, as required by this protocol, is simple. It is illustrated in Figure 7. It
is meant only to give higher priority to control frames over data frames. The actual
priority is the following (one being the highest).

1. Routing
2. “DROP TX” & “DROP TX CONF”
3. ACK
4. NACK
5. Data

The highest priority is given to routing traffic, since the transport protocol rely on it
for its operation. Even though routing may be considered as data from the view of
the transport protocol, it should be distinguished for scheduling purpose (in other
word, routing traffic may use reliable or unreliable mode, but these data frames
should be identified so they are given high priority).

The next highest priority is given to “DROP TX” and “DROP TX CONF” since
receiving them in time could potentially save network resources.

36 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 37

ACK and NACK are given higher priority than data since their role is to ensure
proper data transport. ACK is given a higher priority than NACK since its
successful delivery may result in a node being able to release precious memory that
it needs for other frames or flows.

The scheduler de-queues frames with a pure priority scheme. Eventual refinements
could be brought to the scheduler, where data could be further categorized and
prioritized. Also, scheduling other than pure priority may be considered for the
different categories data frames.

COMMUNICATIONS RESEARCH CENTRE CANADA

2.14 Control Frame Format

In this section, the frame format of the control frames is illustrated and described.

2.14.1 ACK Frame Format

Figure 8 ACK Frame Format

We note that the ACK frame has no port field. This is because the port field is not
necessary to uniquely identify fragments and frames, since frames coming from all
applications, regardless of their port numbers, share the same sequence number in
CRCTP (unlike UDP and TCP). Furthermore, a single ACK can be used to
acknowledge frames with different port numbers.

Field Size Bits Function
Source TBD This is the source address of the frame being

acknowledged
Destination TBD This is the final destination address of the frame

being acknowledged
Type (B1)
Set to 1 To indicate a Control Frame
Control
Frame
Sub-Type
(B2B3B4)

Set to 010 To indicate a “DROP TX” Frame
B5 Unused
B6 Unused
B7 Unused

Type/
Mode/
Flags

1
Byte

B8 Unused

38 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 39

Field Size Bits Function
Sequence
Number

TBD Same as for a data packet (this frame is treated as
a data packet with the ACK REQ bit set)

Sender TBD This is the address of the node that is generating
the ACK

Next Hop TBD This is the address of the node that requested the
ACK

Table 2 Description of the Fields of ACK Frames

2.14.2 NACK Frame Format

Figure 9 NACK Frame Format

It is important to note that more than multiple frame retransmission can be
requested in a single NACK frame. It is also possible to request retransmission for
range(s) of frames.

The frames for which a retransmission is requested are uniquely identified in the
NACK packet by their “Sequence Number”. The frames for which a retransmission
is requested are listed in order in the NACK frame.

When a retransmission for range of frames is requested, this is done by inserting the
boundaries of the range in the reverse order.

For example, let’s say we have frames 1 to 10. The receiver node discovers that it is
missing frames 2, 5, 6, 7 and 9. Then, it lists the frame IDs in the following order in
the NACK frame: “2, 7, 5, 9”. The receiver of the NACK frame therefore knows
that the pair “7, 5” actually represent a range (5 to 7) because it is in reverse order.

COMMUNICATIONS RESEARCH CENTRE CANADA

40 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

We note that the NACK frame has no port field. This is because the port field is not
necessary to uniquely identify fragments and frames, since frames coming from all
applications, regardless of their port numbers, share the same sequence number in
CRCTP (unlike UDP and TCP). Furthermore, a single NACK can be used to report
missing frames that have different port numbers.

Field Size Bits Function
Source TBD This is the source address of the frame(s) for

which a NACK is sent (i.e. source address of the
frame(s) for which a retransmission is requested)

Destination TBD This is the final destination address of the
frame(s) for which a NACK is sent (i.e.
destination address of the frame(s) for which a
retransmission is requested)

Type (B1)
Set to 1 To indicate a Control Frame
Control Frame
Sub-Type
(B2B3B4)

Set to 001 To indicate an ACK Frame
B5 Unused
B6 Unused
B7 Unused

Type/
Mode/
Flags

1 Byte

B8 Unused
of Frame
IDs

1 Byte A number that indicates the number of frame IDs
to follow
If NACK is 16 or less, B5B6B7 B8 from the
“Type/Mode/Flag” field can be used instead of
using a separate field

Sequence
Number

TBD

Used to identify a frame. Set to the value of the
Sequence Number of the frame for which a
retransmission is requested
Note: A sequence number, source address and
destination address of a frame form its frame ID
(with these the frame can be uniquely identified)

Sender TBD This is the address of the node that is generating
the NACK (i.e. the node that is requesting
retransmission(s))

Next Hop TBD This is the address of the node to which the
NACK is sent (i.e. the node from which we are
requesting a retransmission)

Table 3 Description of the Fields of NACK Frames

COMMUNICATIONS RESEARCH CENTRE CANADA

2.14.3 DROP TX Frame Format
A “DROP TX” frame is essentially treated like a data frame (i.e. it is routed). The
difference is that its payload carries transport protocol control information, therefore
it is called a control frame. This frame is also a little different in its
“Type/Frame/Flag” field (it uses a portion of the control and a portion of the data
flags). It shares the sequence number with the data frames.

Its payload carries the source and destination address of the transmission to be
dropped by the destination of this frame. With the source and destination address of
the flow to be dropped, the flow to be dropped is uniquely identifiable.

Please note that in this section we refer to a flow as a sequence of frames that share
a common “source/destination”.

Figure 10 DROP TX Frame Format

Field Size Bits Function
Source TBD This is the address of the node that generates

the “DROP TX” frame. (NB same definition
as for data frame)

Destination TBD This is the final destination of the “DROP
TX” frame. In other words, this is the address
of the node that is no longer involved in a
transmission, or the “previous forwarder”.
(NB Same definition as for a data frame)

Type/ 1 Byte Type (B1)

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 41

COMMUNICATIONS RESEARCH CENTRE CANADA

42 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

Field Size Bits Function
Set to 1 To indicate a Control Frame
Control Frame Sub-
Type (B2B3B4)

Set to 010 To indicate an DROP TX Frame
B5 (MORE FRAME) Set to 0 or 1 as per rules described in 2.7.3.
B6 (ACK REQ) Set to 0 or 1 as per rules described in 2.7.3.
B7(Full Frame Size) Set to zero (this frame is never a full size

frame, its payload is known and small)

Mode/
Flags

B8 (New Topology
Indication)

Set: New Topology Indication (same rules as
for data frame, see 2.11) (even though this
frame is to control a topology change, it may
serve to indicate another new topology change
along its way, just like a data frame could)

Sequence
Number

TBD

As if it was a data frame

Port Zero (unused since this is a control frame)
Source (of
the dropped
flow)

TBD The source address of the flow to be dropped.

Destination
(of the
dropped
flow)

TBD The destination address of the flow to be
dropped.

Sender TBD As if it was a data frame
Next Hop TBD As if it was a data frame

Table 4 Description of the Fields of "DROP TX" Frames

2.14.4 DROP TX CONF Frame Format

Like a “DROP TX” frame, a “DROP TX CONF” frame is essentially treated like a
data frame (and it is routed). Here again, the difference is that its payload carries
transport protocol control information, therefore it is called a control frame. This
frame is also a little different from the data frame in its “Type/Frame/Flag” field (it
uses a portion of the control and a portion of the data flags). It shares the sequence
number with the data frames.

Its payload carries the source and destination address of the transmission that was
dropped by the node that generates this frame. With the source and destination
address of the flow that was dropped, the flow to be dropped is uniquely
identifiable.

COMMUNICATIONS RESEARCH CENTRE CANADA

Please note that in this section we refer to a flow as a sequence of frames that share
a common “source/destination”.

Figure 11 DROP TX CONF Frame Format

Field Size Bits Function
Source TBD This is the address of the node that generates

the “DROP TX CONF” frame, i.e. the address
of the node that just dropped its role as a
forwarder of a flow (NB same definition as
for data frame)

Destination TBD This is the final destination of the “DROP TX
CONF” frame. In other words, this is the
address of the node that initially sent the
“DROP TX” frame.

Type (B1)
Set to 1 To indicate a Control Frame
Control Frame Sub-
Type (B2B3B4)

Set to 011 To indicate an “DROP TX CONF” Frame
B5 (MORE FRAME) Set to 0 or 1 as per rules described in 2.7.3.
B6 (ACK REQ) Set to 0 or 1 as per rules described in 2.7.3.

Type/
Mode/
Flags

1 Byte

B7(Full Frame Size) Set to zero (this frame is never a full size
frame, its payload is known and small)

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 43

COMMUNICATIONS RESEARCH CENTRE CANADA

44 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

Field Size Bits Function
B8 (New Topology
Indication)

Set: New Topology Indication (same rules as
for data frame, see 2.11) (even though this
frame is to control a topology change, it may
serve to indicate another new topology change
along its way, just like a data frame could)

Sequence
Number

TBD

As if it was a data frame

Port Zero (unused since this is a control frame)
Source (of
the dropped
flow)

TBD The source address of the flow that was
dropped.

Destination
(of the
dropped
flow)

TBD The destination address of the flow that was
dropped.

Sender TBD As if it was a data frame
Next Hop TBD As if it was a data frame

Table 5 Description of the Fields of "DROP TX CONF" Frames

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 45

2.15 Timer & Counter Values

In this section all timers and counters of CRCTP are explained and their
recommended values are given.

We define the following values for proper understanding of this section.

NMACRetries: The maximum number of attempts of transmission at a MAC layer
TMAC: The maximum time it takes for a MAC layer to transmit a frame once it starts
its transmit procedure for a frame (includes RTS, CTS, ACK, interframe space, time
waiting to access medium, retransmissions, etc)
TTransData: The transmission time of a data frame (related to modulation and frame
size and overhead)
TTransNACK: The transmission time of a NACK frame (related to modulation and
frame size and overhead)
TTransACK: The transmission time of an ACK frame (related to modulation and
frame size and overhead)
TProp: The propagation time of the frame, in the air. For small distances, we may
assume this to be close to zero.

The timers and counters defined in the following sections are those of CRCTP.

2.15.1 TBeforeNACK

When a node detects a missed frame by inspection of the sequence number, it starts
the TBeforeNACK timer, if it was not done already. Only when this timer reaches its
target value does a node send a NACK. This is necessary to let frames that may still
be in transit arrive out-of-sequence. Even though CRCTP does in-sequence
forwarding, out-of-sequence reception is possible for example when a MAC layer
makes multiple attempts for a transmission.

Therefore, when this timer expires, we are confident that the missed frame is no
longer in transit and that the sender gave up.

TBeforeNACK = (NMACRetries -1) x (TMAC + TTransData + TProp)

2.15.2 TNACK

After sending a NACK to the MAC layer, a node expects to start receiving soon the
requested missed frames. If it did not receive any before TNACK, it sends the NACK

COMMUNICATIONS RESEARCH CENTRE CANADA

46 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

again. Therefore, when this timer expires, we are confident that either the NACK
was lost, or that one of the missed frames failed in its retransmission.

TNACK = NMACRetries x (TMAC + TTransNACK + TProp) + NMACRetries x (TMAC + TTransData +
TProp)
 = NMACRetries x (2TMAC + 2TProp + TTransNACK + TTransData)

2.15.3 NFrACK

This is a configurable parameter. It is the maximum number of frames between each
request for a positive acknowledgement. The higher its value, the lower the
overhead is since less positive acknowledgements are sent. However, the memory
consumption of the transport protocol is proportional to this value. Also, lower
NFRACK will lower the worse case frame latency.

The value of NFRACK will be determined empirically or estimated based on memory
availability and worse traffic and topology predictions.

2.15.4 TFrACK

Under different conditions, a node requests a positive acknowledgment. One of
them is after sending a certain number of frames. If there are not enough subsequent
frames, a positive acknowledgement is required after a while to ensure proper
transmission of previous frames. This is the purpose of the TFRACK timer.

TFRACK NFrACK x (TMAC + TTransData + TProp) x NMACRetries x ß

Where ß is a configurable or dynamic parameter.

If ß is configurable, the following guidelines should be used:

 0 < ß 1
 ß should be set to values close to one on networks where high errors

rates are expected to be typical.
 ß should be set to around 0.5 on networks where 50% frame errors are

expected to be typical.
 ß should be set to a value lower than 0.5 on networks where low error

rate is expected to be typical.

If ß is dynamic, then the MAC layer should inform the transport protocol about
current average number or retransmission per frame. Then, ß is set to

 ß = (Current average Number of MAC retransmission per frame) /
NMACRetries

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 47

2.15.5 TACK

When this timer expires, a node that requested a positive ACK retransmits
the frame in which the ACKREQ bit was set. In other words, after requesting
an ACK, a node should have received it within TACK, otherwise it requests it
again.

TACK = NMACRetries x (TMAC + TTransData + TProp) + NMACRetries x (TMAC + TTransACK +
TProp)
 = NMACRetries x (2TMAC + 2TProp + TTransACK + TTransData)

2.15.6 TACKTopologyChange
After requesting an ACK just after a topology change to the next hop to the
destination, a node should have received the ACK within TACKTopologyChange,
otherwise it requests it again. This replaces momentarily TACK.

TACKTopologyChange = NACK x TACK + TACK = TACK x (1 + NACK)

2.15.7 TReassembly

In unreliable mode, a packet not fully received is re-assembled if the TReassembly
timer expires, whether or not there are missed frames in the packet. It should be
long enough such that we are sure the frames are no longer in transit.

The following guideline is given:
TReassembly > TMAC + TTransData + TProp

2.15.8 NNACK
This is the maximum number of attempts of retransmissions of a frame by receiver,
through NACKs. The value of this number should be high enough to ensure high
reliability. It should be tested that this timer almost never expires. This counter
should be high enough to handle frame errors, but it does not need to handle
topology changes since this is handled by another mechanism.

2.15.9 NACK

COMMUNICATIONS RESEARCH CENTRE CANADA

48 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

This is the maximum number of times that a request for a positive acknowledgment
can be attempted for a given frame. It should be tested that this almost never
expires.

2.15.10 TTopologyChange
In the case of an implementation where forwarders are not informed of topology
changes, they can only count on themselves to conclude that they no longer are
involved in a transmission. This decision is taken if no activity is detected for a
certain period on a given unique pair of source/destination. This is analysed
separately for reliable and unreliable traffic – but expiry of TTopologyChange for both
types of traffic must happen to conclude to a topology change). When TTopologyChange
expires, a node is confident that it is no longer involved in any transmission
between a pair of source/destination.

The following guideline is given:
TTopologyChange >>> TMAC + TTransData + TProp
TTopologyChange > TFRACK + (TMAC + TTransData + TProp) x NMACRetries x NACK

(We know that after TFRACK an ACK is requested in the next frame. We add
to it the maximum time it can take for that frame to reach the forwarder – if
there are no other frames to come, the last one would have been sent with
the ACKREQ bit anyway)

COMMUNICATIONS RESEARCH CENTRE CANADA

TECHNICAL NOTE DOCUMENT CRC-TN-2014-001 49

3 Acronyms

ACK Positive Acknowledgement

COTS Commercial Off-The-Shelf Equipment

CRCTP CRC Transport Protocol

L2N Low bandwidth, Lossy Network

MAC Medium Access Layer

NACK Negative Acknowledgement

OSI Open Systems Interconnection

PHY Physical Layer

PSFQ Pump Slowly, Fetch Quickly

SASNet Self-Healing Autonomous Sensor Network

TCP Transmission Control Protocol

WRSN Wireless Radiation Sensor Network

COMMUNICATIONS RESEARCH CENTRE CANADA

50 TECHNICAL NOTE DOCUMENT CRC-TN-2014-001

4 References

[1] M. Déziel, F. Daigle, “Reliable Transport Protocol for SASNet Level-1
Network: Requirements, Literature Survey & Simulation/Evaluation of a
Candidate Protocol”, CRC Technical Memo # VPNT 2010/01, SASNet
project, Communications Research Centre (CRC), Canada, 2010.

[2] J. Postel, “User Datagram Protocol”, Internet Standard RFC768, Internet
Engineering Task Force (IETF), August 1980.

[3] “Transmission Control Protocol - DARPA Internet Program - Protocol
Specification”, Internet Standard RFC793, Internet Engineering Task Force
(IETF), September 1981.

