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Abstract 

 

 The increasing complexity in the development of today’s modern warfighting 

systems required a systematic evaluation approach in the assessment of the envisaged 

capability and estimating the cost effectiveness, especially in the early stages of Concept 

Development. This research focused on the development of early Concept Evaluation 

methodology through the use of Executable Architecture (EA) through the System 

Architecting process. Particularly, the methodology was applied in the assessment of a 

proposed fictitious Multi-tiered Unmanned Aircraft System System-of-Systems that was 

designed to provide target acquisition and conduct dynamic strike on Theater Ballistic 

Missile launchers. 

Through the implementation of the evaluation methodology using dynamic 

modeling of the system-under-design, the research was able to provide quantitative 

assessment of different design parameters on the overall system effectiveness, as 

measured using a set of pre-determined Measures-of-Effectiveness. Innoslate was used to 

develop the EA model of a fictitious multi-tier Unmanned Aircraft System System-of-

Systems, and provided quantitative assessment of the overall system performance due to 

changes in the design parameters. The research showed that the proposed evaluation 

methodology provide system architects with the tool to 1) evaluate different design 

parameters, 2) understand the overall system capability given sub-system capabilities, 

and 3) determine sub-system requirement given desired system performance.  
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APPLICATION OF EXECUTABLE ARCHITECTURE IN EARLY CONCEPT 
EVALUATION USING DOD ARCHITECTURE FRAMEWORK 

 
 

I.  Introduction 

Overview 

The increasing complexity in today’s modern warfighting systems demands a 

systematic approach in evaluating the envisaged capability, and estimating the cost-

effectiveness of the proposed weapon system in the early stages of Concept 

Development. To address this challenge, it is necessary that the evaluation methodology 

has the capability and capacity to process highly complex system with many unknowns 

under widely varying scenario. This research thesis builds on the efforts of Maj Ryan 

Pospisal (Pospisal, 2015) in the use of executable architecting, and extends the research 

focus to assess the impact of different design parameters to system performance and cost.  

 

This research reviews an existing system architecting process as a viable solution 

to provide program offices with early assessment and evaluation of Department of 

Defense (DoD) projects and proposes a methodology using Executable Architecture (EA) 

and dynamic models to provide a holistic evaluation of the proposed concept across 

operational time and space. In this regard, this research will focus on the domain of 

tactical Intelligence, Surveillance, and Reconnaissance (ISR) system development, 

involving the use of multi-tiered Unmanned Aircraft Systems (UAS) to provide target 

acquisition and conduct dynamic strike. 
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Motivation 

The focus of this research is driven to achieving two key deliverables during 

Concept Development phase—1) impact of system parameters on overall system-design 

and operational effectiveness during early stage development, and 2) accuracy of cost 

estimates for cost-effectiveness evaluation. 

 

Impact of System Parameters during Concept Development Phase 

 During the early stages of Concept Development, the system-under-design is 

often ill-defined, with many different possible configurations and design parameters that 

can be implemented into the system to meet user requirements to varying degrees of 

success. Indeed, MITRE defined Concept Development as: 

 

a set of activities that are carried out early in the systems engineering life cycle to 

collect and prioritize operational needs and challenges, develop alternative 

concepts to meet the needs, and select a preferred one as the basis for subsequent 

system or capability development and implementation. 

 

From the above definition, it is essential that there exist a method to qualitatively 

and quantitatively evaluate the different configurations and design parameters of the 

proposed concept to select the optimal design parameters that best fulfil the user’s 

requirements. 
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The Conceptual Preliminary Design phase is the phase where trade-studies are 

conducted. During this stage, the system designers have the highest leverage over the 

eventual design of the system with maximum impact on the overall design and operating 

cost of the system, as illustrated from Figure 1 below adapted from Blanchard and 

Fabrycky (1998). However, at this stage, there are still many unknowns and the concept 

is still ill-structured (Maier et al, 2009).  Furthermore, new modern weapon systems are 

often too complex to rely only on technical engineering analysis alone for effective 

evaluation and comparisons.  

 

 

Figure 1: Commitment, system-specific knowledge, cost incurred and east of 

Change (Blanchard & Fabrycky, 1998). 
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Accuracy of Cost Estimates for Cost-effectiveness Evaluation 

The procurement and introduction of new technology continues to be a vital force 

multiplier in the military. With the introduction of new technology and advancement in 

System-of-Systems (SoS) operations, it is evident that there is an ever increasing 

complexity in technology, software density and system integration, resulting in the 

challenging task of estimating accurate system development costs at the inception of 

major development activities (Arena et al., 2006). Indeed, a study by Younossi et al. 

(2007) on 46 completed programs showed that the average cost growth ratio across all 

programs was 1.46, or 46% higher than estimated at Milestone B. The team further 

quantified that this could be attributed to higher level of new technology adaptation in 

most DoD programs, resulting in inherently higher levels of cost and schedule 

uncertainty and hence poor initial budget estimates by program offices.  

 

With increasing complexity in today’s modern warfighting systems, a systematic 

analytical approach from Concept Formulation to System Design and eventual operation 

of the weapon systems is needed. However, the growing complexity has resulted in rising 

risk to development cost and time. Indeed, from the Government Accountability Office’s 

study (Berteau et al., 2011) in 2011, the 98 Major Defense Acquisition Programs 

(MDAPs) had a total cost over-run of $402 billon and an average schedule delay of 22 

months. The main reason for cost over-run was attributed to inaccurate cost estimates as 

shown in Figure 2. Similar to the cost growth study, technical complexity and inaccurate 
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cost estimates are identified as key root causes driving cost increases and schedule delays 

(Michael, 2011; Tom, 2009).  

 

 

Figure 2: Functional Reasons for Cost Over-run (Berteau et al., 2011) 

 

Problem Statement 

Currently, most architectural modeling focuses on the static evaluation of 

architectural products and is disconnected from the performance evaluation of the 

system-under-design. However, the use of static architectural modeling during early 

concept evaluation and performance assessment does not capture the impact of variations 

in design parameters, as well as the impact of these parameters to design and operational 

costs. 
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Research Objectives 

This thesis investigates the utility of Executable Architecture in conducting early 

concept evaluation of DoD-related projects, based on architectural products using 

Department of Defense Architecture Framework (DoDAF). In particular, the research 

focuses on addressing the following questions based on a hypothetical defense 

development program to design and build a multi-tiered UAS ISR SoS: 

 

Research Question 1: Which views of DoDAF are critical for effective 

construction of EA? 

 

Research Question 2: What level of operational or functional hierarchy of 

component sub-systems is required for EA to be effective? 

 

Research Question 3: How can EA be used to identify and evaluate the impact of 

design parameters on Measure-of-Effectiveness (MOE) level and Measure-of-

Performance (MOP)? 

 

Research Question 4: Which are the key parameters that have significant impact 

to design and operational cost for the multi-tiered UAV architecture considered 

here-in? 
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Research Focus 

The focus of this research is to evaluate the utility of EA in the early assessment 

of defense related projects based on DoDAF-driven architecture design. Specifically, the 

research will focus on the domain of tactical ISR system development in an effort to 

provide a basis for application in future ISR SoS development. Specifically, the system-

under-design aims to provide tactical ISR and dynamic strike through the use of a 

fictitious multi-tiered UAS SoS that optimizes the deployment of UAS from different 

tiers to effective search, locate and destroy theater ballistic missiles (TBM) launchers. 

 

Methodology Overview 

This thesis focuses on the following 3 areas: 1) Understand current EA 

technology; 2) Develop EA models based on a proposed design concept; and 3) Evaluate 

the effectiveness of the EA in response to the research questions.  

 

Understand current EA technology.  To achieve this, a literature review is 

conducted in the field of EA to understand the different approaches to achieving an 

accurate depiction of the proposed system architecture. In particular, the review will 

focus on examining the different modeling languages in system architecting, and the 

process to automate the transformation of static models to dynamic models. From the 

result of the review, a suitable methodology and software, namely Innoslate (Innoslate, 

2012), is selected for the implementation of EA.  

 



 

8 

Develop EA models based on proposed design concept.  Different EA models 

with architectural variations are developed based on a plausible Concept of Operations 

(CONOPs) for multi-tiered UAS tactical ISR and dynamic strike systems. These EA 

models are constructed based on the requirements set-forth under DoDAF. 

 

Evaluate effectiveness of EA in response to research questions.  The EA models 

are evaluated, and different architectural variations are introduced to the system-under-

design to assess their impact to the overall performance. The results from these 

simulations will be used to answer the research questions. 

 

Assumptions 

For the purpose of this research, the following assumptions are identified during 

the system modeling and evaluation phase: 

 

1. The methodology is scalable to include more complex individual systems and 

SoS. 

2. The selected sets of parameters under study are adequate to determine future 

system performance. 

3. A commercial tool, Innoslate (Innoslate, 2012), currently exists, and is 

accessible to the author, and includes an executable modeling capability to 

meet the fidelity requirements for this thesis. 
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Preview 

While this research thesis focuses on the application of EA in providing early 

concept evaluation of DoD-related problems, the methodology introduced in this thesis 

can be easily modified to be implemented in other government agencies or commercial 

entities to achieve the desired outcome. A preview of the thesis work is provided below: 

 

Chapter 2: This chapter summarizes the results of the literature in the area of EA, 

focusing on the different modeling languages and transformation techniques. This 

chapter concludes with a comparison of the different approaches, and compares 

and contrasts the main benefits and drawbacks of these approaches. 

 

Chapter 3: This chapter elaborates on the methodology in the application of the 

research efforts, and illustrates how the results were collected and analyzed. 

 

Chapter 4: This chapter summarizes the results obtained from the conduct of the 

research efforts, and the analysis of these results in fulfilling the research 

objectives. 

 

Chapter 5: This chapter concludes the thesis with the interpretation of the results, 

and address the research questions put forth in Chapter 1. This chapter concludes 

with a recommendation for future studies. 



 

10 

II. Literature Review 

Overview 

As part of the research effort, an extensive literature review is conducted to better 

understand the development in the field of EA, and how EA can be implemented to 

provide program and development planning offices with the ability to conduct early 

concept evaluation. This chapter is further divided into three sub-sections:1) Elaborations 

on the key drivers that enables System Architecting to be a viable solution for early 

concept evaluations; 2) Different approaches to better understand the system architectural 

models; and 3) Evaluation of EA as a tool in performance assessment based on DoDAF. 

 

System Architecting as a viable solution 

Definition 

 System Architecting can be defined as an interdisciplinary, integrative approach 

and means to specify the structure and behavior of envisioned systems. Maier (1996) 

further espoused that the architecting process aims to establish a “satisfactory and 

feasible system concept at the earliest stage of system development … and for certifying 

the fitness of the resulting system for use by the client or customers”.  

 

System Architecting for Early Assessment 

By the definition stated in the preceding section, the system architecting process 

provides program and development planning offices with the ability to conduct early 

assessment and evaluation of the project during the early phases of Concept 
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Development. At this phase, most projects are still in their infancy, and are often ill-

structured with many unknowns. System Architecting provides a systematic methodology 

to create and build systems that are too complex to be treated by technical engineering 

analysis alone. Indeed, the system architecting process is applicable across different 

domains and is often used as an initial tool to model and evaluate systems. Some 

examples in different domains include the evaluation of Interplanetary Manned Missions 

(Rudat et al.,2013), risk reduction in the architecting of a Maritime Domain Protection 

System (Buurman et al., 2009), as well as the business domain (Biemans et al., 2001). 

 

System Architecting Improve Cognitive Understanding and Decision Making 

 One of the key challenges in developing complex systems is in recognizing and 

identifying the emergent properties that arise due to the interactions between the elements 

within the system. Some of these emergent behaviors are methodically designed into the 

system as part of the system requirements, while other behaviors are unintended 

consequences that can be desirable or undesirable to the system. Crawley et al. (2004) in 

their research on “The influence of Architecture in Engineering Systems” illustrated 

some of the examples in emergent properties that are reproduced in Table 1. 
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Table 1: Examples of Desirable and Undesirable Anticipated and Emergent System 

Properties Influenced by Architecture (Crawley et al., 2004) 

 Anticipated Emergent 

Desirable 

Electric power networks share the 
load. 

Blackouts are associated with 
increased births. 

Hub-spokes airline routes shorten 
the length of trips. 

Hub-spokes plus waiting time 
creates a business opportunity in 
airport malls. 

Undesirable 

Power networks can propagate 
blackouts. 

Result in loss of productivity 
during blackouts. 

Hub-spokes cause huge swings in 
workload and resource utilization 
at airports. 

Airport operators become 
dependent on mall rental income, 
making it difficult to modify 
airline route structures. 

  

In system architecting, the architects develop multiple perspectives of the system-

under-design that provide coherent views of the system in different domains.   Five broad 

types of system architecture perspectives can be described (Habayeb, 2005): 1) 

Operational, 2) Conceptual, 3) Functional, 4) Physical, and 5) Integration and Interfaces. 

With detailed design and ensuring concordance between the different architectural 

perspectives, decision makers are presented with a holistic view of the system-under-

design and the ability to delve deeper into details.  

 

Architectures provide decision makers with a good overview of the system, 

including the complexity and the relationship between different components, thus 

enabling better cognitive understanding of the overall system. As aptly put forth by 

Rechtin (1992), ‘rarely, if ever, is there a single optimal solution for all parties and 

circumstances’, and the system architecture and perspectives provide decision makers 
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with the information required at the early stages of concept development for evaluation 

and assessment. 

 

DoDAF as Tool for Early Concept Evaluation in DoD 

As stated in the preceding section, when effectively utilized, system architecting 

provides system architects with a tool to enable assessments and achieve quantifiable 

trade-studies. Similarly, the concept of system architecting can be employed in the 

current DoD development and acquisition process to evaluate programs during early 

Concept Evaluation. Recognizing this, the DoD already has a system architecting 

framework, DoD Architecture Framework (DoDAF, 2009), in place. Before embarking 

on EA for DoD projects, it is necessary for the system architects to have a good 

understanding of DoDAF. 

 

DoD Architecture Framework 

 DoDAF is the over-arching comprehensive framework and conceptual model that 

prescribes a set of architectural artifacts in the development of architecture. It is data-

centric and emphasizes fit-for-purpose architectural development. The purpose of 

DoDAF is to manage complexity by facilitating the ability of DoD decision makers to 

make key decisions more effectively through organized information sharing across the 

Department, Joint Capabilities Areas, Mission, Component, and Program boundaries. 

DoDAF sets the common framework to standardize architectural descriptions and ensure 
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that these descriptions can be compared, related, understood, exchanged, and reused 

across multiple stakeholders by employing common language and rules (DoDAF, 2009a). 

 Eight viewpoints are provided under DoDAF as described in DoDAF Volume 2  

(DoDAF, 2009b):1) All Viewpoint provides the overarching perspective of the system-

under-design, including information such as scope, context, and vocabulary; 2) 

Capability Viewpoint that provides perspective on the capability of the system; 3) Data 

and Information Viewpoint provides the operational and business information 

requirements and rules that are managed within and used as constraints on the 

organizations business activities; 4) Operational Viewpoint describes the tasks and 

activities, operational elements, and resource flow exchanges required to conduct 

operations; 5) Project Viewpoint describes how programs, projects, portfolios, or 

initiatives deliver capabilities, the organizations contributing to them, and the 

dependencies between them; 6) Services Viewpoint describes services and their 

interconnections providing or supporting DoD functions; 7) Standards Viewpoint 

describes the set of rules governing the arrangement, interaction and interdependence of 

parts or elements of the architectural description; and 8) Systems Viewpoint describes the 

systems and interconnections providing for, or supporting, DoD functions. Together, 

these viewpoints provide a comprehensive and complete description of the system-under-

design. 

 

Central to these viewpoints are the set of artifacts that are defined under the Data 

Meta-Model (DM2). With the transition to DoDAF v2.02, the framework shifted from a 
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product-centric process to a data-centric process, focusing on providing decision-making 

data to the decision makers (DoDAF, 2010). In DoDAF v2.02, models based on DM2, 

such as documents, spreadsheets, or other graphical representations, enable decision 

makers to visualize architectural data (DoDAF, 2009a).  

 

System Architecting—From Static Viewpoints to Dynamic Executable Models 

 With a better understanding of DoDAF, the literature review will now focus on 

the current technology in developing dynamic executable mode for EA. It is therefore 

necessary to understand the two difference between the two broad categories in system 

architectures: 1) Static Architecture; and 2) Executable Architecture (EA).  

  

Static Architecture can be defined as static views of the architecture based on the 

development of static products, such as specification documents, drawings, and plans 

while Executable Architecture can be defined as executable dynamic simulations that are 

automatically or semi-automatically generated from architecture models or products as 

defined by Hu et al (2014). In addition, Wang et al (2014) further deliberate that each EA 

comprise three main components—1) Executable Model, 2) Execution Mechanism, and 

3) Execution Process. 

 

 To better understand EA, it is necessary to first have an understanding of Model-

Based System Engineering (MBSE). MBSE is defined by INCOSE in “System 

Engineering Vision 2020” (2007) as ‘the formalized application of modeling to support 
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system requirements, design, analysis, verification, and validation activities beginning in 

the conceptual design phase and continuing throughout development and later life cycle 

phases’. The introduction of MBSE also drives the development of executable 

architecture through the creation of system models, as seen in the Model-Driven 

Architecture (MDA) approach championed by the Object Management Group (Brown et 

al., 2004, Pastor et al., 2007, Kleppe et al., 2003).  

 

With the increasing complexity in the modern defense acquisition program, SA is 

no longer sufficient to provide the level and depth of analysis required. In particular, the 

relations and interactions between different nodes are difficult to define and model in a 

static view, where the type of events, as well as the sequence in which these events occur, 

has a big impact on system performance. In this regard, EA provides the capability for 

system architects to include dynamic models and interactions in the architecture, thus 

providing a more complete model across operational time and space. 

 

Methodology for Implementing EA from Static Architecture 

To achieve dynamic simulations based on the static architectural models, three 

different methodologies can be implemented: 1) Develop software that simulates the 

architectural models; 2) Import the models into simulations software; and 3) Direct 

transformation of static architecture models into dynamic executable models. The 

methodologies are summarized in Table 2 and further elaborated in the subsequent 

paragraphs.  
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Table 2: Comparisons of Methodologies 

Methodologies Pros Cons 

Develop Simulation 
Software based on 
Static viewpoints 

1. Flexibility in 
development. 

2. Customizability to 
provide level of 
abstraction and 
user-interface 

1. Interpretation Errors. 
2. Longer lead time and 

development cost. 
3. Substantial re-

programming efforts 
may be incurred 
during changes. 

Import models into 
simulation software 

1. Built-in functionality 
for basic 
evaluation. 

2. Less programming 
required. 

1. Interpretation Errors. 
2. Need for expert in 

simulation software. 

Direct 
Transformation of 
static architecture 
models into 
dynamic models 

1. Reduce 
intermediate 
interpretation error. 

2. Ease of introducing 
architectural 
variation. 

1. Lack of flexibility. 
2. Constrained by 

Software. 

 

Software Development.  The system models are designed using modeling 

languages, with rules and behaviors articulated in the diagrams. Similar to the 

software system engineering process, these system models form the basis for 

programmers to design executable codes (similar to Agile software development 

process articulated by Larman (2004)). Here, the system interactions and 
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behaviors are implemented in software that are specifically customized to the 

static models. The key benefits of this method are: 1) Flexibility for the 

programmer to implement different aspects of the models, such as special rules 

and relationships; and 2) Customizability to provide the level of abstraction and 

user-interface required to enable better understanding of the trade-space, and for 

effective communications between stakeholders. However, there are also several 

disadvantages, namely: 1) Need for software programmers to interpret the static 

models and design the software products, which can introduce interpretation 

errors into the system where the software does not represent the static models 

accurately; 2) Need for longer lead time and developmental cost in simulation 

software development; and 3) Changes to the static models may results in 

substantial re-programming efforts.  

 

Use of Simulation Software.  Another method to assess static models is to import 

these models into simulation software packages, such as Arena or Simulink in 

Matlab. Using simulation software, the architectural models and their attributes 

are designed and simulations are carried out to obtain the results of the 

architectural design. The key benefits of this method are: 1) Simulation software 

packages often have stochastic functionality built-in to provide basic results 

evaluation; and 2) Less programming is required as compared to developing a 

software from scratch. Similarly, this method also has disadvantages, namely: 1) 

Need for simulation programmers to interpret the static models and develop 
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equivalent models in the simulation software, hence the possibility of introducing 

interpretation error, similar to that in software development; and 2) Need for 

additional simulation software and experts who are able to effectively and 

accurately implement the static models in the simulation software. 

 

Direct Transformation of Static Model.  In this method, the static models are 

designed using software which then transforms them into dynamic executable 

models. The main benefits for this method are: 1) No intermediate interpretation 

and design is required by additional parties such as programmers, hence 

minimizing interpretation errors; 2) Ease of introducing architectural variation 

into the design, as changes to the static models can be transformed into executable 

models directly. The main disadvantage for this method is the lack of flexibility in 

the implementation of additional rules, which can only be implemented with 

additional programming scripts into the EA software. The direct transformation of 

the static models forms the basis of EA which are further elaborated in the next 

sub-section. For example, the Enterprise software by Sparx and Innoslate are able 

to perform this transformation.  

 

Evaluation of Different Modeling Languages 

 DoDAF v2.02 provides system architects with a clearly defined framework and 

viewpoints for the development of architectures. The use of models within DoDAF 

further enables system architects to utilize MBSE techniques to implement executable 
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DoDAF architectures. To ensure that DoDAF Operational Views are accurately captured 

in the modeling process, Bueno et al (2014) proposed an integrated methodology to build 

an executable architecture based on the system dynamics of the Operational Views to 

achieve concordance. With the emerging development in MBSE and EA, several 

modeling languages have been introduced and extended to support the modeling and 

simulation of system architecture. To effectively create an EA, there is a need to 

accurately create architectural structures through the use of modeling language, and to 

convert the static models into dynamic models using transformation methods. Here, the 

following modeling languages and profiles are introduced and evaluated, namely: 1) 

Unified Modeling Language (UML), 2) System Modeling Language (SysML) and 3) 

Unified Profile for DoDAF/Ministry of Defense Architecture Framework (MoDAF) 

(UPDM), for the development of DoDAF models. It is noted that while UPDM is not a 

modeling language, it is a subset of UML that is developed specifically for DoDAF, and 

therefore it is important to include UPDM in the evaluation. 

 

a. Unified Modeling Language (UML): UML is a modeling language that 

supports Object-Oriented Analysis and Design (OOAD) and is primarily used 

in the area of software development (Larman, 2004). Currently in version 2.5, 

UML enables architects to develop models in three major categories of model 

elements, namely—1) Classifiers that describe a set of objects, 2) Events that 

describe set of possible occurrences, and 3) Behaviors that describe a set of 

possible executions (OMG UML, pg 12, 2015).  
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In this regard, it is important to introduce the set of semantics in UML. The 

semantics of UML refers to how the system can be modeled, and can be 

generally characterized into Structural semantics or Behavioral semantics as 

seen in Figure 3. Here, the Behavioral semantics builds on the Structural 

semantics and addresses communication and associated state changes between 

different structural objects that are event-driven.  

 

 
Figure 3: Semantic Areas of UML (OMG UML, pg 14, 2015) 

 

It is important for executable architecture to have the ability to include 

behavior models and characteristics into the architecting process. Here, 

behavioral features may be designed into Classifiers to define behavioral 
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characteristics into an otherwise static model. With the use of suitable tools, 

such as Enterprise Architect by Sparx System, these Behavior models can be 

translated into an executable format that may be executed dynamically over 

time, in accordance with the Events and triggers that occur, and hence provide 

the architect with a dynamic view of the system-under-design (OMG UML, 

2015).  

 
To achieve common understanding in UML models, there is a need to develop 

common standards, syntax, and semantics. The syntax in UML is achieved 

through the Meta-Object Facility (MOF) framework that serves as the 

platform-independent metadata management foundation for Model-driven 

architecture (MDA) (OMG MOF, pg 5, 2015). The syntax determines how 

UML models may be constructed, represented, and interchanged.  

 

b. System Modeling Language (SysML):  SysML is a modeling language that is 

tailored for system engineering applications that supports the specification, 

analysis, design, verification, and validation of a broad range of systems and 

systems-of-systems (Friedenthal et al, 2014). The language is an extension of 

a subset of the UML language as depicted in Figure 4 below (OMG, 2015): 
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Figure 4: Relationship between SysML and UML (OMG, 2015) 

Similar to UML, SysML allows architects to create dynamic models through 

the use of Behavior diagrams. In addition, with the modifications and new 

diagrams, SysML is better equipped to enable EA. Some of the examples are: 

1) Enabling rate of data flow to be specified between activities; 2) Introducing 

Control Operators that are able to enable or disable other actions; and 3) 

Supporting assignment of probabilities to activities (Balmelli, 2007). These 

improvements directly improve SysML’s functionality to support EA. 

 

c. UPDM (Unified Profile for DoDAF/MoDAF):  UPDM is a visual modeling 

standard that supports the development of architectures that comply with the 

USA DoDAF and UK MODAF (OMG UPDM, 2010). It is an extension of 

UML/SysML that is tailored to provide a consistent and standardized means 

to describe DoDAF and MODAF architectures (Hause et all, 2010). This is an 

important improvement in operationalizing UML/SysML in supporting 
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concept evaluation using EA for DoD related projects, since the models from 

UPDM are aligned with DoDAF prescribed products (UPDM, 2012). 

Specifically, UPDM is developed using a model-driven approach where 

models conforming to DM2 specification are defined defined using UML 

class models to enable data-centric architecture development. Since UPDM is 

based on UML/SysML, it is also primarily a static modeling language that 

will need to be transformed into an executable model. 

 

Different Implementations for Transforming Static Models into Executable Models 

It is important to note that modeling languages such as UML, SysML, and UPDM 

are by themselves a modeling and diagramming language, and are not executable without 

the use of additional processing or translation into EA. In addition, while UML and its 

extensions serve as an effective tool for the development of static models for software 

architecture, there are limitations in UML for EA due to the lack of informal execution 

semantics (Wang, 2011) and the difficulty in achieving concordance between different 

diagrams within UML (Wagenhals et al, 2009).  

 

 With the growing interest in creating EA, there are further efforts to develop a 

methodology to transform these static models into executable dynamic models. In this 

regard, two different methodologies are presented: 1) Model-driven Architecture; and 2) 

Colored Petri-Nets. 

 



 

25 

a. Model-driven Architecture (MDA). MDA is an initiative introduced by OMG 

to enable the development of executable software from static models. Here, 

two terms are introduced—1) Platform-independent-model (PIM) is the static 

model that describes the architecture of the system-under-design, and 2) 

Platform-specific-model (PSM) that is executable in a specific platform (such 

as Java).  

 

Central to MDA is the set of standards: UML, MOF, Extensible Markup 

Language (XML) Metadata Interchange (XMI) and Common Warehouse 

Metamodel (CWM). Through the use of UML and MOF standards, UML-

based modeling languages (such as UML, SysML, and UPDM) can create 

PIM with well-defined parameters that can be interpreted and automatically 

transformed into PSM, which can then be executed as an EA. To achieve this, 

a transformation pattern is first applied to the model to transform it to 

software codes (such as C# or Java) (OMG MDA, 2014). 

 

One example of MDA implementation can be found in executable and 

translatable UML, also known as the X
TUML, modeling language. X

TUML 

combines a subset of UML graphical notation with executable semantic and 

timing rules (Starr, 2002), and X
TUML creates PIM that can be automatically 

transformed into PSM, and have been tested and verified by Siljamaki et al 

(2008) and Ciccozzi et al (2010). A study by Burden et al (2011) showed that 
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students do not need an extensive course in X
TUML to be proficient in the 

language. Other software tools also enable users to create executable models 

using UML. For example, Sequence Diagrams, State-Machine Diagrams and 

Activity Diagrams can be executed in Enterprise Architecture Software with 

the use of additional Javascripts (Sparx, 2016). 

 

b. Color Petri-Net: Color Petri-Net (CPN) is a very general discrete event 

dynamical system model that is mathematically rigorous, executable, and 

enables both simulation and analysis of properties (Wagenhals et al, 2009). To 

achieve EA using CPN, it is necessary to transform the static models (such as 

UML, SysML models) into executable models. For example, Liles (2008) 

created the process for the auto-generation of an executable CPN model of an 

architecture description that is DoDAF compliant using UML, specifically the 

transformation of UML Activity Diagrams to create executable model of a 

System-of-Systems; while Wang et al. (2008) translated SysML-based 

specifications into CPN to achieve discrete-event simulation. 

 

CPN utilizes the concept of typed tokens to represent objects within the 

systems. The state of the system is determined by the distribution of tokens 

over different nodes, and transitions represent actions within the system. 

CPNs are well suited for modeling concurrent behavior of distributed systems 
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as multiple transitions are enabled and allow for the non-deterministic firing 

of transition actions (Wang et al, 2015).  

 

Introducing Life-cycle Modeling Language 

In addition to the static and dynamic models derived from UML-based modeling 

language, there is also a relative new language that is designed specifically for systems 

engineering—Life-cycle Modeling Language (LML) (LML, 2015). LML focuses on the 

use of easy to understand ontology to allow system architects to model complex 

interrelationship between system components, as well as artifacts such as schedules and 

risk management plans. The basis for LML formulation is the Entity, Relationship, and 

Attribute (ERA) meta-model. By using everyday language in its implementation, LML is 

easy to understand and communicate between stakeholders and the design team.  

 

With pre-defined Actions and Input/Output entities, LML enables system 

architects to develop EA using Action Diagrams. The Action Diagrams represents the 

functional sequencing of Actions along with the data flow provided by the Input/Output 

entities. The Actions such as “OR”, “SYNC” or “LOOP” are predefined and allow LML 

to be executable in accordance with the rules associated with Actions and the conditions 

in the Input/Output entities. Innoslate, a web-based LML system, allows users to create 

LML diagrams that can be executed. In addition, Innoslate has incorporated DM2 into the 

LML ontology, and hence users are able to create artifacts in accordance with the 

specification in DM2 as well as to create other DoDAF products. However, being a 
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relatively new language, LML does not have the full range and depth of modeling 

capabilities as seen in more matured languages such as UML/SysML. 

 

Summary of EA languages and models types 

 In summary, there are several different methods to enable EA through the use of 

architectural models. All methodologies begin with the creation of graphical models 

using either UML-based languages (UML/SysML/UPDM) or LML. For UML-based 

models, there is a need to further process the models, either through MDA mapping and 

transformation into executable PSM, or to map into CPN for simulations. For LML, the 

pre-defined Actions allow the Action diagram to be executable by using LML tools. The 

relationships are stated below. 

 
Figure 5: Relations between Static and Dynamic Models 

 

Illustrative Example on use of EA for Concept Evaluation 

 With a better understanding of the capability of EA, it is apt to illustrate how EA 

is used to evaluate projects during early stages of Concept Evaluation. Three examples 

are presented to show how EA is used for concept evaluation: 1) Conceptual Design for a 
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manned mission to Mars (Colombi et al., 2015); 2) Assessment of the Weapon Born 

Battle Damage Assessment (WBBDA) for Time Sensitive Effect Operations (TSEO) 

(Rodriguez, 2005); and 3) Extended Sequence Modeling (ESM) for Capability Review 

and Risk Assessment (CRRA) (Mastro et al, 2009). 

 

 Conceptual Design for Manned Mission to Mars (Colombi et al., 2015).  In this 

research the team developed 14 Candidate Architecture (CA) models and Cost Models to 

evaluate different variations of the CA. Here, the EA is developed through the 

employment of methodology of using simulation software. Here the EA was 

implemented in Satellite Tool Kit (STK), and the use of EA, the team was able to 

stimulate and evaluate the dynamic performance of key parameters over time (Figure 6). 

From these results, the Pareto frontier for performance value was developed and provided 

the baseline for quantitative evaluation as shown in Figure 7. These results form the basis 

for decision makers and enhance the cognitive understanding of the system by providing 

performance values over time, against different parameters. 
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Figure 6: Example of Dynamic Results over time (Colombi et al., 2015) 

 

 
Figure 7: Example of Pareto Frontier for different variation within each CA 

(Colombi et al., 2015) 
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Assessment of WBBDA (Rodriguez, 2005).  In this research, the team utilized EA 

to compare the effectiveness of WBBDA in TSEO. Specifically, methodology of direct 

transformation of static model was used. Here, the different variants of the system, 

utilizing different warheads and WBBDA combinations were implemented in CoreTM 

software and Monte Carlo simulations were done. From the results, the team was able to 

conclude that a low lethality warhead system would benefit from the implementation of 

WBBDA, and provide recommendation for future analysis. 

 

 ESM in CRRA (Mastro et al, 2009).  As part of this research, the team introduced 

the concept of ESM to improve the Process Sequence Modeling in the CRRA process. 

Unlike PSM which employs a binary result (pass or fail) in the activity models, ESM 

allows the practitioner to incorporate Probability Distribution Function (PDF) in the 

modeling process. Specifically, ESM can be defined as a type of executable dynamic 

architecture that has been specifically developed to analyze the CRRA, and provide 

CRRA practitioners with the ability to evaluate capabilities by varying the activities of 

interest or their dependencies. To implement the EA, the team used the methodology of 

software development, where the team developed Matlab codes for the dynamic models. 

The research team then implemented the ESM technique to a portion of an Agile Combat 

Support PSM in support of the 2009 CRRA and provided effects of dependencies such as 

number of people required in support of surge operations. 
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Conclusion 

From the literature review, it is shown that executable architecting has the 

potential to provide program offices with the capability to assess and evaluate projects 

during the early Concept Development stage. This was further illustrated using the work 

done on concept evaluation of manned-mission to Mars. In addition, with the continuous 

refinement of DoDAF and improvement in the modeling languages, system architects are 

better equipped to develop architectures for DoDAF related systems.  
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III. Methodology 

Chapter Overview 

The purpose of this thesis is to evaluate the effect of architectural variance during 

the early concept development phase for the implementation of a multi-tiered UAS SoS 

for tactical ISR and dynamic strike operations to destroy Theater Ballistics Missiles 

(TBM) launchers. Modified from the Architectural-Based Evaluation Process (ABEP) 

(Dietrichs et al, 2006), the proposed methodology is developed from the perspective of 

the development team, after the team receives the Concept of Operations (CONOPS) and 

user’s requirements. This methodology aims to evaluate different architectural variations 

based on implementation of the CONOPS and the effectiveness in fulfilling the user’s 

requirement, and provide the users with a quantitative assessment of the different 

variations.  

 

The methodology will begin with an overview of the operational need and 

scenario, followed by a summary of a fictitious CONOPS that envisage how UAS from 

different tiers could be employed cooperatively to locate and strike TBM launchers. This 

is followed by the development of high level DoDAF Operational Views of the system. 

Next, the architectural variants are identified, and an assessment is made to determine 

which user requirements and corresponding MOEs will be affected by the architectural 

variants. Lastly, the EA models are designed to simulate the different variants, and the 

results are evaluated based on the identified MOEs. The architectural products and EA 

are designed and implemented using Innoslate (Innoslate, 2012), a web-based EA tool. 
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Overview of Research Methodology 

The proposed research methodology is a six-step process, namely: 1) Understand 

and analyze Scope and Operational Use for system-under-design; 2) Identify key user 

requirements and MOEs; 3) Develop high level DoDAF architectural products; 4) 

Identify architectural variants for evaluation; 5) Develop simulation scenario and EA 

models; and finally 6) Simulate and conduct data analysis. 

 

Step 1: Understand and analyze Scope and Operational Use for system-under-

design. To effectively answer the research questions, it is necessary for the 

development team to have a comprehensive understanding of how the System will 

be deployed and operated by the users. This is achieved by understanding the 

operational need, and the CONOPS to identify key design parameters and the key 

user requirements.  

 

Step 2: Identify key user requirements and MOEs.  Following the analysis, the 

key user requirements are further developed into quantifiable MOEs. For a more 

effective comparison between the results of the different variants, the MOEs are 

weighted through the use of the Analytic Hierarchy Process (AHP) to better 

evaluate the effectiveness, based on the relative importance of each MOE. 

 

Step 3: Develop high level DoDAF architectural products.  Next, to ensure that 

the CONOPS are understood correctly, the following architectural products are 
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developed and presented to the users. As this is an early concept evaluation, the 

focus is on developing high level All Views and Operational Views, namely AV-

1 (Overview and Summary Information), OV-1 (High Level Operational Concept 

Graphic), OV-2 (Operational Resource Flow Description), OV-5 (Operational 

Activity Decomposition Tree and Operational Activity Model), and OV-6a 

(Operational Rules Model). These products aid communication and ensure that 

both development team and users have the same understanding for the system-

under-design. 

 

Step 4: Identify architectural variants for evaluation.  Next, based on the OVs 

developed, the development team will identify possible architectural variants. 

These architectural variants must fulfill the CONOPS as stipulated by the users, 

and will drive design parameters that impact the effectiveness of the system-

under-design. To determine the effect, the operational activities are analyzed and 

the effect of respective variants on each activity are identified.  

 

Step 5: Develop simulation scenario and EA models.  Based on the CONOPS, a 

simulation scenario is developed that depicts how the system-under-design will be 

operationalized. Next, the different architectural variants are incorporated into the 

EA models based on OV-5b, using the results of the analysis from step 4. For this 

research thesis, the EA models are developed using Innoslate. 
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Step 6: Data Collection and Analysis.  For the results to be statistically 

significant, Monte Carlo simulation will be executed, with at least 30 runs to be 

completed. For the purpose of this research, the Monte Carlo simulation will be 

executed with 50 runs. From the results, each variant is scored based on the MOE 

weightings (from Step 4), and a Pareto Frontier can be charted. 

 

Implementation of Methodology 

 Using the proposed methodology described in the preceding section, the different 

architectural variants of the Multi-tiered UAS SoS is evaluated. The following sections 

detail the implementation of each of the steps in the methodology. 

 

Step 1: Understand and analyse Scope and Operational Use for system-under-design 

 The System-under-design is a SoS of multi-tiered UAS that will be deployed for 

ISR and dynamic strike on Theater Ballistics Missile (TBM) launchers. The scope and 

use for the system will be driven by the operational need and CONOPS. To further 

expand on the system-deployment and understanding, the use-cases for the system are 

developed according to the CONOPS. The CONOPS was developed as part of a course 

requirement by four authors, including the author of this thesis. 

 

Operational Need.  Rapid improvements of TBM technology and increases in 

weapons proliferation to non-allied nations have resulted in new and constantly changing 

threats to friendly forces. The high accuracy of many TBM systems allow them to inflict 
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serious damages from significant stand-off distances, even when the missiles are armed 

with only conventional warheads. To further compound the problem, TBM launchers 

employ a shoot-and-scoot technique which makes counter-TBM operations challenging. 

To address this threat, the military needs to have a capability that can preemptively seek 

and destroy TBM launchers. This multi-tiered UAS SoS provides the capability to 

maintain persistent situation awareness over a designated area to search and locate 

possible TBM launchers and dynamically target and strike these TBM launchers with 

minimal cost or risk to personnel. 

 

CONOPS Overview.  The multi-tiered UAS SoS focuses on the efficient 

employment of different groups of UAS to maintain persistent situational awareness over 

the Area of Operations (AO), to seek and identify possible TBM launchers, and to 

dynamically direct targeting and strike operations. It leverages the capabilities of 

different groups of UAS and sensor systems to achieve a system capable of optimizing 

UAS employment for mission effectiveness, while minimizing operational cost and risk. 

Specifically, the multi-tiered UAS SoS will need to employ cooperative control among 

various UAS groups in the AO to assign roles and plan safe routes for ingress and egress. 

The different tiers of UAS, as defined in the Unmanned System Roadmap, are shown in 

Figure 8 below. The details of the CONOPS can be found in Appendix A. 
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Figure 8: Classification of Different UAS tiers 

 

a.  Larger tiers UASs (Group 4 and 5):  

i. Persistent ISR. The larger tiers of UASs have the greatest range, 

endurance, airspeed, and altitude capabilities in the family of UAS. As 

such, these UAS are typically employed to conduct persistent ISR over 

the AO. They will be equipped with the necessary sensors to identify 

possible Surface-to-Air (SAM) sites and possible TBM launchers in 

the AO. 
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ii. Dynamic Strike. These groups of UAS are also capable of carrying 

kinetic weapons, and could be loaded with the necessary munitions to 

provide a dynamic strike capability. 

 

b. Smaller tiers UASs (Group 1 and 2):  

i. Target Verification. The smaller UAS groups have a smaller footprint 

and are used for target verification and can be equipped with 

Automatic Target Recognition (ATR) software to determine phases of 

TBM launcher deployment.  

 

ii. Battle Damage Assessment (BDA). These UAS groups will also be 

used to perform BDA after the conclusion of the dynamic strike to 

confirm mission success.   

 
Use-Case:  The Use Case diagram and the terse use-case of the system is as 

shown in Figure 9, and Table 3 describe this diagram in details: 
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Table 3: Terse Use Cases 

No Name Terse Use Case Write-up 

UC 2.1 Find TBM 

Site 

The Mission Commander inputs mission parameters into System. The 

System identifies available ISR UAS and assigns ISR UAS to find 

TBM Site. ISR UAS continues loiter above AO and uses sensor data 

Figure 9: Use Case Diagram 
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No Name Terse Use Case Write-up 

to identify TBM site. ISR UAS update System on possible TBM site. 

 

UC 2.2 ID SAM 

Sites 

ISR UAS loiters around AO. ISR UAS picks up SAM Sites signature 

through its onboard sensors. ISR UAS determines location of SAM 

Sites. ISR UAS updates System with the SAM Site locations. The 

System stores the site locations within the database for plotting UAS 

ingress routing. Note: this use case is not simulated in the EA. 

 

UC 2.3 Observe 

TBM Site 

System receives the possible TBM site locations from ISR UAS. 

System initiates Observe TBM Site function. System identifies 

available Group 1 Swarm and assigns the Group 1 Swarm to Observe 

TBM Site. System calculates and plot route for Group 1 UAS Swarm 

to area-of-interest. System sends routing information and Target 

information to Group 1 UAS Swarm. Group 1 Swarm proceeds to 

TBM site and utilize onboard sensors and software to identify TBM 

launchers and the phase of operations. Proceed to Determine Fueling 

Phase use case if the Group 1 Swarm confirmed TBM launcher is in 

the Fueling Phase. 

 

UC 2.4 Determine 

Fueling 

Phase 

Group 1 Swarm identifies that phase in which the TBM launcher is in.  

Group 1 Swarm confirms TBM Launcher is in Fueling Phase using 

onboard software and send TBM launcher status to System. 

 

UC 2.5 Plot Route System confirms the Start position of the UAS and the desired Final 

loiter location of the UAS which maximizes coverage of the target. 

System identifies possible SAM sites within the AO. System plots the 

optimal route for UAS from Start to Final position, avoiding SAM 
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No Name Terse Use Case Write-up 

sites. System transmits flight path to the respective UAS. 

 

UC 2.6 Strike 

Target 

System receives confirmation of TBM launcher in Fueling Phase. 

System selects the available Strike UAS within the AO and assigns 

the Strike UAS to strike the TBM launcher. System determines the 

best route for Strike UAS ingress and egress and transmits the 

information the Strike UAS. Strike UAS enters range of target and 

acquires target TBM launcher. Strike UAS updates System that target 

is acquired. D- Mission Commander approves and launch instructions 

is transmitted to Strike UAS. Strike UAS launches missiles and sends 

launch confirmation to Mission Commander. 

 

UC 2.7 Battle 

Damage 

Assessment 

(BDA) 

System receives confirmation that weapon payload has launched 

against TBM launcher. System identifies available Group 1 Swarm 

and assign Group 1 Swarm to execute BDA.  System calculates and 

plot route for Group 1 UAS Swarm to area-of-interest.  System sends 

routing information and Target location to Group 1 UAS Swarm. 

Group 1 Swarm proceeds to TBM site and utilize onboard sensors and 

software to identify and confirmation of TBM launchers destruction. 

 

UC 2.8 Call Asset System scans the current deployed UAS assets in the AO.  System 

identifies all available assets in the AO and selects the optimal Asset 

based on the type of UAS and type of payload to meet the required 

mission requirement. The System communicates with the UAS and 

assign tasks to the UAS. 

 



 

43 

No Name Terse Use Case Write-up 

UC 2.9 Cancel 

Mission 

Mission Commander recalls all active aircraft. System plots route 

safest for all UASs, taking into consideration location of possible 

SAM sites and UAS capabilities. System transmits flight-plans to all 

UASs. UASs acknowledge receipt and proceed to return to base. 

 

Step 2: Identify key user requirements and MOEs 

 Based on the analysis of the CONOPS and the deployment of the system-under-

design, the following are the key MOEs that are measured: 

 

a. The system-under-design shall positively identify and confirm target 

location of 60% (threshold) and 80% (objective) of the targets 

encountered. 

b. The system-under-design shall destroy 60% (threshold) and 80% 

(objective) of the targets encountered. 

c. The system-under-design shall have less than 10% (threshold) and 5% 

(objective) in false target declarations out of all total target declarations. 

d. The system-under-design shall strike the target within 1 hr 45 mins 

(threshold) and 1hr 30 mins (objective) after initial target acquisition. It is 

important to note that these duration requirements are set to be long due to 

the artificiality of the CONOPs. 
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 The user requirements are then translated into MOPs that will be measured during 

each simulation run. The MOPs are as follows: 

 

 a.   Target Acquisition (Percentage): Measures the capability of the system to 

effectively and positively acquire the TBM launcher. This is an important measure that 

demonstrate the system’s capability to effectively locate TBM within the area of 

operations. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 (𝑃𝑃𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

=
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑇𝑇𝑇𝑇𝐴𝐴

𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑃𝑃 𝑖𝑖𝐴𝐴𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 𝑖𝑖𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 𝑇𝑇𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴
 × 100% 

 

 b. False Alarm (Percentage): Measures the error rate of the system in picking 

up false target. A high false alarm rate results in possible strike on non-TBM that may 

result in negative repercussion on the mission. 

𝐹𝐹𝑇𝑇𝑃𝑃𝑖𝑖𝑇𝑇 𝐴𝐴𝑃𝑃𝑇𝑇𝑇𝑇𝑛𝑛 (𝑃𝑃𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

=  
𝐹𝐹𝑇𝑇𝑃𝑃𝑖𝑖𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑇𝑇𝑇𝑇𝐴𝐴

𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑃𝑃 𝑖𝑖𝐴𝐴𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 𝑖𝑖𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 𝐴𝐴𝑇𝑇𝐴𝐴𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
 × 100% 

 

 c. Time-to-Strike: Measures the time from Target Acquisition to last Bomb-

on-Target. This is important due to the nature of TBM launcher operations. The TBM 

launchers are equipped with the ability to “launch and scoot”, and may not be located 

within the same coordinates for an extended period of time. As a result, it is important 

that the system is able to acquire and engage the target within a short time span. 
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𝑇𝑇𝑖𝑖𝑛𝑛𝑇𝑇 𝑇𝑇𝑖𝑖 𝑆𝑆𝑇𝑇𝑇𝑇𝑖𝑖𝑆𝑆𝑇𝑇 =  𝐵𝐵𝑖𝑖𝑛𝑛𝑛𝑛 𝐿𝐿𝑇𝑇𝐴𝐴𝑖𝑖𝐴𝐴ℎ𝑇𝑇𝐴𝐴 𝑇𝑇𝑖𝑖𝑛𝑛𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖𝑛𝑛𝑇𝑇 

 

 d. Target Destruction (Percentage):  Measures the total number of confirmed 

targets that are positively destroyed. This MOP evaluates the overall capability of the 

system in achieving its user’s requirement in TBM launcher destruction. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 (𝑃𝑃𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

=
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑖𝑖𝑃𝑃𝑇𝑇𝐴𝐴

𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑃𝑃 𝑖𝑖𝐴𝐴𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 𝑖𝑖𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 𝑇𝑇𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴
 × 100% 

  

The MOPs will be tracked and pairwise comparison will be carried out. Next, the 

Objective Hierarchy Process (OHP) is used to assign weights to each of the MOPs, and 

an overall weighted score will be given for each variant based on the aggregated results. 

 

Step 3: Develop High level DoDAF architectural products 

 Based on the analysis and the required MOEs, the following DoDAF architectural 

products are developed—1) All-View 1 (AV-1), 2) Operational View 1 (OV-1), 3) 

Operational View 2 (OV-2), 4) Operational View 5 (OV-5), Operational View 6 (OV-6) 

and 5) Logical Data View (DIV-2). Similar to the CONOPS, the AV-1 and OV-1 were 

developed as part of a System Architecting course requirement. 

 

 AV-1: The AV-1, derived from the CONOPS, provides an overview of the 

system-under-design. In addition, the AV-1 lists the architectural products that will be 
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developed based on the requirement of the thesis investigation. The detailed AV-1 is 

found in Appendix B.  

 

 OV-1:  The OV-1 is a pictorial depiction of the system-under-design and serves as 

an important visual communication tools to aid understanding between stakeholders. The 

OV-1 for the system is as shown in Figure 10. Specifically, the OV-1 shows the linkage 

and command links between the Command Post to the different tiers of UAS, and the 

sequence of operations leading to the strike of the TBM launchers. 

 

OV-2:  The OV-2 provides the high level summary of the resource flow between 

the different entities of the Multi-tiered UAS SoS. The key entities are—1) Decision 

Makers (Manual or autonomous), 2) ISR UAS, 3) Surveil UAS, 4) Strike UAS, and 5) 

BDA UAS. The key resource flows are information flows between the Decision Makers 

and the different UAS tiers, specifically Mission Parameters and Command instructions 

from the Decision Makers and telemetry and video data from the UAS. In addition, it is 

noted that the Information Data Cloud is implemented as a logic node, and not a physical 

node. The diagram is illustrated in Figure 11. 

 

OV-5a:  The OV-5a details the key activities in the Multi-tiered UAS SoS. The 

key Activities can be distinctly demarcated into six broad categories, namely—1) ISR 

UAS Operational Activities, 2) Surveil UAS Operational Activities, 3) Strike UAS 

Operational Activities, 4) BDA UAS Operational Activities, 5) Decision Making 
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Activities, and 6) Monitoring Activities. The OV-5a focuses on the activities executed by 

the different sub-system and hence may appear to be highly redundant. However, it is 

necessary as it forms the foundation for OV-5b. The OV-5a is illustrated in Figure 12. 

 

OV-5b:  The OV-5b details the flow of the activities and how the different entities 

operate within the multi-tiered UAS SoS. This is represented through the use of swim-

lanes in the diagram, which activities associated to the particular entity appearing on its 

specific swim-lane. In addition, the OV-5b forms the foundation for the construction of 

EA, based on the characteristic and logic flow between the different activities. The OV-

5b is illustrated in Figure 13. 

 

OV-6a:  The OV-6a details the operational rules for the key activities nodes in the 

activity flow diagram, OV-5b. These rules are essential for the development of the EA as 

they define the operational constraints of the system and the rules for the interaction 

between different activities nodes. The details are illustrated in Table 4 below. 

 

DIV-2:  The DIV-2 details the relationship between different assets and the flow 

of information between different assets. In particular, the DIV-2 focuses on establishing 

the data model and the detailed flow of data between different entities. The details are 

illustrated in Figure 14. 
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Figure 10: OV-1 of Multi-tiered UAS SoS 
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Figure 11: OV-2 High level Resource Flow Diagram of Multi-tiered UAS SoS 
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Figure 12: OV-5a Operational Activities Decomposition Tree 
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Figure 13: OV-5B Activity Flow Diagram of the Multi-tiered UAS SoS 
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Table 4: OV-6A Operational Rules Model 

Operational Activity Rules 

Receive Flight Plan 

(ISR) 

Activate by Decision Makers through the Assign ISR UAS 

activity. Signify the activation of the Multi-tiered UAS SoS, 

Assign Surveil UAS Activated by Decision Makers if TBM Located = TRUE. 

Receive Flight Plan 

(Surveil, Strike or 

BDA) 

Activated when Assign Surveil/Strike/BDA  UAS = TRUE 

The time delay is dependent on Type of C2 and associated 

distribution. 

Ingress into AOR  Activated after UAS Receive Flight Plan. The duration required 

for Ingress into AOR is dependent on Type of C2 and 

associated distribution. 

TBM Located? IF TBM located, activate Locate TBM (ISR) activity which 

updates Decision Makers, THEN Decision makers assign 

appropriate Surveil UAS through Assign Surveil UAS activity,  

ELSE continue TBM Located? Task UNTIL search is 

completed. 

The probability of TBM located is dependent on the Type of 

Sensors. 

TBM Confirmed? IF TBM confirmed, activate Confirm TBM confirmation 

activity which updates Decision Makers, THEN Decision 

makers assigned appropriate Strike UAS through Assign Strike 

UAS activity, ELSE continue TBM Confirmed? Task UNTIL 

search is completed. 

The probability of TBM Confirmation is dependent on the 

Type of Sensors. 

Target Lock-on? IF TBM lockon, activate Lock-on Target (Strike) activity that 
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updates Decision Makers, THEN Decision makers activate 

Send Strike Confirmation activity and Strike UAS executes 

Launch Missile (Strike) Activity. The Decision makers are 

updated and activate Assign BDA UAS activity. 

TBM Destruction 

Confirmed? 

IF TBM destruction confirmed, the scenario ends, ELSE 

Decision makers assigned second Strike UAS if scenario 

dictates.  

The probability of TBM Destruction Confirmation is dependent 

on the probability of destruction of the Strike UAS. 
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Figure 14: DIV 2 of Multi-tier UAS SoS
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Step 4: Identify Architectural Variants for evaluation 

The multi-tiered UAS SoS can be implemented with different capabilities that 

will allow the SoS to fulfil the CONOPS and meet the operational needs. However, 

different capabilities will result in different development and operational costs, as well as 

varying degree of mission effectiveness. For example, a decision-making algorithm can 

be developed for the SoS to achieve autonomy or new high-end sensors may be designed 

to improve overall effectiveness of the SoS. To effectively evaluate these design variants, 

it is necessary to identify the key design parameters and assess the effectiveness based on 

the MOEs through simulation using EA. 

 

 Due to the time limitation of the research study, the research will focus on the 

evaluation of three design parameters in the implementation of the SoS. However, this 

methodology is scalable and can be extended to evaluate new design parameters. The 

three parameters under considerations are: 

 

a. Decision-making capability:  

1. Centralized Manual Command and Control (C2) by ground 

commander. 

2. Centralized autonomous C2 by pre-identified ISR UAS. 

 Affects speed of decision making, and quality of decision-making. 
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b. ISR Sensor capability: 

1. Normal Sensor with lower Probability of Detection and high False 

Alarm rate. 

2. High-end sensor with high Probability of Detection and low False 

Alarm rate. 

 Affects Target Acquisition and False Alarm percentages. 

 

 c. Number of Strike UAS deployment 

  1. 1 x Strike UAS deployment  

2.  2 x Strike UAS deployment.  

 Affects Target Destruction percentages.  

   

Step 5: Develop simulation scenario and EA models 

 To evaluate system, a simulation scenario based on AV-1 and OV-1 is developed, 

and the dynamic models are designed based on OV-5, OV-6a and DIV-2. In this 

simulation, an Area of Operations (AO) is identified, as marked by the 40 squares in the 

diagram shown below. The Simulation is summarized in Figure 15 and the Executable 

Architecture is shown in Figure 16, with details from Figure 16a to 16e: 
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Figure 15: Overview of Simulation 

The overview of the key processes in the Simulations are as follow: 

 

1. Threat Assessment shows possible TBM deployment within Area of 

Operations (AO) [marked by Sq blocks 1 – 40]. 

2. UAS deploy from staging sites. 

3. During each run, 2 targets and 2 false targets are randomly deployed over the 

40 grids. 

4. 1 x ISR UAS deployed to conduct ISR. Follow anti-clockwise search pattern 

over AO. 

5.  When potential target is located, a Surveil UAS is deployed to Confirm and 

track target. The simulation is limited to 2 x Surveil UAS. 

6. Strike UAS deploy to strike target, once target confirmed. 

7. Small UAS to conduct BDA. 

8. Total of 50 runs are carried out per scenario, thus generating a total of 100 

targets and 100 false targets. 

During each run, the targets are re-deployed randomly over the 40 grids.  
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Figure 16: Modified 0V-5B for Simulation 
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Figure 16a: Details on Modified OV-5B 
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Figure 16b: Details on Modified OV-5B 
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Figure 16c: Details on Modified OV-5B 
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Figure 16d: Details on Modified OV-5B 
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Figure 16e: Details on Modified OV-5B 
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To compare between the effectiveness of the different architectural variants, the 

following changes are applied to the simulation scenarios as shown in Table 5: 

Table 5: 8 Architectural Variants of Multi-tiered UAS SoS for concept evaluation 

 Centralized Manual C2 Autonomous C2 Operations 

Normal ISR 
Sensor 

1 x Strike UAS 1 x Strike UAS 
2 x Strike UAS 2 x Strike UAS 

High End ISR 
Sensor 

1 x Strike UAS 1 x Strike UAS 
2 x Strike UAS 2 x Strike UAS 

  

The scenario will be implemented using Innoslate software. Here, the OV-5b will 

form the basis for the development of the EA, and Javascript will be used to incorporate 

the decision logic of the systems, and to collect the MOE data, namely: 

 

1. Percentage of Target Confirmed 

2. Percentage of False Target 

3. Time to Strike 

4. Percentage of Target Destroyed 

 

The impact of different variants are incorporated into the different activities nodes 

in the OV-5b during simulations: 

 

1. Manual vs Autonomous C2:  Affects the speed of decision making and quality 

of the decision.  
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a. Speed.  The speed of the decision making determines the time delay in 

which the respective UAS receive their flight command. As part of the 

simulation, it is assumed that the human operator will take longer time to 

integrate information before making a decision, while the automated 

system will be more efficient in consolidating data and determining the 

course of action. Hence, as part of the simulation, the decision making 

delay for the human operator process is assumed to twice as long as the 

automated system. In addition, it is expected that the automated system 

will have a smaller standard deviation as compared to the human operator, 

as efficiency of the human operator will vary based on factors such as 

experience level and training. This will be implemented in the following 

Activities nodes, with the details shown in Table 6: 

 

• Receive Target Area (Surveil)  : Time Delay 

• Receive Target Coordinates (Strike) : Time Delay 

• Receive Strike Area (BDA)  : Time Delay 

 

Table 6: Time delay for different Activities Nodes 

 Receive Target 
Area (Surveil) 

Receive Target 
Coordinates 

(Strike) 

Receive Strike 
Area (BDA) 

Manual C2 Normal 
Distribution: 
Mean = 15 min 
Std Dev = 5 min 

Normal 
Distribution: 
Mean = 12 min 
Std Dev = 5 min 

Normal 
Distribution: 
Mean = 12 min 
Std Dev = 5 min 
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Autonomous 
C2 

Normal 
Distribution: 
Mean = 8 min 
Std Dev = 1 min 

Normal 
Distribution: 
Mean = 6 min 
Std Dev = 1 min 

Normal 
Distribution: 
Mean = 6 min 
Std Dev = 1 min 

 

b. Quality.  The quality of the decision making will be simulated based on 

the probability the Ground Commander or the autonomous system selects 

the correct UAS in achieving the mission requirement. A good decision 

will result in the selection of a better UAS which will have a short time to 

reach the target coordinates. For the purpose of this simulation, it is 

assumed that the human operator will have a higher probability of 

selecting the better solution due to better understanding of the overall 

system and operational environment. To provide a quantifiable assessment 

of the quality of decision making, a “Good” decision will result in the 

selection of a UAS that can ingress and reach the operation areas faster, 

while a “Bad” decision will result in selecting the UAS with a longer 

ingress time. This is implemented in the following activities nodes, with 

details shown in Table 7:  

 

• Ingress into AOR (Surveil) : Duration 

• Ingress into AOR (Strike)  : Duration  

• Ingress into AOR (BDA)  : Duration 
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Table 7: Duration for Ingress Activities for different Variants 

  Ingress into AO 
(Surveil) 

Ingress into AO 
(Strike) 

Ingress into AO 
(BDA) 

Manual C2 Good 
Decision 
90% 

Duration: 
Normal 
Distribution: 
Mean = 15 min 
Std Dev = 2 min 

Duration: 
Normal 
Distribution: 
Mean = 20 min 
Std Dev = 2 min 

Duration: 
Normal 
Distribution: 
Mean = 15 min 
Std Dev = 2 min 

Bad 
Decision 
10% 

Duration: 
Normal 
Distribution: 
Mean = 25 min 
Std Dev = 2 min 

Duration: 
Normal 
Distribution: 
Mean = 30 min 
Std Dev = 2 min 

Duration: 
Normal 
Distribution: 
Mean = 25 min 
Std Dev = 2 min 

Autonomous 
C2 

Good 
Decision 
70% 

Duration: 
Normal 
Distribution: 
Mean = 15 min 
Std Dev = 2 min 

Duration: 
Normal 
Distribution: 
Mean = 20 min 
Std Dev = 2 min 

Duration: 
Normal 
Distribution: 
Mean = 15 min 
Std Dev = 2 min 

Bad 
Decision 
30% 

Duration: 
Normal 
Distribution: 
Mean = 25 min 
Std Dev = 2 min 

Duration: 
Normal 
Distribution: 
Mean = 30 min 
Std Dev = 2 min 

Duration: 
Normal 
Distribution: 
Mean = 25 min 
Std Dev = 2 min 

 

2. Normal ISR Sensor Capabilities vs High End ISR Sensor Capabilities:  

Affects the positive target acquisition and false target acquisition percentages. 

 

a. Target Acquisition.  The ISR Sensor capability can be defined as the 

sensor’s capability to positively identify a target, given that the target is 

present. The different between a normal ISR and a high end ISR sensor 

can be stimulated using a probability function, with the high end ISR 

sensor having a higher probability for true target acquisition. This will be 
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implemented in the following Activities node, and details are shown in 

Table 8.  

 

• Locate TBM (ISR)  : Probability of Positive detection 

• Confirm TBM Location (Surveil) : Probability of Positive detection 

Table 8: Probability of Detection given Real Target 

 Locate TBM (ISR) Confirm TBM Location 
(Surveil) 

Normal ISR 
Sensor 

Prob of positive 
detection: 70% 

Prob of positive detection: 
75% 
 

High End ISR 
Sensor 

Prob of positive 
detection: 90 % 

Prob of positive detection: 
95% 
 

 

b. False Target Acquisition.  Similarly, the false target acquisition can be 

defined as the sensor’s inability to distinguish false targets and 

erroneously declare a false target as true. Likewise, the difference between 

a normal ISR and a high end ISR sensor can be stimulated using a 

probability function, with the high end ISR sensor having a low 

probability for declaring false target. This will be implemented in the 

following Activities node, and details are shown in Table 9.  

 

• Locate TBM (ISR)  : Probability of False detection 

• Confirm TBM Location (Surveil) : Probability of False detection 
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Table 9: Probability of False Target detection 

 Locate TBM (ISR) Confirm TBM Location 
(Surveil) 

Normal ISR 
Sensor 

Prob of false detection: 
30% 

Prob of false detection: 
20% 
 

High End ISR 
Sensor 

Prob of false detection:   
10 % 

Prob of false detection:  
5% 
 

 

3. 1 x Strike UAS vs 2 x Strike UAS:  Affects the target destruction percentage 

and duration of Time-to-Strike.  

 

a. Strike Accuracy.  The strike accuracy can be defined as the Strike UAS’s 

capability to lock-on and launch the missile to the designated area. In this 

regard, the strike accuracy can be stimulated using a probability function, 

that will be implemented in the following Activities node, and details are 

shown in Table 10.  

 

• TBM Destroyed  : Probability of destruction 

Table 10: Probability of TBM Destruction 

 TBM Destroyed 
1 x Strike 
UAS 

Prob of Destruction: 80% 

2 x Strike 
UAS 

Prob of Destruction per UAS: 80 % 
Prob of Destruction of 2 UAS: 
[(1 – (1 – 0.8)2] x 100% = 96% 
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Step 6: Data Collection and Analysis 

For the data to be statistically significant, Monte Carlo simulation is used. First, as 

part of the simulation, each scenario will be simulated with 50 runs across the 40 grids. 

Next, the scenario is then simulated 50 times to achieve the Monte Carlo simulations. 

Hence, the total number of runs per variants will be 2,500 runs comprising of 50 Monte 

Carlo simulation of the scenario and 50 runs within each scenario. The analysis will focus 

on the key areas—1) Pairwise comparisons will be carried between the respective 

variants to determine the impact of each parameter to the overall system, and 2) OHP 

analysis will be conducted to determine the overall performance of each variant across 

the different MOEs. 

 

Conclusion 

This chapter provides the details in the methodology used in the investigation of 

and analysis of the system-under-design through the use of DoDAF models and 

simulation using Innoslate software. The results from the simulation are analysed and 

presented in Chapter 4. 
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IV.  Analysis and Results 

Chapter Overview 

This chapter provides detailed analysis from the results of the simulation 

scenarios. In particular, the analysis focuses on: 1) The overall effects of the design 

parameters (independent factors) on each MOE (dependent factor) in meeting the 

Threshold and Objective values; 2) Statistical significance of each design parameters and 

their interaction effect; and lastly 3) OHP study combining the overall effect of MOEs. 

 

Statistical Methods Application 

Simulation Scenarios 

 To evaluate the impact of the design parameters on the overall Concept, a 

factorial design methodology is implemented. In this case, three design parameters, 

namely, 1) Type of C2, 2) Type of Sensor, and 3) Number of Strike UASs, are evaluated 

through the implementation of 8 simulation scenarios as shown in Table 11 below. 

Table 11: Scenarios and variation of Design Parameters 

Scenario Type of C2 Type of 
Sensor 

No. of Strike 
UAS 

1 Manual Normal 2 
2 Auto Normal 2 
3 Manual  High 2 
4 Auto High 2 
5 Manual Normal 1 
6 Auto Normal 1 
7 Manual  High 1 
8 Auto High 1 
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Statistical Analysis Methodology 

The following analytical methodologies are used to assess the results from the 

simulations to determine the overall effectiveness of the design parameters on the overall 

MOEs, and the individual effect of specific design parameters. 

 

1. Overall Fulfilment of MOEs (Threshold and Objectives):  Hypothesis testing 

is done to determine if each scenario fulfills the Threshold and the Objective 

for the respective MOEs. A one-tail test at 95% confidence interval is used for 

each scenario: 

  

Threshold Testing 

H0:  The mean of the simulation results is equal threshold value (for 

Target Acquisition Percentage MOE and Target Destruction 

Percentage MOE), or; 

The mean of the simulation results is more than threshold value 

(for False Alarm Percentage MOE and Time-to-Strike MOE). 

 

HAlternate:  The mean of the simulation results is equal threshold value (for 

Target Acquisition Percentage MOE and Target Destruction 

Percentage MOE), or; 

The mean of the simulation results is less than threshold value (for 

False Alarm Percentage MOE and Time-to-Strike MOE). 
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α = 0.05 (5% Significance level) 

 

Objective Testing 

H0:  The mean of the simulation results is equal to objective value (for 

Target Acquisition Percentage MOE and Target Destruction 

Percentage MOE), or; 

The mean of the simulation results is more than objective value 

(for False Alarm Percentage MOE and Time-to-Strike MOE). 

 

HAlternate:  The mean of the simulation results is equal to objective value (for 

Target Acquisition Percentage MOE and Target Destruction 

Percentage MOE), or; 

The mean of the simulation results is less than objective value (for 

False Alarm Percentage MOE and Time-to-Strike MOE). 

α = 0.05 (5% Significance level) 

 

Mathematical Formulae 

�̅�𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
1

𝑖𝑖
 

Where: ̄xresults = Sample Mean of simulation results 

  n = Number of runs in the simulation 

xi = Result from individual run 
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𝑖𝑖 =  ��
1

𝑖𝑖 − 1
��(𝑥𝑥𝑖𝑖 − �̅�𝑥)2

𝑛𝑛

𝑖𝑖=1

 

Where: s = sample variance 

̄xresults = Sample Mean of simulation results 

  n = Number of runs in the simulation 

  

𝑧𝑧 =  
�̅�𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −  𝜇𝜇

𝑖𝑖/√𝑖𝑖
 

Where: z = test score 

μ = threshold or objective value for testing 

 

The null hypothesis is rejected when the z-score is > 1.645 (for one-tail test, α 

= 0.05) for Target Acquisition Percentage and Target Destruction Percentage 

MOEs, or when the z-score is < -1.645 (for one-tail test, α = 0.05) for False 

Alarm Percentage and Time-to-Strike MOEs. 

 

2. Impact of Individual Design Parameters: To access the effect of individual 

design parameters on each MOE, a one-way ANOVA analysis. Here the F-

value is calculated and the p-value is obtained. A p-value of less than 0.05 

shows that the effect of the design parameter on the MOE is statistically 

significant at a 95% CI. The data is calculated using MiniTab software. 
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3. OHP analysis:  The OHP analysis is implemented by calculating the 

accumulated performance by each variant across all MOEs. In this regard, it is 

assumed that all four MOEs are weighted equally, and a score of 2 is awarded 

for meeting the MOE objective value, score of 1 for meeting the MOE 

threshold value and a score of 0 for failing to meet threshold value. 

Analysis of Results: MOE 1—Target Acquisition Percentage 

 Overview: The Target Acquisition Percentage MOE measures the ability of the 

Multi-tiered UAS SoS in positively acquiring the targets. The summary of the 

simulations of the eight scenario are shown in the Box plot in Figure 17. The segments in 

the box plots represent the 1st quartile, the Median and the 3rd quartile, while the whiskers 

indicate the variability outside the lower and upper quartiles (Microsoft, 2016).  

 

Figure 17: Summary of Target Acquisition Percentage 



 

76 

 From the chart, it can be seen that the MOE performance fall in two distinct 

categories, in the 50-60% range for Scenario 1, 2, 4 and 5, and in the 80-90% range for 

Scenario 3, 4, 7 and 8. Further analysis are done in subsequent sections to determine the 

effect of design parameters on the MOE. A chart of 95% CI is also included to illustrate 

possible overlaps in the results between different scenarios, as shown in Figure 18. 

 

 

Figure 18: Summary of Target Acquisition MOE with 95% CI 

 

Hypothesis Testing:  The one-tail hypothesis is done for both threshold (60%) and 

objective (80%) value. From the results, it is shown that Scenario 3, 4, 7 and 8 fulfilled 

both threshold and objective of the MOE, while Scenario 1, 2, 5 and 6 failed to meet the 
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threshold values. The results are summarized in Table 12 below. From the chart, it is 

postulated that the Type of Sensor has significant effect on the MOE while Type of C2 

and number of Strike UAS has minimal effect. 

Table 12: Hypothesis Testing Result 

Threshold 
       H0: The System-under-design has a Target Acquisition Pct equal 60% at 95% CI. 

 HA: The System-under-design has a Target Acquisition Pct equal or more than 60% at 95% CI 
Z value -8.919 -10.542 57.957 53.073 -10.817 -9.089 54.355 46.660 
Reject 
HO if 
Z > 

 1.645 

Ho Not 
Rejected 

Ho Not 
Rejected 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Ho Not 
Rejected 

Ho Not 
Rejected 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

         Objective 
       H0: The System-under-design has a Target Acquisition Pct equal 80% at 95% CI. 

 HA: The System-under-design has a Target Acquisition Pct equal or more than 80% at 95% CI 
Z value -35.864 -41.457 12.678 11.771 -39.208 -33.654 11.079 9.920 
Reject 
HO if 
Z > 

 1.645 

Ho Not 
Rejected 

Ho Not 
Rejected 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Ho Not 
Rejected 

Ho Not 
Rejected 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

 

 Evaluation of Design Parameters.  To determine the effect of design parameters 

on the MOE, the Main Effect plot and Interaction Effect plot is charted, as shown in 

Figure 19 and Figure 20. From the Main Effect chart, it is demonstrated that both Type of 

C2 and Number of Strike UAS does not have a statistically significant effect on the 

Target Acquisition Percentage MOE, while the Type of Sensors are statistically 

significant, with Normal sensors resulting in below Threshold value for the MOE, while 

the High sensors resulting in MOEs achieve above Objective Value. This data is further 

shown in the one-way ANOVA statistic in Table 13.  
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Figure 19: Main Effect Plot for Target Acquisition Percentage MOE 

 

Figure 20: Interaction Effect Plot for Target Acquisition Percentage MOE 
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The one-way ANOVA results show that there is no significant effect of Type of 

C2 and Number of Strike UAS on the MOE, with P-values of 0.953 and 0.727 

respectively. P-value of <0.05 shows that the Design Parameter is statistically significant 

on the MOE at 95% CI. Conversely, the Type of Sensor has a P-value of 0.000. The 

Fisher pairwise analysis also showed significance effect, with a difference of 32.6% on 

the MOE between Normal and High sensor types. These results are evident from the 

charts as shown in Figure 21 to Figure 23. 

 

Table 13: One-way ANOVA for Design Parameters 

One Way ANOVA 
Source DF Adj-SS Adj-MS F-Value P-Value 
Type-of-C2 1 1 1 0 0.953 
Error 398 113639 285.526     
Total 399 113640       

      Source DF Adj-SS Adj-MS F-Value P-Value 
Type-of-Sensor 1 106080 106080 5584.7 0 
Error 398 7560 19     
Total 399 113640       

      Source DF Adj-SS Adj-MS F-Value P-Value 
No-of-Striker 1 35 34.81 0.12 0.727 
Error 398 113606 285.44     
Total 399 113640       
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Figure 23: Analysis of Number of Strike UAS on Target Acquisition Percentage 
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Figure 21: Analysis of Type of C2 on Target Acquisition Percentage MOE 

Figure 22: Analysis of Type of Sensor on Target Acquisition Percentage MOE 
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Qualitative Analysis of Results.  The statistical analysis of the simulation results 

across the 8 scenario showed two distinct sets of results on the MOE, with Scenario 3, 4, 

7 and 8 showing significantly better performance and achieving both Threshold and 

Objective values of the MOE, while Scenario 1, 2, 5, and 6 failed to meet Threshold 

requirement. Further analysis on the respective design parameters shows that the design 

parameter of Type of Sensor has a significant effect on the system performance on the 

MOE, while Type of C2 and Number of Strike UAS effects are insignificant. 

 

This result is expected, as the Target Acquisition Percentage MOE depends on the 

ability of the ISR and Surveillance UAS to pick up and positively identified the targets. 

Hence, the UAS equipped with higher resolution sensors will improve the Target 

Acquisition capability of the SoS. The high quality sensors have a positive target 

percentage of 90% and 95% respectively for ISR UAS and Surveillance UAS, while the 

normal quality sensor is rated at 70% and 75%. Given that the Target Acquisition 

Percentage MOE will require both ISR UAS and Surveillance UAS to positively acquire 

and identify the target, the probability of detection can be calculated to be 85.5% and 

52.5% for high quality and normal quality sensors respectively. The simulation results 

correspond with the expected system design, demonstrating approximately 32.6% 

improvement in results when using high quality sensor against using normal quality 

sensor. 
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Analysis of Results: MOE 2—False Alarm Percentage 

 Overview: The False Alarm Percentage MOE measures the inability of the Multi-

tiered UAS SoS to positively distinguish false targets from real ones. The summary of the 

simulations of the eight scenario are shown in the Box plot in Figure 24. 

 

 

Figure 24: Summary of False Alarm Percentage 

 

From the chart, it can be seen that the MOE performance fall in two distinct 

categories, in the 5-15% range for Scenario 1, 2, 4 and 5, and in the 0-5% range for 

Scenario 3, 4, 6 and 7. This grouping of data are further illustrated in Figure 25, the chart 

of 95% CI for the MOE. It is shown that the results for Scenario 1, 2, 5 and 6 have 

overlapping results at 95% CI, while Scenario 3, 4, 7 and 8 have overlapping results at 
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95% CI. Further analysis is done in subsequent sections to determine the effect of design 

parameters on the MOE. 

 

 

Figure 25: Summary of False Alarm MOE with 95% CI 

Hypothesis Testing:  The one-tail hypothesis is done for both threshold (10%) and 

objective (5%) value. From the results, it is shown that Scenario 3, 4, 7 and 8 fulfilled 

both threshold and objective of the MOE, while Scenario 2, 5 and 6 failed to meet the 

threshold values. Scenario 1 passed fulfill the threshold requirement while failed to meet 

the objective value. The results are summarized in Table 14 below. From the chart, it is 

postulated that the Type of Sensor has significant effect on the MOE while Type of C2 

and number of Strike UAS has minimal effect. 
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Table 14: Hypothesis Testing Results 

Threshold 
       H0: The System-under-design has a False Alarm Pct equal 10% at 95% CI. 

 HA: The System-under-design has a False Alarm Pct equal or less than 5% at 95% CI 
 

Z value -2.234 0.007 -
119.859 -90.121 -0.255 -0.510 -

107.242 -90.720 

Reject 
HO if z 

<  
-1.645 

Reject 
Ho 

Ha is 
True 

Ho Not 
Rejected 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Ho Not 
Rejected 

Ho Not 
Rejected 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

         Objective 
       H0: The System-under-design has a False Alarm Pct equal 5% at 95% CI. 

  HA: The System-under-design has a False Alarm Pct equal or less than 5% at 95% CI 
 Z value 8.063 9.039 -57.938 -43.021 11.318 8.973 -51.955 -43.126 

Reject 
HO if z 

<  
-1.645 

Ho Not 
Rejected 

Ho Not 
Rejected 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Ho Not 
Rejected 

Ho Not 
Rejected 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

 

Evaluation of Design Parameters.  To determine the effect of design parameters 

on the MOE, the Main Effect plot and Interaction Effect plot is charted, as shown in 

Figure 26 and Figure 27. From the Main Effect chart, it is demonstrated that both Type of 

C2 and Number of Strike UAS does not have a statistically significant effect on the 

Target Acquisition Percentage MOE, while the Type of Sensors are statistically 

significant, with Normal sensors resulting in below Threshold value for the MOE, while 

the High sensors resulting in MOEs achieve above Objective Value. This data is further 

shown in the one-way ANOVA statistic in Table 15. 
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Figure 26: Main Effect Plot for False Alarm Percentage MOE 

 

Figure 27: Interaction Effect Plot for False Alarm Percentage MOE 

ManualAuto

10

8

6

4

2

0
NormalHigh 21

Type of C2
M

ea
n

Type of Sensor No of Striker

Main Effects Plot for False Alarm Pct

10

5

0

21

NormalHigh

10

5

0

ManualAuto

10

5

0

Type of C2

Type of Sensor

No of Striker

Auto
Manual

Type of C2

High
Normal

Sensor
Type of

1
2

Striker
No of

Interaction Plot for False Alarm Pct



 

86 

The one-way ANOVA results show that there is no significant effect of Type of 

C2 and Number of Strike UAS on the MOE, with P-values of 0.568 and 0.735 

respectively. P-value of <0.05 shows that the Design Parameter is statistically significant 

on the MOE at 95% CI. Conversely, the Type of Sensor has a P-value of 0.000. The 

Fisher pairwise analysis also showed significance effect, with a difference of 9.3% on the 

MOE between Normal and High sensor types. These results are evident from the charts 

as shown in Figure 28 to Figure 30. 

 

Table 15: One-way ANOVA for Design Parameters 

One Way ANOVA 
Source DF Adj-SS Adj-MS F-Value P-Value 
Type-of-C2 1 9.2 9.151 0.33 0.568 
Error 398 11148.8 28.012     
Total 399 11158.0       
   

   Source DF Adj-SS Adj-MS F-Value P-Value 
Type-of-Sensor 1 8563 8563.04 1313.35 0.000 
Error 398 2595 6.52     
Total 399 11158.0       

      Source DF Adj-SS Adj-MS F-Value P-Value 
No-of-Striker 1 3.2 3.220 0.11 0.735 
Error 398 11154.8 28.027   
Total 399 11158.0    
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Qualitative Analysis of Result.  The statistical analysis of the simulation results  
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Figure 30: Analysis of Number of Strike UAS on False Alarm Percentage MOE 

Figure 28: Analysis of Type of C2 on False Alarm Percentage MOE 

Figure 29: Analysis of Type of Sensor on False Alarm Percentage MOE 
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Qualitative Analysis of Results.  Similar to the Target Acquisition Percentage 

MOE, the statistical analysis of the simulation results for False Alarm Percentage MOE 

across the 8 scenario showed two distinct set of results, with Scenario 3, 4, 7 and 8 

showing significantly better performance and achieving both Threshold and Objective 

values of the MOE, while Scenario 2, 5, and 6 failed to meet Threshold requirement. 

Scenario 1 passed the Threshold requirement but failed to meet the Objective. Further 

analysis on the respective design parameters shows that the design parameter of Type of 

Sensor has a significant effect on the system performance on the MOE, while Type of C2 

and Number of Strike UAS effects are insignificant. 

 

The results of the effect of design parameters on False Alarm Percentage MOE 

are highly comparable to that on Target Acquisition Percentage MOE. This MOE 

measures error percentage of the multi-tiered UAS SoS in acquiring the wrong targets. 

UAS equipped with higher resolution sensors will have a lower false alarm and hence 

resulting in better performance in this MOE. For the simulation, the high quality sensors 

have false detection percentage of 10% and 5% respectively for ISR UAS and 

Surveillance UAS, while the normal quality sensor are rated at 30% and 20%. Given that 

the False Alarm Percentage MOE measures the total number of false targets against the 

total number of declaration, the simulation results provide the quantitative assessment of 

on the effect of different sensor capabilities. The simulation results correspond with the 

expected system design, demonstrating approximately 9.3% improvement in results when 

using high quality sensor against using normal quality sensor. 
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Analysis of Results: MOE 3—Time-to-Strike 

Overview: The Time-to-Strike MOE measures the time required between initial 

target recognition by the Multi-tiered UAS SoS to the launch of missile strike on the 

TBM. The summary of the simulations of the eight scenario are shown in Figure 31 

below. 

 

 

Figure 31: Summary of Time-to-Strike 

From Figure 31, it is observed that there appears to be two distinct set of results 

between the 8 scenarios. Scenario 2, 4, 6 and 8 has better performance with Time-to-

Strike ranging 85-100 mins, while Scenario 1, 3, 5 and 7 fare slightly worse with Time-

to-Strike ranging from 95-110mins. Further analysis using 95% CI from Figure 32 show 

that in addition to the larger distinction between Scenario 2, 4, 6 and 8, and Scenario 1, 3, 



 

90 

5 and 7 that can be attributed to the Type of C2 design parameters, there is also a smaller 

distinction that can be observed between Scenario 1, 2, 3 and 4 and Scenario 5, 6, 7 and 8 

that can be attributed to the Number of Strike UAS. 

 

 

Figure 32: Summary of Time-to-Strike MOE with 95% CI 

  

 Hypothesis Testing:  The results of the hypothesis testing as shown in Table 16 

shows that all 8 scenarios fulfil the Threshold values. However, none of the scenarios 

meets the Objective requirement. 
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Table 16: Hypothesis Testing Results 

Threshold 
       H0: The System-under-design has a Time-to-Strike equal 105min at 95% CI. 

 HA: The System-under-design has a Time-to-Strike equal or less than 105min at 95% CI 

Z value -19.840 -73.024 -25.201 -93.760 -31.178 -93.654 -43.666 -
126.808 

Reject 
HO if z 

< 
-1.645 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

         Objective 
       H0: The System-under-design has a Time-to-Strike equal 90min at 95% CI. 

 HA: The System-under-design has a Time-to-Strike equal or less than 90min at 95% CI 
Z value 58.047 11.629 70.358 16.612 50.810 2.040 63.173 0.845 
Reject 
HO if z 

< 
-1.645 

Ho Not 
Rejected 

Ho Not 
Rejected 

Ho Not 
Rejected 

Ho Not 
Rejected 

Ho Not 
Rejected 

Ho Not 
Rejected 

Ho Not 
Rejected 

Ho Not 
Rejected 

 

 Evaluation of Design Parameters.  To better interpret and explain the observations 

in the overall results for the Time-to-Strike MOE, further analysis is done on the design 

parameters. Based on the Main effect and Interaction Effect plot from Figure 33 and 

Figure 34, it is shown that both Type of C2 and Number of Strike UAS have significant 

effect on the result of the MOE, while the Type of Sensor does not show significant 

influence on the overall Time-to-Strike. 
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Figure 33: Main Effect Plot for Time-to-Strike MOE 

 

Figure 34: Interaction Effect Plot for Time-to-Strike MOE 
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The one-way ANOVA results show that there is no significant effect of Type of 

Sensor on the MOE, with P-values of 0.200. P-value of <0.05 shows that the Design 

Parameter is statistically significant on the MOE at 95% CI. Conversely, the Type of C2 

and Number of Strike UAS both have a P-value of 0.000. The Fisher pairwise analysis 

also showed significance effect, with a difference of 8.88 minutes on the MOE between 

Autonomous and Normal C2, and 2.05 minutes between 1 or 2 strike UAS. These results 

are evident from the charts as shown in Figure 35 to Figure 37. 

 

Table 17: One-way ANOVA for Design Parameters 

One Way ANOVA 
Source DF Adj-SS Adj-MS F-Value P-Value 
Type-of-C2 1 545652 545652 6529.68 0.000 
Error 27648 2310402 84   
Total 27649 2856054    
   

   Source DF Adj-SS Adj-MS F-Value P-Value 
Type-of-Sensor 1 170 169.8 1.64 0.200 
Error 27648 2855884 103.3   
Total 27649 2856054    

      Source DF Adj-SS Adj-MS F-Value P-Value 
No-of-Striker 1 28966 28966.3 283.28 0.000 
Error 27648 2827088 102.3   
Total 27649 2856054    
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Figure 35: Analysis of Type of C2 on Time-to-Strike MOE 

Figure 36: Analysis of Type of Sensor on Time-to--Strike MOE 

Figure 37: Analysis of Number of Strike UAS on Time-to-Strike MOE 
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Qualitative Analysis of Results.  While initial assessment of the simulation results 

for Time-to-Strike MOE shows two set of results for Scenarios 1, 3, 5 and 7 and 

Scenarios 2, 4, 6 and 8, further analysis shows a subtle difference noted between 

Scenarios 1, 2, 3 and 4 and Scenarios 5, 6, 7 and 8. The first difference can be attributed 

to effect of Type of C2 on the system, while the smaller difference can be attributed to 

the Number of Strike UAS. It is observed that all Scenarios fulfilled the threshold 

requirement but failed to meet the objective. 

 

The assessment is further confirmed by the analysis of design parameters, with 

both Type of C2 and Number of Strike UAS showing significant effects on MOE 

performance. In particular, the Type of C2 has a higher impact on the system with 8.88 

minutes shorter for Autonomous C2 against Manual C2, while the Number of Strike UAS 

has a smaller impact with 2.05 minutes faster for 1 x Strike UAS against 2 x Strike UAS.  

 

By system design, the Type of C2 will affect the time required to make a decision, 

and the quality of decision, affecting the time of deployment of each UAS. The 

Autonomous C2 has a shorter decision making time but a lower probability in making a 

good decision as compared to the Manual C2. Through the simulation, it is shown that 

shorter decision making time has a higher effect on the overall system performance as 

compared to the quality of decision making, as evident from the shorter duration between 

Autonomous and Manual C2. 
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 The Number of Strike UAS also affects the Time-to-Strike MOE with 2 x Strike 

UAS requiring more time. This is because the MOE is measured based on the time 

difference between initial target recognition and the last missile launched. In this case, 

with 2 x Strike UAS, it is expected that the duration will be longer due to the time 

required for the second Strike UAS to launch its missile. Due to the probability of kill of 

the Strike UAS, not all attacks require a second strike. As such, the delay in duration 

between 2 x Strike UAS and 1 x Strike UAS is lower at 2.05 minutes, as compared to the 

10 minutes required based on the simulation. 

 

 The Type of Sensor design parameter does not show a significant difference in the 

statistical analysis although the UAS SoS with a Normal sensor will result in delays due 

to the need to verify the false targets. However, it is shown that the difference in Type of 

Sensor is not sufficiently significant to result in an impact on the MOE. 
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Analysis of Results: MOE 4—Target Destruction Percentage 

Overview: The Target Destruction Percentage MOE measures the ability of the 

Multi-tiered UAS SoS in positively acquiring and destruction of the targets to positively 

distinguish false targets from real ones. The summary of the simulations of the eight 

scenario are shown in Figure 38 below. 

 

 

Figure 38: Summary of Target Destruction Percentage MOE 

 

From Figure 38 and 39, it can be observed that there are four distinct set of 

results, with Scenarios 3 and 4 showing the best performance score at 80-85%, followed 

by Scenario 7 and 8 with score ranging 65-70%, and Scenario 1 and 2 with score ranging 

48-55%. Scenario 5 and 6 yield the lowest performance score from 38-45%. 
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Figure 39: Summary of Target Destruction MOE with 95% CI 

Hypothesis Testing:  From the results, it is shown that Scenarios 3, 4, 7 and 8 

fulfilled the threshold value, while only Scenario 7 and 8 fulfilled the objective value. In 

addition, Scenario 1, 2, 5 and 6 failed to meet both the threshold and objective values. 

The results are summarized in Table 18 below. In addition, from the groupings of the 

results from the different scenarios, it is postulated that both design parameters of Type 

of Sensor and Number of Strike UAS has significant effect on the MOE while Type of 

C2 has minimal effect. 
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Table 18: Hypothesis Testing Results 

Threshold 
       H0: The System-under-design has a Target Destruction Pct equal 60% at 95% CI. 

 HA: The System-under-design has a Target Acquisition Pct equal or more than 60% at 95% CI 
Z value -11.319 -13.421 40.617 38.185 -30.489 -26.356 10.698 14.246 

Reject 
HO if 
Z > 

 1.645 

Ho Not 
Rejected 

Ho Not 
Rejected 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Ho Not 
Rejected 

Ho Not 
Rejected 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

         Objective 
       H0: The System-under-design has a Target Acquisition Pct equal 80% at 95% CI. 

 HA: The System-under-design has a Target Acquisition Pct equal or more than 80% at 95% CI 
Z value -37.520 -43.380 4.189 3.376 -63.027 -54.881 -15.847 -20.248 

Reject 
HO if 
Z > 

 1.645 

Ho Not 
Rejected 

Ho Not 
Rejected 

Reject 
Ho 

Ha is 
True 

Reject 
Ho 

Ha is 
True 

Ho Not 
Rejected 

Ho Not 
Rejected 

Ho Not 
Rejected 

Ho Not 
Rejected 

 

Evaluation of Design Parameters.  Further analysis on the effect of design 

parameters through the use of Main and Interaction plots (shown in Figure 40 and 41), as 

well as ANOVA and Fischer pairwise analysis confirmed that both Type of Sensor and 

Number of Strike UAS have statistically significant effect on the Target Destruction 

Percentage MOE. High resolution sensors coupled with 2 Strike UAS achieved the best 

results, as shown in Scenario 3 and 4, while normal resolutions with 1 Strike UAS 

achieved the worst results, as shown in Scenario 5 and 6. From Figure 38, it is shown that 

the Type of Sensor has a greater effect on the result as compared to the Number of Strike 

UAS. The Interaction plot shows that there are minimal interaction effects between the 

different design parameters.  
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Figure 40: Main Effect Plot for Target Destruction Percentage MOE 

 

Figure 41: Interaction Effect Plot for Target Destruction Percentage MOE 
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The one-way ANOVA results on Table 19 show that there is no significant effect 

of Type of C2 on the MOE, with P-values of 9.73. P-value of <0.05 shows that the 

Design Parameter is statistically significant on the MOE at 95% CI. Conversely, the Type 

of Sensor and Number of Strike UAS both have a P-value of 0.000. The Fisher pairwise 

analysis also showed significance effect, with a difference of 28.8% on the MOE between 

Normal and High sensor types, and 11.9% between 1 or 2 strike UAS. These results are 

evident from the charts as shown in Figure 42 to Figure 44. 

 

Table 19: One-way ANOVA for Design Parameters 

One Way ANOVA 
Source DF Adj-SS Adj-MS F-Value P-Value 
Type-of-C2 1 0 0.303 0.00 9.73 
Error 398 106179 266.781     
Total 399 106179       
   

   Source DF Adj-SS Adj-MS F-Value P-Value 
Type-of-Sensor 1 83203 82303.4 1441.30 0.000 
Error 398 22976 57.7   
Total 399 106179    

      Source DF Adj-SS Adj-MS F-Value P-Value 
No-of-Striker 1 14125 14125.3 61.07 0.000 
Error 398 92054 231.3   
Total 399 106179    
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Figure 42: Analysis of Type of C2 on Target Destruction Percentage MOE 

Figure 43: Analysis of Type of Sensor on Target Destruction Percentage MOE 

Figure 44: Analysis on Number of Strike UAS on Target Destruction Percentage 

MOE 
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Qualitative Analysis of Results.  The statistical analysis of the simulation results 

for Target Destruction Percentage MOE across the 8 scenarios showed four distinct set of 

results, with Scenario 3 and 4 (High resolution Sensors with 2 Strike UAS) achieving the 

highest results, followed by Scenarios 7 and 8 (High resolution Sensors with 1 Strike 

UAS), Scenario 1 and 2 (Normal resolution Sensors with 2 Strike UAS) and Scenarios 5 

and 6 (Normal resolution Sensors with 1 Strike UAS). Only Scenarios 3 and 4 achieved 

the Objective value, while Scenarios 7 and 8 achieved Threshold values. Scenarios 1, 2, 5 

and 6 failed to meet Threshold requirement. From this analysis, it is determined that the 

Type of Sensor must be at high resolution for the system to pass Threshold. 

 

 Further analysis on the respective design parameters confirms that the design 

parameters of Type of Sensor and Number of Strike UAS have a significant effect on the 

system performance on the MOE, while Type of C2 is insignificant. This is expected as 

the Target Destruction Percentage MOE will require the Multi-tiered UAS SoS to 1) 

positively acquire the target and 2) accurately engage and destroy it. To positively 

acquire, the Type of Sensor has a large impact on the system as demonstrated in MOE 1. 

In target engagement, a 2 x UAS strike package will have a better probability of kill as 

compared to a 1 x UAS strike package (provided that the UAS have same system 

specifications).  

 

The analysis shows that the Type of Sensor has a more significant impact, with an 

average of 28.8% difference between Normal and High resolution sensor, while the 
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Number of Strike UAS has lower impact, with an average improvement of 11.9% 

difference between 1 x Strike UAS and 2 x Strike UAS. This result confirms the earlier 

observation that the Type of Sensor must be at high resolution for the system to fulfil the 

threshold criteria. 

 

Objective Hierarchy Process 

 The OHP is used to provide an overall assessment of the different scenarios on the 

combined performance of all MOEs. In this assessment, all MOEs have equal weightage, 

that is 25% of total score. In addition, the scores are awarded as follow: 2 for meeting 

Objective, 1 for meeting Threshold and 0 for failing. Based on this computation, Scenario 

3 and 4 are awarded the high scores, followed by Scenario 7 and 8. Scenario 2, 3,5 and 6 

have the lowest score at 0.25 respectively as shown in Table 20 below. 

Table 20: OHP Analysis 

 Scenario 
 1 2 3 4 5 6 8 8 
MOE 1: Target 
Acquisition Percentage 

0 0 2 2 0 0 2 2 

MOE 2: 
False Alarm Percentage 

1 0 2 2 0 0 2 2 

MOE 3: 
Time-to-Strike 

1 1 1 1 1 1 1 1 

MOE 4: Target 
Destruction Percentage 

0 0 2 2 0 0 1 1 

Total Score 0.5 0.25 1.75 1.75 0.25 0.25 1.5 1.5 
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While Scenario 3 and 4 have the highest score, they are also associated with the 

highest course with High resolution sensors and 2 x Strike UAS. To better compare the 

results, it is important to include a cost component for a more accurate cost-benefit 

analysis. However, details of cost components are not included in this thesis research. 

 

Summary 

This chapter provides a detailed statistical analysis on the different variants of the 

Multi-tiered UAS SoS based on the 8 scenarios used in the simulation. From the data, the 

impact of the design parameters and MOEs can be statistically concluded in Table 21 

below. 

 

Table 21: Summary of Design Parameters and MOEs 

MOE Design Parameters Simulation Results 

Target 
Acquisition 
Percentage 

Type of Sensor High: 85.5% 

Normal: 52.9% 

False Alarm 
Percentage 

Type of Sensor 
 

High: 0.4% 

Normal: 9.6% 

Time-to-Strike Type of C2 
 

Autonomous: 91.2 mins 

Manual: 100.1 min 

Number of Strike 
UAS 
 

1 x Strike UAS: 94.6 min 

2 x Strike UAS: 96.9 min 
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Target 
Destruction 
Percentage 

Type of C2 
 

High: 75.1% 

Normal: 46.3% 

Number of Strike 
UAS 
 

1 x Strike UAS: 54.8% 

2 x Strike UAS: 66.7% 
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V.  Conclusions and Recommendations 

Introduction of Research 

 This research thesis aimed to implement and assess the suitability of EA in the 

evaluation of early concepts in the DoD. Specifically, the research focused on the 

development of EA and dynamic models for a proposed concept of Multi-tiered UAS 

which was evaluated through the use of executable DoD architectural products. Different 

configurations of the proposed system were implemented in Innoslate and the effect of 

different system capabilities, namely 1) Type of C2, 2) Type of Sensors, and 3) Number 

of Strike UAS, were simulated through EA, and statistical analysis was used to determine 

their impact on the overall system. Using the results of the simulation and analysis, the 

four research questions identified in Chapter 1 are answered in the following sections.  

 

Research Question 1: Which views of DoDAF are critical for effective construction 

of EA? 

 To answer this question, it is important to understand the System Architecting and 

System Engineering process, especially in the Concept Development Phase. During early 

Concept Development, the development team focuses on answering the questions “What 

will the system do?”, and “How does the system do it?”. To achieve this, the concept 

development team focuses on high level system operational and functional design and 

analysis, which forms the foundations of EA. In addition, during the early Concept 
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Development phase, there are insufficient information in most of the DoDAF products, as 

summarized in Table 22 below. 

Table 22: Assessment of DoDAF View for EA 

DoDAF Viewpoints Assessment Specific View for 
EA 

All Viewpoint High level perspective of system-
under-design based on CONOPS. 

AV-1 

Capability Viewpoint Unable to achieve comprehensive 
understanding of system 
capability during early Concept 
development 

None 

Data Information Viewpoint Provide information for data 
transfer between different system 
and is required especially for SoS. 

DIV-2 

Operational Viewpoint System operation based on 
CONOPS and Use Case. Form the 
basis for EA. 

OV-1, OV-2,  
OV-5a, OV-5b, 
OV-6a. 

Project Viewpoint Insufficient information during 
early Concept development for 
Viewpoints to be modeled into 
EA. 

None 
Services Viewpoint 
Standards Viewpoint 
Systems Viewpoint 
 

Based on the above assessment, the following DoDAF products are identified as 

critical: 

 

 1. All-View 1: Overview and Summary Information.  AV-1 provides the 

overarching objectives of the system-under-designed, and hence allows the system 

architecting team to understand the constraints and the key deliverables for the system. 

Specifically, AV-1 functions as a broad high-level checklist to ensure that the EA is 

developed within the scope of the project. 
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 2. Operational View 1: High-level Operational Concept Graphic.  OV-1 

provides the team with pictorial depiction of the system-under-design, and summarizes 

the system operations within its operational premises. In addition, the OV-1 represents 

the system architecting team interpretation of the system-under-design, and serves as an 

important visual communication tools between the architecting team and the other 

stakeholders.  

 

 3.  Operational View 2: Operational Resource Flow Description.  OV-2 

describes the Resource Flows exchanged between operational nodes and activities. This 

is critical for the design of EA, as EA operationalizes these information transfer processes 

through simulation to access the effectiveness of the proposed concept.  

 

 4. Operational View 5a: Operational Activity Decomposition Tree.  OV-5a 

details the capabilities and operational activities of the system-under-design, organized in 

a hierarchal structure. These operational activities are analogous to system functions, and 

are important in the design of the system’s dynamic model. In particular, OV-5a provides 

different levels of specification, and allows system architects to implement EA at an 

appropriate level for concept evaluation. 

 

 5.  Operational View 5b: Operational Activity Model.  OV-5b provides the 

context of capabilities and operational activities. Specifically, OV-5b shows the 

relationship, processes and sequencing between entities, the operational activities, and the 
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information input and output between these nodes. OV-5b can be described as the overall 

system processes and linkages, and serves as the backbone for the dynamic models for 

EA. 

 

 6. Operational View 6a: Operational Rule Model. OV-6a details the 

operational rules for the key activities nodes in the activity follow diagram. Specifically, 

OV-6a describes the detailed interaction allowed between activities nodes, the activation 

and deactivation of each activities and the expected outcome from the different 

interactions. Hence OV-6a serves as the logic algorithm for effective EA development. 

 

 7.   Data and Information View 2: Logical Data Model.  DIV-2 identifies the 

data and information flow between different entities within the system-under-design. 

Specifically, they identify the data types, and how the data are implemented within the 

system. This is essential as the data model forms the basis for information transfer 

between different entities in the SoS and are implemented in EA as information linkages.  

 

Research Question 2: What level of Operational or functional hierarchy of 

component sub-systems is required for EA to be effective? 

 To effectively answer this question, it is important for the system architecting 

team to understand the key objectives and requirements of the system-under-design (as 

represented through the MOEs and MOPs), and the design parameters or configurations 

to be evaluated. The level of hierarchy must be decomposed to the component sub-
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systems level whereby the effect of the design parameters can be modeled to each 

operational or functional node in the EA without overlaps and duplication. 

 

The challenge in determining the right level of hierarchy is in achieving balance. 

Too many levels of details will result in extensive modelling and system specifics 

capability. This leads to a longer time and higher cost in development of the EA. At the 

early conceptual development stage, many of these information, especially system 

specific capabilities, are not available, and hence modeling such details are impractical 

and may not provide the necessary value-add to the EA. Conversely, too little details 

result in an overall simplified system models and the impact of the different 

configurations are not accurately depicted through the simulation. As such, it is necessary 

for the EA to sufficient level of hierarchy where the effects of the configurations 

manifest, but not too many levels of details that result in unnecessary modeling and 

additional time and development resources. To achieve the right level of hierarchy, the 

system architect must first answer the following questions: 

 

1. What are the key MOEs to be evaluated through the use of EA? 

2. What are the operational activities that affect the MOEs identified in 

Question 1? 

3. What are the configuration or variables to be evaluated? 

4. Can these variables be effectively represented in the operational activities 

stated in Question 2? If not, more layers of hierarchy are required. 
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 The research thesis methodology can be used to illustrate the process. First, the 

MOEs, namely 1) Target Acquisition Percentage, 2) False Alarm Percentage, 3) Time-to-

strike duration, and 4) Target destruction, were determined. Following this, the 

appropriate level of operational activities was identified. Next, the relationship between 

the variables, namely 1) Type of C2, 2) Type of Sensors, and 3) Number of Strike UAS, 

and the operational are established.  

 

For example, as demonstrated in Chapter 4, it was shown that to determine the 

impact of Type of Sensors on the Target Acquisition Percentage MOE, it was necessary 

to go into the third level of the Operational Activity Hierarchy as shown in OV-5a. Here 

the Type of Sensors design parameters specifically affect the Locate TBM(ISR) and 

Confirm TBM Location Activity node, without affecting other activity nodes.  

Research Question 3: How can EA be used to identify and evaluate the impact of 

design parameters on MOEs and MOPs? 

 EA uses dynamic modeling as a basis of simulation to evaluate the impact of 

design parameters on MOEs and MOPs. The EA provides the platform whereby design 

parameters can be incorporated into the system-under-design and provide operational 

outcomes based on the inputs to the system. As such, through the use of EA, system 

architects will be able to identify changes in operational outcomes when different design 

parameters are implemented. This allows system architects to identify how the system-
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under-design behaves and operates under different design parameters, and to derive the 

associated MOEs and MOPs to evaluate these outcomes.  

 

For EA to be effective, the design parameters must be correctly associated with 

the correct operational activity nodes, and the operational outcome of different design 

parameters are accurately defined. This is achieved through the analysis of the design 

parameters and operational activities as stated in Research Question 2 above. Next, these 

relationships are designed into the dynamic models and simulated to obtain the results for 

analysis on their impact on MOEs and MOPs.  

 

Citing an example from this research, the design parameters Type of Sensors are 

associated with the operational activities Locate TBM(ISR) and Confirm TBM Location 

(Surveil). The operational outcomes are defined as the Probabilities of positive detection 

and Probabilities of false detection. Through the implementation of EA, the design of 

Type of Sensors were determined to affect MOEs of Target Acquisition Percentage and 

False Alarm Percentage. 
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Research Question 4: Which are the key parameters that have significant impact to 

design and operational cost for the multi-tiered UAV architecture considered 

herein? 

 Through the use of EA, the methodology implemented in Chapter 3 and the 

analysis conducted in Chapter 4 for the proposed multi-tiered UAS SoS, the impact of the 

design parameters to MOEs can be summarized in the table 23 below: 

 

Table 23: Summary of Design Parameters and MOEs 

MOE Design Parameters Simulation Results Percentage 

Improvement 

Target 
Acquisition 
Percentage 

Type of Sensor High: 85.5% 61.5% 
improvement 
over Normal 
Sensor 

Normal: 52.9% 

False Alarm 
Percentage 

Type of Sensor 
 

High: 0.4% 95.6% 
improvement 
over Normal 
Sensor 

Normal: 9.6% 

Time-to-Strike Type of C2 
 

Autonomous: 91.2 mins 9.8% 
improvement 
over Manual C2 Manual: 100.1 min 

Number of Strike 
UAS 
 

1 x Strike UAS: 94.6 min 2.1% 
improvement 
over 2 x Strike 
UAS 

2 x Strike UAS: 96.9 min 

Target 
Destruction 
Percentage 

Type of C2 
 

High: 75.1% 62.2% 
improvement 
over Normal 
Sensor 

Normal: 46.3% 

Number of Strike 1 x Strike UAS: 54.8% 21.7% 
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UAS 
 

2 x Strike UAS: 66.7% improvement 
over 2 x Strike 
UAS 

 

 The Percentage Improvement column in Table 23 shows the improvement of the 

better option for each design parameters, calculated based on the following formula: 

 𝑃𝑃𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝑛𝑛𝐼𝐼𝑇𝑇𝑖𝑖𝑃𝑃𝑇𝑇𝑛𝑛𝑇𝑇𝑖𝑖𝑇𝑇 = 

 
𝑅𝑅𝑇𝑇𝑖𝑖𝐴𝐴𝑃𝑃𝑇𝑇 𝑖𝑖𝑜𝑜 𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝐼𝐼𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑇𝑇𝑖𝑖𝐴𝐴𝑃𝑃𝑇𝑇 𝑖𝑖𝑜𝑜 𝐿𝐿𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 𝑂𝑂𝐼𝐼𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑇𝑇𝑖𝑖𝐴𝐴𝑃𝑃𝑇𝑇 𝑖𝑖𝑜𝑜 𝐿𝐿𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 𝑂𝑂𝐼𝐼𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖
 𝑥𝑥 100% 

 

The impact of operational costs was not explicitly studied as part of the research, 

however, it can be noted that in the design parameters: 1) Type of Sensor: High 

resolution sensor is more costly as compared to Normal Sensor, and 2) Number of Strike 

UAS: 2 x Strike UAS packages cost more than 1 x Strike UAS package. However, the 

extensiveness of the cost variation cannot be accurately analyzed without further 

research, and the cost-benefit relationship cannot be determine based on current results. 

This is an area where further research can be conducted. 

 

The current level of decomposition is insufficient for accurate cost estimation and further 

elaboration is necessary for Analogy, Parametric or Engineering cost estimation to be 

conducted as part of further research. In addition, the further decomposition in hierarchy 

would enable System Architect to employ the COSYSMO methodology in estimating the 

System engineering costs. 
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Effectiveness of Innoslate Software in EA 

 As part of the thesis research, it is also important that the author provide an 

evaluation of Innoslate used to develop the dynamic models for implementing EA. 

Innoslate is a web-based life-cycle system engineering tool developed by SPEC 

innovation. Specifically, it incorporates DoDAF architectural development tools as part 

of its software package. The following sections compare the pros and cons of Innoslate 

for the purpose of EA.  

 

 Benefits of Innoslate 

 1. DoDAF-Ready.  Innoslate is equipped with DoDAF dash-board, and 

maintains Template for key DoDAF architectural products, making it a useful tool 

for DoDAF-related operation. In addition, the system allows entities to be reused 

in different diagrams. 

 

 2. Simulation-Ready.  With its in-built simulation engine, Innoslate is able to 

generate simulation using the DoDAF products that were developed. In addition, 

the Simulation enable both discrete-event and Monte Carlo simulations, which is 

important for statistically significant evaluation of results. In addition, as the 

simulation is executed directly from the DoDAF view, the system architecting 

team is able to validate the accuracy of the simulation as well as communicating 

the results with the key stakeholders.  
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 3. Flexibility of System.  The built-in simulation engine allows the user to 

define the durations required for operational activities. These durations can also 

be defined using pre-determined statistical functions (such as the Normal 

distribution) that best represent these operational activities. In addition, Innoslate 

allows the user to incorporate additional characteristics into each node through the 

use of Javascript which greatly enhance the flexibility of the software for EA. 

 

 Cons of Innoslate 

 1. Design Limitation—Complexity.  One of the key limitations in Innoslate 

is in the overall complexity that the software is capable of simulating seamlessly. 

As it is a web-based tool, the efficiency and performance of the software depends 

on the connectivity to the internet and the overall loading on the servers. As such, 

a diagram with high level of complexity and many different nodes will result in 

high latency and the simulation process may be interrupted, resulting in an 

ineffective run. However, for the purpose of early concept evaluation, this is not a 

major limitation, since the complexity at the early stages is significantly lower. 

 

Recommendations for Future Research  

Due to time and resource limitations, the current research focused on the impact 

of three different parameters on four identified MOEs. The research can be further 

expanded to include the following: 

 



 

118 

1. Expansion of MOEs. Other MOEs critical for Mutli-tiered UAS SoS can 

be evaluated, such as the 1) Range of Operations, and 2) Endurance of System. 

 

2. Improve resolution in Entities’ capabilities.  To further evaluate new 

MOEs, more details can be incorporated during the development of the dynamic 

models, such as 1) Fuel capacity, and 2) Operational range of each UAS tier. This 

would further improve the fidelity of the EA.  

 

3. Inclusion of Cost Component.  Cost-benefit analysis is a critical part of 

concept evaluation and especially estimating budgets for project. By including a 

cost-analysis component as part of the research, the cost for performance can be 

evaluated and the assessment on the cost benefit be done. 

 

Summary or Significance of Research 

This research implements an effective methodology through the use of EA to 

evaluate the early concept of Multi-tiered UAS SoS. In particular, the research shows that 

the methodology allows system architects to determine the effect of different design 

parameters on overall system performance in terms of MOEs and MOPs through the use 

of dynamic modeling in EA and statistical analysis. In addition, the methodology can be 

further used to evaluate the following: 
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1. Determine system performance given sub-system capabilities.  The 

performance of the SoS can be determined when the detail capabilities of the sub-

system are available. This is similar to the research methodology, except that the 

design parameters are replaced with the capabilities of the sub-system, and the 

results represent the overall performance of the SoS, given the specific sub-

system. 

 

2. Determine sub-system requirements given desired System Performance.  

Conversely, the EA model can be used to determine the system specifications and 

requirements of the sub-system, given the desired System Performance. In this 

case, the dynamic models are simulated with different level of sub-system 

capabilities to determine the sub-system requirement. For example, if the desired 

performance is for the Target Acquisition Percentage MOE to achieve 98%, the 

model will be simulated with different Type of Sensor capability to determine the 

Probability of positive detection required for the sensor sub-system. 

 

From the examples above, it is shown that the EA methodology provide system 

architects with the tool to 1) evaluate different options, 2) understand the overall system 

capability given sub-system capabilities, and 3) determine sub-system requirement given 

desired system performance. These further allow the system architect to proceed with the 

subsequence stages of the SE process and enable better requirement analysis and system 

specification processes. 
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Appendix  

 

Appendix A: Concept of Operations (CONOPS) for Multi-Tiered Unmanned Aircraft 

System (UAS) in anti-Theater Ballistics Missile (TBM) Launcher operations.  

 

Appendix B: AV-1 Overview and Summary Information 

 

Appendix C: Sample Innoslate Script 
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Concept of Operations (CONOPS) for 
Multi-Tiered Unmanned Aircraft 

System (UAS) in anti-Theater Ballistics 
Missile (TBM) Launcher operations. 

This document articulates the concept of operations in utilizing of multi-tiered 
UAS system to search, track and destroy Theater Ballistics Missile (TBM) launcher 
within the Area of Operations. This include the execution of ISR operations to 
seek, track and confirm the TBM launchers, and the conduct of Dynamic Targeting 
and Strike to destroy the target. 

1. Executive Summary 
 
Theater Ballistics Missiles (TBMs) pose significant threats to our troops, friendly forces and 

civilian population within the Area of Operations (AO). The long range and lethality of TBMs, as 

well as the shoot-and-scoot tactics employed by the TBM launcher units, make TBMs an 

imminent threat within the AO.  

  

To effectively counter this threat, this CONOPS focuses on the holistic use of multi-tier UAS 

systems to conduct Intelligence, Surveillance and Reconnaissance (ISR) operations to search for 

and track TBM launchers, and coordinate strike operations to destroy TBM launchers before they 

can pose a threat to friendly forces.  

  

This CONOPS leverages the rapid development in Unmanned Aircraft System (UAS) technology 

to provide a comprehensive solution to address the threat presented by TBM systems. 

Developments in UAS, and the associated sensors and payload technologies, have provided the 

US military with new capabilities in key mission areas. Specifically, this CONOPS describes the 

employment of different tiers of UAS within the AO, and how each UAS operates cooperatively 

with one another to provide target confirmation and activate the kill-chain to destroy threats 

presented by TBMs. This CONOPS provides a low-cost decision making solution that minimizes 

risk by pre-emptively destroying TBM launchers through the use of the multi-tiered UAS 

System-of-Systems (SoS).  
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2. Purpose 
  

The US's UAS arsenal is comprised of numerous UAS with capabilities that ranges from small 

man-portable vehicles, to medium “fighter-sized” vehicles, and large “tanker-sized” vehicles, as 

well as specialized UAS with unique capabilities. These capabilities allow UAS to perform many 

vital roles in military operations, including:  

 

1) ISR  

2) Strike  

3) Protection  

4) Sustainment  

5) Movement and Maneuvering  

6) Command and Control  

 

  

The Multi-tiered UAS architecture aims to deliver a synergistic battlefield effect in the search, 

track and destroy operations related to TBMs, through using an integrated UAS solution that 

employs different tiers of UAS, to maximize mission effectiveness, while minimizing operational 

risks and operating costs. This ISR SoS enables cooperative operations among different groups of 

UAS within the same AO to identify, confirm targets, and to assign tasks among differing UAS 

groups to maximize mission effectiveness and efficiency.  

 

3 Background 
 

 The proliferation of TBM technology and launcher systems by our adversaries presents a 

substantial threat to military operations in various regions around the world. Specifically, TBM 

systems provide our adversary with relatively cheap and accurate stand-off capabilities with a 

potential for highly lethal munitions. Different warheads (such as high-explosive, nuclear or 

chemical) within the TBM system provide our adversaries with great degree of versatility during 

combat, while potentially lowering the effectiveness of friendly forces. To maintain our military 
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edge in contested environments, it is necessary that a low-cost solution with minimal risk be 

developed to pre-emptively destroy TBM launchers.  

 

4 Future Environment 
 

As TBM components become cheaper to produce and grow more technologically advanced, the 

threat posed by TBM systems will continue to increase and grow more complex[1]. Current 

trends indicate that adversary TBM systems are becoming more mobile, survivable, reliable, and 

accurate while also achieving longer ranges. In addition, pre-launch survivability is also likely to 

increase as adversaries denial and deception measures improve.  

 

  

Similarly, UAS technology will continue to evolve and new capabilities will be developed for 

UAS operations. In this regard, the USAF Unmanned Aircraft Systems Flight Plan 2009-2047 

and the US Army Roadmap for UAS 2010-2035 setup the potential UAS development and 

employment for the Air Force and Army Respectively. Currently employment of UAS within the 

US military are executed along stove-piped functional lines, with each operational unit operating 

specific classes of UAS for their respective mission. It is anticipated that future UAS employment 

will require a more synergistic deployment of integrated multi-tiered UAS to maximize mission 

effectiveness while minimizing risks and operating costs.  

 

[1] “Ballistics and Cruise Missiles Threat”, NASIC, 2013  

 

5 Concept Time Frame/ Scope 
 

The successful execution of the CONOPS requires—1) Organizational Structure to vest the 

Combatant Commander with the Command and Control (C2) authority of different tiers of UAS, 

2) Technological Development in Cooperative UAS technology, and 3) UAS sensors and payload 

systems to deliver the required Capabilities.  
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The ISR SoS is expected to be fielded in 2026. The timeline goal for the development of this SoS 

will drive the overall schedule of the program. The Timeline goal for Technological development 

is expected to be completed within 10 years, by the year 2026, with the respective Organizational 

Structure approved within the same time-frame. Current UAS sensors and payloads are deemed 

capable of fulfilling the operational requirements as stipulated by the CONOPS.  

6 Military Need Statement 
 

 Rapid improvements of TBM technology and increases in weapons proliferation to non-allied 

nations have resulted in new and constantly changing threats to friendly forces. The high 

accuracy of many TBM systems allow them to inflict serious damages from significant stand-off 

distances, even when the missiles are armed with only conventional warheads. To further 

compound the problem, TBM launchers employ a shoot-and-scoot technique which makes 

counter-TBM operations challenging. To address this threat, the military needs to have a 

capability that can preemptively seek and destroy TBM launchers. This multi-tiered UAS SoS 

provides the capability to maintain persistent situational awareness over a designated area to 

search and locate possible TBM Launchers, and dynamically target and strike these TBM 

Launchers with minimal cost, or risk to personnel.  

7 Central Idea 
 

The multi-tiered UAS SoS focuses on the efficient employment of different groups of UAS to 

maintain persistent situational awareness over the AO, to seek and identify possible TBM 

Launchers, and to dynamically direct targeting and strike operations. It leverages the capabilities 

of different groups of UAS and sensor systems to achieve a system capable of optimizing UAS 

employment for mission effectiveness, while minimizing operational cost and risk. Specifically, 

the multi-tiered UAS SoS will need to employ cooperative control among various UAS groups in 

the AO to assign roles and plan safe routes for ingress and egress.  

a.  Larger tiers UASs (Group 4 and 5):  

iii. Persistent ISR. The larger tiers of UASs have greatest range, endurance, 

airspeed and altitude capabilities in the family of UAS. As such, these UAS 

are typically employed to conduct persistent ISR over the AO. They will be 
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equipped with the necessary sensors to identify possible Surface-to-Air 

(SAM) sites and possible TBM Launchers in the AO. 

 

iv. Dynamic Strike. These groups of UAS are also capable of carrying kinetic 

weapons, and could be loaded with the necessary munitions to provide a 

dynamic strike capability. 

 

b. Smaller tiers UASs (Group 1 and 2):  

iii. Target Verification. The smaller UAS groups have a smaller footprint are 

used for target verification and can be equipped with Automatic Target 

Recognition (ATR) software to determine phases of TBM launcher 

deployment.  

 

iv. Battle Damage Assessment (BDA). These UAS groups will also be used to 

perform BDA after the conclusion of the dynamic strike to confirm mission 

success. 

 

8 Users and Stakeholders 
 

Secretary of Defense and Office of Secretary of Defense (OSD): Responsible for determining and 

approval of UAS policies for UAS employment within the US military.  

  

Chief of Staff: Approval for the Assets to be deployed into the Operational Theater. They are 

responsible for strategic planning and to balance operational need across different battle fronts to 

allocate assets to the Combat Commander.  

  

Combatant Commander: The Combat Commander is responsible for the overall mission success 

in the Operational Theater. He determines and requests assets to be deployed in the Operational 

Theater and is vested with the authority to designate assets and assign forces for specific missions 

in theater.  
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Mission Commander: Operator of multi-tiered UAS SoS who is responsible for all local UAS 

assets.  

  

Organic UAS Unit: The organic UAS unit is responsible for the tactical execution of launch, 

recovery and tactical control of the UAS within the AO. They receive orders and taskings from 

the Combat Commanders in the planning and execution of tactical execution. The organic UAS 

unit is also responsible for the maintenance and support of the UAS under their responsibility to 

sustain UAS operations within the AO throughout the mission.  

  

Federal Aviation Administration (FAA): The FAA is responsible for the design of aviation 

policies that guide the usage of UASs in the National Air Space. In particular, FAA sets air-

worthiness criteria for Group 4 and 5 UAS operations and the airspace usage regulations for these 

UAS. The UASs will be flown within US for training purpose, and AOs are typically out-of-

country. In addition, Group 4 and 5 UASs will need to pass the FAA air-worthiness requirement.  

  

SPO: System Program Office – Agency responsible for the long-term sustainment, part 

revitalization and upgrade programs for a specific MDS.  

  

JFACC: Joint Forces Air Component Commander – Individual in command of the AOC and 

responsible for all air operations in the AOR.  

JFGCC: Joint Forces Ground Component Commander – Individual in command of the and 

responsible for all air operations in the AOR.This person is responsible for identifying and 

allocating access to the multi-tiered SoS for all ground forces in the AOR.  

9 Policies 
 

Policies governing the use of UAS can be found in the following documents:  

  

a. OSD FY2011-2036 Unmanned Systems Integrated Roadmap, OSD AT&L, 2011  

b. OSD Quadrennial Roles and Missions Review UAS ISR Report, USD (I) 2008  

c. Joint UAS Center of Excellence (JCOE) Concept of Operation for Unmanned Aircraft 

Systems, JROCM 229-08, 25 November 2008  

d. JP 3-30, Command and Control for Joint Air Operations, 12 January 2010  
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e. USAF Unmanned Aircraft Flight Plan 2009-2047  

f. U.S. Army Unmanned Aircraft Systems Roadmap 2010-2035  

10 Mission Operation Scenario 
 

One scenario focusing on the use of different UAS groups consists of a requirement to search, 

track and destroy TBM Launchers and is elaborated below to illustrate the cooperative nature of 

the system.  

  

Background: In a conflict between an allied country and its non-allied neighbor over a resource-

rich off-shore area. The non-allied country is threatening military response if the AO is not 

completely vacated by the allied country. The non-allied country is equipped with several SAM 

sites and TBM launchers.  

  

Mission Operations: The Combatant Commander aims to search, track and destroy the TBMs 

through the effective use of multiple UAS groups via the multi-tiered UAS SoS.  

  

1. Group 4/5 ISR UAS equipped with Electronic Intelligence (ELINT) sensors and 

Synthetic Aperture Radar (SAR), patrol along the edge of ally’s airspace to classify the 

SAM sites, build the Electronic Order of Battle (EOB) and perform coherent change 

detection. These ISR operations are executed over several weeks to detect bunker sites. 

2. Group 1 UAS, equipped with EO sensors, monitor the area around bunker sites and are 

guided by Multi-tiered UAS SoS. 

3. Group 1 UAS is also equipped with ATR to determine phases of TBM deployment. 

4. Upon detection of a “fueling phase”, the SoS is notified. 

5. The nearest un-tasked Group 4/5 UAS with appropriate weapon payload is identified and 

target is assigned to the UAS. 

6. Armed Group 4/5 arrives and strike TBM launcher after confirmation by Combat 

Commander. 

7. Group 1 UAS performs BDA via EO sensors and ATR software. 

11 Capabilities 
  



 

128 

The effectiveness of the system depends on the complementary employment of various UAS 

groups and capabilities. As such the capabilities and characteristics of different tiers of UAS are 

elaborated below to form the baseline Functional Capabilities of the multi-tiered UAS SoS.  

 

 
Fig 1: DoD classification of UAS tiers. 

 

 In addition, the UASs are designed to be capable of carrying a wide range of sensors and payload 

to meet different operational needs. The main classes of sensors are descried in Table 1 below:  

 

Table 1: Sensors  

No    Sensor Type    Description   

  

1  

  

Electro-Optical 

(EO)   

• EO Sensor is able to detect, classify and identify objects in the visible light spectrum.  

• Capable of spot coverage or wide area search over a defined area.  

• Best used on days with clear atmosphere.  

  

2  

  

Infra-Red (IR)   

• IR Sensor is able to detect, classify and identify objects in the IR spectrum.  

• Capable of spot coverage or wide area search over defined area.  

• Best used on days and nights with clear atmosphere.  

  

3  

  

Communications 

Intelligence 

(COMINT)   

• COMINT sensor detects personnel or machine-to-machine communications.  

• Collects frequencies over set ranges.  

• All-weather capability.  
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4  

  

Electronic 

Intelligence 

(ELINT)   

• ELINT sensors detect, classify and identify radar related radio waves.  

• All-weather capability.  

  

5  

  

Spectral   

• Spectral sensor is able to detect, classify and identify materials when target spectral 

response differs from its surrounding.  

• Capable of spot mode to survey known location-of-interest to be used in wide area 

search.  

• Best used on days with clear atmosphere.  

  

6  

  

Synthetic 

Aperture Radar 

(SAR)   

• SAR is able to detect and classify targets and provide coherent change detection.  

• Capable of covering large areas of land using a strip collection mode.  

• All-weather capability.  

 

12 Risks 
 

Risk to Mission—Asset loss. The risks to the mission due to asset loss are classified in two 

different categories—1) Non-kinetic Effects, and 2) Kinetic Kills.  

  

1. Non-kinetic Effects: This refers to threats that disrupt the UAS capability within the AO 

to achieve the desired battlefield effect. Here, the 2 key threats to UAS operations are 

jamming and loss of communications, resulting in loss of control of the UAS.   

1. Kinetic Kills: This refers to the physical destruction of the UAS due to hostile fire. The 

small UAS groups flying at low altitude are susceptible to small arms fire from ground 

forces; while larger Group 4 and 5 UAS can be targeted by an enemy’s integrated air-

defence systems. 

Risk to Mission—Mis-identified Target.The risk of Mis-identified target and subsequent 

destruction of non-hostile personnel or equipment pose a huge risk in the execution of such 

automated search, track and destroy operations. To address this, it is necessary that the Multi-

tiered UAS SoS system include target confirmation algorithms that independently verify target 

presence and require a human in the loop prior to the sending of the strike command.  

13 Summary 
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 The multi-tiered UAS SoS will provide the US military with the new capability to almost 

completely automate the capability of preemptively addressing threats posed by TBMs. In 

addition, the system represents a paradigm shift from the current mode of UAS employment 

whereby UAS are deployed along stove-piped functional lines and enables the synergistic 

deployment of integrated multi-tiered UAS systems. This will maximize mission effectiveness 

while minimizing risks and operating costs through the optimal use of different UAS groups to 

achieve desired battlefield effects.  

 

14 CONOPS Development Team 
 

Capt Andrew Roberts  

Ms. Lidia Toscano  

MAJ Zhongwang, Chua  

Capt Nicholas Gilbert  
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AV-1 Overview and Summary Information 
UAS Multi-Tier Overview and Summary 

 

1 Architecture Description Identification 

1.1  Name of Architecture Project 
 

Multi-tiered Unmanned Aircraft System (UAS) System-of-Systems (SoS) for Theater-Ballistics 

Missile (TBM) Launcher strike. 

2.2 Architect Leading Project 
 

Zhongwang Chua is the Chief Architect leading the project development.  

2.3 Organization Developing the Architecture 
 

Group 4 Architecting  

2.4 Assumptions and Constraints 
 

• The System is able to interact securely with the different tiers of UAS system. 

• Mission Commander is vested with the authority to Command and Control UASs deployed 

within the AO and has the authority to issue Strike command. 

• All UAS systems are in the Operations and Sustainment phase of the life-cycle. 

• All UAS systems are in working order and have trained personnel to operate them. 

• The Group 1 UAS has sufficient camouflage, altitude climbing, or other means of staying 

hidden from human guards. 

2.5 Approval Authority 
 

Lt Col Thomas Ford  
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2.6 Date Completed 
 

15 March 2016  

2.7 Level of Effort and Projected / Actual Cost to Develop the Architecture 
 

The actual cost of this architecture is merely the blood, sweat, and tears of the four members 

striving to graduate on time with outstanding grades. No additional financial burden is placed on 

the institution due to the creation of this architecture.  

3 Scope: Architecture Viewpoints, Models and Views 

3.1 Viewpoints and Models Developed 
 

Various DoDAF viewpoints and models will be utilized in the development of the Multi-tiered 

UAS SoS architecture. DoDAF viewpoints include:  

 

• AV-1: Overview and Summary Information 

• AV-2: Integrated Dictionary 

• OV-1: High Level Operational Concept Graphic 

• CV-2: Capability Taxonomy 

• OV-4: Organizational Relationships Chart 

• OV-5a: Operational Activity Decomposition Tree 

• CV-6: Capability to Operational Activities Mapping 

• OV-5b: Operational Activity Model 

• DIV-2: Logical Data Model 

• OV-2: Operational Resource Flow Description 

• OV-3: Operational Resource Flow Matrix 

• OV-6a: Operational Rules Model 

• OV-6b: State Transition Description 

• OV-6c: Event-Trace Description 

• SV-1: Systems Interface Description 

• SV-4: Systems Functionality Description 
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• SV-5a: Operational Activity to Systems Function Traceability Matrix 

• SV-7: System Measures Matrix 

• Multi-tiered UAS SoS Software Simulation 

 

CONOPS and Use Cases will also be developed to ensure coverage of all major details.  

3.2 Time Frames Addressed 
 

The successful execution of the system architecture requires— 1) Organizational Structure to vest 

the Combatant Commander with the Command and Control (C2) authority of different tiers of 

UAS, 2) Technological Development in Cooperative UAS technology, and 3) UAS sensors and 

payload systems to deliver the required Capabilities.  

  

The Multi-tiered UAS SoS is expected to be fielded in 2031. The timeline goal for the 

development of Multi-tiered UAS SoS will drive the overall schedule of the program. The 

Timeline goal for Technological development is expected to be completed within 5 years, by the 

year 2031, with the respective Organizational Structure approved within the same time-frame. 

Current UAS sensors and payloads are deemed capable of fulfilling the operational requirements 

as stipulated by the CONOPS.  

3.3 Organizations Involved 
 

Secretary of Defense and Office of Secretary of Defense (OSD): Responsible for determining and 

approval of UAS policies for UAS employment within the US military.  

  

Chief of Staff: Approval for the Assets to be deployed into the Operational Theater. They are 

responsible for strategic planning and to balance operational need across different battle fronts to 

allocate assets to the Combat Commander.  

  

Combatant Commander: The Combat Commander is responsible for the overall mission success 

in the Operational Theater. He determines and requests assets to be deployed in the Operational 

Theater and is vested with the authority to designate assets and assign forces for specific missions 

in theater.  
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Mission Commander: Operator of Multi-tiered UAS SoS who is responsible for all local UAS 

assets.  

  

Organic UAS Unit: The organic UAS unit is responsible for the tactical execution of launch, 

recovery and tactical control of the UAS within the AO. They receive orders and taskings from 

the Combat Commanders in the planning and execution of tactical execution. The organic UAS 

unit is also responsible for the maintenance and support of the UAS under their responsibility to 

sustain UAS operations within the AO throughout the mission.  

  

Federal Aviation Administration (FAA): The FAA is responsible for the design of aviation 

policies that guide the usage of UASs in the National Air Space. In particular, FAA sets air-

worthiness criteria for Group 4 and 5 UAS operations and the airspace usage regulations for these 

UAS. The Multi-tiered UAS SoS system will be flown within US for training purpose, and AOs 

are typically out-of-country. In addition, Group 4 and 5 UASs will need to pass the FAA air-

worthiness requirement.  

 

SPO: System Program Office – Agency responsible for the long-term sustainment, part 

revitalization and upgrade programs for a specific MDS (to include Multi-tiered UAS SoS) 

 

JFACC: Joint Forces Air Component Commander – Individual in command of the AOC and 

responsible for all air operations in the AOR. 

 

JFGCC: Joint Forces Ground Component Commander – Individual in command of and 

responsible for all ground operations in the AOR.  This person is responsible for identifying and 

allocating access to the Multi-tiered UAS SoS System for all ground forces in the AOR. 

 

4 Purpose and Perspective 
  

Problem  

Rapid improvements of TBM technology and increases in weapons proliferation to non-allied 

nations have resulted in new and constantly changing threats to friendly forces. The high 
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accuracy of many TBM systems allow them to inflict serious damages from significant stand-off 

distances, even when the missiles are armed with only conventional warheads. To further 

compound the problem, TBM launchers employ a shoot-and-scoot technique which makes 

counter-TBM operations challenging.  

  

Need  

To address this threat, the military needs to have a capability that can preemptively seek and 

destroy TBM launchers. Multi-tiered UAS SoS provides the capability to maintain persistent 

situational awareness over a designated area to search and locate possible TBM Launchers, and 

dynamically target and strike these TBM Launchers with minimal cost, or risk to personnel.  

  

Purpose of Multi-tiered UAS SoS 

The US's UAS arsenal is comprised of numerous UAS with capabilities that ranges from small 

man-portable vehicles, to medium “fighter-sized” vehicles, and large “tanker-sized” vehicles, as 

well as specialized UAS with unique capabilities. These capabilities allow UAS to perform many 

vital roles in military operations, including:  

 

1) ISR  

2) Strike  

3) Protection  

4) Sustainment  

5) Movement and Maneuvering  

  

The system architecture aims to deliver a synergistic battlefield effect in the search, track and 

destroy operations related to TBMs, through using an integrated UAS solution that employs 

different tiers of UAS, to maximize mission effectiveness, while minimizing operational risks and 

operating costs. Multi-tiered UAS SoS enables cooperative operations among different groups of 

UAS within the same AO to identify, confirm targets, and to assign tasks among differing UAS 

groups to maximize mission effectiveness and efficiency.  
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5 Context 

5.1 Mission 
 

Different Tiers of UASs will be deployed within the same AO to achieve the desired battlefield 

effect and mission success. In theater, UASs will be equipped with different sensors and software 

so that they can fulfill different mission roles. In particular, this architecture focuses on finding, 

tracking, and destroying TBMs efficiently and effectively through the use of the Multi-tiered 

UAS SoS system.  

5.2 Doctrine, Goals, and Vision 
 

The System provides the Combat Commander with a full suite of aerial capabilities applied 

automatically to achieve mission success. In particular, UAS systems:  

 

• Reduce risks to ground troops. 

• Reduce command workload while sustaining persistent operations by automating what 

can be automated. 

• Increase capabilities for extended range and stand-off operations. 

5.3 Concepts of Operations/Scenarios 
  

The system focuses on the efficient employment of different groups of UAS to maintain 

persistent situational awareness over the AO, to seek and identify possible TBM Launchers, and 

to dynamically direct targeting and strike operations. It leverages the capabilities of different 

groups of UAS and sensor systems to achieve a system capable of optimizing UAS employment 

for mission effectiveness, while minimizing operational cost and risk. Additionally, the system 

will be the central node in a system-of-systems employing cooperative control among various 

UAS groups in the AO to assign roles and plan safe routes for ingress and egress.  

 

a.  Larger tiers UASs (Group 4 and 5):  

i. Persistent ISR. The larger tiers of UASs have greatest range, endurance, airspeed and 

altitude capabilities in the family of UAS. As such, these UAS are typically 



 

137 

employed to conduct persistent ISR over the AO. They will be equipped with the 

necessary sensors to identify possible Surface-to-Air (SAM) sites and possible TBM 

Launchers in the AO. 

 

ii. Dynamic Strike. These groups of UAS are also capable of carrying kinetic weapons, 

and could be loaded with the necessary munitions to provide a dynamic strike 

capability. 

 

b. Smaller tiers UASs (Group 1 and 2):  

i. Target Verification. The smaller UAS groups have a smaller footprint are used for 

target verification and can be equipped with Automatic Target Recognition (ATR) 

software to determine phases of TBM launcher deployment.  

 

ii. Battle Damage Assessment (BDA). These UAS groups will also be used to perform 

BDA after the conclusion of the dynamic strike to confirm mission success. 

5.4 Information Assurance Context 
 

The same information assurance criteria for individual UAS tiers will apply because there are no 

new information streams, only new methods for automating them.  

5.5 Linkages to Other Architectures 
 

This architecture is linked with the ISR and each UAS group's respective architecture.  

6 Architecture Development Schedule 
 

13 Jan 2016 - Overarching CONOPS, Use Cases, AV-1, AV2  

20 Jan 2016 - OV-5a, CV-2, OV-1, OV-4  

27 Jan 2016 - CV-6, OV5b, DIV-2  

17 Feb 2016 - OV-2, OV-3, OV-6a, b, c  

24 Feb 2016 - SV-1, SV-4, SV-5a  

2 Mar 2016 - SV-7, Multi-tiered UAS SoS Software Simulation  
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7 Findings 
 

This section will be developed as the architecture development progresses.  

7.1 Analysis Results 
 

Ownership and Responsibility 

a. Who owns the asset?   

- The AOC will own this asset. 

b. Who commands UAS employment?  

-  The Multi-tiered UAS SoS shall be supervised by the Mission Commander at all 

times. 

c. Who has the final say in this system?  

- Mission Commander. 

d. What level is required for the implementation of proposed architecture? 

-  Office Secretary of Defense through JCIDS process 

e. Does funding have an impact on employment? (who pays for it?) 

-  Yes.  

 

Technical Feasibility 

a. What are the technical issues affecting integration between different fleet (such as 

communication datalink, commonality of software data systems)? 

- Flight Planning Algorithm 

- Strike Target Flight Maneuvers 

- Intelligence Gathering  

- BDA Image Processing 

- Bandwidth 

- Secure Communications 

- Communicate Intelligence feed simultaneously between Mission Commander, 

AOC, and Ground Forces 

 

Deployment Guidelines 

a. What should the Rules of Engagement (ROEs) be? 
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-  The system will have the mission parameters altered by the Mission Commander 

in order to tailor the guidance parameters in order to maximize flexibility.  The 

Mission Commander is kept in the loop for this reason and to ensure that a 

human always makes the decision to launch munitions.  
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Sample Innoslate Script 

Some of the main Javascripts used in initialization and rules implementation in the 
Innoslate Executable Models are provided for references. 
 
System Initialisation Block 
 
// The Activity block initializes all the systems parameters in the global arrays. 
// Due to the nature of the simulation where it is not possible to pass information between 
blocks, Parameters are declared in global. 

 
function onStart() 
{ 
    //intialize global mission status 
    globals.put("Run_Count",0);         // To determine which run the simulation is in 
    globals.put("Current_Location",0);  // To determine the current location of ISR UAS 

   
    //initialize target counting 
    globals.put("Target_Count",0);      // Running tally of total Targets created 
    globals.put("Target_confirm",0);    // Running tally of tatal targets confirmed 
    globals.put("NonTarget_Count",0);   // Running tally of total non target confirmed 
    globals.put("Strike_Count",0);      // Running tally of total Target Struck 

   
    //Set ISR UAS Sensor Probability 
    globals.put("ISR_TruePos",0.7);     // Probability for detection given real target 
    globals.put("ISR_FalsePos",0.3);    // Probability for detection given non-target 

   
    //Set Surveil UAS Sensor Probability 
    globals.put("Surveil_TruePos",0.75);   // Probability for detection given real target 
    globals.put("Surveil_FalsePos",0.2);  // Probability for detection given non-target 

 
    //Set Strike UAS hit Probability 
    globals.put("Strike_Hit",0);        // Probability for hit by Strike UAS 
    globals.put("Strike_Miss",0);       // Probability for miss by Strike UAS 
     
    //Set array for Target count 
    for (counter = 1; counter <= 200; counter ++){ 
        globals.put("Combined_Target_Location["+counter+"]",counter);  

// Target Locationfor each of the 200 targets 
globals.put("Target_Acquired["+counter+"]", 0);         // Flag for target acquire 
globals.put("Target_Strike_Time["+counter+"]", 0);      // Time to strike target 
globals.put("Time_Taken["+counter+"]", 0);              // Time from target acquire 
to target strike 

         globals.put("Target_Destroyed["+counter+"]", 0);        // Flag for target destroyed 
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    } 
 
    //Variables for simulation control 
    globals.put("Surveil_UAS",0);       // For Surveil UAS selection 
    globals.put("Sur_UAS_1_Loc",0);  // Location for Surveil UAS 1 
    globals.put("Sur_UAS_2_Loc",0);  // Location for Surveil UAS 2 
    globals.put("Sur_UAS_3_Loc",0);  // Location for Surveil UAS 3 
    globals.put("Sur_UAS_4_Loc",0);     // Location for Surveil UAS 4 
 
    globals.put("Strike_UAS",0);        // For Strike UAS selection 
    globals.put("Strike_UAS_1a_Loc",0); // Location for Strike UAS 1 
    globals.put("Strike_UAS_1b_Loc",0); // Location for Strike UAS 2 
    globals.put("Strike_UAS_2a_Loc",0); // Location for Strike UAS 3 
    globals.put("Strike_UAS_2b_Loc",0); // Location for Strike UAS 4 
 
    globals.put("BDA_UAS",0);           // For BDA UAS selection 
    globals.put("BDA_UAS_1_Loc",0);  // Location for BDA UAS 1 
    globals.put("BDA_UAS_2_Loc",0);  // Location for BDA UAS 2 

} 
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Loop Initialisation Block 
 
// This block reinitialize the parameters for each run by: 
// 1. Count total number of targets. 
// 2. Create 2 x Real targets and 2 x False targets at random position. 
// 3. Ensure that the targets are not located within the same location. 
// 4. Reset the UAS starting condition. 
 
function onStart(){ 
   
    //declare variables 
    var target = [0, 0]; 
    var false_target = [0,0]; 
    var time_to_strike = [0,0]; 
     
   
    // initialize current search location of ISR UAS 
    globals.put("Current_Location",0); 
   
    // initialize Surveil UAS deployment to 0 
    globals.put("Surveil_UAS",0);        // For Surveil UAS selection 
    globals.put("Sur_UAS_1_Loc",0);  // Location for Surveil UAS 1 
    globals.put("Sur_UAS_2_Loc",0);  // Location for Surveil UAS 2 
    globals.put("Sur_UAS_3_Loc",0);  // Location for Surveil UAS 3 
    globals.put("Sur_UAS_4_Loc",0);      // Location for Surveil UAS 4 
 
    globals.put("Strike_UAS",0);          // For Strike UAS selection 
    globals.put("Strike_UAS_1_Loc",0); // Location for Strike UAS 1 
    globals.put("Strike_UAS_2_Loc",0); // Location for Strike UAS 2 
    globals.put("Strike_UAS_3_Loc",0); // Location for Strike UAS 3 
    globals.put("Strike_UAS_4_Loc",0); // Location for Strike UAS 4 
 
    globals.put("BDA_UAS",0);             // For BDA UAS selection 
    globals.put("BDA_UAS_1_Loc",0);  // Location for BDA UAS 1 
    globals.put("BDA_UAS_2_Loc",0);  // Location for BDA UAS 2 
     
 
    //initialize Loop Count 
    Current_Run = globals.get("Run_Count") + 1; 
    globals.put("Run_Count",Current_Run); 
    //print("Run No: "+globals.get("Run_Count")); 
   
    //Initialize target location per run 
    target[0] = 0; 
    target[1] = 0; 
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    while (target[0] === 0){ 
        target[0] = Math.round(Math.random() * 100 / 2.5);     
    } 
     
    //To ensure targets are not located within the same search grid. 
    while (target[1] == target[0] || target[1] === 0){ 
        target[1]= Math.round(Math.random() * 100 / 2.5); 
    } 
   
    //Initialize false target location and ensure it does not co-locate with target. 
    false_target[0] = Math.round(Math.random() * 100 / 2.5); 
    while (false_target[0] == target[0] || false_target[0] == target[1] || false_target[0] === 
0){ 
        false_target[0] = Math.round(Math.random() * 100 / 2.5); 
    } 
     
    //Initialize false target location and ensure it does not co-locate with target or first false 
target 
    false_target[1] = Math.round(Math.random() * 100 / 2.5); 
    while (false_target[1] == target[0] || false_target[1] == target[1] || false_target[1] == 
false_target[0] || false_target[1] === 0){ 
        false_target[1] = Math.round(Math.random() * 100 / 2.5); 
    } 
     
   
    //Update global targets and false targets variables 
    globals.put("Target[0]", target[0]); 
    globals.put("Target[1]", target[1]); 
    globals.put("False_Target[0]", false_target[0]); 
    globals.put("False_Target[1]", false_target[1]); 
     
    //print("Initialization --- Target 1: " +globals.get("Target[0]") +" Target 2: " 
+globals.get("Target[1]") +" False Target 1: " +globals.get("False_Target[0]") +" False 
Target 2: " +globals.get("False_Target[1]")); 
     
    current_target_number = globals.get("Target_Count"); 
    if (current_target_number === 0){            
        current_target_number = current_target_number + 1;  // 1st run 
    } 
    else{ 
        current_target_number = current_target_number + 2;  // 2nd run onwards need to 
account for 2 targets per run 
    } 
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    globals.put("Combined_Target_Location["+ current_target_number +"]",target[0]); 
    globals.put("Target_Count",current_target_number); 
     
    current_target_number = globals.get("Target_Count") + 1; 
    globals.put("Combined_Target_Location["+ current_target_number +"]",target[1]); 
    globals.put("Target_Count",current_target_number); 
 
    //reset the target count to correspond to the 1st target of current run 
    current_target_number = globals.get("Target_Count") - 1; 
    globals.put("Target_Count",current_target_number); 
     
}   
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TBM Located? Block 
 
// This block determine if the ISR UAS locate a TBM launcher within the current search. 
// It uses the probability function for Probability of detection of real target and non-target 
// to declare if a TBM launcher is located. 
 
function onEnd(){ 
 
    // Generate random number for probability comparison 
    Rand_Num = Math.random(); 
 
    // If target is located at current location 
    if (globals.get("Current_Location")==globals.get("Target[0]")){ 
         
        // target is located and identified 
        if (Rand_Num <= globals.get("ISR_TruePos")){ 
            target_counter = globals.get("Target_Count"); 
            globals.put("Target_Acquired["+target_counter+"]",1); 
 
            exitBranchName = "Yes"; 
             
        } 
         
        else { 
            target_counter = globals.get("Target_Count"); 
            exitBranchName = "No"; 
        } 
     
    } 
     
     
    else if (globals.get("Current_Location")==globals.get("Target[1]")){ 
         
        // target is located and identified 
        if (Rand_Num <= globals.get("ISR_TruePos")){ 
            target_counter = globals.get("Target_Count") + 1; 
            globals.put("Target_Acquired["+target_counter+"]",1); 
 
            exitBranchName = "Yes"; 
        } 
         
        else { 
            target_counter = globals.get("Target_Count") + 1; 
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            exitBranchName = "No"; 
             
        } 
     
         
    } 
     
     
     
    // If false target is located at current location 
    else if (globals.get("Current_Location")==globals.get("False_Target[0]")|| 
globals.get("Current_Location")==globals.get("False_Target[1]")){ 
 
        // false target is located and wrongly identified 
        if (Rand_Num <= globals.get("ISR_FalsePos")){ 
            exitBranchName = "Yes"; 
 
        } 
         
        // false target is not identified 
        else { 
            exitBranchName = "No"; 
 
        } 
         
         
    } 
     
    // If no target of false target at current location 
    else{ 
        exitBranchName = "No"; 
         
    } 
     
    return exitBranchName; 
     
} 
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Assign Surveil UAS Block 
 
//This block assigns the next available Surveil UAS after target is identified. 
//This control function is similar to other Assign UAS blocks 
 
function onEnd() { 
     
    // Check current UAS Deployment 
    UAS_Current = globals.get("Surveil_UAS"); 
     
    if (UAS_Current === 0){ 
        UAS_Current = UAS_Current + 1; 
        globals.put("Surveil_UAS",UAS_Current); 
        globals.put("Sur_UAS_1_Loc", globals.get("Current_Location")); 
        //print ("Surveil UAS 1 deployed to " +globals.get("Sur_UAS_1_Loc")); 
        exitBranchName = "UAS 1"; 
     
    } 
     
    else if (UAS_Current == 1){ 
        UAS_Current = UAS_Current + 1; 
        globals.put("Surveil_UAS",UAS_Current); 
        globals.put("Sur_UAS_2_Loc", globals.get("Current_Location")); 
        //print ("Surveil UAS 2 deployed to " +globals.get("Sur_UAS_2_Loc")); 
        exitBranchName = "UAS 2"; 
     
    } 
     
     
    else if (UAS_Current == 2){ 
        UAS_Current = UAS_Current + 1; 
        globals.put("Surveil_UAS",UAS_Current); 
        globals.put("Sur_UAS_3_Loc", globals.get("Current_Location")); 
        //print ("Surveil UAS 3 deployed to " +globals.get("Sur_UAS_3_Loc")); 
        exitBranchName = "UAS 3"; 
     
    } 
     
     
    else if (UAS_Current == 3){ 
        UAS_Current = UAS_Current + 1; 
        globals.put("Surveil_UAS",UAS_Current); 
        globals.put("Sur_UAS_4_Loc", globals.get("Current_Location")); 
        //print ("Surveil UAS 4 deployed to " +globals.get("Sur_UAS_4_Loc")); 
        exitBranchName = "UAS 4"; 
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    } 
     
    return exitBranchName; 
     
}
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