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Abstract 
 
 

Robust parameter design (RPD) is used to identify a system’s control settings that 

offer a compromise between obtaining desired mean responses and minimizing the 

variability about those responses.  Two popular combined-array strategies—the response 

surface model (RSM) approach and the emulator approach—are limited when applied to 

simulations.  In the former case, the mean and variance models can be inadequate due to 

a high level of non-linearity within many simulations.  In the latter case, precise mean 

and variance approximations are developed at the expense of extensive Monte Carlo 

sampling. 

This research combines the RSM approach’s efficiency with the emulator 

approach’s accuracy.  Non-linear metamodeling extensions, namely through Kriging and 

radial basis function neural networks, are made to the RSM approach.  The mean and 

variance of second-order Taylor series approximations of these metamodels are generated 

via the Multivariate Delta Method and subsequent optimization problems employing 

these approximations are solved.  Results show that improved prediction models can be 

attained through the proposed approach at a reduced computational cost.  Additionally, a 

multi-response RPD problem solving technique based on desirability functions is 

presented to produce a solution that is mutually robust across all responses.  Lastly, 

quality measures are developed to provide a holistic assessment of several competing 

RPD strategies. 
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NON-LINEAR METAMODELING EXTENSIONS TO THE 

ROBUST PARAMETER DESIGN OF COMPUTER SIMULATIONS 

 
 
 

I.     Introduction 
 
 
1.1  Background 

Computer simulations are mathematical models of complex real-world systems 

for which it would be too expensive, too time consuming, too dangerous, or even 

impossible to examine with physical experimentation.  They have been applied across 

such diverse disciplines as manufacturing, military applications, logistics and supply 

chain management, and health care.  Simulations, which are either deterministic or 

stochastic in nature, can be used to gain insight into a system, examine “what-if” 

scenarios, or perform system optimization [1].  Deterministic simulations yield the same 

outputs when multiple replications are performed at a single design setting.  Stochastic 

simulations, on the other hand, generate different outputs when replications are 

performed at a single design setting due to the presence of random variables within the 

model [2]. 

This research focuses on stochastic simulations in which some parameters, called 

control factors, can be set to specific values whereas other parameters, called noise 

factors, are modeled by random variables with specific probability distributions.  The 

noise factors introduce undesirable variation in the system’s outputs.  When noise factors 

are present, robust parameter design (RPD) principles can be applied as a cost-effective 
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strategy for identifying the ideal control factor settings that result in outputs that are 

robust, or insensitive, to the random fluctuation of the noise factors.  Simulations are 

well-suited for RPD studies since the parameters, whether they are control factors or 

noise factors, can be manipulated and set to specific values.  In fact, Kleijnen et al. [3] 

state that finding robust policies or decisions is one of the basic goals of simulations.  

RPD is a method for determining the control factor settings that reach a compromise 

between obtaining a desired mean response while minimizing the variability about that 

response [4]. 

In the single-response RPD problem, the objective is to identify the control factor 

setting that yields a desired mean response with minimum variance [4].  The literature 

offers several strategies that have stemmed from Taguchi’s original RPD principles.  

However, this research is motivated by those strategies that utilize Welch et al.’s [5] 

combined-array design of experiment (DOE).  Specifically, the methods of interest are 

the combined-array response surface model (RSM) approach [6–9] and the stochastic 

emulator approach [10–13].  Though each strategy has its own merits, they can be 

inappropriate or cumbersome when faced with the highly non-linear nature of typical 

simulations. 

In the multi-response RPD problem, the objective is to find the optimal control 

parameter levels that return average responses close to their target values while 

minimizing the variance of each response.  The literature proposes several methods for 

optimizing multi-response problems.  These methods involve the use of desirability 

functions [14–18], loss functions [19–23], principal component analysis (PCA) [24–27], 

distance metrics [28, 29], and mean square error (MSE) criterion [30–32].  A majority of 
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these techniques transform the set of quality characteristics into new response variables in 

order to reduce the dimension of the optimization problem.  These existing methods seek 

to find an optimal balance of means and variances across the set of responses.  However, 

in some instances, the mean or variance of one response may influence the solution in 

such a way that the means and variances of the remaining responses are insignificant to 

the overall RPD problem.  In this case, it can be difficult to attain a solution that is 

balanced across the set of responses. 

Numerous organizations utilize RPD principles as an economical strategy for 

developing a product or process that is insensitive to a variety of operating conditions.  

Advantages of employing these principles are that the product or process will be on 

target while exhibiting less variability.  This subsequently increases the end user’s appeal 

for the product or process since it won’t be as susceptible to deterioration and can be used 

in diverse situations.  This research effort aims to advance the current RPD problem 

solving approaches. 

 
1.2  Research Objectives 

This dissertation strives to meet three key objectives.  The first objective is to 

broaden the combined-array RSM approach that relies exclusively on low-order 

polynomial models.  Since more accurate predictive response surface models result in 

better RPD solutions [33], a methodology will be developed that utilizes non-linear 

modeling efforts, such as Kriging and radial basis function neural networks (RBFNNs), 

in place of polynomial models.  The second objective is to develop an approach for multi-

response RPD problems that provides a collaborative solution that is balanced across the 
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means and variances of each response.  Finally, the third objective is to generate a 

framework for comparing different RPD problem solving strategies via quality measures.  

Such measures can increase the understanding of each approach and allow the analyst to 

make a more knowledgeable evaluation of the competing procedures. 

 
1.3  Chapter Overview 

This dissertation is organized in the following manner.  Chapter II establishes the 

foundation for the techniques utilized in this research by reviewing the pertinent literature 

in the areas of RPD and response modeling.  Chapter III details the extension of the 

combined-array RSM approach to include the application of Kriging and RBFNN 

metamodels.  Chapter IV proposes a multi-response RPD methodology based on 

desirability functions that generates solutions that are well-balanced across the means and 

variances of each response.  Chapter V describes a method for comparing RPD problem 

solving strategies via quality measures.  Chapter VI summarizes the research 

contributions and identifies opportunities for future research.  Finally, supplemental 

mathematical derivations and figures are presented in the Appendices. 
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II.   Pertinent Literature 

 
 
2.1  Introduction 

 This chapter summarizes pertinent literature in the areas of RPD and response 

modeling.  It is intended to establish the foundation for the techniques that are utilized 

and expanded upon in this dissertation. 

 
2.2  Robust Parameter Design Approaches 

 This research focuses on the robust design of stochastic simulations in which 

some parameters, called control factors, can be set to specific values whereas other 

parameters, called noise factors, are modeled by random variables with specific 

probability distributions.  The noise factors introduce undesirable variation in the 

system’s output.  When noise factors are present, RPD principles can be applied as a 

cost-effective strategy for identifying the ideal control factor settings that result in outputs 

that are robust, or insensitive, to the random fluctuation of the noise factors. 

Simulations are well-suited for RPD studies since the parameters, whether they 

are control factors or noise factors, can be manipulated and set to specific values.  RPD is 

a method for determining a system’s ideal control factor setting that reaches a 

compromise between obtaining a desired target on the mean response while minimizing 

the variability of the system around that mean response.  Three popular strategies for 

solving RPD problems are Taguchi’s method [4], the response surface model (RSM) 

approach [6], and the stochastic emulator approach [11].  However, before discussing 
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these current strategies, this section will first illustrate the sources that cause variation in 

a system’s output. 

 
2.2.1  Sources of Output Variation 

As seen in Figure 1a, a system can be modeled as a set of resources that 

transforms inputs into measureable outputs.  This figure expands Figure 1-1 in 

Montgomery [9] to simulations.  Noise causes variability in the outputs through any 

combination of four separate sources: uncontrollable factors, uncertainty in the control 

factors, uncertainty in the inputs, and internal system variability.  Uncontrollable factors 

are system parameters that are difficult, costly, or impossible to control under normal 

operation of the system.  In industrial scenarios, these factors are usually assumed 

controllable for the purposes of experimentation.  Uncertainty in a control factor reflects 

variation about its nominal setting.  Uncertainty in an input involves variability of the 

system’s inputs.  Finally, internal variability relates to intrinsic system variation.  For 

example, in a discrete event simulation, intrinsic system variation occurs due to factors 

such as the initial state of the system, the warm-up period, the termination conditions, or 

the random number stream. 

In this research, the term noise factor represents uncontrollable factors, 

uncertainty in the control factors, and uncertainty in the inputs.  The set of noise factors is 

denoted by the vector z whereas the set of control factors is specified by the vector x.  

Typically, it is assumed that the noise factors are mutually independent and that each 

noise factor iz is a normally distributed random variable with known mean iµ and variance



 

7 

2
iσ .  Therefore, [ ] [ ]1 nE µ µ ′= =zz μ  and [ ] ( )2 2

1 ,..., nVar diag σ σ= Σ =zz .  Figure 

1b illustrates the sources of variation for a scenario used in Chapter III. 

 

 

Figure 1.  Illustrations of Sources of Output Variation for (a) a General System and 
(b) a Circuit Simulation 

 

2.2.2  Taguchi’s Method 

Taguchi’s approach to solving RPD problems crosses an inner orthogonal array of 

control factors with an outer orthogonal array of noise factors.  That is, each combination 

of control factor settings within the inner array is performed over each combination of 

noise factor settings in the outer array.  Taguchi then summarizes the observations of 

each inner array trial across the outer array settings via a statistic known as a signal-to-

noise ratio (SNR).  The SNR accounts for both the process mean and variance.  It is then 

utilized as the response variable for statistical analysis purposes [4]. 

 The goal of the overall experiment determines which of four SNR formulations to 

use.  If the goal is to determine the values of the control factors that result in a minimum 
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response, then the smaller-the-better SNR should be utilized.  If a maximum response is 

desired, then the larger-the-better SNR is used.  Finally, in what is known as the target-

is-best case, the goal may be to determine the control settings that yield a response near 

some desired target value.  In this case, Taguchi first recommends using bias-eliminating 

tuning factors that result in an expected process response equal to the target.  Then the 

form of the SNR is based on whether or not the response mean and variance are 

independent [9, 34].  These four SNRs are shown in Table 1 where ,i jy is the response for 

inner array setting i and outer array setting j, iy is the sample mean of inner array setting 

i, and 2
is is the sample variance of inner array setting i. 

 
Table 1.  Taguchi’s Signal-to-Noise Ratios for Three Experimental Scenarios 

Smaller-the-Better Larger-the-Better Target-is-Best 

2
,

1
10 log

n
i j

i
j

y
SNR

n=

 
= − ⋅   

 
∑  

2
,

1

1
10 log

n
i j

i
j

y
SNR

n=

 
= − ⋅   

 
∑  

Independent mean & variance 

( )210 logi iSNR s= ⋅  

Correlated mean & variance 

2

210 log i
i

i

ySNR
s

 
= ⋅  

 
 

 

Regardless of which SNR is utilized, modeling analysis of the system attempts to 

maximize the SNR while driving the mean response towards some preferred target value.  

Taguchi methods typically develop only main-effects models and are not concerned with 

control factor interactions.  Analysis of Taguchi’s approach is a two-stage method.  First, 

the experimenter should choose the levels of those significant control factors that 

maximize the SNR.  Second, the experimenter should choose the levels of the remaining 
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control factors that result in a mean response near the desired target value [34].  Standard 

ANOVA techniques can also help distinguish which control factors affect the average 

response and SNR.  Control settings that are robust and insensitive to the variance caused 

by the noise factors are then determined [9]. 

If it can be assumed that there are no significant interactions among the control 

variables, then Taguchi’s methodology is highly appropriate for identifying robust 

control parameter settings.  However, Taguchi’s critics claim that, more often than not, 

this assumption does not hold and that a main effects-only study may yield ambiguous 

results [7, 35].  Detractors also note that the use of Taguchi’s SNRs, though they are 

concerned with the process mean and variance, don’t allow for a complete understanding 

of which control factors affect the mean and which affect the variance [9, 34, 36].  Nair 

and Shoemaker [37] further argue that critical system information is lost by compressing 

the experimental responses into SNRs.  Several authors claim that it is better to examine 

the mean and variance separately instead of combining them into a single SNR [38–40].  

Even though the purpose behind SNRs is to uncouple the location and dispersion effects, 

Montgomery [9] contends that there is no assurance that this will occur.  As an example, 

he shows how the use of the smaller-the-better SNR actually confounds location and 

dispersion effects.  Pignatiello [41] states that, despite the criticism of Taguchi’s tactics, 

his conceptual framework for planning a product or process design experiment is 

fundamentally sound. 
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2.2.3  Response Surface Model Approaches 

The response surface model (RSM) approach solves an optimization problem 

involving models of the system’s mean and variance.  Several optimization schemes are 

discussed in Section 2.4.  Two major RSM applications are found in the literature.  One 

approach utilizes replications of an experimental design whereas the second approach 

uses a combined-array experimental design. 

 
2.2.3.1  RSM Approach Using Replicated Experimental Designs 

The first RSM application uses replications of a design of experiment (DOE) 

consisting of x only.  This approach is used when the system’s output variability is due to 

either random sampling from z or intrinsic system variation.  Separate low-order 

polynomials [6], higher-order polynomials [33, 42], Kriging models [11, 13, 43], radial 

basis function approximations [43], or radial basis function neural networks [43] are fit to 

the sample means and variances of the design points to generate mean and variance 

models.  This RSM application has been applied to simulations of a piston [11] and an 

optical profilometer [42].  Wild and Pignatiello [44] used a partitioning strategy to assess 

the system’s mean and variance through crossed-array designs.  They used a discrete 

event simulation for the robust design of a manufacturing facility.  Several authors have 

also applied this RSM application to Box and Draper’s [45] well-examined printing 

process study [33, 43, 46–48]. 

 
2.2.3.2  RSM Approach Using Combined-Array Experimental Designs 

The second RSM application uses the combined-array DOE proposed by Welch et 

al. [5].  The combined-array is comprised of both x and z.  A low-order polynomial 



 

11 

response model ˆ( , )y x z is built to accommodate the linear control factor and noise factor 

effects, the pure quadratic control factor effects, the control factor interaction effects, and 

the control factor by noise factor interaction effects [7].  Mean and variance models are 

then obtained by taking the expectation and variance of ˆ( , )y x z .  Recent extensions have 

been made to include pure quadratic noise factor effects and noise factor interaction 

effects [49] as well as three-factor control by control by noise factor interactions and 

control by noise by noise factor interactions [50].  The combined-array RSM approach 

has been applied to a piston simulation [11] and an economic order quantity inventory 

model [12, 13].  A textbook example of this approach for a physical experiment can be 

found for a chemical production process in Montgomery [9]. 

 
2.2.4  Stochastic Emulator Approaches 

The literature discusses two main applications of the stochastic emulator approach 

for solving RPD problems for stochastic simulations.  Regardless of the application, the 

first step is to generate a model, or emulator, of the system.  The emulator is then used to 

generate large samples of data from the joint distribution of z at the design points in x.  

Mean and variance models are fit from the samples and a subsequent optimization 

problem consisting of the mean and variance models is solved. 

 
2.2.4.1  Emulator Approach with Control Factor Uncertainty 

In the first emulator application, uncertainty in the control factors causes variation 

in the system’s output.  In this case, control factor setting ˆix can be decomposed into the 

sum of the nominal control factor setting ix and the normally distributed noise factor iz .  
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That is, ˆi i ix x z= + where [ ]ˆi iE x x= and [ ] 2ˆi iVar x σ= ; hence ˆ[ ]E =x x and ˆ[ ]Var = Σzx .  

Initially, the noise factors are ignored by setting =z 0 and the emulator ˆ ˆ( )y =x x is built 

from a DOE in the control factors x.  A second DOE in x is then constructed and the 

emulator is used to evaluate the noise factors’ effect on the output.  For each design point

dx , a large sample of responses is generated from the normal distribution with mean dx

and covarianceΣz as evaluated using the emulator.  Separate models are fit to the sample 

means and variances of these responses.  A robust control setting is determined by 

optimizing a problem involving the emulator’s mean and variance models.  Bates et al. 

[11] used this emulator strategy in an RPD study on a piston simulation. 

 
2.2.4.2  Emulator Approach with Uncontrollable Factors or Input Uncertainty 

In the second emulator application, variation in the system’s output is due to 

uncertainty in the inputs and/or the existence of uncontrollable factors.  The emulator is 

built from a combined-array DOE including x and z.  The high and low experimental 

levels for each iz are set at 3i iµ σ±  [13].  Once the emulator ˆ( , )y x z is built, a second DOE 

in x is constructed.  For each design point dx , a large sample is generated from the joint 

distribution of z and is evaluated using the emulator.  As in the first emulator approach, 

mean and variance models are fit to the sample means and variances calculated at each 

design point.  These models are then used in an optimization formulation to find a robust 

control setting.  This RPD emulator strategy has been performed on simulations for a 2-

bar truss design problem [10] and an economic order quantity inventory model [13]. 
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2.3  Robust Parameter Design Modeling Strategies 

 The RPD approach developed in this research will be compared to the combined-

array RSM approach and the combined-array stochastic emulator approach.  Thus, this 

section will discuss the modeling efforts that have been utilized for those two approaches. 

 
2.3.1  Low-Order Polynomial Models 

 There are four modeling strategies that have been applied to the combined-array 

RSM approach.  Each builds low-order polynomial response models comprised of rx

control factors x and rz noise factors z.  Each approach discussed in this subsection, 

expands upon the model that precedes it.  They each assume that the model’s error ε is 

normally distributed with a mean of zero and a constant variance 2
εσ ; hence any non-

constant variance stemming from the process is attributed to the inability to control the 

noise factors [8].  They also assume that each noise factor iz is a normally distributed 

random variable with a known mean iµ and variance 2
iσ .  For experimental purposes, the 

natural level of each noise factor is centered at its mean and its ±1 levels are set at i iµ σ±

.  Furthermore, the noise variables are assumed to be uncorrelated.  Therefore, the mean 

and variance of z are defined as [ ]E = zz μ and [ ] ( )2 2
1 ,...,

zr
Var diag σ σ= ∑ =zz , 

respectively.  Thus, if the factors have been transformed to the coded variable space, 

[ ] rE =
z

z 0 and [ ] rVar =
z

z I  [9]. 
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2.3.1.1  The Standard RPD Response Model 

The standard (Std) form of the RPD response model in Equation (1) considers the 

noise factor interactions and the pure quadratic noise factor effects negligible [8]. 

 ( ) ( )0,Stdy β ε′ ′ ′ ′= + + + + ∆ +x β x Bx γ x zx z   (1) 

In Equation (1), 0β represents the intercept, x is the 1r ×x vector of control factors, z is the

1r ×z vector of noise factors, β is the 1r ×x vector of linear control factor effects, B is the

r r×x x matrix where the pure quadratic control factor effects are on the diagonal and one-

half of the control factor interaction effects are on the off-diagonal, γ is the 1r ×z vector of 

linear noise factor effects, and Δ is the r r×x z matrix of control factor by noise factor 

interaction effects. 

Given the distributional assumptions of the noise variables and the model’s error, 

the mean and variance of the standard response model in Equation (1) can be written 

respectively as 

 ( ) 0,StdE y β ′ ′= + +   x β x Bxx z  (2) 

and 

 ( ) ( ) ( ) 2,StdVar y εσ′′ ′ ′ ′= ∑ ++ +   zγ x Δ γ x Δx z   (3) 

where 2
εσ is estimated using the MSE of the fitted response surface model.  Note that 

Equations (2) and (3) are completely in terms of the control factors x.  These two 

response models can now be used to estimate the mean and variance of the process at any 

point within the control design space. 
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2.3.1.2  The Noise-by-Noise Response Model 

Mindrup et al. [49] found that Equation (1) was inadequate in certain imaging 

applications.  As a result, they removed the assumption that the noise factor interactions 

and the pure quadratic noise factor effects are insignificant and developed the noise-by-

noise (NN) response model, mean model, and variance model in Equations (4)–(6). 

 ( ) ( )0,NNy β ε′ ′ ′ ′ ′= + + + + ∆ + +x β x Bx γ x z z Φzx z   (4) 

 ( ) ( )0,NNE y trβ ′ ′= + + + Σ   zx β x Bx Φx z   (5) 

 ( ) ( ) ( ) ( ) 22,NNVar y tr εσ′′ ′ ′ ′= ∑ + +Σ Σ+ +   z z zΦ Φγ x Δ γ x Δx z   (6) 

In Equations (4)–(6), tr represents the trace of a square matrix and Φ is the r r×z z matrix 

with pure quadratic noise factor effects on the diagonal and one-half of the noise factor 

interaction effects on the off-diagonal. 

 
2.3.1.3  The Control-by-Noise-by-Noise Response Model 

Williams et al. [50] further extended Mindrup et al.’s work in two successive 

expansions.  First, they appended the three-factor control-by-noise-by-noise (CNN) 

interactions to generate the CNN RPD response model, mean model, and variance model 

in Equations (7)–(9). 

 ( ) ( ) ( )0,CNNy β ε′ ′ ′ ′ ′= + + + + ∆ + Φ + +xx z x β x Bx γ x z z Ψ z   (7) 

 ( ) ( )( )0,CNNE y trβ ′ ′= + + + + ∑   x zx z x β x Bx Φ Ψ   (8) 

 ( ) ( ) ( ) ( )( )2 2, 2CNNVar y tr εσ′′ ′ ′ ′= + ∑ + + + ∑ +   z x zx z γ x Δ γ x Δ Φ Ψ   (9) 
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The additional term in Equations (7)–(9) is
1

r

i i
i

x
=

= ∑
x

xΨ Ψ where iΨ is the r r×z z matrix of 

control-by-noise-by-noise interaction effects corresponding to control factor ix . 
 

2.3.1.4  The Control-by-Control-by-Noise Response Model 

Williams et al. [50] then further extended the CNN RPD models to include the 

three-factor control-by-control-by-noise (CCN) interaction terms.  The CCN RPD 

response model, mean model, and variance model are shown in Equations (10)–(12). 

 ( ) ( ) ( )0,CCNy β ε′ ′ ′ ′ ′= + + + + ∆ + + Φ + +xx z x β x Bx γ x x z z Ψ z   (10) 

 ( ) ( )( )0,CCNE y trβ ′ ′= + + + + ∑   x zx z x β x Bx Φ Ψ   (11) 

 ( ) ( ) ( ) ( )( )2 2, 2CCNVar y tr εσ′′ ′ ′ ′= + + ∑ + + + + ∑ +   z x zx z γ x Δ x γ x Δ x Φ Ψ    (12) 

The additional term in Equations (10)–(12) is the vector 1 2,  ,  ... ,  r ′ ′ ′=  z
x x Ω x x Ω x x Ω x  

where jΩ is the r r×x x matrix of control-by-control-by-noise interaction effects 

corresponding to noise factor jz . 

 
2.3.2  Kriging 

 Kriging has been used to model the simulation’s response, as well as its mean and 

variance, within the combined-array stochastic emulator strategy in Section 2.2.4.  

Kriging is a nonparametric, global, exact interpolation model.  The term nonparametric 

implies that training points are used to both estimate the unknown model parameters and 

predict the response of new observations [43].  Global means that a Kriging model 

provides predictions across the entire experimental area and exact indicates that Kriging 

models predict the precise response of previously observed input combinations [51].  
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These properties are the reason as to why Kriging metamodels have become popular 

approaches for estimating the output of computer simulation models [2, 11, 43, 51–58].  

The origins of Kriging are in geostatistics, or spatial statistics [59]. 

The Kriging model for the input vector v assumes the form 

 ( ) ( ) ( )y f δ= +v v v . (13) 

In Equation (13), ( )f v models the trend in the data and provides a global approximation of 

the design space [56].  Ordinary Kriging assumes that ( )f β=v is the constant mean of 

the data in the experimental region of interest [2] whereas Universal Kriging uses a low-

order polynomial to define ( )f v  [43].  Also in Equation (13), ( )δ v creates localized 

deviations [56] and is additive noise formed by a stationary covariance process with zero 

mean, variance 2σ , and covariance 2σ R in which the i,jth element of the N N× spatial 

correlation matrix R is defined by 

 , ( ) ( )

1

1 for 

exp for 
K pi j i j

k k k
k

i j

i jv vθ
=

=
=   − ≠−   

∑
R  (14) 

where ( )i
kv is the kth feature of the ith training vector, 0kθ > is the weight factor for the kth 

input vector feature, p is a parameter that defines the correlation between two training 

points, N is the number of training vectors, and K is the number of features in each 

training vector.  This research uses Ordinary Kriging since that has been found to be 

sufficient for simulation models [43, 54, 60].  The Gaussian correlation function, where

2p = , is also utilized due to its widespread appeal [56]. 
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 Estimates for the parameters β, 2σ , and kθ are determined through the maximized 

likelihood estimation (MLE) approach.  Interested readers can reference [43] for the 

MLE derivations.  As a result, given a set of training vectors, the Kriging model response 

for a new observation v is 

 1ˆ ˆˆ( ) ( ) ( )y β β−′= + −v r v R y 1  (15) 

where
1

1β̂
−

−

′
=

′
1 R y
1 R 1

is the mean parameter, y is the 1N × vector of training set responses, 1 is 

a 1N × vector of ones, and ( )r v is the 1N × correlation vector whose nth element is the 

correlation between v and the nth training vector ( )nv defined as 

 ( )

1

ˆ( ) exp
K pn

n k k k
k

v vθ
=

 = − −  
∑r v . (16) 

 
2.3.3  Radial Basis Function Neural Networks 

Artificial neural networks (ANNs), and in particular radial basis function neural 

networks (RBFNNs), have also been used to provide a metamodel of a simulation’s 

response, mean, and variance within the stochastic emulator approach.  ANNs are 

mathematical models that update their parameters iteratively to learn the relationship 

between a set of inputs and a set of outputs.  The RBFNN is a special class of ANN [61–

64]. 

In a typical RBFNN framework, as illustrated in Figure 2, the number of input 

layer neurons is equal to the number of input features and the number of hidden layer 

neurons is equal to the number of training vectors.  There is also an output layer neuron 

for each system output.  In this case, there are N training vectors with K features and a 
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single output y.  The activation function of the nth neuron, ( )nh ⋅ , is a radial basis function 

designed to fire high when a training vector is very close to the center vector nμ and give 

a diminishing response as the training vector moves away from the center vector’s 

receptive field defined by the spread parameter nσ .  This research employs the Gaussian 

response function 

 ( ) ( )
2

( ) exp
2
n n

n

n

h
σ

 ′− − − =
 
 

v μ v μv . (17) 

The output layer simply computes a linear weighted sum of the hidden layer neuron 

activations. 

 

 

Figure 2.  Structure of a Radial Basis Function Neural Network 

 
The network’s training phase occurs in a supervised manner.  That is, a training 

set composed of input vectors 1,..., Nv v and their associated target values [ ]1 Nt t ′=t 
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must be available.  To begin, the center vectors are placed at the location of the input 

vectors themselves.  That is, i i=μ v for 1,...,i N= .  The N N× matrix of hidden layer 

neuron activations A is then computed in which the elements of A are 

 ( ) ( )
2

exp
2

i j i j
ij

j

a
σ

 ′− −− =
 
 

v v v v . (18) 

The weight vector [ ]1 Nw w ′=w  satisfies the equation 

 =Aw t   (19) 

and can be written as 

 †=w A t   (20) 

where †A represents the pseudoinverse of A. 

 Following the training phase, new observations can be presented to the network to 

generate outputs.  Mathematically, an output of the RBFNN for a given K-feature vector 

v can be calculated using 

 ( )2( )
2

11

1ˆ( ) exp
2

KN
n

n k k
kn n

y w v µ
σ ==

 −= − 
 

∑∑v  (21) 

where nw is the weight of the nth center vector, kv is the kth feature of v, and ( )n
kµ is the kth 

feature of the nth center vector. 

There are many benefits for employing ANNs in a study.  In fact, the power of 

utilizing multilayer ANNs comes from the fact that any continuous function can be 

implemented in a three-layer neural net provided that there is a sufficient number of 

hidden layer neurons and the proper nonlinear activation functions are chosen [61].  

Haykin [63] outlines 9 useful properties and capabilities for ANNs: 
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1. The network’s nonlinear nature is important if the underlying relationships 
between the components of the input signal are nonlinear. 
 

2. The ANN utilizes training samples to learn an input-output mapping that it 
applies to new samples. 
 

3. ANNs are flexible to changes in the operating environment. 
 

4. As it relates to pattern classification, ANNs offer information about which 
pattern to choose as well as a level of confidence in making that choice. 
 

5. The network manages contextual information naturally since each neuron is 
potentially affected by all of the other neurons in the network. 
 

6. ANNs are considered fault tolerant in that when a network’s performance 
degrades, it does so gracefully instead of catastrophically. 
 

7. A neural network is suitable for real-time application in very-large-scale-
integrated (VLSI) technology that necessitates describing complex behavior 
in a hierarchical manner. 
 

8. Though there are many types of ANNs, their analysis and design are universal 
across domains and their commonalities greatly expand the ability to share 
theories. 
 

9. ANN’s correlation to the brain facilitates an expansion in the areas of neural 
computing as well as neurobiology. 

 
Given all of their beneficial properties and capabilities, there are still many 

concerns regarding the use of ANNs.  First, neural networks are normally used to make 

predictions about a system rather than to build models or develop any underlying 

knowledge about that system [9].  Second, there exists a risk of overfitting the data when 

using ANNs.  Neural networks can provide a near-perfect fit to historical or training data, 

but can be poor at predicting new data [9, 35].  A third issue when working with ANNs 

lies in adjusting the network’s complexity.  The large number of free parameters, or 

weights, in the network creates difficulty in finding a balance between choosing too few 

and too many neurons to achieve the best generalization of the phenomenon of interest 
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[61].  Finally, although ANNs can be a powerful and fast tool, they should be used as a 

supplement, not a substitute, to standard regression and designed experiments statistical 

tools since they do not allow fundamental insights into the underlying system mechanism 

that produced the data.  Neural networks cannot provide the solution on their own and 

should be integrated into a consistent system engineering approach [9, 35, 61, 63]. 

 
2.4  Optimization Approaches Using the Mean and Variance Models 

Given that there are available mean and variance models, µ̂ and 2σ̂ respectively, a 

number of dual response optimization approaches can be taken to identify a system’s 

robust control factor setting.  Vining and Myers’ [6] determined robust operating 

conditions by optimizing the primary response model subject to a constraint on the 

secondary response model.  In a smaller-the-better case, 2σ̂ is restricted at some specified 

value 2
Tσ while µ̂ is minimized.  A larger-the-better situation maximizes µ̂ while 

controlling 2σ̂ at some specified value 2
Tσ .  Finally, in a target-is-best case, the concern is 

maintaining µ̂ at some specified value Tµ while 2σ̂ is minimized.  These three optimization 

problems are shown in Table 2. 

 
Table 2.  Vining and Myers' Dual Response Optimization Scenarios 

Smaller-the-Better Larger-the-Better Target-is-Best 

2 2

ˆMinimize 
ˆSubject to T

m

σ σ=
 2 2

ˆMaximize 
ˆSubject to T

m

σ σ=
 

2ˆMinimize 
ˆSubject to T

σ
mm =
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Lin and Tu [46] contended that Vining and Myers’ use of equality constraints 

most likely eliminates finding better global solutions.  Lin and Tu make the case that a 

better solution can be found by allowing some deviation, or bias, of the mean around the 

target value Tµ while keeping the variance small.  Their method solves for optimal control 

factor settings by estimating the MSE using a function of the process mean and variance.  

Their MSE criteria for the three experimental scenarios are formulated in Table 3.  

Optimal control factor settings can be found by solving the optimization problem 

 
Minimize 
Subject to 

MSE
∈x D

 (22) 

where D is the experimental design space. 

 
Table 3.  Lin and Tu's Dual Response Optimization Scenarios 

Smaller-the-Better  Larger-the-Better Target-is-Best 

2 2ˆ ˆMSE σ µ= +  2 2ˆ ˆMSE σ µ= −  ( )22ˆ ˆ TMSE σ µ µ= + −  

 

One criticism of Lin and Tu’s target-is-best method is that there is no restriction 

on how far the mean process response may deviate from the target value and, as a result, 

may be deficient if it is critical to maintain the mean close to the target [65].  In situations 

such as these, Copeland and Nelson [66] recommended obtaining a solution in which µ̂ is 

within a specified distance ( )µ∆ of Tµ .  They endorsed minimizingσ̂ subject to

( )2 2ˆ T µµ µ− ≤ ∆ .  The additional smaller-the-better and larger-the-better instances are 

shown in Table 4 where 2σ
∆ is a maximum allowable value for 2σ̂ . 
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Table 4.  Copeland and Nelson's Dual Response Optimization Scenarios 

Smaller-the-Better  Larger-the-Better Target-is-Best 

2
2

ˆMinimize 
ˆSubject to 

σ

m

σ ≤ ∆
 

2
2

ˆMinimize 
ˆSubject to 

σ

m

σ

−

≤ ∆
 

( )

2

2 2

ˆMinimize 

ˆSubject to T m

σ

mm − ≤ ∆
 

 

Ding et al. [67] suggested a weighted MSE (WMSE) approach by utilizing the 

convex combination of the mean and variance functions.  Their proposal minimizes the 

WMSEs in Table 5 where [0,1]λ∈ . 

 
Table 5.  Ding et al.’s Dual Response Optimization Scenarios 

Smaller-the-Better  Larger-the-Better Target-is-Best 

( )2 2ˆ ˆ1WMSE λµ λ σ= + −  ( )2 2ˆ ˆ1WMSE λµ λ σ= − + −  ( ) ( )2 2ˆ ˆ1TWMSE λ µ µ λ σ= − + −  

 

The methodologies of Vining and Myers, Lin and Tu, Copeland and Nelson, and 

Ding et al. are useful when a single optimal solution is necessary.  Kӧksoy and 

Doganaksoy [68] present a flexible nonlinear multi-objective approach by considering the 

secondary response as another primary response.  They claim that the restriction placed 

upon the secondary response may exclude better conditions.  Their method, which only 

focuses on the smaller-the-better and larger-the-better problem structures, allows further 

insight into the RPD problem by exploring trade-offs between the mean and variance 

responses.  These formulations are shown in Table 6.  Solving these problems results in 

finding a string of Pareto alternative solutions in some region of interest R that jointly 

optimize µ̂ and 2σ̂ .  That is, it is impossible to improve µ̂ without making 2σ̂ worse and 

vice versa. 
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Table 6.  Kӧksoy and Doganaksoy’s Dual Response Optimization Scenarios 

Smaller-the-Better  Larger-the-Better 

{ }2ˆ ˆMinimize ,  Minimize 

Subject to 

m σ

∈x R
 

{ }2ˆ ˆMaximize ,  Minimize 

Subject to 

m σ

∈x R
 

 

2.5  Multi-Response Robust Parameter Design Approaches 

In the multi-response RPD problem, the objective is to find the optimal control 

parameter levels that return average responses close to their target values while 

minimizing the variance of each response.  The literature offers several methods for 

optimizing multi-response problems.  These methods involve the use of desirability 

functions [14–18], loss functions [19–23], principal component analysis (PCA) [24–27], 

distance metrics [28, 29], and MSE criterion [30–32].  A majority of these techniques 

transform the quality characteristics into new response variables in order to reduce the 

dimension of the optimization problem.  Typically, the transformations convert the output 

responses to a single response. 

 
2.5.1  Desirability Functions 

Derringer and Suich [14] adopted Harrington’s [69] use of desirability functions 

which map each of the estimated responses ˆiy into a desirability value id where 0 1id≤ ≤ .  

An overall system desirability D is then generated by combining the J individual 

desirabilities via the geometric mean as in Equation (20). 

 

1

1=

 
=  
 
∏

JJ

j
j

D d  (23) 
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An optimal operating point for the set of responses is then found by maximizing D.  

Given the actual desire for the individual output responses in the experiment, such as a 

minimum or maximum value, the desirability values can be defined as in Table 7. 

 
Table 7.  Derringer and Suich's Desirability Functions 

Smaller-the-Better Larger-the-Better Target-is-Best 

ˆ1

ˆ ˆ

ˆ0

i i
r

i i
i i i i

i i

i i

y L

U yd L y U
U L

y U

<

  −= ≤ ≤ − 
 >

 

ˆ0

ˆ ˆ

ˆ1

i i
r

i i
i i i i

i i

i i

y L

y Ld L y U
U L

y U

<

  −= ≤ ≤ − 
 >

 

 
ˆ ˆ

ˆ ˆ

ˆ
0     or

ˆ 

r

i i
i i i

i i

s

i i
i i i

i i i

i i

i i

y L L y T
T L

U y T y Ud U T
y L

y U

 −
 ≤ ≤ − 

 − < ≤ =  − 

<


 >

 
 

The minimum and maximum allowable values for ˆiy are denoted iL and iU , 

respectively.  These points can also represent levels at which permitting either ˆi iy L< or 

ˆi iy U>  adds very little value to the overall process.  Also, iT  is the desired target value of

ˆiy between iL and iU .  The exponents r and s operate as shape parameters for the 

desirability function.  A large value for r or s puts greater importance on the response 

values being closer to the respective target.  Smaller values imply that the desirability 

value is large even if the response is far from its target value.  The desirability functions 

for each of Taguchi’s three experimental cases are illustrated in Figure 3.  Finally, to find 

the optimal process settings, D is maximized with respect to the controllable factors. 
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Figure 3.  Desirability Functions for Taguchi’s Three Experimental Cases 

 
There are several variations to Derringer and Suich’s methodology.  Instead of the 

geometric mean, Park [15] advocated the use of the harmonic mean of the J desirabilities.  

Del Castillo et al. [16] presented modified desirability functions that are everywhere 

differentiable.  Park and Park [17] introduced a weighted desirability function approach 

that allows for varying degrees of importance to be applied to the different responses.  

The weighted desirability formulation is 

 
1

1

j

JJ
w

w j
j

D d
=

 
=  
 
∏  (24) 

where 0jw > is the weight of the jth response and
1

J

j
j

w J
=

=∑ .  Wang et al. [18] proposed a 

robust desirability function. 
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2.5.2  Loss Functions 

Pignatiello [19] focused on Taguchi’s target-is-best experimental scenario and 

based his method on the multivariate quadratic loss function 

 [ ] ( ) ( )( ) ( ) ( )y x y x τ C y x τL ′= − −  (25) 

where ( )y x is a vector of responses for parameter setting x, τ is the target response vector, 

and C is a cost matrix.  The optimal parameter setting is then be found by minimizing the 

expected loss defined by 

 [ ] [ ]( ) [ ]( ) [ ]( )( ) ( ) ( ) ( )y x y x τ C y x τ C y x′  = − − + ⋅ E L E E trace Cov  (26) 

where [ ]( )y xE and [ ]( )y xCov are the respective mean vector and covariance matrix of 

the responses at parameter setting x.  Many authors have modified Pignatiello’s approach.  

Ames et al. [20] developed loss functions focusing on the individual responses being on 

target, but having no consideration for the correlation structure between the responses.  

Vining [21] modified Equation (26) to use the mean and variance-covariance structure of 

the predicted responses ˆ ( )y x instead of the mean and variance-covariance structure of the 

actual responses ( )y x .  This approach considered the prediction quality as well as the 

correlation structure of the responses.  Romano et al. [22] adopted Vining’s multi-

response quality loss function and minimized the expected total loss subject to lower and 

upper bound constraints placed on the means and variances of the individual responses.  

Ko et al. [23] integrated the strengths of Pignatiello and Vining’s approaches to minimize 

the expected future loss.  One drawback to the loss function approach is that it may be 

difficult to define the cost matrix C [70]. 
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2.5.3  Principal Component Analysis 

Su and Tong [24] grounded their strategy on transforming the normalized quality 

losses into a set of uncorrelated components via PCA.  Salmasnia et al. [25] first 

transformed principal component models into a desirability function.  They then found an 

optimal solution by maximizing the overall desirability of the selected principal 

components within the desired region of the normalized means and standard deviations of 

the original responses.  Paiva et al. [26] combined the PCA and MSE approaches into a 

Multivariate Mean Square Error (MMSE) measure.  Gomes et al. [27] expanded on Paiva 

et al.’s approach and presented the Weighted Multivariate Mean Square Error (WMMSE) 

to appropriately weight the individual responses in the MMSE approach. 

 
2.5.4  Distance Metrics 

Khuri and Conlon [28] considered the Mahalanobis distance between a vector of 

each response function and a corresponding vector of their optimum function values.  The 

robust solution across the set of responses is the x* in the experimental region that 

minimizes this distance.  Govindaluri and Cho [29] decoupled the J individual response 

MSE functions from the expected total loss.  They then found the setting that minimized 

the distance between the vector of individual response MSE functions and the vector of 

ideal MSE values.  Chiao and Hamada [71] modeled the mean and covariance structure 

of the assumed multivariate normal responses and then maximized a “proportion of 

conformance” measure defined as the probability that the J responses jointly meet their 

respective specification limits.   
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2.5.5  Mean Square Error Criterion 

Köksoy and Yalcinoz [30], Köksoy [31], and Köksoy [32] extended Lin and Tu’s 

[46] MSE criterion to the multi-response robust design case.  Köksoy and Yalcinoz [30] 

promoted the minimization of the weighted summation of the individual MSE functions 

 1
Minimize 

Subject to  

J

j j
j

W MSE
=

∈

∑
x R

 (27) 

where jW is the weight of the jth MSE function,
1

1
J

j
j

W
=

=∑ , and R is the region of interest.  

Köksoy [31] recommended solving the following multi-objective optimization problem: 

 
{ }1 2Minimize , ,...,

Subject to  
JMSE MSE MSE

∈x R
 (28) 

In the non-trivial multi-objective optimization problem, a single solution does not exist 

that simultaneously optimizes each objective.  Therefore, a list of Pareto optimal 

solutions in which an improvement to one objective causes degradation to at least one 

other objective is generated for the decision maker.  All Pareto solutions are considered 

equally good.  Köksoy [32] further proposed solving the optimization problem 

 0

Minimize                  for 1

Subject to    for 1, 2,..., ;  
                  

j

i i

MSE j J
MSE MSE i J i j

≤ ≤

= = ≠
∈x R

 (29) 

where 0iMSE are specified values for each MSE function.  By successively changing the 

specified constraint values, a string of solutions is generated rather than a single solution.  

This allows for an improved understanding of the problem by examining the trade-offs 

that must be considered to obtain a compromised solution. 
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2.6  The Delta Method 

Situations surface where interest lies in the distribution of some nonlinear 

function of a random variable and not necessarily the distribution of the random variable 

itself.  With that, the concern then turns to the properties of the function of the random 

variable.  In particular, how can the variance of the function of the random variable be 

estimated?  One such technique, known as the Delta Method, utilizes a Taylor series 

approximation to obtain reasonable estimates for the mean and variance of the function of 

a random variable. 

Though the original author of the Delta Method is unknown, an article by Robert 

Dorfman in the 1938 journal Biometric Bulletin is credited as the earliest use of the “δ-

method.”  According to Ver Hoef [72], Dorfman proposed the technique to approximate 

the variance of a nonlinear function of multiple random variables.  Ver Hoef also 

reproduced Dorfman’s contribution in which he comments that, if f is a linear function, 

then the δ-method is exact.  He also states that, if f “does not deviate sharply from linear,” 

the δ-method gives a good approximation. 

 Since its origin, scientists and statisticians across a variety of fields have utilized a 

version of Dorfman’s original δ-method.  Chapra and Di Toro [73] extended the Delta 

Method to modeling water quality and estimating stream reaeration, production, and 

respiration rates.  Durbin et al. [74] utilized the Delta Method to derive a transformation 

of non-normally distributed DNA microarray data to stabilize the asymptotic variance 

over the full range of data.  Powell [75] focused on providing variance approximations 

for common parameters used by avian ecologists such as annual bird population growth 
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and mean annual density of bird species.  White [76] has also developed a Windows-

based software called MARK which utilizes the Delta Method to aid in the parameter 

estimation of marked animals when they are re-encountered via dead recoveries, live 

recaptures, or radio tracking. 

 
2.6.1  Univariate Case 

Recall from calculus [77] that if a function 𝑓𝑓:ℝ → ℝ has derivatives of order n, 

that is ( ) ( )( )
n

n
n

d f xf x
dx

= exists, then the Taylor series expansion of f centered at some 

constant a is defined as 

 
( )

0

( )( ) ( )
!

n
n

n

f af x x a
n

∞

=

= −∑ . (30) 

Consequently, the second-order Taylor series approximation of f centered at a is 

 21
2( ) ( ) ( )( ) ( )( )f x f a f a x a f a x a′ ′′≈ + − + − . (31) 

Now consider ( )Y f X= as a function of the normally distributed random variable 

X.  Casella and Berger [78] consider estimating the mean and variance of Y when the 

mean and variance of X are known parameters.  That is, the interest is in finding [ ]E Y and

[ ]Var Y given that [ ] XE X µ= and 2( ) XVar X σ= .  Following from Equation (31), the 

second-order Taylor series approximation of Y centered at the point Xa µ= is defined as 

 21
2( ) ( ) ( )( ) ( )( )X X X X XY f X f f X f Xµ µ µ µ µ′ ′′= ≈ + − + − . (32) 

Therefore, applying the expectation operator to Equation (32) generates an estimate for 

the mean of Y: 
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 [ ] 21
2( ) ( )X X XE Y f fµ µ σ′′≈ +  (33) 

Similarly, applying the variance operator to Equation (32) generates an estimate for the 

variance of Y: 

 [ ] 2 2 2 41
2( ) ( )X X X XVar Y f fµ σ µ σ′ ′′≈ +  (34) 

Derivations of Equations (33) and (34) are shown in Appendix A. 

 
2.6.2  Multivariate Case 

In the multivariate case [79], let S be a nonempty set in ℝ𝑛𝑛 and let 𝑓𝑓: 𝑆𝑆 → ℝ.  For

S∈x , if the gradient vector ( )f∇ x and hessian matrix ( )H x exist, then the multivariate 

second-order Taylor series approximation of f centered at some constant vector a is 

 1
2( ) ( ) ( ) ( ) ( ) ( )( )f f f ′ ′≈ +∇ − + − −x a a x a x a H a x a . (35) 

Now consider a function 𝑓𝑓: ℝ𝑛𝑛 → ℝ and a n-dimensional normally distributed 

random vector X with mean vector Xμ and covariance matrixΣX .  The second-order 

Taylor series approximation of the function ( )Y f= X centered at the vector = Xa μ is 

 1
2( ) ( ) ( ) ( ) ( ) ( )( )f f f ′ ′≈ +∇ − + − −X X X X X XX μ μ X μ X μ H μ X μ . (36) 

The estimated mean and variance of Y are then defined respectively as 

 [ ] ( )1
2( ) ( )E Y f tr≈ + ΣX X Xμ H μ  (37) 

and 

 [ ] ( )1
2( ) ( ) ( ) ( )Var Y f f tr′≈ ∇ ∑ ∇ + Σ ΣX X X X X X Xμ μ H μ H μ . (38) 

Derivations of Equations (37) and (38) are shown in the Appendix A. 
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III.  Extending the Combined-Array Response Surface Model Approach 

 
 
3.1  Introduction 

 The first objective of this dissertation is to extend the combined-array RSM 

approach that relies exclusively on the low-order polynomial models discussed in Section 

2.3.1.  Since more accurate predictive response surface models result in better RPD 

solutions [33], a methodology will be developed that utilizes the non-linear Kriging and 

RBFNN models in place of the polynomial models.  From there, the mean and variance 

of a second-order Taylor series approximation of the Kriging and RBFNN models will be 

calculated via the Multivariate Delta Method.  Finally, an existing optimization problem 

that employs these approximations will be solved to identify the robust control parameter 

setting.  Henceforth, this procedure is referred to as the combined-array Multivariate 

Delta Method approach, or simply MDM. 

 The rest of Chapter III is organized as follows.  Section 3.2 outlines the proposed 

MDM methodology.  Section 3.3 uses two case studies to compare the combined-array 

MDM approach to the combined-array RSM approach and the combined-array stochastic 

emulator approach.  Finally, Section 3.4 summarizes this chapter. 

 
3.2  The Combined-Array Multivariate Delta Method (MDM) Approach 

 This section outlines the methodology behind the proposed MDM approach.  In 

Section 3.2.1, the mean and variance models for the second-order Taylor series 

approximations to the Kriging and RBFNN models are developed.  In Section 3.2.2, the 

combined-array MDM approach is outlined against the combined-array RSM approach 
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and the combined-array emulator approach.  A cross-validation procedure for 

determining an appropriate network structure for the RBFNN is highlighted in Section 

3.2.3. 

 
3.2.1  Mean and Variance Models via Taylor Series Approximation 

The MDM approach uses the same distributional assumptions regarding the noise 

variables and the model’s error as the RSM approach does.  To recap, the model’s error ε 

is normally distributed with a zero mean and a constant variance 2
εσ .  Also, it is assumed 

that the noise factors are uncorrelated and that ( )~ ,N ∑z zz μ . 

First, let ˆ( )y v , where
 

=  
 

x
v

z
, represent the Kriging or RBFNN model of the 

system.  The second-order Taylor series approximation of ˆ( )y v about the vector

v
z

x
a μ

μ
 

= =  
 

is defined as 

 ( ) ( ) ( ) ( )1
2 2

ˆˆ ˆ ˆ( ) ( ) ( ) ( )T y y y ε′′= +∇ − + − − +v v v v v vv μ μ v μ v μ H μ v μ  (39) 

where ˆ( )y∇ vμ and ˆ ( )vH μ are the gradient vector and Hessian matrix of ˆ( )y v evaluated at 

vμ .  By way of the Multivariate Delta Method [78], the estimated mean and variance of

( )2 ˆ( )T y v are then calculated as 

 ( ) ( )1
2 2

ˆˆ ˆ( ) ( ) ( )E T y y tr= + Σ   v v vv μ H μ  (40) 

and 

 ( ) ( ) 21
2 2

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )Var T y y y tr εσ′= ∇ ∑ ∇ + Σ Σ +   v v v v v v vv μ μ H μ H μ , (41) 
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respectively.  Since
r r r r

r r

× ×

×

 
Σ =  

Σ  

x x x z

z x

v
z

0 0

0 , the mean and variance models in Equations (40) 

and (41) can be further reduced to 

 ( ) ( )1
2 2ˆ ˆ ˆ( ) ( ) ( )E T y y tr y= + Σ   v zz v zv μ μ   (42) 

and 

 ( ) ( ) 21
2 2ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )Var T y y y tr y y εσ′= Σ + Σ Σ +   z v z z v zz v z zz v zv μ μ μ μ , (43) 

where ˆ ( )yz vμ is the vector of first-order partial derivatives of ˆ( )y v with respect to z 

evaluated at vμ and ˆ ( )yzz vμ is the matrix of second-order partial derivatives of ˆ( )y v with 

respect to z evaluated at vμ .  The MSE of the fitted response model is used to estimate 2
εσ .  

Since the Kriging model predicts the exact response for observed training vectors, its 

MSE is equal to zero.  The MSE of the RBFNN model is discussed in Section 3.2.3. 

Finally, in a manner similar to the expressions for the mean and variance of the 

standard and extended quadratic models, Equations (42) and (43) are in terms of only the 

control factors x and, as such, they can be used to approximate the mean and variance of 

the system anywhere in the control design space.  Given these mean and variance 

estimates, a dual response optimization approach is then solved to locate a robust control 

parameter setting.  A subset of the optimization formulations is discussed in Section 2.4.   

Below, Sections 3.2.1.1 and 3.2.1.2 derive the gradient vector and Hessian matrix 

of the Kriging and RBFNN metamodels. 
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3.2.1.1  Gradient Vector and Hessian Matrix of the Kriging Model 

Let K r r= +x z .  The kth element of the gradient vector for the Kriging model 

output in Equation (15) for 2p = is defined as 

 ( )1ˆ ( )  for 1,...,
k k

y k K
v v

β−′∂ ∂
= − =

∂ ∂
r v R y 1  (44) 

where 

 

( ) ( )

( ) ( )

2(1) (1)

1

2( ) ( )

1

exp

( ) 2

exp

K

k k m m m
m

k
k K

N N
k k m m m

m

v v v v

v
v v v v

θ

θ

θ

=

=

  − − −    ∂  = −
∂  

  − − −    

∑

∑

r v
  (45) 

is the first-order partial derivative of ( )r v with respect to input feature k. 

 The i,jth element of the Hessian matrix for the Kriging output is defined as 

 ( )
2 2

1ˆ ( )  for , 1,...,
i j i j

y i j K
v v v v

β−′∂ ∂
= − =

∂ ∂ ∂ ∂
r v R y 1  (46) 

where 

 

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

2 2(1) (1)

1

2 2( ) ( )

2
1

2(1) (1) (1)

1

2( ) ( ) ( )

2 1 exp

2 for 

2 1 exp
( )

exp

4

exp

K

i i i m m m
m

i

K
N N

i i i m m m
m

K
i j

i i j j m m m
m

i j

N N N
i i j j m m m

m

v v v v

i j

v v v v

v v
v v v v v v

v v v v v v

θ θ

θ

θ θ

θ

θ θ

θ

=

=

=

  − − − −    
  =
 

  − − − −   ∂  =
∂ ∂  − − − −  

− − − −

∑

∑

∑

r v

4

4

1

for 
K

i j

=











 
 
 
  ≠
          

∑

 (47) 

is the second-order partial derivative of ( )r v with respect to input features i and j. 
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3.2.1.2  Gradient Vector and Hessian Matrix of the RBFNN Model 

The kth element of the gradient vector for the RBFNN output in Equation (21) is 

defined as  

 
( ) ( )

( )
2( )

2 2
1 1

ˆ 1exp  for 1,...,
2

nN K
n k k n

m m
n mk n n

w vy v k K
v

m
m

σ σ= =

−  ∂
= − − − = ∂  
∑ ∑ . (48) 

 The i,jth element (for , 1,...,i j K= ) of the Hessian matrix for the RBFNN output is 

defined as 

 

( )
( )

( )( ) ( )

2( ) 2
2( )

4 22
1 1

( ) ( )
2( )

4 2
1 1

1exp for 
ˆ 2

1exp for 
2

n
N Kn i i n

n
m m

n mn n

n ni j N Kn i i j j n
m m

n mn n

w v
v i j

y
v v w v v

v i j

m σ
m

σ σ

mm
m

σ σ

= =

= =

  − −      − − = ∂   = ∂ ∂   − −    − − ≠ 
  

∑ ∑

∑ ∑

 (49) 

 
3.2.2  RSM Approach vs. Emulator Approach vs. MDM Approach 

The main steps for the RSM approach, the emulator approach, and the MDM 

approach are outlined in Figure 4.  This figure also highlights the experimental designs 

(DOE) and the modeling efforts associated with each approach.  The RSM and MDM 

approaches each require the development of one DOE and one modeling effort.  The 

emulator approach, on the other hand, necessitates the generation of two DOEs and three 

individual modeling efforts. 

In order to compare the results across the three different approaches, each ˆ( , )y x z

was built from a combined-array DOE in which the coded ±1 levels of each noise factor

iz were set to 3i iµ σ± .  This ensures that the emulator remains valid during the sampling 
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phase [13].  Consequently, setting the levels of the noise factors in this manner implies 

that ( )21
3 r∑ =

zz I . 

The last step of each approach is to identify the robust control setting by utilizing 

the appropriate mean and variance models within an optimization problem.  Due to its 

simplicity and the manner in which it balances being on target with minimal variance, 

Lin and Tu’s MSE approach in Table 3 was used in this research.  The optimal settings x* 

were found using MATLAB’s fmincon function was used within a greedy randomized 

adaptive search procedure (GRASP) heuristic that solves the problem from a number of 

different starting points and chooses the best overall solution [80].  This procedure can be 

slow because it seeks to avoid getting trapped at a local minimum.  This is a concern 

since fmincon does not guarantee convergence to a global minimum for a potentially 

nonconvex problem [81].
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Figure 4.  Combined-Array RPD Approaches: RSM vs. Emulator vs. MDM 
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3.2.3  Choosing the RBFNN Structure 

Although RBFNNs have many advantages, one disadvantage they have is that, as 

the size of the training set increases, the number of hidden neurons that are needed also 

increases.  This subsequently increases the time necessary to train the network.  Another 

drawback to their use involves the selection of the network’s architecture [61].  If too 

many neurons are used, then the overall generalization of the network will be deficient.  

On the other hand, the network will not be able to sufficiently learn the training data if 

too few neurons are selected.  Therefore, a cross-validation (CV) procedure was used to 

determine the structure of the RBFNN so that the resulting function was well-generalized 

with minimal risk of over-fitting the experimental data.  The structural parameters of 

concern here were the number of hidden layer neurons used in the network and the spread 

parameter σ of the hidden layer neurons. 

Given an experimental design with N runs, a set of nm hidden layer sizes and a set 

of mσ spread values were first defined.  Then, nM m mσ= × combinations of RBFNN 

structure pairs were generated such that each pairing was composed of a hidden layer size 

(n) and a spread value (σ).  Next, a CV procedure was performed across the set of 

structures and the MSE was recorded for each (n, σ) pair.  The size of the experimental 

design—this research used designs of 25, 81, and 256 runs—determined which CV 

method was used.  For N ≤ 25, leave-one-out CV was used.  For computational 

efficiency, ten rounds of 10-fold CV were used for N > 25.  The final neural network was 

trained on the complete design and structured via the (n, σ) pairing that produced the 

minimum MSE (or minimum average MSE for larger datasets).  For the examples used in 
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this research, this procedure led to well-generalized networks with a reduced risk of over-

fitting the data since only 20–50% of the total number of training vectors were routinely 

chosen as neuron centers.  The chosen spread parameter ranged from 2 to 10.  Since the 

design space was limited between -1 and 1, these values for the spread parameter led to 

smooth functions.  The RBFNNs were trained using MATLAB’s newrb function. 

The MSE of the RBFNN that is used to estimate 2
εσ in Equation (43) is 

 ( )2 2

1

ˆ
N

i
i

e N neσ
=

= −∑  (50) 

where ie is the prediction error of the ith design point.  The value n, which is the number of 

neurons in the trained network’s hidden layer, corresponds to the number of estimated 

weight parameters in the RBFNN. 

 
3.3  Application and Results 

In this section, the MDM approach is applied to two case studies.  Section 3.3.1 

provides a proof-of-concept demonstration of the MDM approach using a synthetic case 

study.  Section 3.3.2 applies the MDM approach to a computer simulation. 

A popular method for comparing different analysis techniques for simulation 

studies is through the use of the Root Mean Squared Error (RMSE) [43, 51, 53, 54, 60].  

Since the analysis is of known models, the model predictions ˆmy can be compared to the 

known true values my for a test set of 200M = random validation points via 

 ( )2

1

1 ˆ
M

m m
m

RMSE y y
M =

= −∑ . (51) 
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A model’s RMSE can then be compared to the range of the true responses to gain insight 

into its accuracy [11]. 

 
3.3.1  A Synthetic Case Study 

In this case study, data was generated from the truth model in Equation (51).  By 

knowing the truth model, the system’s true mean and variance—shown in Equations (52) 

and (53)—can be used as reference points for our modeling efforts.  The truth model is 

employed with the control factor [ ]1 1,1x ∈ − and the noise factor ( )1 ~ 0, 1z N µ σ= = .  The 

goal of this RPD study was to locate the appropriate operating point that resulted in a 

mean response of 8 with a minimal variance.  A 52 full factorial design was used to 

generate experimental data. 

 ( )( ) 2 2
1 1 1 19 1 exp 1 5 3 4y x z x z= + − + −   (52) 

 [ ] ( )( )19 1 exp 1 5 3E y x= + − +   (53) 

 [ ] 4
116 18Var y x= +   (54) 

The MDM approach using Kriging (KR) and RBFNN (RBF) models was 

compared to the RSM approach that uses the four polynomial models in Section 2.3.1: 

( , )Stdy x z , ( , )NNy x z , ( , )CNNy x z , and ( , )CCNy x z .  Henceforth, these models will simply be 

referred to as Std, NN, CNN, and CCN. 

Response surface graphs for the six modeling efforts are shown alongside the 

truth model in Figure 5.  Visual inspection shows that the Std, NN, and CNN models only 

provide the general trend of the data.  This was expected due to the highly non-linear 

nature of Equation (52).  The CCN model offers a markedly improved representation of 
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the non-linearity of the system over its predecessors.  Finally, the KR and RBF models 

represent the true input-output relationship of the system very well.  This information is 

summarized in Table 8. 

 

 

Figure 5.  Response Surface Comparison for the Synthetic Case Study 

 
Table 8.  Quality of Models for the Synthetic Case Study 

Model RMSE % of Range 
Std 1.62 11.39% 
NN 1.13 7.97% 

CNN 1.13 7.97% 
CCN 0.79 5.58% 
RBF 0.31 2.18% 
KR 0.19 1.37% 

 

 The mean, variance, and MSE models that correspond to the Truth, Std, NN, 

CNN, CCN, KR, and RBF response models are depicted in Figure 6.  The locations of the 

estimated robust points are also plotted.  In this case, the NN, CNN, and CCN mean 
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models are nearly identical and are plotted on top of one another.  Similarly, the NN and 

CNN variance models are graphically the same.  Of the six modeling efforts, the KR and 

RBF mean models are very good representations of the true mean response.  Also, the 

CCN, KR, and RBF variance models provide the best depictions of the system’s true 

variance.  In fact, the RBF variance model is nearly identical to the system’s true variance 

model.  The Std, NN, and CNN mean and variance models are poor relative to their 

competitors. 

 

 

Figure 6.  Mean, Variance, and MSE Models for the Synthetic Case Study 

 
Table 9 summarizes the predicted and realized means, variances, and MSEs at 

each robust point.  Confirmation experiments were performed in which 2,000 Monte 

Carlo simulations of the truth model were run at the estimated robust points.  Common 

random numbers were used to allow an apples-to-apples comparison.  It can be observed 
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that, not only is the RBF robust point the closest to the true robust point, but its 

predictions are indicative of the system’s actual performance.  An interesting note is that, 

without knowledge of the system’s truth model—which is typically never known for a 

simulation—and based solely on the predictions provided in Table 9, initial conclusions 

would have chosen the Std robust point as the best operating point since the prediction of 

the system’s mean response is exactly on target and the prediction of the system’s 

variance is the smallest.  This highlights the importance of performing confirmation 

experiments. 

 
Table 9.  RPD Results for the Synthetic Case Study 

Model 
Robust 
Point 

x1 

 Mean Variance MSE 

Goal → 8 Min Min 

Truth 0.24 Actual 7.96 18.05 18.05 
Realized 7.90 18.63 18.64 

Std 0.59 Predicted 8.00 8.62 8.62 
Realized 10.82 19.75 27.70 

NN 0.36 Predicted 8.00 24.79 24.79 
Realized 9.14 18.65 19.95 

CNN 0.36 Predicted 8.00 24.95 24.95 
Realized 9.14 18.65 19.95 

CCN 0.33 Predicted 7.81 19.25 19.29 
Realized 8.82 18.63 19.30 

KR 0.30 Predicted 8.08 14.57 14.58 
Realized 8.54 18.62 18.91 

RBF 0.27 Predicted 7.86 18.03 18.05 
Realized 8.10 18.62 18.63 

 

3.3.2  A Resistor-Inductor (RL) Circuit Simulation 

An RPD study was performed for a simulation of an RL electrical circuit 

described by Kenett and Zacks [82].  The response of interest is the output current (in 

amperes) of the circuit defined by 
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 ( )22 2Y V R fLπ= + . (55) 

The four factors that influence the output current are listed in Table 10.  The factors R 

and L are controllable whereas the factors V and f are assumed to be normally distributed 

random variables with known means and standard deviations.  The goal of this RPD 

study was to identify the robust setting of R and L that yields a mean output current of 10 

amperes with minimum variation.  A simulation of Equation (55) was created in 

MATLAB to approximate the true mean and variance of the system.  To generate these 

approximations, Monte Carlo simulations were performed 5,000 times at 900 uniformly-

spaced control design points.  This provided a reference point to compare each modeling 

effort. 

 
Table 10.  Factors for the RL Electrical Circuit Simulation 

Factor Description (units) Min Max Mean Standard 
Deviation 

R Resistance (Ω) 0.05 9.5   
L Self-inductance (H) 0.01 0.03   
V Input voltage (V)   100 3 
f Input frequency (Hz)   55 5/3 

 

In this section, the MDM approach is demonstrated against two popular RPD 

strategies.  Section 3.3.2.1 compares the combined-array MDM approach using KR and 

RBF models to the combined-array RSM approach that employs the NN model in 

Equation (4).  The NN model was chosen as opposed to the Std model in Equation (1) due 

to the high degree of non-linearity in the simulation.  Section 3.3.2.2 compares the 

combined-array RSM and MDM approaches to the combined-array stochastic emulator 
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strategy to show that equivalent results can be achieved via the former approach at a 

greatly reduced computational cost and without the need for secondary modeling efforts. 

 
3.3.2.1  Combined-Array MDM Approach vs. Combined-Array RSM Approach 

The NN model was built from a 25-run face-centered cube design which can be 

used within a cuboidal region to estimate the quadratic effects necessary for the response 

model in Equation (4) [9].  Space-filling designs, such as LHS designs, are commonly 

used for developing Kriging and RBFNN models of simulations [83].  Hence, to ensure a 

fair competition between each model, the KR and RBF models were each produced from 

the same 25-run Latin Hypercube Sampling (LHS) design.  Inspection of the RMSEs of 

each model in Table 11 reveals that the RBF model provides a slightly better 

representation of the simulation than the NN and KR models. 

Since there are only two control factors in this RPD problem, the resulting mean, 

variance, and MSE models can be compared visually.  These models are shown in Figure 

7.  Approximations of the circuit simulation’s true mean, variance, and MSE are also 

shown for comparison.  The dots represent the location of the associated model’s robust 

point.  Figure 7 shows that the individual mean models provide the general trend of the 

simulation’s true mean response.  The variance models, on the other hand, are not 

indicative of the simulation’s true variance.  The NN variance model over-estimates the 

true variance throughout the entire design region.  The KR and RBF variance models are 

better estimates, though they still do not closely model the non-linearity of the variance 

surface. 
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In terms of robust points, NN and RBF provide similar points whereas KR most 

closely identifies the location of the true robust point.  The experiment is summarized in 

Table 11.  Each model’s robust point was simulated 5,000 times using common random 

numbers for V and f in order to assess the quality of the predicted values.  All three 

models under-estimate the simulation’s mean at their robust point, though the RBF 

provides the closer prediction.  The KR model offers the best prediction of the 

simulation’s true variance. 

 

 

Figure 7.  Circuit Simulation Mean, Variance, and MSE Models Using the 25-run 
Designs 
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Table 11.  Circuit Simulation RPD Results Using the 25-run Designs 

Model RMSE 
(% Range) 

Robust Point  Mean Variance MSE R L  

NN 1.13 
(5.5%) 6.48 0.019 Predicted 9.98 2.36 2.36 

Realized 10.73 0.13 0.66 

KR 0.76 
(4.4%) 9.10 0.010 Predicted 9.99 0.12 0.12 

Realized 10.28 0.10 0.18 

RBF 0.68 
(3.9%) 7.15 0.020 Predicted 9.99 0.35 0.35 

Realized 10.15 0.12 0.14 
Truth  9.17 0.011  10.02 0.09 0.09 
 

At this point in the analysis, it can be concluded that after only 25 experimental 

runs, the RSM and MDM approaches have provided adequate, but not highly accurate, 

representations of the simulation’s true mean and variance.  However, since computer 

simulations allow experimenters to explore many more factor levels and combinations of 

factor levels than typically allowed in physical experiments, the number of experimental 

runs in the DOE was increased from 25 to 81.  The NN, KR, and RBF models were then 

build from the same 81-run LHS design.  Their corresponding mean, variance, and MSE 

models are depicted in Figure 8.  This new experiment is summarized in Table 12.  By 

comparing Figure 7 and Figure 8, improvement in the models’ mean and variance 

representations can be observed.  The KR and RBF mean models are capturing the 

curvature of the simulation while the NN mean model still only represents its general 

trend.  There is also significant improvement in the KR and RBF variance models.  These 

improvements can also be seen in Table 12 as the KR and RBF models’ mean and 

variance predictions at the determined robust points are improved. 
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Figure 8.  Circuit Simulation Mean, Variance, and MSE Models Using the 81-run 
LHS Design 

 

Table 12.  Circuit Simulation RPD Results Using the 81-run LHS Design 

Model RMSE 
(% Range) 

Robust Point  Mean Variance MSE R L  

NN 0.61 
(2.8%) 6.60 0.021 Predicted 9.97 0.52 0.52 

Realized 10.29 0.12 0.20 

KR 0.37 
(1.7%) 2.36 0.028 Predicted 9.98 0.14 0.14 

Realized 10.00 0.17 0.17 

RBF 0.34 
(1.6%) 8.66 0.013 Predicted 9.98 0.11 0.11 

Realized 10.21 0.10 0.14 
Truth  9.17 0.011  10.02 0.09 0.09 
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Next, the number of experimental design runs was increased further to 256.  The 

NN, KR, and RBF models were now built from the same 256-run LHS design.  Figure 9 

and Table 13 show additional evidence that the MDM approach using either the KR or 

RBF models is superior to the RSM approach using the NN model.  The mean and 

variance surfaces provide close approximations of the simulation’s true mean and 

variance.  The predicted means and variances for each model at their robust points are 

also nearly identical to their realized values.  The NN model never truly captures the non-

linearity of either the mean or variance of the simulation. 

 

 

Figure 9.  Circuit Simulation Mean, Variance, and MSE Models Using the 256-run 
LHS Design 
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Table 13.  Circuit Simulation RPD Results Using the 256-run LHS Design 

Model RMSE 
(% Range) 

Robust Point  Mean Variance MSE R L  

NN 0.49 
(2.8%) 6.52 0.021 Predicted 9.98 0.43 0.43 

Realized 10.24 0.12 0.18 

KR 0.05 
(0.3%) 8.46 0.016 Predicted 9.99 0.08 0.08 

Realized 9.99 0.10 0.10 

RBF 0.08 
(0.4%) 7.34 0.020 Predicted 9.99 0.11 0.11 

Realized 9.99 0.11 0.11 
Truth  9.17 0.011  10.02 0.09 0.09 
 

3.3.2.2  Combined-Array RSM/MDM Approaches vs. Combined-Array 

Emulator Approach 

The combined-array RSM and MDM approaches were compared to the 

combined-array stochastic emulator approach using the NN, KR, and RBF models 

generated via the 256-run LHS design as the emulators.  Within the emulator approach, 

the individual mean and variance models were built from a 52 factorial design (labeled 

DOE2 in Figure 4).  These models were constructed using the same modeling approach 

that created the emulator itself.  That is, if Kriging was used to build the emulator, then 

Kriging was also used to build the associated mean and variance models. 

The emulator strategy requires a large number of replications to be performed at 

each design point.  To determine an appropriate number of replications, the long-run 

mean and variance of each model was examined at the center point and the four corner 

points of the design (Figure 10).  Based on these plots, the choice was made to run 500 

replications at each of the 25 design points of DOE2 since both the mean and variance of 

each model tend to reach a steady-state at that point.  Therefore, the emulator approach 
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required 25 500 12,500× = evaluations of the emulator in order to build the mean and 

variance models.  This is in addition to the original 256 experiments necessary to build 

the emulator in the first place. 

 

 

Figure 10.  Long-Run Analysis of NN, KR, and RBF Circuit Simulation Emulators 

 
A comparison of the RSM and MDM’s mean, variance, and MSE models in 

Figure 9 to the emulator’s corresponding models in Figure 11 reveals very similar 

response surfaces.  A further examination of the robust point summaries for the 

RSM/MDM (Table 13) and emulator (Table 14) approaches also shows nearly equivalent 

results.  The robust points, as well as their predicted/realized means and variances, for 

each model type are approximately equal.  Consequently, it can be concluded that the 

combined-array RSM and MDM approaches and the stochastic emulator strategy yielded 

similar results.  However, the emulator strategy required the development of two 

experimental designs, three response modeling efforts (one each for the emulator, the 
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mean, and the variance), one optimization procedure, and 12,500 additional function 

evaluations.  The RSM/MDM approach, on the other hand, only required one 

experimental design, one response modeling effort, and one optimization procedure. 

 

 

Figure 11.  Emulator Approach Mean, Variance, and MSE Models for the Circuit 
Simulation 
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Table 14.  Emulator Approach Results for the Circuit Simulation 

Model Robust Point  Mean Variance MSE R L  

NN 6.45 0.021 Predicted 9.98 0.39 0.39 
Realized 10.22 0.12 0.17 

KR 8.32 0.016 Predicted 9.99 0.08 0.08 
Realized 10.06 0.10 0.10 

RBF 7.33 0.020 Predicted 9.99 0.10 0.10 
Realized 9.97 0.11 0.11 

Truth 9.17 0.011  10.02 0.09 0.09 
 

3.4  Summary 

Chapter III has extended the combined-array RSM approach that relies upon low-

order polynomial models.  It was demonstrated that improved models of a computer 

simulation’s mean and variance can be attained through the MDM approach that employs 

non-linear response modeling techniques such as Kriging or RBFNN models.  It was 

further shown that the combined-array MDM approach generates results that are 

approximately equivalent to the stochastic emulator approach.  However, these results 

can be achieved at a greatly reduced computational cost by utilizing the MDM approach. 

Throughout this chapter, the concern was more with examining the individual 

mean and variance models and less with the actual location of the robust points.  In fact, 

each of the 12 robust points that were identified for the circuit simulation are very good 

solutions.  This is illustrated in Figure 12.  The points represented with “•” are design 

space locations in which the true MSE of the simulation is less than or equal to 0.25.  

Actually, these points represent a region of points and not just individual points.  The 

minimum MSE, denoted with “”, is 0.09.  By comparison, the maximum MSE in the 

region is 361.18.  The 12 individual robust points are denoted with “”.  It is shown that 
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they each fall in or near a “robust region” which implies that they are, in their own right, 

robust solutions for this RPD problem.  The actual interest, in this case, lies with the 

predicted means and variances at these robust points.  It was shown that the MDM 

approach was superior to the RSM approach in providing improved predictions of the 

system. 

 

 

Figure 12.  Illustration of the Circuit Simulation’s “Robust Region” 
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IV.  A Nested Desirability Function-Based Approach to Multi-Response RPD 

 
 
4.1  Introduction 

This chapter considers the situation in which an experimenter seeks to examine 

the influence a set of independent variables has on several system responses 

simultaneously.  For example, a situation may require finding the optimal set of 

conditions that reduce cost while also increasing yield.  Unfortunately, the solution that 

minimizes cost is most likely not the same as the solution that maximizes yield.  In fact, 

the two solutions may diametrically oppose each other.  In a case such as this, trade-offs 

between the responses must be explored to find a collaborative solution. 

Chapter IV focuses on the second objective of this dissertation: to develop an 

approach for multi-response RPD problems that provides a collaborative solution that is 

balanced across the means and variances of each response.  Existing techniques seek to 

find an optimal balance across the set of responses.  However, in some cases the mean or 

variance of one response influences the solution in such a way that the means and 

variances of the remaining responses are insignificant to the overall RPD problem.  In 

these situations, it is difficult to attain a solution that is balanced across all responses. 

This chapter presents a technique based on well-known desirability functions that 

places the means and variances of all responses on a level playing field.  The proposal 

also allows decision makers to integrate their personal preferences for the individual 

response means and variances.  For example, they may be willing to accept sacrificing 

being slightly “off-target” in one response, but be reluctant to allow the variation of 

another response to get too large. 
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The rest of this chapter continues in the following manner.  Section 4.2 describes 

the proposed desirability function-based methodology for solving multi-response RPD 

problems.  Section 4.3 utilizes two case studies to compare the proposed approach to a 

popular MSE-based approach.  Finally, Section 4.4 summarizes this chapter. 

 
4.2  The Nested Desirability Function Approach 

 The proposed approach to solving the multi-response RPD problem employs the 

desirability functions established by Derringer and Suich [14].  However, instead of using 

them to transform each response into a corresponding desirability level, they were used to 

transform the individual response means and variances into desirability levels.  This 

approach allows a decision maker to state their preferences regarding what is, and is not, 

acceptable for each response’s mean and variance.  Park and Park’s [17] weighted 

desirability function approach for optimization problems was also implemented to apply 

distinct degrees of importance to the different responses, response means, and response 

variances. 

Let ˆ jy denote an estimated relationship between response variable j and the vector 

of independent variables x.  Also, suppose that ˆ jµ and 2ˆ jσ are the respective mean and 

variance of ˆ jy .  The desirability of response j is defined as 

 ( ) ( )( )
1

22, ,
2, ,

j j
ww

j j j
dD d µ σ

µ σ= ×   (56) 

where ,0 1jd µ≤ ≤ and 2,
0 1

j
d

σ
≤ ≤ are the respective desirability transformations for ˆ jµ and

2ˆ jσ .  Also, , 0jw µ > and 2,
0

j
w

σ
> are the preferred weights for ˆ jµ and 2ˆ jσ , respectively.  

Since there are two desirabilities—one for the mean and one for the variance—the 
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relationship 2, ,
2j j

w wµ σ
+ = must hold.  jD , which is contained in the interval [0,1], will 

be 0 if either ,jd µ or 2,j
d

σ
are 0.  This implies that response j is unacceptable if either its 

mean or variance is unacceptable.  Finally, the overall desirability of the combined mean 

and variance levels across all J responses is 

 ( )
1

1

j
J JW

j
j

DD
=

 
=  
 
∏   (57) 

where 0jW > is the preferred weight for response j and
1

J

j
j

W J
=

=∑ .  Again, if 0jD = for 

any j, then 0D = and the whole product is unacceptable.  The robust point is the x* that 

maximizes D.  Since D is composed of the desirabilities 1 2, ,..., JD D D and each jD is itself 

composed of the desirability functions ,jd µ and 2,j
d

σ
, the proposed procedure will be 

referred to as the Nested Desirability (ND) approach. 

 
4.2.1  Desirability Transformations for ˆ jµ  

Taguchi [4] specified three experimental cases for managing a system’s mean 

response in a RPD scenario: smaller-the-better, larger-the-better, and target-is-best.  Let

,jL µ and ,jU µ be the respective minimum and maximum values of ˆ jµ .  If response j is a 

smaller-the-better case, then the desirability transformation for ˆ jµ is 

 
,

, ,
, , ,

ˆ
ˆ

0

r

j j
j j j

j j j

U
L Ud U L

otherwise

µ
µ µ

µ µ µ

µ
µ

 −
 ≤ ≤  = − 



 (58) 

If response j is a larger-the-better case, then the desirability transformation for ˆ jµ  is 
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Finally, if response j is a target-is-best case with a desired target of jτ where

, ,j j jL Uµ µτ≤ ≤ , then the desirability transformation for ˆ jµ is 
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 (60) 

The exponents r and s in Equations (58)–(60) are shape parameters for the desirability 

function.  A value for r or s that is greater than 1 puts greater importance on the mean 

response values being closer to the respective minimum, maximum, or target value.  On 

the other hand, a value for r or s that is between 0 and 1 implies that the desirability value 

is large even if the mean response is far from its goal value. 

 
4.2.2  Desirability Transformations for 2ˆ jσ  

Whereas there are three distinct cases for managing ˆ jµ , there is only one such 

case for 2ˆ jσ since a minimum response variance is always desired.  Therefore, let 2,j
L

σ
and

2,j
U

σ
be the respective minimum and maximum values of 2ˆ jσ .  Then, the desirability 

transformation for 2ˆ jσ is 
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The value r is defined as it was in Section 4.2.1. 

 
4.3  Application and Results 

 This section demonstrates Köksoy and Yalcinoz’s (KY) MSE procedure [30] and 

the Nested Desirability (ND) procedure on two case studies: a synthetic case consisting of 

two known functions and a textbook example for a physical experiment. 

 
4.3.1  A Synthetic Case Study 

The response functions in Equations (61) and (62) were used to demonstrate the 

ND procedure alongside the KY procedure in Equation (27).  The responses, which were 

considered to be equally important, were influenced by the control factor [ ]1,1x∈ − and 

the noise factor ( )2~ 0,  1z zz N µ σ= = . 

 2 2
1 4 3 4 3 4 15y x x z z xz= − − + + + +   (62) 

 24 1 1 2
2 5 2 5 5 6y x z z xz= − − − + +   (63) 

Given the known distributional parameters for z, the means and variances of Equations 

(62) and (63) can be determined analytically.  These functions are shown in Equations 

(63)–(66). 

 2
1 4 3 19x xµ = − − +   (64) 

 ( )22
1 4 3 32xσ = + +   (65) 
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 4 11
2 5 2xµ = − +   (66) 

 ( )22 2 1 1
2 5 5 2xσ = − +   (67) 

In this scenario, 1y was a larger-the-better response and 2y was a smaller-the-better 

response. 

 
4.3.1.1  The Köksoy and Yalcinoz (KY) Procedure 

Since the responses were deemed equally important, the weights in the KY 

procedure were 1
1 2 2W W= = .  Thus, the jointly robust point KYx was found by minimizing

1 1
1 22 2KY MSE MSE= + where 2 2

1 1 1MSE σ µ= − and 2 2
2 2 2MSE σ µ= + .  Also, in order to 

examine any trade-offs made among the responses in determining a jointly robust 

operating point, KYx was compared to the results of the two single response RPD 

problems suggested by Equations (62) and (63).  That is, the robust point for 1y was 

identified without any consideration of 2y by minimizing 1MSE to yield the solution 1
KYx .  

Similarly, 2MSE was minimized to find the robust point for 2y only.  This solution is 

identified as 2
KYx . 

Figure 13 illustrates the results of solving the three RPD problems.  The locations 

of the single response robust solutions are shown in Figure 13a and Figure 13b.  Clearly, 

these individual solutions occur at opposite ends of the range of x suggesting that some 

compromise will need to be made to identify an operating point that is mutually robust 

for 1y and 2y .  Finally, the jointly robust point KYx is shown in Figure 13c.  It can be 

observed that, even though the responses were given equal weights, KYx is nearly 
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identical to 1
KYx .  It appears as if there was no compromise amongst the responses.  This 

can be further examined by decomposing KY. 

 

 

Figure 13.  Robust Point Locations for the Synthetic Case Using the KY Procedure 

 
Figure 14 plots KY with its decomposed functions, namely 1

12 MSE and 1
22 MSE , on 

the same graph.  It is now clear that KYx is indistinguishable from 1
KYx due to the fact that

1
22 MSE is relatively unchanging when compared to 1

12 MSE and has little to no effect on 

KY.  The range of 1
12 MSE is 142.8 while the range of 1

22 MSE is only 8.95.  Based on this 

simple decomposition, it can be concluded that the jointly robust solution is greatly 

influenced by 1y whereas 2y has a negligible effect on the joint solution. 
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Figure 14.  Decomposition of KY for the Synthetic Case Study 

 
 Each response’s MSE function can be further examined by decomposing them 

into their variance and squared bias terms.  In the case of 1MSE , its variance and negative 

squared bias term 2
1( )µ− will actually be investigated.  Again, it is shown in Figure 15a 

and Figure 15b that the MSE functions are driven by a single term—in each case, the 

squared bias.  The variance terms have minimal influence on the MSE functions and, as a 

result, minimal influence on determining 1
KYx , 2

KYx , or KYx .  It can be concluded that, for 

this example, the jointly robust solution is influenced significantly by 1µ .  Conversely, 2µ

, 2
1σ , and 2

2σ have limited, if any, impact on the overall RPD solution derived via the KY 

procedure. 
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Figure 15.  Decomposition of Individual MSE Functions for the Synthetic Case 
Study 

 

4.3.1.2  The Nested Desirability (ND) Procedure 

 Linear ( 1)r = desirability functions were utilized for the ND procedure.  Again, 

since the responses hold equal importance, the weights in the ND formulation of the 

problem were 1 2 1W W= = .  Now, the KY procedure does not consider weighting the 

contributions of the individual means and variances; here, the ND procedure weighted 

them equally.  Specifically, 2, ,
1µ σ

= =j j
w w for 1,2=j .  The jointly robust point NDx

maximizes ( ) ( )( )
1

1 1 2
1 2D D D= × where ( ) ( )( )2

1
1 21

1 1, 1,
dD d µ σ

= × and

( ) ( )( )2

1
1 21

2 2, 2,
dD d µ σ

= × .  Even though the weights are equal to 1, they were included 

here as the exponents for completeness.  Again, the results of the two single response 

RPD problems are presented.  That is, the robust point for 1y , denoted 1
NDx , was found by 
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maximizing D1.  Similarly, D2 was maximized to find the robust point for 2y only.  This 

solution is identified as 2
NDx . 

Figure 16 illustrates the results of solving the three RPD problems using the ND 

approach.  The locations of the single response robust solutions are shown in Figure 16a 

and Figure 16b.  Again, as the KY procedure showed, these solutions are conflicting.  

Finally, the jointly robust point NDx is shown in Figure 16c.  As opposed to the results of 

the KY procedure, some compromise can now be observed between the two responses in 

order to generate a jointly robust point.  Table 15 and Table 16 can be examined further 

in Section 4.3.1.3 to see where these compromises were made. 

 

 

Figure 16.  Robust Point Locations for the Synthetic Case Using the ND Procedure 

 
4.3.1.3  Comparison of the KY Procedure and the ND Procedure 

The results of the KY procedure and the ND procedure can be observed through 

two different points-of-view (POV).  Table 15 summarizes the means, variances, and 

MSEs of the three robust points for the two RPD strategies by taking a “MSE POV.”  The 

italicized values are the corresponding results of the secondary response when each single 
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response RPD problem is solved.  The bold values are the results of solving the multi-

response RPD problems.  As noted in Figure 13a and Figure 13c, 1
KYx and KYx are nearly 

equal.  Therefore, when an equally important 2y is added into the problem formulation, 

there exists a slight trade-off by increasing 2
1σ for marginal improvements in 2µ and 2

2σ .  

For all intents and purposes, there is practically zero compromise between the responses 

in the joint RPD case when using the KY procedure.  This is not, however, the situation 

when using the ND procedure where noticeable trade-offs occur amongst the means and 

variances of the two responses.  Now, when 2y is considered as important as 1y , larger 

degradations in 1µ and 2
1σ are incurred in exchange for substantial improvements in 2µ and

2
2σ .  Based on the decision maker’s original preferences, this is a solution they are 

willing to accept.  However, by observing the results from an MSE POV, NDx represents 

a 12.51% decrease in overall “KY value” when compared to KYx .  This is understandable 

since KYx is the best solution in terms of MSE. 
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Table 15.  Synthetic Multi-Response Case Study from a MSE Point-of-View 

Robust 
Point 1µ  2

1σ  1MSE  2µ  2
2σ  2MSE  KY 

RPD Goal  → Max Min Min Min Min Min Min 

1 0.41KYx = −  19.56 33.85 -348.74 5.83 0.63 34.62 -157.06 

2 1.00KYx =  12.00 81.00 -63.00 4.70 0.54 22.63 -20.19 

0.38KYx = −  19.56 34.17 -348.42 5.81 0.62 34.38 -157.02 

1 0.52NDx = −  19.48 32.86 -346.61 5.91 0.67 35.60 -155.51 

2 1.00NDx =  12.01 80.93 -63.31 4.70 0.54 22.63 -20.34 

0.10NDx =  18.66 43.53 -304.67 5.42 0.53 29.91 -137.38 

% Improvement 
from KYx to NDx  -4.60% -27.39% -12.56% 6.71% 14.52% 13.02% -12.51% 

 

 Additionally, the results can also be examined from a “desirability POV.”  Table 

16 summarizes the desirabilities for the means, variances, and responses of the three 

robust points for the two RPD strategies.  The trade-offs in the desirability POV are 

similar to the trade-offs in the MSE POV.  However, when looking at the same results 

through a desirability lens, utilizing NDx as the jointly robust point instead of KYx results in 

12.00% and 20.83% decreases in desirability for 1µ and 2
1σ , respectively.  In exchange for 

this, however, the desirability levels increase significantly—77.42% and 43.08%—for 2µ

and 2
2σ .  This ultimately results in a 16.67% increase in the overall system desirability at

NDx .  Again, this is expected since NDx is the best solution in terms of desirability. 
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Table 16.  Synthetic Multi-Response Case Study from a Desirability Point-of-View 

Robust 
Point 1,d µ  21,

d
σ

 D1 2,d µ  22,
d

σ
 D2 D 

1 0.41KYx = −  1.00 0.96 0.98 0.30 0.63 0.43 0.65 

2 1.00KYx =  0.00 0.00 0.00 1.00 0.89 0.94 0.00 

0.38KYx = −  1.00 0.96 0.98 0.31 0.65 0.45 0.66 

1 0.52NDx = −  0.99 0.98 0.99 0.24 0.54 0.36 0.60 

2 1.00NDx =  0.00 0.00 0.00 1.00 0.89 0.94 0.04 

0.10NDx =  0.88 0.76 0.82 0.55 0.93 0.71 0.77 

% Improvement 
from KYx to NDx  -12.00% -20.83% -16.33% 77.42% 43.08% 57.78% 16.67% 

 

4.3.2  The Force Transducer Experiment 

Details for the following example can be found in Romano et al. [22].  Several 

authors have also used this example as a case study for their multi-response RPD 

methods [30–32].  In short, the problem consists of two response variables 1 2(  and )y y , 

three control variables 1 2 3( ,  and )x x x , and two noise variables 1 2(  and )z z .  The 

experimental results are displayed in Table 17.  The noise factors were assumed to be 

independent with zero mean and variances 2
1σ and 2

2σ .  Thus, the ±1 experimental levels 

for jz were set to jσ± .  Per Romano et al. [22], the fitted response surface functions for 1y

and 2y are 

 1 1 2 3 1 2 1 3
2

2 3 1 1 2 1 1

ˆ ( , ) 1.38 0.361 0.155 0.0771 0.148 0.0218

0.0130 0.0481 0.0588 0.0116 0.0100

y x x x x x x x
x x x z z x z

= − − + − +

+ + − − +

x z
  (68) 

and 
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 2 1 2 3 1 2 1 3
2
1 1 2 3 1 1

ˆ ( , ) 1.64 0.592 0.438 0.0950 0.301 0.143

0.201 0.0844 0.0794

y x x x x x x x
x x x x x z

= − + − + −

+ − +

x z
  (69) 

The authors reported that no lack of fit was detected and the MSEs of the models were

2
,1ˆ 0.0003253εσ = and 2

,2ˆ 0.024εσ = . 

 
Table 17.  Experimental Results for the Force Transducer Experiment 

Run 1x  2x  3x  1z  2z  1y  2y  
1 -1 -1 -1 -1 1 1.81 1.10 
2 -1 -1 -1 1 -1 1.69 1.11 
3 -1 -1 1 -1 -1 1.90 1.07 
4 -1 -1 1 1 1 1.78 1.07 
5 -1 1 -1 -1 -1 1.80 1.47 
6 -1 1 -1 1 1 1.63 1.18 
7 -1 1 1 -1 1 1.92 1.41 
8 -1 1 1 1 -1 1.78 1.58 
9 1 -1 -1 -1 -1 1.36 1.57 
10 1 -1 -1 1 1 1.22 2.03 
11 1 -1 1 -1 1 1.48 1.38 
12 1 -1 1 1 -1 1.44 1.68 
13 1 1 -1 -1 1 0.693 3.37 
14 1 1 -1 1 -1 0.616 3.75 
15 1 1 1 -1 -1 0.950 2.81 
16 1 1 1 1 1 0.817 2.83 
17 -1 0 0 0 0 1.79 1.24 
18 1 0 0 0 0 1.03 2.46 
19 0 -1 0 0 0 1.53 1.23 
20 0 1 0 0 0 1.22 1.73 
21 0 0 -1 0 0 1.30 1.63 
22 0 0 1 0 0 1.44 1.67 
23 0 0 0 0 0 1.38 1.73 
24 0 0 0 0 0 1.39 1.74 
25 0 0 0 0 0 1.40 1.74 

 

 The goal of this RPD study was to find the robust settings of 1 2 3,  and x x x that 

minimized 1y and 2y .  Similar to the synthetic case study in Section 4.3.1, this problem 
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was solved using the KY procedure and the ND procedure.  The estimated mean models 

are 

 1 1 2 3 1 2 1 3
2

2 3 1

ˆ 1.38 0.361 0.155 0.0771 0.148 0.0218

0.0130 0.0481

x x x x x x x
x x x

µ = − − + − +

+ +
  (70) 

and 

 2 1 2 3 1 2 1 3
2
1 1 2 3

ˆ 1.64 0.592 0.438 0.0950 0.301 0.143

0.201 0.0844

x x x x x x x
x x x x

µ = − + − + −

+ −
  (71) 

The estimated variance models are 

 ( ) ( )2 22 2
1 1 ,1ˆ ˆ0.0588 0.01 0.0116x εσ σ= − + + − +   (72) 

and 

 ( )22 2
2 1 ,2ˆ ˆ0.0794x εσ σ= + . (73) 

Table 18 summarizes the means, variances, and MSEs of the three robust points 

for the two RPD strategies from a “MSE POV.”  In this case, as opposed to the synthetic 

case study, both the KY procedure and the ND procedure generated solutions in which 

compromises were made amongst the means and variances.  However, NDx represents a 

33.29% decrease in overall “KY value” when compared to KYx .  Similar conclusions 

regarding trade-offs between the response means and variances can be made by 

examining Table 19.  Now, from a “desirability POV,” utilizing NDx as the jointly robust 

point instead of KYx yields a 15.25% increase in the overall system desirability. 
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Table 18.  Force Transducer Experiment Results from a MSE Point-of-View 

Robust Point 1µ  2
1σ  1MSE  2µ  2

2σ  2MSE  KY 

RPD Goal  → Min Min Min Min Min Min Min 

( )1 1.00,1.00, 1.00KYx = −  0.65 0.0028 0.43 3.49 0.0302 12.21 6.32 

( )2 0.57, 1.00,1.00KYx = − −  1.72 0.0046 2.96 1.04 0.0260 1.11 2.04 

( )0.07, 1.00,1.00KYx = −  1.59 0.0038 2.53 1.12 0.0240 1.28 1.91 

( )1 1.00,1.00, 1.00NDx = −  0.65 0.0028 0.43 3.49 0.0302 12.21 6.32 

( )2 0.04, 1.00,1.00NDx = − −  1.61 0.0040 2.60 1.10 0.0240 1.23 1.92 

( )0.32, 0.20, 1.00NDx = − −  1.23 0.0036 1.52 1.88 0.0246 3.56 2.54 

% Improvement 
from KYx to NDx  22.64% 5.26% 40.29% -67.86% -2.50% -176.79% -33.29% 

 

Table 19.  Force Transducer Experiment Results from a Desirability Point-of-View 

Robust Point 1,d µ  21,
d

σ
 1D  2,d µ  22,

d
σ

 1D  D 

( )1 1.00,1.00, 1.00KYx = −  1.00 1.00 1.00 0.00 0.00 0.00 0.00 

( )1 0.57, 1.00,1.00KYx = − −  0.11 0.24 0.16 1.00 0.68 0.82 0.36 

( )0.07, 1.00,1.00KYx = −  0.22 0.58 0.36 0.97 1.00 0.98 0.59 

( )1 1.00,1.00, 1.00NDx = −  1.00 1.00 1.00 0.00 0.00 0.00 0.00 

( )2 0.04, 1.00,1.00NDx = − −  0.20 0.52 0.32 0.98 1.00 0.99 0.57 

( )0.32, 0.20, 1.00NDx = − −  0.52 0.70 0.60 0.66 0.90 0.77 0.68 

% Improvement 
from KYx to NDx  136.36% 20.69% 66.67% -31.96% -10.00% -21.43% 15.25% 

 

4.4  Summary 

MSE-based strategies for solving multi-response RPD problems are popular 

methods.  However, as the synthetic case study showed, sometimes the mean or variance 

of one response can render the means and variances of the remaining responses 

insignificant to the overall RPD problem.  This can diminish the chance of finding a 
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compromised solution.  Also, trade-offs among the means and variances of the individual 

responses are typically ignored.  Chapter IV presented an approach, based on well-known 

desirability functions, that is beneficial in two ways.  First, it places the responses, as well 

as their means and variances, on equal footing.  Second, it allows a decision maker to 

declare their personal preferences for the responses’ means and variances from the outset.  

The resultant operating point is a system setting that, whether one is looking at the 

problem from a MSE POV or a desirability POV, produces a mutually robust set of 

responses the decision maker considers acceptable. 
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V.  Quality Measures for Comparing Multiple RPD Strategies 

 
 
5.1  Introduction 

 There is a growing literature in which multiple RPD problem solving strategies 

are contrasted.  Articles typically report a system’s predicted mean and variance found 

using a number of approaches; however, some neglect to demonstrate the quality of those 

predictions through confirmation experiments [22, 24, 25, 29–32, 46, 71].  There are two 

operative questions.  Are the predictions good estimates of the system’s actual 

performance at the estimated robust settings?  Also, which method’s robust point 

estimate actually realizes the best combination of mean and variance?  These questions 

become more challenging when there are multiple responses of interest.  To provide a 

framework for addressing these questions, this research first posits that any RPD problem 

solving methodology can be evaluated on the basis of the accuracy of its predictions and 

its realized robustness relative to its competitors. 

Chapter V addresses the third objective of this dissertation which is aimed at 

generating measures for comparing different RPD problem solving strategies.  Such 

measures can increase the understanding of each strategy and allow the analyst to make a 

more knowledgeable evaluation of the competing procedures.  The rest of Chapter V is 

organized as follows.  Section 5.2 introduces a methodology for meeting this research 

objective.  Section 5.3 conducts a case study using a discrete event simulation that 

compares the results of 12 competing robust design strategies.  Finally, Section 5.4 

summarizes this chapter. 
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5.2  Quality Indices for Robust Parameter Design 

As mentioned, the RPD literature generally compares the system’s predicted 

mean and variance at the robust setting determined through one approach to the system’s 

predicted mean and variance at the robust setting found though a competing method.  

Authors then make a choice about which method is superior based upon the closeness of 

these predictions to ideal mean and variance targets.  For example, in Taguchi’s target-is-

best scenario, one would prefer a robust point with a predicted mean close to the target 

value with a small predicted variance over another setting with a predicted mean further 

from the target having a higher predicted variance.  Based on the predictions, it is 

expected that the former operating point is better than the latter.  It is this comparison that 

drives some authors to conclude the dominance of one methodology over another.  

However, if the methodologies provide poor predictions, then their conclusions may be 

inaccurate. 

To make a more comprehensive assessment of the competing strategies, this 

research recommends expanding the analysis to include confirmation experiments at each 

robust setting.  First, it must be stated that this is obviously not feasible in all cases.  It is 

highly unlikely that a capital-producing manufacturing line would shut down in order to 

make some trial runs.  It may also be extremely costly or dangerous to make these test 

runs in other situations.  However, these confirmatory runs may be easy and inexpensive 

to perform when simulations are used.  By performing confirmation experiments at each 

robust setting, further insight can be gained into each RPD approach’s accuracy and 

robustness qualities.  Accuracy is a quality measure of how close the predicted mean and 

variance of the system are to the realized mean and variance of the system when it is 
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repeatedly executed at a specific operating point.  Robustness, on the other hand, assesses 

how close the system’s realized mean and variance are to their desired target values.  A 

minimum response variance is always preferred; however, Taguchi’s overall 

experimental goal governs whether a minimum, maximum, or specific mean response is 

required.  Combining the qualities of accuracy and robustness can strengthen the 

understanding of each RPD approach and a more informed evaluation of the competing 

procedures can be made. 

The proposed approach for using accuracy and robustness to compare multiple 

RPD strategies is now presented for a general problem in which there exist K strategies 

and J responses.  For 1 2, , ...,k K= and 1 2j J= , , ..., , define the following: 

• xk is the robust point found using RPD strategy k 

• p
k jm( )

, and p
k jv( )

, are the system’s predicted mean and variance, respectively, at xk for 
response j 

• r
k jm( )

, and r
k jv( )

, are the system’s realized mean and variance, respectively, at xk for 
response j 

• jt is the desired target value for response j if it is a target-is-best experimental 
scenario 

These values can be visualized in tabular form as shown in Table 20.  The last row of 

Table 20 is labeled “Ideal.”  The ideal values are the best possible means and variances 

that can be attained for each response of the system.  These can be gained analytically or 

through experimentation when known functions or simulations are being used.  Let jy

represent the true response j.  The ideal mean for response j is then defined as: 
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min if response  is a "smaller-the-better" scenario

if response  is a "target-is-best" scenario

max if response  is a "larger-the-better" scenario

j

j j

j

yE j

m t j
yE j

   = 
    

*   (74) 

The ideal variance for response j is defined as 

 min jj yv Var=   
* . (75) 

 
Table 20.  Tabular Visualization of RPD Results for K Strategies and J Responses 

Robust 
Point  1µ  2

1σ   
 Jµ  2

Jσ   

 RPD Goal → 1t /Min/Max Min Jt /Min/Max Min 

1x  
Predicted ( )

1,1
pm  ( )

1,1
pv  

 
( )
1,

p
Jm  ( )

1,
p
Jv  

Realized ( )
1,1

rm  ( )
1,1

rv  ( )
1,

r
Jm  ( )

1,
r
Jv  

…
 

…
 

…
 

…
 

 …
 

…
 

Kx  
Predicted ( )

,1
p

Km  ( )
,1
p

Kv  
 

( )
,
p

K Jm  ( )
,
p

K Jv  

Realized ( )
,1

r
Km  ( )

,1
r

Kv  ( )
,

r
K Jm  ( )

,
r

K Jv  

 Ideal *
1m  *

1v   *
Jm  *

Jv  
 

5.2.1  Accuracy Quality Index 

Previously, the accuracy of a RPD strategy was defined as how close the 

predictions of the system are to the actual realizations of the system when it is continually 

executed at a specific operating point.  Therefore, the row in Table 20 labeled “Ideal” can 

be ignored at this time.  Since the values in Table 20 are most likely in different units or 

scales, each column of the table containing the “Predicted” and “Realized” rows must 

first be normalized to the range [0,1] to eliminate these effects.  Normalized values are 

denoted with “~”.  For example, ( )
,
p

k jm or ( )
,
r

k jv .  Now define the following vectors: 
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• ( ) ( ) ( ) ( )
,1 ,1 , ,, ,..., ,p p p p

k k k k J k Jm v m v =  p     is the vector of normalized predicted means and 
variances for RPD strategy k 

• ( ) ( ) ( ) ( )
,1 ,1 , ,, ,..., ,r r r r

k k k k J k Jm v m v =  r     is the vector of normalized realized means and 
variances for RPD strategy k 

The Accuracy Quality Index for strategy k across all J responses, denoted kA , is 

defined as a measure of the distance between its vector of normalized predicted values kp

and its vector of normalized realized values kr .  It is computed using Equation (75). 

 1 2k k kA J= − −p r  (76)  

The distance measure in Equation (76) is first scaled by the maximum possible distance 

between any two points in the 2J-dimensional unit hypercube and is then subtracted from 

1.  This procedure results in kA being contained in the interval [0,1] in which larger values 

are preferred. 

Accuracy can be illustrated using the single response synthetic case study from 

Section 3.3.1.  To recap, the combined-array RSM approach using the Std, NN, CNN, and 

CCN models were tested against the combined-array MDM approach using the KR and 

RBF models.  The predicted and realized means and variances for each of the 6 RPD 

strategies are shown in Table 9.  Figure 17 plots the normalized predicted means and 

variances for each RPD procedure against their normalized realized values.  The accuracy 

is a measure of the length of the dashed lines connecting the predicted and realized 

values.  It is obvious that the MDM approach using the RBFNN model is the most 

accurate whereas the RSM approach using the standard model is the least accurate. 
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Figure 17.  Accuracy of Each Strategy for the Single Response Synthetic Case 

 
5.2.2  Robustness Quality Index 

The robustness of a RPD strategy relative to its competitors, on the other hand, is 

defined as how close the system’s actual realizations are to the desired mean and variance 

targets.  Thus, the rows in Table 20 labeled “Predicted” can now be ignored.  Again, each 

column of the table containing the “Realized” and “Ideal” rows must be normalized to the 

range [0,1].  Now, with “~” once more denoting normalized values, define the following 

vectors: 

• ( ) ( ) ( ) ( )
,1 ,1 , ,, ,..., ,r r r r

k k k k J k Jm v m v =  r     is the vector of normalized realized means and 
variances for RPD strategy k 

• * * * * *
1 1, ,..., ,J JI m v m v =      is the vector of normalized ideal means and variances 

It should be noted that *I may not represent a combination of system means and variances 

that can actually be achieved by any control factor setting in the design space.  This is 

why *I is treated as an ideal, or utopian, vector of system means and variances. 
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The Robustness Quality Index for strategy k across all J responses, denoted kR , is 

defined as a measure of the distance between its vector of normalized realized values kr

and the vector of normalized ideal values *I .  It is computed using Equation (76). 

 1 2k kR I J= − − *r  (77)  

Similar to kA , larger values of kR in the interval [0,1] are preferred.  The synthetic case 

study from Section 3.3.1 can further illustrate the robustness quality.  The goal of the 

study was to locate the operating point that resulted in a response of 8 with minimal 

variance.  In this case, the smallest achievable variance in the design space is 18.  This is 

found by minimizing Equation (54).  Therefore, the ideal vector was [ ]* 8,18I = .  Figure 

18 plots the normalized realized means and variances for each RPD procedure against 

their normalized ideal values.  Robustness is a measure of the length of the dashed lines 

connecting the realized and ideal values.  The operating point found via the MDM 

approach using the RBFNN model stands out as the most robust of the 6 solutions. 

As a matter of fact, Figure 18 also shows that points labeled “d” are solutions that 

are completely dominated by another solution.  A solution is dominated if another 

solution resulted in a better realized mean and a better realized variance.  In this case, Std 

is dominated by the other 5 solutions.  Also, NN and CNN are dominated by CCN, KR, 

and RBF.  CCN is dominated by KR and RBF.  Finally, KR and RBF are considered non-

dominated solutions. 
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Figure 18.  Robustness of Each Strategy for the Single Response Synthetic Case 

 
5.2.3  Joint Quality Index 

The perfect RPD strategy has two characteristics.  First, it precisely predicts the 

realized means and variances for each response.  Second, it realizes the ideal means and 

variances.  These characteristics equate to having an Accuracy Index and a Robustness 

Index equal to 1.  The accuracy and robustness indices can now be used to determine the 

overall Joint Quality Index for each strategy k by utilizing the equation 

 1 2k kQ = − −q 1   (78) 

where [ ]k k kA R=q , and [ ]1 1=1 , .  Again, the distance measure in Equation (78) is scaled 

by the maximum possible distance between any two points in the unit square and is then 

subtracted from 1.  The strategy resulting in the largest value for kQ is then determined to 

be the best complete procedure—out of the K competing strategies—for solving the RPD 

problem across the J responses concurrently.  Figure 19 plots the Accuracy Index and the 

Robustness Index for each RPD strategy in the synthetic case study from Section 3.3.1.  

The overall joint quality index is simply a measure of the distance between each 
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strategy’s accuracy-robustness pairing and the point (1,1).  Again, the operating point 

found via the MDM approach using the RBFNN model shows to have the best overall 

quality.  

 

 

Figure 19.  Overall Joint Quality of Each Strategy for the Single Response Synthetic 

Case 

 
The accuracy, robustness, and overall quality indices that correspond to Figure 17, 

Figure 18, and Figure 19 are displayed in Table 21.  It is clear that for this case study, of 

the 6 RPD procedures, the MDM approach that utilizes the RBF model is superior.  A 

comment must also be made in regards to the Std model’s robustness score of 0.  The 

RSM approach that utilizes the standard response surface model has been proven to be a 

very successful strategy.  However, the accuracy, robustness, and overall quality indices 

as defined here are relative to the K strategies being compared in the study.  Therefore, as 

it relates to the other five competitors in this particular problem, the RSM approach using 

the Std model does not produce a very robust solution. 
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Table 21.  Quality Indices for Each Strategy in the Single Response Synthetic Case 

 RPD 
Strategy k Accuracy 

Ak 
Robustness 

Rk 
Overall Quality 

Qk 
RSM w/ Std 1 0.18 (6) 0.00 (6) 0.09 (6) 
RSM w/ NN 2 0.62 (4) 0.61 (4) 0.62 (4) 

RSM w/ CNN 3 0.62 (4) 0.61 (4) 0.62 (4) 
RSM w/ CCN 4 0.76 (3) 0.67 (3) 0.71 (3) 
MDM w/ KR 5 0.79 (2) 0.72 (2) 0.75 (2) 

MDM w/ RBF 6 0.94 (1) 0.75 (1) 0.82 (1) 
 Rank in Parenthesis ( ) 

 

5.3  Application and Results 

The benefits of a more holistic RPD strategy assessment using the quality index 

will be demonstrated with a discrete event simulation.  The ND procedure from Chapter 

IV was assessed against the KY procedure using six different RPD strategies: the 

combined-array RSM approach that employs the Std, NN, CNN, and CCN models and the 

MDM approach that employs the KR and RBF models.  The proposed quality indices 

were then used to compare the 12 different multi-response strategies listed in Table 22. 

 
Table 22.  Multi-Response RPD Strategies Used for Comparison 

Label Strategy Modeling Approach 
StdKY  Minimize KY RSM w/ Standard Model 
StdND  Maximize D RSM w/ Standard Model 
NNKY  Minimize KY RSM w/ Noise-by-Noise Model 
NNND  Maximize D RSM w/ Noise-by-Noise Model 

CNNKY  Minimize KY RSM w/ Control-by-Noise-by-Noise Model 
CNNND  Maximize D RSM w/ Control-by-Noise-by-Noise Model 
CCNKY  Minimize KY RSM w/ Control-by-Control-by-Noise Model 
CCNND  Maximize D RSM w/ Control-by-Control -by-Noise Model 
KRKY  Minimize KY MDM w/ Kriging Model 
KRND  Maximize D MDM w/ Kriging Model 

RBFKY  Minimize KY MDM w/ RBFNN Model 
RBFND  Maximize D MDM w/ RBFNN Model 
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 A multi-response RPD study was performed using Kelton et al.’s [84] automotive 

maintenance and repair shop (AMRS) simulation (Model 6-1) as it was developed in 

Arena®.  The two performance measures of interest were the average daily profit and the 

average daily number of late wait jobs, labeled 1y and 2y respectively.  The responses were 

averages of 100 independent replicates at a specified design setting.  The input factors 

that influence 1y and 2y are listed in Table 23.  The factors 1x and 2x were controllable within 

their minimum and maximum values.  Also, since the desire was to find the control factor 

settings that were robust to uncertain demand, the number of calls that arrive to the shop 

each day was a Poisson random variable with mean 1z .  The mean of the Poisson 

distribution itself was assumed to be normally distributed with a known mean and 

standard deviation.  This is comparable to the approach taken by Wild and Pignatiello 

[44] in which they found a job shop design that was robust to uncontrollable 

environmental factors such as the mean inter-arrival times for parts.  Finally, in order to 

structure the RBFNN metamodel so it was well-generalized with a minimal risk of over-

fitting the experimental data, 10 rounds of the 10-fold cross validation procedure were 

used. 

 
Table 23.  Input Factors for the AMRS Problem 

Label Factor Min Max Mean Std 
Dev 

1x  Maximum work hours available per day 20 40   

2x  Service buffer hours allowed for waiting 
customers 0.5 2   

1z  Mean number of calls per day   25 3 
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The goal of this RPD study was to identify the robust setting of 1x and 2x that 

jointly maximized the average daily profit (a larger-the-better case) and minimized the 

average daily number of late wait jobs (a smaller-the-better case) with minimum 

variability for each response.  Each response was treated with equal weighting.  Each 

mean and its associated variance were also treated with equal weighting.  A 53 full-

factorial combined array design was used to build each model.  The mean and variance 

models for the Std, NN, CNN, CCN, KR, and RBF response models can be viewed in 

Appendix B.  Table 24 summarizes the predicted, realized, and ideal means and variances 

of 1y and 2y at the 12 robust points.  The realized values are the results of 100 simulations 

of each robust operating point using common random numbers for the noise factor. 
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Table 24.  Multi-Response RPD Results for the AMRS Simulation 

RPD 
Strategy 

Robust Point  1µ  2
1σ  2µ  2

2σ  

1x  2x  Goal  Max Min Min Min 

StdKY  0.21 1.00 Predicted 576.68 637.39 0.43 8.0310-4 
Realized 565.11 375.86 0.43 4.0510-4 

StdND  -0.10 1.00 Predicted 561.95 601.28 0.41 7.5610-4 
Realized 578.70 224.51 0.39 2.8610-4 

NNKY  0.21 1.00 Predicted 576.60 641.85 0.42 1.3510-3 
Realized 565.11 375.86 0.43 4.0510-4 

NNND  -0.10 1.00 Predicted 559.87 605.74 0.40 1.3010-3 
Realized 578.70 224.51 0.39 2.8610-4 

CNNKY  0.20 1.00 Predicted 574.47 641.76 0.42 1.6010-3 
Realized 566.22 349.73 0.43 5.5810-4 

CNNND  -0.18 1.00 Predicted 550.86 599.38 0.39 1.0810-3 
Realized 573.68 172.56 0.38 3.8110-4 

CCNKY  0.20 1.00 Predicted 574.47 563.20 0.42 1.5610-3 
Realized 566.22 349.73 0.43 5.5810-4 

CCNND  0.14 1.00 Predicted 573.85 566.06 0.42 1.5010-3 
Realized 570.48 410.09 0.42 3.0110-4 

KRKY  -0.06 0.83 Predicted 583.46 52.51 0.43 6.4410-3 
Realized 581.85 357.48 0.44 2.5410-4 

KRND  -0.29 1.00 Predicted 565.37 37.58 0.36 2.4710-3 
Realized 561.05 124.41 0.37 3.6310-4 

RBFKY  -0.04 1.00 Predicted 570.77 122.08 0.39 5.6010-4 
Realized 576.11 304.20 0.40 2.9110-4 

RBFND  -0.12 1.00 Predicted 569.78 122.48 0.38 5.4710-4 
Realized 580.86 209.28 0.39 2.4310-4 

   Ideal 582.04 16.70 0.28 1.5910-4 
 

The first thing to note while examining Table 24 is that it is very cumbersome.  

This study compares the results of 12 procedures across only two responses.  It is difficult 

to inspect this table and make strong conclusions regarding the study.  However, utilizing 

the accuracy, robustness, and joint quality measures allows for a more comprehensive 

assessment of the competing strategies.  Illustrations of these measures for each response 

are shown in Figure 20 while the indices across both responses are displayed in Table 25.  

Based on their quality indices, it is clear that NDRBF and KYRBF are superior to the other 
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10 strategies.  This has two implications.  First, the mean and variance predictions at their 

robust points are comparable to how the system actually performs at their robust points.  

This implies that the mean and variance models generated via the MDM approach using a 

RBFNN model are accurate.  Second, the system’s actual performance across the two 

responses at their robust points is more robust than the other strategies.  This illustrates 

that, in this case, utilizing the MDM approach with a RBFNN model for an RPD study of 

a simulation is superior to the RSM approach that uses the polynomial regression models. 

It is also interesting to note the comparison between the ND procedure and the KY 

procedure.  The ND procedure outperforms the KY procedure for every modeling strategy 

in terms of robustness.  That is, 2 1R R> , 4 3R R> , 6 5R R> , 8 7R R> , 10 9R R> , and

12 11R R> .  Five of the top six approaches in terms of robustness utilize the ND procedure.  

Also, NDKR and NDRBF are the only non-dominated solutions across both responses.  

Similarly, the ND procedure surpasses the KY procedure for every modeling strategy in 

terms of overall joint quality.  This further demonstrates that better joint robust points can 

be located by first putting the means and variances of all responses on a level playing 

field.   
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Figure 20.  Accuracy, Robustness, and Overall Joint Quality of Each Strategy for 

the AMRS Simulation 
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Table 25.  Quality Indices of Each RPD Strategy for the AMRS Simulation 

 

 
5.4  Summary 

Chapter V presented a comprehensive assessment framework for comparing the 

results of several RPD problem solving strategies.  This approach expanded beyond the 

typical tactic of simply investigating how close the system’s predicted means and 

variances at each of the established robust points are to ideal target values.  When it is 

feasible, the use of confirmation experiments permits further examination into the 

accuracy and robustness qualities of each method.  This approach allows for a more 

knowledgeable evaluation of the competing procedures. 

  

RPD Strategy k

KY Std 1 0.71 (7) 0.17 (9) 0.38 (9)

ND Std 2 0.58 (9) 0.52 (2) 0.55 (3)

KY NN 3 0.73 (6) 0.17 (9) 0.38 (8)

ND NN 4 0.56 (10) 0.52 (2) 0.54 (4)

KY CNN 5 0.71 (8) 0.11 (11) 0.34 (12)

ND CNN 6 0.49 (11) 0.49 (4) 0.49 (6)

KY CCN 7 0.77 (5) 0.11 (11) 0.35 (11)

ND CCN 8 0.83 (1) 0.26 (8) 0.46 (7)

KY KR 9 0.44 (12) 0.33 (7) 0.38 (10)

ND KR 10 0.80 (4) 0.36 (6) 0.52 (5)

KY RBF 11 0.82 (2) 0.43 (5) 0.58 (2)

ND RBF 12 0.81 (3) 0.56 (1) 0.66 (1)

Rank in Parenthesis ( )

Q kA k R k
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VI.   Conclusions 

 
 
 This dissertation addressed three fundamental objectives.  The first objective was 

to broaden the combined-array RDM approach that relies exclusively on low-order 

polynomial models.  The second objective was to develop an approach for multi-response 

RPD problems that provides a collaborative solution that is balanced across the means 

and variances of each response.  Finally, the third objective was to generate a framework 

for evaluating competing RPD problem solving strategies.  Chapters III–V detailed the 

methodology for achieving these objectives. 

 
6.1  Original Contributions 

 Chapter III extended the combined-array RSM approach to include the 

application of non-linear metamodels.  The proposed MDM approach replaced the low-

order polynomial models with Kriging and RBFNN models.  Then, via the Multivariate 

Delta Method, mean and variance models were generated from second-order Taylor 

series approximations of the Kriging and RBFNN models.  Finally, an existing 

optimization problem that employed these approximations was solved to identify the 

robust control parameter setting.  The combined-array MDM approach was compared 

with two current RPD strategies.  First, when compared to the combined-array RSM 

approach that uses polynomial models, the MDM approach demonstrated improved 

predictive models of a computer simulation’s mean and variance.  Second, the MDM 

approach was shown to generate results that are approximately equivalent to the 

stochastic emulator approach at a significantly reduced computational cost. 



 

92 

Chapter IV proposed a multi-response RPD procedure based on well-known 

desirability functions that showed two benefits.  First, it placed each response, as well as 

their means and variances, on common ground.  This increased the opportunity to 

identify a solution that is well-balanced across the means and variances of each response.  

Second, it allowed a decision maker to state their personal preferences for the responses’ 

means and variances.  The resultant operating point is a system setting that, whether one 

is examining the problem from a MSE POV or a desirability POV, produces a mutually 

robust set of responses the decision maker considers acceptable. 

Chapter V describes a framework for comparing and contrasting competing RPD 

problem solving strategies via several quality measures.  This approach expanded beyond 

the typical tactic of only investigating how close the system’s predicted means and 

variances at each of the established robust points are to ideal target values.  By 

performing confirmation experiments, further insight can be gained into each RPD 

approach’s accuracy and robustness qualities.  Accuracy measures of how close the 

predicted mean and variance of the system are to the realized mean and variance of the 

system when it is repeatedly executed at a specific operating point.  Robustness, on the 

other hand, assesses how close the system’s realized mean and variance are to their 

desired target values.  The combination of accuracy and robustness can increase an 

analyst’s understanding of each RPD approach and allow them to make a more informed 

evaluation of the competing procedures. 
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6.2  Future Research 

 This research focused on the utilization of Kriging and RBFNN metamodels.  

However, there are numerous other non-linear modeling techniques.  There is an obvious 

opportunity to extend this research to examine the effect other metamodeling techniques, 

such as spline regression or other neural networks, have on the overall robust solution 

quality. 

A second opportunity for research focuses on the generalization of radial basis 

function neural networks.  If too many neurons are used, then the overall generalization 

of the network will be deficient.  On the other hand, if too few neurons are used, the 

network will not be able to sufficiently learn the training data.  This research employed a 

cross-validation procedure to determine the structure of the RBFNN so that the resulting 

function was well-generalized with minimal risk of over-fitting the experimental data.  

Opportunities exist for further heuristic development that identifies a “robust neural 

network structure. 

 A third area of future research is concerned with how critics view ANNs in 

general.  This dissertation showed that, by using RBFNNs, a robust solution could be 

generated that is as good as, and in some cases significantly better than, those produced 

from strategies using standard polynomial regression models.  However, critics of neural 

networks typically have points of view similar to that of Myers and Montgomery: 

Our view is that neural networks are a complement to the familiar 
statistical tools of regression analysis, RSM, and designed experiments, 
but certainly not a replacement for them, because a neural network can at 
best only give a prediction model and not fundamental insight into the 
underlying process mechanism that produced the data.  [8] 
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Although there is already abundant literature on identifying salient features using ANNs, 

perhaps there is some potential for translating the weights and interconnected neurons of 

an ANN to the standard regression coefficients that the experimental community is most 

familiar with. 
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Appendix A.  Mean and Variance Derivations for a Function of a Random Variable 
 
 
A.1  Univariate Case 

Let ( )Y f X= be a function of the normally distributed random variable X where

[ ] XE X µ= and 2( ) XVar X σ= .  Also, let ( )2~ 0,N εε σ .  Finally, X is independent of ε.  If 

 21
2( ) ( ) ( )( ) ( )( )X X X X XY f X f f X f Xµ µ µ µ µ ε′ ′′= = + − + − +  (79) 

is a second-order Taylor series approximation of Y centered at the point Xa µ= , then an 

estimate for the mean of Y is 

 

[ ]

[ ] [ ]

21
2

21
2

21
2

( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

X X X X X

X X X X X

X X X

E Y E f f X f X

f f E X f E X E

f f

µ µ µ µ µ ε

µ µ µ µ µ ε

µ µ σ

′ ′′ = + − + − + 

′ ′′  = + − + − + 

′′= +

 (80) 

Similarly, an estimate for the variance of Y is 
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The following central moments for X were used to derive Equations (80) and (81): 

 [ ] 0XE X µ− =   (82) 

 2 2( )X XE X µ σ − =    (83) 

 3( ) 0XE X µ − =    (84) 

 4 4( ) 3X XE X µ σ − =    (85) 

 
A.2  Multivariate Case 

Let ( )Y f= X be a function of the normally distributed random vector X where

[ ]E = XX μ and ( )Var = ΣXX .  Also, let ( )2~ 0,N εε σ .  Finally, X is independent of ε.  If 

 1
2( ) ( ) ( ) ( ) ( ) ( )( )Y f f f ε′ ′= = +∇ − + − − +X X X X X XX μ μ X μ X μ H μ X μ  (86) 

is a second-order Taylor series approximation of Y centered at the vector = Xa μ , then an 

estimate for the mean of Y is 
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[ ] [ ] [ ]
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= + Σ
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μ H μ

 (87) 

Similarly, an estimate for the variance of Y is 
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  (88) 

The following central moments for X, obtained from Mathai and Provost [85] and 

Brookes [86], were used to derive Equations (87) and (88).  If A is a symmetric matrix, 

then: 

 [ ]E − =XX μ 0   (89) 

 [ ] ( )( ) ( )E tr′− − = ΣX X XX μ A X μ A   (90) 

 [ ]( ) ( )E ′− − = ΣX X XX μ A X μ A   (91) 
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 [ ] [ ]( )( ) ( ) ( ) ( )( )E E ′′ ′ ′ ′− − − = − − − =X X X X X XX μ X μ A X μ X μ A X μ X μ 0   (92) 

 [ ] ( ) ( )2( ) ( )( ) ( ) 2E tr tr′ ′− − − − = Σ Σ + ΣX X X X X X XX μ A X μ X μ A X μ A A A   (93) 
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Appendix B.  Mean and Variance Models for the Automotive Maintenance and 

Repair Shop Simulation 

 
The dots in the figures represent approximations of the Automotive Maintenance and 

Repair Shop (AMRS) simulation’s true response mean or variance. 

 
B.1  Std Models 

 

 

Figure 21.  Mean and Variance of the Std Model for the AMRS Simulation 
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B.2  NN Models 

 

 

Figure 22.  Mean and Variance of the NN Models for the AMRS Simulation 
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B.3  CNN Models 

 

 

Figure 23.  Mean and Variance of the CNN Models for the AMRS Simulation 
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B.4  CCN Models 

 

 

Figure 24.  Mean and Variance of the CCN Models for the AMRS Simulation 
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B.5  KR Models 

 

 

Figure 25.  Mean and Variance of the KR Models for the AMRS Simulation 
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B.6  RBF Models 

 

 

Figure 26.  Mean and Variance of the RBF Models for the AMRS Simulation 
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