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Abstract

This dissertation addresses a problem found in supervised machine learning (ML)

classification, that the target variable, i.e., the variable a classifier predicts, has to be

identified before training begins and cannot change during training and testing. This

research develops a computational agent, which overcomes this problem. The Qualia

Modeling Agent (QMA) is modeled after two cognitive theories: Stanovich’s tripartite

framework, which proposes learning results from interactions between conscious and

unconscious processes; and, the Integrated Information Theory (IIT) of Conscious-

ness, which proposes that the fundamental structural elements of consciousness are

qualia.

By modeling the informational relationships of qualia, the QMA allows for retain-

ing and reasoning-over data sets in a non-ontological, non-hierarchical qualia space

(QS). This novel computational approach supports concept drift, by allowing the

target variable to change ad infinitum without re-training while achieving classifica-

tion accuracy comparable to or greater than benchmark classifiers. Additionally, the

research produced a functioning model of Stanovich’s framework, and a computation-

ally tractable working solution for a representation of qualia, which when exposed to

new examples, is able to match the causal structure and generate new inferences.
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A NOVEL MACHINE LEARNING CLASSIFIER BASED ON A QUALIA

MODELING AGENT (QMA)

I. Introduction

1.1 Motivation

Learning-by-experience, i.e., example, is the fundamental method by which hu-

mans obtain knowledge (Newell, 1990). In the field of Artificial Intelligence (AI),

one category of tools that emulates this learning method are supervised learning

classifiers. A supervised classifier is trained on a set of example input-output pairs

(training samples) and learns a function to map input to output labels. After training,

the classifier will be tasked to predict the output label in a new set of example inputs

(test samples) based on the mapping function of the samples on which it was trained

(Russell and Norvig, 2009).

A medical diagnosis classifier provides an intuitive example of a typical supervised

classifier. In the medical diagnosis classifier each unique diagnosis is a label. Once

adequately trained with diagnoses and symptoms, the classifier, given a set of symp-

toms, is able to predict a diagnosis with some statistical probability. Over time, as

additional training samples are introduced, the classifier gains more knowledge and

classifies with greater accuracy. One can imagine that this classifier, in order to be

accurate enough to handle such a critical task, must retain a large set of training

samples.

Now envision a different task, which can be solved using the same training sam-

ples. In this task, the diagnosis and some symptoms are observed, however, one
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critical symptom, vision loss, which is slow to manifest, has not been observed. This

particular symptom is not always observed with this diagnosis, but if it is, it would

indicate a different medical treatment. The physician will want to know the statistical

probability of vision loss in a particular patient in order to properly treat him.

A standard learner, which has been trained to predict diagnoses, would have

to re-train on all cumulative training samples in order to predict vision loss. The

target variable, i.e., the variable a classifier predicts (diagnoses or vision loss), has to

be identified before training begins. Re-training is a time consuming task typically

required each time the target variable changes, and while the system is being re-

trained and used to predict vision loss, it is not available for diagnoses.

A second limitation of these learners is that the test sample predictive variables

are not retained. When the target variable remains constant, test sample predictive

variables do not contribute to the prediction of subsequent test samples. However,

should the target variable change, for example, from diagnoses to vision loss, previous

test sample predictive variables may contribute to the correct prediction of subsequent

test samples, e.g. vision loss.

A third limitation of these learners is that the response variables (predicted values)

are also not retained. They cannot be retained as training samples, because they may

distort the probability distributions applied to subsequent test samples. However,

since they are not retained, identical test samples require redundant classification, a

drain on limited resources and a possible waste of time.

The fourth limitation is that some learners cannot incorporate additional training

samples once testing has begun, these are called batch classifiers. Incremental classi-

fiers accept additional training samples after testing has begun (Almaksour, 2011).

The fifth limitation is the limited ability of these learners to properly classify

test samples when it has been trained with incomplete or perturbated information.
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Tasks where the data are often incomplete or intentionally perturbated are malicious

software (malware) identification, target recognition in contested environments, and

Intelligence, Surveillance, and Reconnaissance (ISR).

Supervised learning classifiers aggregate large volumes of data to infer the general

from the particular, i.e., inductive reasoning1. Whereas humans, rarely able to reason

over large volumes of data, infer knowledge from partial or perturbated information,

i.e., abductive reasoning. Abductive reasoning is inferring knowledge not available in

the environment, generating a series of competing plausible explanatory hypothesis

through cognitive simulation, and choosing the best hypothesis based on some set of

criteria (Henson et al., 2012; Shanahan, 1996).

Humans apply previously learned knowledge to new tasks in the same domain,

new tasks in similar domains, and even new tasks in foreign domains, with relative

ease, using our full repertoire of previous experiences to make robust decisions. This

capability is known as transfer of skill in human cognitive research (Anderson, 2005),

and transfer learning in machine learning (ML) research (Pan and Yang, 2010).

The motivation for this dissertation is the opportunity to develop a new set of

ML processes implemented in a computational agent that overcomes limitations of

standard supervised classifiers by emulating the way humans learn by experience,

in particular the way humans employ transfer of skill and abductive reasoning to

transfer learning from one task to make improved decisions in other tasks. A standard

supervised classifier and the proposed computational agent are illustrated in Figure 1.

1See Appendix A for logic/reasoning definitions.
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(a) Standard Supervised Learning Classifier.

(b) Proposed Computational Agent.

Figure 1: Standard Supervised Learning Classifier Model Compared to Proposed
Computational Agent. Solid lines indicate variables incorporated in the predictive
model. Dashed lines indicate variables not incorporated in the predictive model.
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The standard supervised learning classifier, illustrated in Figure 1a, has to be

re-trained on all cumulative training samples each time the target variable changes,

and test sample predictive variables and response variables (predicted labels) are not

retained for their predictive values. The proposed computational agent, illustrated

in Figure 1b, is a classifier that does not have to be re-trained each time the target

variable changes, the target variable can change ad infinitum during testing, and test

sample predictive variables and response variables are retained for their predictive

values.

1.2 Hypothesis

This research proposes a computational agent, inspired by a theory of human

learning-by-experience, can function as a supervised classifier and overcome the ne-

cessity to identify the target variable before training begins and the necessity to

re-train the cumulative training samples when the target variable changes.

The theory of human learning and decision making, selected as the theoretical

basis of this research, is Stanovich’s tripartite framework (Stanovich and Evans, 2013),

illustrated in Figure 2. Stanovich’s framework is a specific, extended variation of the

traditional Dual–Process Theory of Higher Cognition (DPT). The DPT has featured

prominently and consistently in the cognitive literature since the 1960’s (Patterson,

2016; Wason, 1966). Stanovich’s framework was selected because it provides a detailed

explanation of the roles and interactions between the minds and working memory

(WM) and emphasizes the significance of consciousness in learning and decision-

making.

Stanovich’s framework proposes that learning and decision making rely on the

interactions between three minds, which are situated in two levels. The unconscious

level consists of the autonomous mind, without the agent’s conscious awareness. The
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Figure 2: Stanovich’s Tripartite Framework, a predominant theory
of human cognition which proposes that learning and decision mak-
ing result from blending conscious/reflective and unconscious/au-
tonomous processes (Stanovich, 2009).

conscious level consists of the reflective mind and the algorithmic mind, of which

the agent is consciously aware. In addition to the three interactive minds, Stanovich

proposes that consciousness requires WM. WM is transitory and only exists during

conscious mental simulation, i.e., hypothetical thinking. Put another way, conscious-

ness is present only during mental simulation in WM.

This dissertation also proposes that by modeling the conscious processes of WM,

the unconscious processes of the autonomous mind and their interactions the agent

will be able to retain and utilize the predictive variables in test samples, retain and

utilize the data available in response variables without distorting the probability dis-
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tributions applied to subsequent test samples, and incorporate new training samples

after the testing phase has begun efficiently and without re-training.

1.3 Research Questions

By conducting the research these questions will be answered:

RQ-1 What are the functions of the autonomous mind, algorithmic mind, reflective

mind and WM in Stanovich’s framework?

RQ-2 How can each of these components, in Stanovich’s framework, be algorithmically

implemented and coded in software?

RQ-3 Are there existing tools that can be adapted to support the implementation of

each of these components?

RQ-4 What are the interactions between the minds and WM and how can they be

modeled to produce a complete computational model of the framework?

RQ-5 What specific functions of Stanovich’s framework can overcome the limitations

of benchmark supervised classifiers by emulating the way humans employ trans-

fer of skill from one task to make improved decisions in other tasks?

RQ-6 What are the appropriate metrics to assess the performance of existing super-

vised classifiers and the proposed cognitively inspired agent?

RQ-7 Under what conditions does the developed cognitively inspired agent perform

better or worse than benchmark supervised classifiers?

RQ-8 Can the developed computational agent provide an effective decision aid in

complex environments where data are too broad or diverse for a human to

evaluate without computational assistance?
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1.4 Assumptions and Scope

Stanovich’s framework is a specific DPT (Kahneman, 2011). Addressing incon-

sistencies in the cognitive modeling literature including inconsistent terminology for

the DPT minds and their functionality is well beyond the scope of this dissertation.

In this dissertation the terms primarily used by Stanovich will be adopted, which

are: Type I and Type II ; unconscious/autonomous and conscious/reflective minds;

cognitive simulation and working memory (WM).

Modeling the cognitive frameworks and theories on which this dissertation is

based, Stanovich’s framework, DPT and Integrated Information Theory (IIT) of Con-

sciousness, will be limited to functionality that supports the research hypothesis and

answers the research questions.

The mathematical formalism presented in this dissertation will be designed to

accept categorical (nominal) attributes. Accepting ordinal, interval or ratio scales is

beyond the scope. A proposed area of future research is to extend the formalism to

support additional data types.

1.5 Outline of the Dissertation

This chapter introduced the motivation for this research, research hypothesis, re-

search questions based on the hypothesis and stated assumptions and scope. Chapter

2 provides a literature review of the cognitive theories of learning and decision-making

(Stanovich’s tripartite framework) and consciousness (Integrated Information Theory

(IIT) of Consciousness) on which this dissertation is primarily based. Chapter 3

describes the tools and methodologies used to develop the cognitively inspired com-

putational agent, including Adaptive Control of Thought–Rational (ACT–R), hyper-

network theory and extensions to hypernetwork theory developed in this dissertation.

Chapter 4 presents the results of the research, demonstrates support for the research
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hypothesis and compares the computational agent to benchmark supervised learning

classifiers. Chapter 5 summarizes the findings and conclusions, the contributions of

this dissertation and areas for future research are explored.
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II. Literature Review

Chapter 1 introduced the motivation for this research, the hypothesis and research

questions addressing the hypothesis. The research hypothesis proposes that a com-

putational agent, inspired by a theory of human learning-by-experience (Stanovich’s

tripartite framework), can function as a supervised classifier and overcome the neces-

sity to identify the target variable before training begins and allow it to change after

testing begins. In standard supervised classifiers, the target variable is identified a

priori and represented differently than the other (predictive) variables.

This chapter begins with a review of Stanovich’s framework (Section 2.1), an

extended theory of the traditional Dual–Process Theory of Higher Cognition (DPT).

Stanovich’s framework emphasizes the significance of consciousness in learning and

decision-making (Stanovich and Evans, 2013). After the discussion of Stanovich’s

framework, theories of consciousness (Section 2.2), contributing to a computational

model, are reviewed. The research of consciousness results in a framework for how

knowledge is represented, retrieved and reasoned over in the conscious experience

base. The last section of this chapter (Section 2.3) reviews literature on conceptual

knowledge, which provides a framework for what knowledge is represented, retrieved

and reasoned over in the conscious experience base.

This dissertation proposes that a machine learning (ML) classifier is analogous

to an intelligent agent, and all variables (target and predictive) are analogous to

the important details of experiences that have been stored in the agent’s memory.

The intelligent agent does not know a priori what future experiences will require

cognitive inference (pattern-completion), therefore it is reasonable to expect that all

of the important details of experiences are represented and recalled using the same

mechanism.

This literature review seeks a representation of memory storage and recall that
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represents all details of experiences with the same mechanism, with no ontology or

hierarchy, and a formalism with which to reason-over the representation and generate

and inference, e.g., predict a label. A computational agent, leveraging this mechanism,

would allow the target variable to be identified a posteriori, and change after testing

begins, in a manner that does not require re-training.

2.1 Stanovich’s Tripartite Framework

The computational agent is based on Stanovich’s framework (Stanovich, 2009;

Stanovich and Evans, 2013), a cognitive theory of learning and decision making which

extends the traditional DPT (Kahneman, 2011). Stanovich and Evans propose that

learning and decision making rely on two interactive levels: the unconscious level,

without the agent’s awareness, and the conscious level, in which the agent is aware.

The unconscious level consists of the autonomous mind. The conscious level consists

of the algorithmic mind, reflective mind and working memory (WM). Figure 3 illus-

trates the internal processes of the conscious and unconscious components. Figure 4

illustrates the interactions between the conscious and unconscious components.
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Figure 3: Stanovich’s Tripartite Framework, Components of the Unconscious and
Conscious Levels and Their Primary Roles (Stanovich, 2009).

Figure 4: Stanovich’s Tripartite Framework, Interactions Between
the Three Minds and WM (Stanovich, 2009).
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2.1.1 The Unconscious Level.

The unconscious level (lower portion of Figures 3 and 4) consists of the autonomous

mind and experiences the real-world through stimuli. The unconscious level retains

a primary representation of real-world experiences (Stanovich, 2009; Stanovich and

Evans, 2013).

In the autonomous mind decision making employs pattern-recognition which sup-

ports fast, effortless reactive responses. One type of knowledge (memory) retained

in the autonomous mind is Tightly Compiled Learned Information (TCLI). TCLI is

knowledge generated in (conscious) WM that has become tightly compiled and posted

to the autonomous mind due to overlearning and practice (step H in Figure 4). Preat-

tentive processes (step A in Figure 4), perceptions of real-world experiences and the

results of autonomous pattern-recognition, supply computations to the conscious level

(Stanovich, 2009; Stanovich and Evans, 2013).

2.1.2 The Conscious Level.

The conscious level (upper portion of Figures 3 and 4) consists of the algorithmic

mind, the reflective mind, (transitory) WM, does not interact directly with the real-

world experiences and generates consciousness. (A definition of consciousness will be

explored in Section 2.2.) The conscious level retains a secondary representation of

the real-world experiences, available for manipulation without effecting the primary

representation, as illustrated in Figure 5 (Stanovich, 2009; Stanovich and Evans,

2013).

The conscious algorithmic mind is responsible for sequencing behavior and con-

trolling and maintaining cognitive decoupling (step D in Figure 4 and Figure 5).

Cognitive decoupling allows for mental simulation in WM by decoupling the con-

scious level from the primary representation of the unconscious level. WM processes
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Figure 5: Cognitive Decoupling, adapted by Stan-
ovich (2009) from Leslie (1987).

over the secondary representation that can be manipulated, providing a mechanism

for simulation. This process leaves the primary representation intact (Leslie, 1987).

During cognitive decoupling, the agent has limited awareness of the present real-world

environment, subsequently the response generated by WM overrides the autonomous

mind’s response (step C in Figure 4).

The ability to maintain decoupling is difficult and costly in terms of cognitive

capacity. Stanovich proposes an evolutionary purpose behind this difficulty. He

proposes that it is critical for survival not to be unaware of ones present real-world

environment for too long (Stanovich, 2009).

The conscious reflective mind is effortful, responsible for the call to initiate over-

ride (step B in Figure 4), instantiates WM (step E in Figure 4) and provides the

secondary representation, in the form of conceptual knowledge, to WM for mental sim-

ulation (step F in Figure 4). Conceptual knowledge is aggregate declarative memory;

memories are abstracted from the perceptual details and aggregated into a mean-

ing of an experience and unimportant details are forgotten. The term declarative

corresponds to knowledge we are aware we know and can usually describe to others
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(Anderson, 2007; Lynott and Connell, 2009; Stanovich, 2009). Conceptual knowledge

will be explored in greater detail in Section 2.3.

Working memory (WM) performs mental simulation, i.e., hypothetical thinking,

and employs pattern-completion for decision making which requires slow, reflective

deliberation. The results of simulation are sent to the reflective mind (step G in

Figure 4) for posting the response. WM is active only during cognitive decoupling.

Cognitively demanding decision making, using WM, has a higher threshold for acti-

vation than reactive autonomous decision making, therefore the conscious level is said

to override unconscious responses that the reflective mind determines are suboptimal

(Stanovich, 2009; Stanovich and Evans, 2013).

2.1.3 Responses.

As illustrated in Figures 3 and 4, Stanovich’s framework produces two types of

responses : unconscious autonomous, based on fast (primary representation) pattern-

recognition; and conscious deliberative, based on slow (secondary representation)

pattern-completion in WM. An optimal response requires fully disjunctive reasoning

(FDR) in WM, which is evaluating all available knowledge when selecting options

or choosing a response in a reasoning task. Human participant research has shown

that humans often do not have the cognitive capacity or inclination to employ FDR,

resulting in suboptimal decision making (Stanovich, 2009; Wason, 1966). The com-

putational agent developed in this dissertation will employ FDR. Modeling more

human-like behavior, using the formalisms developed here, are left as an area for

future research.
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2.1.4 Discussion.

The literature review of Stanovich’s framework defined the functions of the com-

ponents — the autonomous mind, algorithmic mind, reflective mind, and WM —

and their interactions. However, gaps in the literature were identified, leading to

additional questions.

2.1.4.1 Gaps in Stanovich’s Tripartite Framework.

The review of Stanovich’s framework revealed two gaps in the literature (as illus-

trated in Figure 6) which need to be addressed in order to develop a computational

agent. First, a definition of consciousness. Second, an adequate description of con-

ceptual knowledge.

Throughout the literature consciousness is discussed as necessary for reflective de-

liberation, and even necessary for developing the autonomous memory base (TCLI),

yet a definition of consciousness was not found in the review of DPT. Stanovich and

Evans acknowledge this gap in the literature, based on “both vague and disputable

definitions of consciousness (Stanovich and Evans, 2013)” referencing definitions of

consciousness by DPT researchers Churchland (2002) and Dennett (1991). The litera-

ture also did not address the detailed processes by which conscious reasoning performs

mental simulation, or define the information structures that generate consciousness.

The type of knowledge retained in the reflective mind, and provided to WM for de-

liberation, is conceptual knowledge. The general description of conceptual knowledge

in the DPT literature is overly broad for the purposes of developing a computational

model. The literature also does not provide a detailed explanation for the process of

encoding knowledge captured from stimuli, the recall mechanism or inference gener-

ation.

These gaps in the literature raise additional questions:
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Figure 6: Gaps in Stanovich’s Tripartite Framework, illustrated by dashed lines: no
definition of consciousness; inadequate details of conceptual knowledge and conscious-
ness for a computational model. Conceptual knowledge is retained in the reflective
mind and provided to WM for mental simulation. Consciousness is necessary for
deliberation in WM, and for generating TCLI (Anderson, 2007; Lynott and Connell,
2009; Stanovich, 2009).

• Is there another research area that can fill the definition of consciousness gap,

and provide specificity for a computational model that can be integrated into

the computational agent proposed?

• What are the theoretical structural elements of consciousness, how can they be

implemented in software, and are there existing tools that can be adapted to

support the implementation?

• What is the structure of conceptual knowledge, how can it be algorithmically

implemented and coded in software and are there existing tools that can be

adapted to support the implementation?
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• How does conceptual knowledge relate to consciousness, and can they be mod-

eled as the same structures for the purposes of this research?

• How can the structural elements of consciousness and conceptual knowledge be

processed-over to produce an inference, pattern-completion?

These additional questions will be answered in the remaining literature review and

following chapters.

2.1.4.2 Functions of Stanovich’s Tripartite Framework that Ad-

dress the Research Hypothesis.

The research suggests functions of Stanovich’s framework that may overcome

some limitations of supervised classifiers: all experiences (analogous to both test

and training samples) are captured in the reflective mind through preattentive pro-

cesses, analogous to retaining test sample predictive variables, as well as training

samples, contributing to predictions of subsequent test samples; once an appropriate

response (analogous to a test sample/response variable pair) is learned in WM it is

posted to the autonomous mind as TCLI, therefore providing a fast response to the

same stimulus in the future, mitigating the requirement of redundant classification.

However, in an incremental learning environment a response may become obsolete

or incorrect over time as new samples are incorporated. The proposed capability of

reusing responses raises an additional concern:

• Is there a mechanism in the autonomous mind which identifies obsolete re-

sponses, or allows for responses to be removed from the autonomous mind over

time, and how can it be implemented?

A partial answer to this question was found in the cognitive modeling literature.

Memories fade over time when they are not recently or frequently recalled. The
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cognitive mechanism that controls this phenomenon is called an activation level (An-

derson, 2007). By modeling memory activation levels based on recency, memories

(TCLI) posted to the autonomous mind can fade with time and be forgotten.

2.2 Consciousness

Literature on DPT, and specifically Stanovich’s framework, propose that con-

sciousness is necessary for deliberative decision making, and even for developing the

primary knowledge base of the unconscious, reactive processes (TCLI). However, as

acknowledged by Stanovich and Evans, there is no established definition of conscious-

ness in the DPT literature due to vague and disputable definitions. This literature

review will address that gap by identifying a definition of consciousness which is well

defined and based on contemporary research.

2.2.1 A Philosophical Foundation of Consciousness.

The study of consciousness has it’s foundation in philosophy. The French philoso-

pher René Descartes (1596–1650) defined consciousness as reflexive thought and self-

awareness (Van Gulick, 2014). The English philosopher and physician John Locke

(1623–1704) asserted that humans were born with a blank slate and consciousness

gradually unfolds as sensations and perceptions are experienced (Uzgalis, 2015). Im-

manuel Kant (1724–1804) argued that phenomenal consciousness is an integrated

group of experiences, unique to the subject, and it requires a rich structure of mental

organization (Brook, 2013). American biologist and Nobel laureate Gerald Edelman

(1929–2014) posited that past and present conscious experiences, as well as a hypo-

thetical future, are, in fact, imagined past experiences, imagined present experiences,

as well as, an imagined future. It is Edelman’s position that conscious experiences
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are all imagined and are generated by a repertoire of qualia1 states corresponding to a

set of experiences, in which new experiences are integrated into preexisting circuitry

to generate consciousness (Edelman, 1989).

Despite the lack of consensus of a precise definition of consciousness, there is some

agreement on the principle features of consciousness, which include: (1) some form of

phenomenal structure (i.e., the order and organization of our internal representation of

experiences); (2) unity (i.e., the integration of diverse elements of conscious content);

(3) it is a dynamic process; and (4) throughout the literature (and in this dissertation)

consciousness is discussed synonymously with experiences (Van Gulick, 2014).

2.2.2 A Definition of Consciousness.

The definition of consciousness selected as a basis for this research supports Edel-

man’s position that “Qualia are the phenomenal contents of experiences”, and is also

based on the teaching of the American philosopher, John R. Searle (Searle et al.,

1997). Christopher Williams Cowell, a student of Searle’s, proposes “Consciousness

is the experiencing of qualia. A system must continue to experience qualia if it is to

remain conscious; any periods during which no qualia are experienced are periods in

which the system has lost consciousness (Cowell, 2001)”.

This definition of consciousness is further supported by more recent theories of

consciousness. Arrabales et al. (2009), Samsonovich and Nadel (2005) and Tononi

(2012) also propose that the fundamental structural elements of individual conscious

experiences are considered to be qualia.

2.2.3 Qualia.

Qualia are not physical, objective properties, such as hues, angles, or speed of

movement that can be measured, but rather qualia are the subjective (agent-centric

1Qualia are defined in Section 2.2.3.
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when discussing computational models), nonphysical, phenomenal qualities that are

experienced consciously from the interaction with stimuli. Although qualia are often

discussed as being synonymous with emotion, they are not limited to emotions. All

conscious experiences are represented by qualia: sensory experiences from stimuli,

perceptions, bodily sensations, moods, and emotions (Tye, 2015). It is proposed

by Rogers et al. (2003), that the purpose of qualia is to make it unnecessary for

an agent to remember the high-bandwidth details of specific memories, enabling an

agent to react to a new stimulus, quickly and intelligently, with bit-reduced qualia

representations.

These definitions of qualia, and consciousness, are too abstract to support a com-

putational formalism, therefore literature of contemporary theories of consciousness,

based on the definition accepted for this dissertation, were reviewed.

2.2.4 Integrated Information Theory (IIT) of Consciousness.

Systematic reviews (Gamez, 2008; Reggia, 2013) reveal three contemporary the-

ories of consciousness based on qualia as the fundamental structural elements of

consciousness: Internal self-model (Samsonovich and Nadel, 2005), Higher-level rep-

resentations (Arrabales et al., 2009), and Integrated Information Theory (IIT) of

Consciousness (Balduzzi and Tononi, 2009; Tononi, 2012). Most applicable to the

approach in this research is IIT, because it provides a description of qualia in a non-

ontological, non-hierarchical qualia space (QS). Balduzzi and Tononi provide adequate

detail in their theory for a computational model of integrated information generated

by a complex of elements. Therefore, the theoretical model of consciousness, selected

for modeling consciousness in WM is primarily based on IIT, as illustrated in Figure 7.
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Figure 7: Qualia and the Integrated Information Theory (IIT) of Consciousness Fill
Gaps in Stanovich’s framework. Consciousness is the experiencing of qualia, reasoned-
over in a non-ontological, non-hierarchical QS (Cowell, 2001; Balduzzi and Tononi,
2009).

2.2.5 Discussion.

There are two research areas that, together, provide a definition and description of

consciousness, with specificity for a computational model: philosophy and cognitive

theories of consciousness. The philosophical definition of consciousness states that

consciousness is the experiencing of qualia. A model of qualia, with specificity for a

computational model, was found in cognitive theories of consciousness, specifically,

the Integrated Information Theory (IIT) of Consciousness. How IIT can be compu-

tationally modeled and integrated into the computational agent, as proposed by this

research, is not answered in the literature review.
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Aleksander and Gamez (2011) developed a performance metric by implementing

the maximally integrated information structures of IIT as defined by Balduzzi and

Tononi (2009). The results of their research demonstrated that the integrated in-

formation structures, modeled precisely as defined by Balduzzi and Tononi, are not

computationally tractable with current technology. A feature space of 30 elements

(analogous to 30 binary variables in a data set) would require 1010 years to fully

analyze, i.e., perform FDR. No computationally tractable solutions were found that

can be adapted to implement QS in software.

The literature review further revealed that conceptual knowledge is retained in the

reflective mind and provided to QS, that then generates consciousness. A literature

review of conceptual knowledge was pursued in hopes of finding a computationally

tractable formalism with which to model it, and to better establish how the structural

elements of conceptual knowledge are related to consciousness.

2.3 Conceptual Knowledge

The literature reveals that the type of knowledge retained in the reflective mind,

and provided to WM for mental simulation in QS, is conceptual knowledge (Ander-

son, 2007; Lynott and Connell, 2009; Stanovich, 2009). Some features of conceptual

knowledge are: (1) memories are abstracts from the perceptual details and encoded

into a meaning of an experience; (2) memory for detail is available initially but is

forgotten rapidly, whereas memory for meaning is retained; (3) unimportant details

of previous experiences are forgotten, and we retain abstractions of experiences; and

(4) we abstract from specific experiences to general categories of the properties of that

class of experiences (Anderson, 2005; Mandler and Ritchey, 1977; Wanner, 1974).

Additional theories of conceptual knowledge (Bartlett, 1932; Rumelhart et al.,

1976) propose that it is retained in schemata. In schemata knowledge is represented

23



in a structure of related concepts, and is a network of interrelationships of knowledge,

as opposed to specific instances of experiences. Furthermore, schemata can be used

to make inferences about specific instances of the abstract concepts they represent

(Anderson and Pearson, 1988).

One of the three theories of consciousness discussed in section 2.2.4, the Internal

self-model (Samsonovich and Nadel, 2005), also proposed that qualia are retained

in schemata, specifically as defined by Bartlett (1932). (No computational models

based on the Internal self-model were found in the literature.) This finding brings the

research full-circle answering questions raised in the literature review, revealing that

the theoretical structure of conceptual knowledge, as well as the structural elements

of QS, have been based on schemata, as illustrated in Figure 8.

24



Figure 8: Schemata Fill Gaps in Stanovich’s framework. The structural elements
of conceptual knowledge, as well as the structural elements of QS, have been based
on schemata. Furthermore, schemata can be used to make inferences about spe-
cific instances of the abstract concepts they represent (Anderson and Pearson, 1988;
Samsonovich and Nadel, 2005).

2.4 Summary

This chapter presented a review of the relevant literature, seeking both a theoreti-

cal framework and tools for implementing the proposed computational agent. A solid

foundation of integrated theoretical concepts was established, however, the literature

did not reveal any tools for implementing the integrated theoretical framework in a

computational agent.

The literature review of DPT and Stanovich’s framework identified the functions

of the autonomous mind, algorithmic mind, reflective mind and WM, as detailed in

Section 2.1.4. However, two gaps in the literature on DPT and Stanovich’s framework
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were identified. First, an accepted definition of consciousness was not found. Stano-

vich and Evans acknowledge this gap in the literature, due to vague and disputable

definitions of consciousness. Second, a description of conceptual knowledge, with ade-

quate specificity for a computational model was not found. As a result, the literature

also did not address the detailed processes by which conscious reasoning performs

mental simulation, or define the information structures that generate consciousness.

These gaps in the literature raised additional research questions, that were subse-

quently addressed in a literature reviews of consciousness and conceptual knowledge:

◦ There are two research areas that, together, provide a definition of conscious-

ness, with specificity for a computational model: philosophy and cognitive the-

ories of consciousness. The definition of consciousness from philosophy, states

that consciousness is the experiencing of qualia. A model of qualia, with speci-

ficity for a computational model, comes from the research area of cognitive

theories of consciousness, specifically, the Integrated Information Theory (IIT)

of Consciousness. How IIT can be computationally modeled and integrated into

the computational agent, as proposed by this research, is not answered in the

literature review.

◦ The theoretical structural elements of consciousness were identified as qualia,

reasoned-over in QS. No computationally tractable solutions or tools were found

that can be adapted to implement of QS in software.

◦ The structure for conceptual knowledge, as well as the structure for the max-

imally integrated information structures of QS, are based on schemata — a

network of interrelationships of knowledge.

The literature did not reveal how the structural elements of conceptual knowledge

or QS, can be processed-over to produce an inference, pattern-completion, ideally
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performing FDR. The literature review also does not address how can each of Stano-

vich’s framework components be algorithmically implemented and coded in software,

and did not identify any tools that can be adapted to support the functions of the

autonomous mind, algorithmic mind, reflective mind or WM, which are necessary for

a complete computational model of the framework.

The research suggests functions of Stanovich’s framework that can overcome some

limitations of existing supervised classifiers, when modeled in a computational agent,

such as: all experiences are captured in the reflective mind through preattentive

processes, effectively retaining test sample predictive variables, as well as training

samples, contributing to predictions of subsequent test samples; once a response is

learned in WM it can be posted to the autonomous mind as TCLI, therefore providing

a fast response to the same stimulus in the future, mitigating the requirement of

redundant classification. However, in an incremental learning environment a response

may become obsolete or incorrect as new training samples are incorporated.

The capability of retaining responses, which may become obsolete or incorrect

as new training samples are incorporated, raises an additional concern, which was

answered with a review of the cognitive modeling literature:

◦ Memories have activation levels based on recency and frequency (Anderson,

2007). By modeling the activation levels, based on recency, memories (TCLI)

posted to the autonomous mind can fade with time and be forgotten. However,

no solution was found in the literature review for implementing this mechanism.

The following Methodology Chapter will provide a description of the steps taken

to implement a computational agent based on the theoretical framework presented in

the present chapter. Specifically, a functioning model of Stanovich’s framework with a

computationally tractable working solution for a representation of qualia, inspired by
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IIT, as the conscious component. Chapter 4 will present the results of this research,

as compared against analogous supervised learning classifiers. The Chapter 5 will

present the findings, conclusions, the contributions of this dissertation and areas for

future research are explored.
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III. Methodology

Chapter 1 introduced the motivation for this research, the hypothesis and research

questions addressing the hypothesis. Chapter 2 reviewed the relevant literature and

revealed functions of Stanovich’s tripartite framework, which may lead to a compu-

tational agent that supports the research hypothesis. The hypothesis proposes that a

computational agent, inspired by a theory of human learning-by-experience (Stano-

vich’s framework), can function as a supervised classifier and overcome the necessity

to identify the target variable before training begins and the necessity to re-train

the cumulative training samples when the target variable changes. Previous machine

learning (ML) approaches supporting pattern-completion (i.e., predicting the class la-

bels for new samples), require re-training when the target variable changes. Chapter

2 also revealed a computational theory of consciousness, Integrated Information The-

ory (IIT) of Consciousness, providing a framework for how knowledge is represented,

retrieved and reasoned over in the conscious experience base, and a theory of con-

ceptual knowledge, which provides a framework for what knowledge is represented,

retrieved and reasoned over in the conscious experience base. The IIT is based on

qualia as the fundamental structural elements of consciousness, therefore, the cog-

nitively inspired computational agent developed in this chapter will be the Qualia

Modeling Agent (QMA).

This chapter details the steps taken, mathematical formalism and tools used to

develop the QMA, address the hypothesis and remaining research questions. The first

section (Section 3.1) reviews the theoretical basis identified in the literature review,

proposes an abstract representation of consciousness for modeling the conscious level

of the framework, and proposes a Cognitive Modeling Architecture (CMA) for mod-

eling the unconscious level of the framework. The next section (Section 3.2) presents

an overview of the methodology used to implement the QMA. The remaining sections
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provide the details of how the functional modules were developed and integrated into

a complete computational algorithm: the human-computer interface module (Sec-

tion 3.3), the autonomous module (Section 3.4), the algorithmic module (Section 3.5)

and the QS Computational Module (Section 3.6). The QS Computational Module

incorporates functionality of both the reflective mind and working memory (WM).

3.1 Extending the Theoretical Basis

The QMA is primarily based on Stanovich’s tripartite framework, a cognitive

theory of learning and decision-making. The goal of the literature review was to

reveal a more complete mechanism by which conscious reasoning performs mental

simulation, and reasons over the important details of experiences in a non-ontological,

non-hierarchical structure. Stanovich’s framework did not completely satisfy this goal.

Gaps in Stanovich’s framework were addressed by other lines of research, resulting in

a theoretical framework which includes: qualia and IIT, conceptual knowledge and

schemata, illustrated in Figure 9.
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Figure 9: The QMA Theoretical Basis. Stanovich’s Tripartite Framework: three
minds, WM and their interactions. Schemata as a formalism to represent both con-
ceptual knowledge and an abstract interpretation of qualia space (QS) as proposed
by IIT.

The literature review identified the functions of Stanovich’s framework minds and

WM, as well as, the interactions between the components but did not reveal how

these functions can be implemented in software. The review identified some functions

and interactions, that when computationally modeled, may overcome the specific

limitations of supervised classifiers identified in the hypothesis. They are presented

here, with the proposed implementation approach.

3.1.1 Hypernetwork Theory Model of QS.

One line of research, Models of Consciousness, revealed a theory that the funda-

mental structural elements of individual conscious experiences are considered to be
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qualia, which are reasoned-over in a non-ontological, non-hierarchical QS. A separate

line of research, Cognitive Modeling, addressing the type of knowledge maintained in

the conscious experience base, revealed a theory that conceptual knowledge is main-

tained in the conscious level. QS is how knowledge is represented, retrieved and

reasoned-over. Conceptual knowledge is what knowledge is represented, retrieved

and reasoned-over. These separate lines of research are both based on an earlier

theory of schemata, as defined by Bartlett (1932). This link in the research sug-

gests a mathematical formalism applied to computationally modeling schemata may

prove successful as an approach for modeling QS and conceptual knowledge. Further

research revealed Young (1998) modeled elementary elements of schematic memory

using the mathematical formalism of hypernetwork theory1 Young’s formalism did not

maximally integrate the structural elements, perform pattern-completion or make in-

ferences about specific instances of abstract concepts. Hypernetwork theory will be

extended in this dissertation to meet those requirements.

Rogers et al. (2008) propose that the conscious representation is constrained to

maintain relationships, as opposed to sensory values. The hypernetwork approach

achieves that constraint — resulting in a stable, consistent and useful representation.

Therefore, hypernetwork theory will be used as a formalism for representing, retriev-

ing and reasoning-over a representation of conceptual knowledge in QS. Hypernetwork

theory is a theory which extends network theory to multidimensional hypernetworks

for modeling relationships between qualitative data, psychological and social relations,

in particular systems in nature, society and cognition. Also referred to as Polyhedral

dynamics in earlier literature (Casti, 1977; Johnson, 2013; Wang et al., 2010)

Retaining the Important details of experiences in a knowledge base is analogous

to retaining both training and test samples with no particular variable defined as

1At the time of Young’s research, hypernetwork theory was referred to as polyhedral dynamics.
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the target variable. By modeling this structure using hypernetwork theory the agent

should be able to classify new test samples with any variable defined as the target

variable for each test sample, therefore addressing the research hypothesis.

3.1.2 Activation levels Proposed to Allow Responses to Obsolesce.

The literature also revealed that once a response (analogous to a test sample/re-

sponse variable pair) is learned in WM it may be posted to the autonomous mind as

Tightly Compiled Learned Information (TCLI), therefore providing a fast response

to the same stimulus in the future, mitigating the requirement of redundant classi-

fication. However, in an incremental learning environment, a response may become

obsolete or incorrect over time as new training samples are incorporated. Another fea-

ture of the autonomous mind addresses this concern. Memories fade over time when

they are not recently or frequently recalled. The cognitive mechanism that controls

this phenomenon is called an activation level (Anderson, 2007). By modeling memory

activation levels based on recency, memories (TCLI) posted to the autonomous mind

can fade with time and be forgotten. Activation levels, as well as the primary auton-

omous function of pattern-recognition, can be implemented with a CMA, specifically,

Adaptive Control of Thought–Rational (ACT–R). CMAs and ACT–R are discussed

in more detail in Appendix C.

3.2 Overview of the Implementation

This present chapter transitions from the theoretical basis to implementation of

the cognitively inspired agent, a ML computational algorithm, as illustrated in Fig-

ure 10.
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Figure 10: Overview of the Cognitively Inspired Computational Agent. The Auton-
omous Module is an extended ACT–R model. The QS Computational Module incor-
porates the functionality of both the reflective mind and WM and is implemented
with hypernetwork theory. A second ACT–R model is integrated to convert the hy-
pernetwork theory vector representation into a chunk for posting responses to the
Autonomous Module. The Algorithmic Module and all other interactions are custom
software written in Common Lisp (CL).

Terminology used in this chapter will adapt to the change in focus. The minds

and WM will be modeled with software modules. Stimuli and the important details

of experiences are modeled by the predictive variables in training and test samples

from categorical data sets. TCLI is modeled by responses (test sample/response vari-

able pairs) produced by fully disjunctive reasoning (FDR) in the QS Computational

Module.

34



The Autonomous Module consists of an ACT–R model extended to interact with

the Algorithmic Module and Human-Computer Interface Module. The QS Compu-

tational Module models the combined functionality of the reflective mind and WM,

implemented in hypernetwork theory. The QS Computational Module also contains

an atypical ACT–R model which converts the hypernetwork theory vector represen-

tation of an inference into a chunk for posting responses to the Autonomous Module.

The Algorithmic Module, Human-Computer Interface Module and interactions are

custom software written in CL. The primary modules will be discussed in more detail

below.

3.3 The Human-Computer Interface Module

The Human-Computer Interface Module allows a domain expert to change at-

tributes in training and test samples, which have already been incorporated in both

the autonomous knowledge base and the QS Computational Module, without re-

training. This feature allows a domain expert to correct an error, or accept a response

variable as truth, therefore allowing the predictive values in the response variable to

contribute to subsequent inferences.

3.4 The Autonomous Module

ACT–R is the CMA selected with which to implement the Autonomous Module,

as illustrated in Figure 11. ACT–R models sensory perception, pattern-recognition

and configurable activation levels based on human participant research. Activation

levels allow memories to fade with infrequency or lack of recency, eventually becoming

forgotten. ACT–R is open-source and can be extended, through custom software,

to model the interactions between the Autonomous Module and other components.

Technical details, and terminology, for ACT–R are available in Appendix C.
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Figure 11: Type I — Unconscious level, Autonomous Module. The Autonomous
Module is the QMA interface to the training and test samples, and generates an im-
mediate agent response if there is pattern-recognition in the autonomous knowledge
base. This module forwards the preattentive processes, represented by green double
arrows — training and test samples and pattern-recognition response — to the Algo-
rithmic Module, and receives responses, represented by solid black arrows, from the
Algorithmic Module.

The Autonomous Module will: perform pattern-recognition over previously stored

(FDR) responses to produce a fast response; perform preattentive processes, i.e., send

training and test samples to the Algorithmic Module; accept reprogramming (FDR

responses) from inferences generated in the QS Computational Module; and, allow

FDR responses to obsolesce over time.
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3.5 The Algorithmic Module

The processes and interactions for the Algorithmic Module are illustrated in Fig-

ure 12. This module is the gate-keeper of QMA, responsible for sequencing processes.

Figure 12: Type II — Conscious level, Algorithmic Module. The Algorithmic Module
is the gate-keeper of Stanovich’s framework, responsible for sequencing behavior. It
forwards the preattentive process, represented by a green double arrow, — training
and test samples and pattern-recognition response — from the Autonomous Module
to the QS Computational Module, and forwards conscious responses, represented by
solid black arrows, from the QS Computational Module to the Autonomous Module.
This module also initiates cognitive decoupling, which allows the QS Computational
Module to override the Autonomous Module response.
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This module forwards training and test samples to the QS Computational Module

for incorporation in the maximally integrated information structures in QS Computa-

tional Module. When there is no pattern-recognition response from the Autonomous

Module, the Algorithmic Module initiates decoupling, allowing the QS Computational

Module to generate an inference. This module also forwards responses, generated by

QS Computational Module, to the Autonomous Module for incorporation in autono-

mous knowledge base for subsequent pattern-recognition.

3.6 QS Computational Module

The QS Computational Module, illustrated in Figure 13, is the most complex

module of the QMA and a significant contribution of this dissertation, requiring

detailed discussion.
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Figure 13: Type II — Conscious Level, QS Computational Module. The QS Compu-
tational Module incorporates functionality of the reflective mind and WM. The triple
purple arrow represents the initiation of decoupling, which triggers the QS Compu-
tational Module inference generating process. The green double arrow represent the
preattentive process — training and test samples and pattern-recognition response —
forwarded from the Algorithmic Module to QS Computational Module. The dotted
blue arrow represents input from the human-computer interface allowing for updates
or corrections of data entries. The black solid arrows leaving the QS Computational
Module represent the resulting inference vector converted into an ACT–R chunk for
saving to the autonomous knowledge base and the agent response.

The QS Computational Module is a mathematical formalism which incorporates

the functionality of two conscious level components, the reflective mind and WM. The

QS Computational Module is implemented with hypernetwork theory, and extensions

of hypernetwork theory2.

2A more detailed discussion of hypernetwork theory is provided in Appendix B.
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3.6.1 A Computationally Tractable QS Representation.

As discussed in Section 2.2.5, modeling the maximally integrated information

structures of QS, as proposed by Balduzzi and Tononi (2009) was proven to be compu-

tationally intractable given the current state of technology, as illustrated in Figure 14.

Figure 14: Dimensionality of QS as Defined by Balduzzi and Tononi (2009). QS for a
system of 4 elements is 16-dimensional, with an axis for each of the 24 possible states
of the complex. Notation cij refers to a connection from element ni to nj, r is a subset
of possible connections (Balduzzi and Tononi, 2009). Dimensionality of QS in this
formalism grows exponentially as elements are added to the system, i.e, for a system
of 5 elements QS is 25, 32-dimensional, etc.

Therefore, a computationally tractable mathematical formalism, which could

model an abstract, i.e., less precise, representation of QS is required, as illustrated in
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Figure 15.

Figure 15: Dimensionality of QS as implemented in this dissertation. QS for a system
of 4 elements is at most 3-dimensional, with an axis for each of the 4 elements, and 24

possible states of the complex, r is a subset of possible connections. Dimensionality
is equal to the number of axes minus one. By means of comparison to Figure 14,
dimensionality of QS in this formalism grows linearly as elements are added to the
system.

The computationally tractable representation of QS, illustrated in Figure 15, is

modeled using hypernetwork theory. Hypernetwork theory provides a hypergraph

representation for high-order relationships between elements, whether they be the

important details of individual experiences or the values of predictive variables in ML

training and test samples. Furthermore, hypernetwork theory is extended, by this

dissertation, with a weighted distance measure to generate pattern-completion and a

hypothetical inference.
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3.6.2 Key Terms and Concepts.

The mathematical formalism of the QS Computational Module will be explained

by means of examples, beginning in Section 3.6.4. The following are key terms and

concepts used in the examples.

3.6.2.1 Variables and their Attributes.

An attribute is a specific value of a predictive or response variable. Put another

way, a variable is a logical set of attributes. For example, the variable gender is

a logical set of two attributes, male and female (Babbie, 1998). In the formalism

presented in this dissertation all variables can be represented as missing, or unob-

served. Therefore, for gender there are three possible attributes: male, female and

unobserved.

3.6.2.2 Samples.

There is no differentiation between training and test sample vector representations

once they have been incorporated in the QS Computational Module hypernetwork

theory formalism. Test samples will have at least one unobserved element, but train-

ing samples may also have unobserved elements. As a convention in this dissertation,

the term sample, is taken to include both training and test samples.

3.6.2.3 Ordered Binary Representation.

Before training or test samples can be processed by QS Computational Module

they have to be converted to ordered binary representations, also known as binarizing

(Lourenco et al., 2004), discussed in detail in Appendix E.1. Converting the data set

to an ordered binary representations is effectively the training portion of the QS

Computational Module algorithm. An explanation of this process is included in the
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example in Section 3.6.4.

3.6.2.4 Query Element.

The Query Element is the specific element that is to be inferred. A test sample

can have multiple unobserved elements, but only one (at a time) can be a Query

Element. Alternatively, the domain expert may choose to make an observed element

the Query Element, therefore generating inferences from an imagined test sample.

Imagined test samples are discussed in more detail in Section 3.6.6.

3.6.2.5 Target Variable.

Once the Query Element is selected, the target variable is identified as the target of

the inference/pattern-completion formalism, whose value is to be inferred. The term

target variable is also referred to as class or category in ML terminology (Pang–Ning

et al., 2006).

3.6.2.6 Concept Drift and Transfer Learning (TL).

A phenomena, particular to incremental learning, is concept drift, which refers to a

learning problem that changes over time. In particular, the statistical properties of the

target variable, which the model is trying to predict, change over time in unforeseen

ways (Žliobaitė, 2010). Concept drift is discussed in more detail in Appendix D.4.2.

Transfer Learning (TL) is the ability of a system to apply knowledge or skills

learned in previous tasks to subsequent tasks or new domains, which are similar in

some way. Concept drift is one method in which TL can be achieved (Pan and Yang,

2010). TL is discussed in more detail in Appendix D.8.
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3.6.2.7 Attributes Conceptualized as Simplices and Polyhedra.

Once the target variable is selected, each ordered binary representation (sample)

can be conceptualized as a simplex. A simplex (for example, σ0 in Table 1) and its

polyhedron geometric representation, a polyhedron (for example, σ0 in Figure 16a)

represent the attributes of a unique sample.

Table 1: Soybean Sample in Simplicial Complex Form, Given Disease as Target
Variable.

(notional) Attribute Set

disease hail seed

-discolor

precipitation leaf

-mildew
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ID Label X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 dim

σ0 bact.-blight 0 1 0 1 0 0 1 1 0 0 (3)

σ1 bact.-blight 0 1 1 0 0 0 1 1 0 0 (3)

σ2 cyst-nem. 1 0 1 0 1 0 0 0 0 1 (3)

σ3 cyst-nem. 1 0 1 0 0 0 0 1 0 0 (2)

σ4 herb.-injury 1 0 0 1 0 0 1 0 1 0 (3)

σq 〈query〉 1 0 0 1 0 0 1 1 0 0 (3)

Unique samples, conceptualized as simplices (rows in tables, shapes in geomet-

ric representation), can share attributes, conceptualized as axes (columns in tables,

axes in geometric representation), with other samples. Similarities in samples are

represented by shared simplex axes (e.g., X0, X1, . . . , X9 in Table 1), visualized as

polyhedral components/shapes: points, edges, faces, tetrahedrons (e.g., Figures 16b

and 16c) and greater dimensionality beyond the ability to model on paper.

Take, for example, two simplices, σ0 and σ3, from Table 1 (illustrated in Fig-
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(a) Simplex σ0 and its geomet-

ric representation (a tetrahedron)

which contains axes 〈X1X3X6X7〉.

(b) σ0 (a tetrahedron) and σ3 (a

plane) share one attribute: axis X7

(leaf-mildew, absent).

(c) Geometric representation of a

simplicial complex. All training

simplices, σ0 through σ4, and their

relationships.

(d) Geometric representation of a

simplicial complex. All training

simplices and the Query Simplex,

σq, in green dashed lines, illustrat-

ing it’s relationship to the training

simplices.

Figure 16: Geometric Actualization of Simplices and Their Relation-
ships from Table 1.

ure 16b). The 3-simplex (i.e., 3 dimensional), σ0, can be written as 〈X1, X3, X6, X7〉.

The 2-simplex (i.e., 2 dimensional), σ3, can be written as 〈X0, X2, X7〉. One attribute,

axis X7, representing leaf-mildew is absent, is shared by σ0 and σ3. It is the com-
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bination of shared axes that the formalism uses to infer Query Elements response

variable.

3.6.2.8 QS Represented by a Simplicial Complex.

In the formalism a simplicial complex represents all samples as simplices and

their relationships, as illustrated in Table 1 and Figure 16d. In Table 1 each row, σ0

through σq, is a simplex. In Figure 16d all simplices from Table 1 are integrated into

a geometric representation of stable and cinsistent maximally integrated information

structures.

3.6.2.9 Simplicial Family.

Any set of simplices can be defined to be a Simplicial Family (Johnson, 2013).

To support generating an inference, a Simplicial Family is defined in this dissertation

to be all simplices with the same Simplex Label. In the soybean disease example

(Table 1) there are three Simplicial Families : bacterial-blight, cyst-nematode and

herbicide-injury.

3.6.2.10 A Measure of Connectivity between Simplices.

(Johnson, 2013) Eccentricity is an asymmetric measure of connectivity between

two simplices. Let σ and σ′ be two simplices. The eccentricity of a simplex with

respect to another is:

ecc(σ|σ′) def
=
|σ r σ′|
|σ|

=
number of σ vertices not shared with σ′

number of vertices of σ
(1)

Table 2 illustrates how eccentricity is calculated and the asymmetric nature of the

measure, with a simple example.
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Table 2: Example of Asymmetric Eccentricity: ecc(σ|σ′) and ecc(σ′|σ).

ecc(σ|σ′) = 1/5

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

σ 0 1 0 1 0 0 1 1 1 0

σ′ 1 1 1 0 1 1 1 1 1 0

ecc(σ′|σ) = 4/8

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

σ 0 1 0 1 0 0 1 1 1 0

σ′ 1 1 1 0 1 1 1 1 1 0

3.6.3 Extensions to Hypernetwork Theory.

These extensions to hypernetwork theory (Vaughan et al., 2015) were introduced

by this research to create a distance measure and an inference (response variable)

from the QS Computational Module knowledge base.

3.6.3.1 Applying a Hausdorff Distance.

Eccentricity cannot be used as a distance measure because it is not symmetric.

The eccentricity of σ with respect to σ′, ecc(σ|σ′), is not guaranteed to be equal to

the eccentricity of σ′ with respect to σ, ecc(σ′|σ). In order to satisfy the requirement

of symmetry, a Hausdorff distance3 was applied, and the distance (dQ) between two

simplices defined to be the maximum of ecc(σ|σ′) and ecc(σ′|σ) 4.

dQ(σ, σ′)
def
= max{ecc(σ|σ′), ecc(σ′|σ)} (2)

It is beyond the scope of this research to prove, or disprove, this distance measure

3See Hausdorff Distance in Appendix B
4An alternate, standardized format for dQ is max

((
c
a+c

)
,
(

b
a+b

))
, Range: [0, 1], see Ap-

pendix E.
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satisfies the four properties of a metric, as discussed in Appendix B.2. A proposed

area of future research is to conduct the proof.

3.6.3.2 Distance Between a Simplex and a Family.

In order to achieve the objective of inferring the Query Element, the distance

between the Query Simplex and each Simplicial Family needs to be determined. The

Query Element is inferred to be the Simplex Label of the closest Simplicial Family.

Therefore, hypernetwork theory is further extended by defining the distance, dist,

between a simplex (σq) and a Simplicial Family (F ) and a weight, w, associated with

dist.

Let σq be a simplex, and F be a family, that σq is not a member of. The distance,

distQ, between σq and F is defined to be the minimum of the distances (dQ) between

σq and each member of the family:

distQ(σq, F )
def
= min{dQ(σq, σ) : σ belongs to F} (3)

3.6.3.3 A Weighting Function.

It is foreseeable that two or more families can share the closest distance, distQ,

from a simplex, therefore a weighting function is added to the formalism to deter-

mine the closest family in this situation. The weight, wQ, illustrated in Figure 17 is

defined to be the proportion of simplices, σ, in family, F, where dQ(σq, σ) is equal to

distQ(σq, F ):

wQ(σq, F )
def
=

card{σ ∈ F : dQ(σ, σq) = distQ(σq, F )}
card(F )

(4)

The value of the Query Element is inferred by finding the Simplicial Family to
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Figure 17: Illustration of Weight Function. Given three families, A,B,C, and a
Query Simplex, Q. The minimum distance, distQ, is represented with a solid line.
Since distQ(Q,A) = distQ(Q,C), the closest family is determined by the largest
weight function. The weight for family A = 1/4, and the weight for family C = 1/2,
therefore C is the closest family.

which the Query Simplex is closest, i.e., the family with the smallest distance, distQ.

Should more than one family share the closest distance, distQ, the closest family is

determined to be the one with the greatest weight, wQ.

3.6.4 QS Computational Module Examples.

The QS Computational Module is better understood by means of two simple ex-

amples. The first example illustrates details of the algorithm, using the large soybean

disease diagnosis data set (Michalski and Chilausky, 1980) from the University of

California, Irvine (UCI) ML Repository (Lichman, 2013). The first example also il-

lustrates that the target variable is not identified before training or testing begin,

supporting the hypothesis if this dissertation.

The second example illustrates more completely the hypothesis of this research,

demonstrating that the QMA can function as a supervised classifier and overcome

the necessity to identify the target variable before training (or testing) begins and

overcomes the necessity to re-train the cumulative training samples when the target

variable changes. The second example also demonstrates concept drift. In the second
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example, the algorithm is applied to a subjective problem space, one created entirely

by human cognition, which is dynamic, contested and current — malicious software

(malware) classification based on malware behavior and metadata.

3.6.4.1 Example 1, Illustrating Detailed Inference Generation Pro-

cess.

This example will demonstrate that the QMA can function as a supervised clas-

sifier and overcome the necessity to identify the target variable before training (or

testing) begins. To provide an intuitive illustration, a clearly objective and frequently

referenced problem space is employed: the large soybean disease diagnosis data set.

A notional subset of data are illustrated in Table 3.
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The UCI Large Soybean Disease Categorical Data Set

Table 3: Illustrative Subset of Raw Data from UCI Large Soybean Data Set.

obs. disease hail seed-discolor precip. leaf-mildew

(1) bacterial-blight absent absent gt normal absent

(2) bacterial-blight absent present gt normal absent

(3) bacterial-blight absent present gt normal absent

(4) cyst-nematode present present lt normal lower-surface

(5) cyst-nematode present present 〈unobserved〉 absent

(6) cyst-nematode present present 〈unobserved〉 absent

(7) cyst-nematode present present 〈unobserved〉 absent

(8) herbicide-injury present absent gt normal upper-surface

(9) 〈unobserved〉 present absent gt normal absent

(10) 〈unobserved〉 〈unobserved〉 absent normal absent

The UCI large soybean data set has 683 samples and 36 categorical variables. Pre-

sented in Table 3 is a notional subset of 10 samples (rows) and 5 variables (columns).

Note that some samples are indistinguishable (i.e., identical), for example rows 2 and

3 are identical, and some elements are unobserved. All raw samples, from Table 3, are

converted into an ordered binary representation (binarized), as illustrated in Table 4.

Converting the categorical data into the ordered binary representation is the training

step in this formalism.
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Training Step, Samples Convert to Ordered Binary Representation

In Table 4 each row of number represents a unique sample identified by a unique set

of attributes. The frequency column is a count of indistinguishable samples. A 1 in

an attribute cell indicates the presence of the attribute, a 0 indicates the absence

of the attribute. The attributes for each variable (disease, hail, etc.) are mutually

exclusive, but not required. Notice, there is no precipitation in row (4), no disease in

row (6), and no disease or hail in row (7).

Table 4: Training Step, Soybean Sample Converted Ordered Binary Representation.

(notional) Attribute Set

disease hail seed-discolor precipitation leaf-mildew
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(1) 1 1 0 0 0 1 0 1 0 0 1 1 0 0

(2) 2 1 0 0 0 1 1 0 0 0 1 1 0 0

(3) 1 0 1 0 1 0 1 0 1 0 0 0 0 1

(4) 3 0 1 0 1 0 1 0 0 0 0 1 0 0

(5) 1 0 0 1 1 0 0 1 0 0 1 0 1 0

(6) 1 0 0 0 1 0 0 1 0 0 1 1 0 0

(7) 1 0 0 0 0 0 0 1 0 1 0 1 0 0

Training and test samples are represented identically. Test samples will have at

least one unobserved element. Training samples may also have unobserved elements.

In order to initiate an inference one variable (usually an unobserved element) is se-

lected as the Query Element from a sample, which will be inferred.
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Selecting Target Variable after Training

For this example, the disease variable in Row (6) of Table 4 is selected as the

Query Element. Therefore, the target variable is identified as disease. Once the target

variable of disease has been identified, the samples from Table 4 can be conceptualized

as a simplicial complex, as illustrated in Table 5. The target variable becomes the

Simplex Label, and the remaining variables become axes. It is important to note, that

the algorithm does not convert the data to the simplicial complex, but calculates over

the data on the ordered binary representation.

Table 5: Soybean Sample in Simplicial Complex Form, Given Disease as Target
Variable.

(notional) Attribute Set

disease hail seed

-discolor

precipitation leaf

-mildew
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ID fr Label X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 dim

σ0 1 bact.-blight 0 1 0 1 0 0 1 1 0 0 (3)

σ1 2 bact.-blight 0 1 1 0 0 0 1 1 0 0 (3)

σ2 1 cyst-nem. 1 0 1 0 1 0 0 0 0 1 (3)

σ3 3 cyst-nem. 1 0 1 0 0 0 0 1 0 0 (2)

σ4 1 herb.-injury 1 0 0 1 0 0 1 0 1 0 (3)

σq 1 〈query〉 1 0 0 1 0 0 1 1 0 0 (3)
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Extending the Hypernetwork Theory Simplicial Complex Formalism

The research presented in this dissertation extends the simplicial complex formal-

ism with four features, represented in blue and green text, and underlined, in Table 5.

First, multiple simplices with the same Simplex Label are supported (i.e., σ0 and σ1

are both bacterial-blight, σ2 and σ3 are both cyst-nematode), representing different

samples with the same target variable. Second, a frequency column (fr) was added,

which captures the count of samples with the same attribute set. Third, the option of

a Query Element was added; 〈query〉 in Table 5, indicating a Query Element which

is the goal of the inference generation. Fourth, a Query Simplex (σq as defined in Ta-

ble 5), which is a simplex with one Query Element. These extensions to hypernetwork

theory are necessary for the inference generating algorithm.

This formalism is a ML algorithm, with the data set σ0 through σ4 as training

samples, and σq as a test sample. Note, row (7) of Table 4 is not carried over to

Table 5. Because the target variable is disease, and row (7) has no disease value,

row (7) is not used in this inference generating formalism. The Query Element is the

disease intended for inference, conceptualized as 〈query〉 in Table 5.

Alternatively, the unobserved precipitation from row (4), in Table 4, could have

been selected for this inference example. In that case, the target variable would be

precipitation and the samples from Table 4 would be presented into a hypernetwork

theory formalism with precipitation as the Simplex Label column. In this alternate

simplicial complex, the number and labels of the simplices (i.e., rows) and axes (i.e.,

columns) would differ from Table 5, representing a different set of shapes. This

dynamic, an example of concept drift5, is illustrated in the malware example (see

Section 3.6.4.2) which follows this detailed example.

5Concept Drift is defined in Appendix D.4.2.
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Apply the Novel Distance and Weight Measures

Now the novel distance and weight measures will be applied to the samples represented

in Table 5. The objective is to infer the label of the Query Element, 〈query〉 in σq.

The following calculations determine which disease is inferred. Note, the frequency

column is used in the calculation of the weight (w).

For family bacterial-blight, FBB = {σ0, σ1}:

ecc(σ0|σq) = 1/4, ecc(σq|σ0) = 1/4 ∴ dQ(σ0|σq) = 1/4 (5)

ecc(σ1|σq) = 2/4, ecc(σq|σ1) = 2/4 ∴ dQ(σ1|σq) = 2/4 (6)

∴ distQ(σq, FBB) = 1/4, w = 1/3 = .33 (7)

For family cyst-nematode, FCN = {σ2, σ3}:

ecc(σ2|σq) = 3/4, ecc(σq|σ2) = 3/4 ∴ dQ(σ2|σq) = 3/4 (8)

ecc(σ3|σq) = 1/3, ecc(σq|σ3) = 2/4 ∴ dQ(σ3|σq) = 2/4 (9)

∴ distQ(σq, FCN) = 2/4, w = 3/4 = .75 (10)

For family herbicide-injury, FHI = {σ4}:

ecc(σ4|σq) = 1/4, ecc(σq|σ4) = 1/4 ∴ dQ(σ4|σq) = 1/4 (11)

∴ distQ(σq, FHI) = 1/4, w = 1/1 = 1.00 (12)

The label is inferred to be the family closest to the Query Simplex, σq, with the

greatest weight. In this example, there are two families equally close with a distance

of 1/4: bacterial-blight and herbicide-injury. Herbicide-injury has the greater weight,

1.00, therefore herbicide-injury is inferred as the Query Element, 〈query〉.
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Report the Response and Update the Autonomous Module

Once these calculations are complete a vector representation of the hypothetical

sample, an Inference Vector, is sent to QS Computational Module ACT–R (Figure 13)

to be converted in to a chunk slot/value representation (i.e., disease: herbicide-injury,

hail: present, seed-discolor: absent, precipitation: gt normal, leaf-mildew: absent)

and forwarded to autonomous ACT–R. A copy of the Inference Vector is not stored

in QS Computational Module, as that may introduce miscalculations in subsequent

inferences. However, the Human-computer pairing interface (discussed in Section 3.3)

can be used to confirm the inference and update the Query Element in QS Compu-

tational Module.

3.6.4.2 Example 2, Supporting the Research Hypothesis.

Like the first example, this example demonstrates that the QMA can function

as a supervised classifier and overcome the necessity to identify the target variable

before training (or testing) begins. This example also demonstrates how the formalism

overcomes the necessity to re-train the cumulative training samples when the target

variable changes, supporting the research hypothesis.

In this example the algorithm is applied to a subjective, contemporary social and

economic problem space: malware classification-types (i.e., malware types), behavior

and metadata. Classifying malware, and identifying its behavior, is a necessary step

in malware mitigation and helps to identify new and emerging threats (Szor, 2005).

Metadata, among other useful features, potentially identifies the malware source,

which can help analysts recognize persistent threats and take appropriate actions to

protect the network, as well as support forensic investigations (Sikorski and Honig,

2012). A data set of 2088 samples was created, consisting of 9 malware types, 46

behavioral and 3 metadata variables, from the VirusTotal (2016) malware repository.
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A more detailed analysis of the malware data collection process is in Appendix G.

A notional subset of ten samples is illustrated in Table 6, consisting of 3 malware

types, 2 behavioral and 2 metadata variables. The data have been converted to

ordered binary representation.

Training Step, Samples Convert to Ordered Binary Representation

Table 6: Training Step, Malware Samples Converted to Ordered Binary Representa-
tion.

(notional) Attribute Set

Malware Type AutoExec MntPnt Charset Lang Code
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(1) 1 1 0 0 0 1 0 1 0 0 1 1 0 0 0

(2) 1 1 0 0 0 1 1 0 0 1 0 0 0 1 0

(3) 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0

(4) 2 0 1 0 1 0 0 1 1 0 0 0 0 0 1

(5) 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0

(6) 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0

(7) 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0

(8) 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0

Selecting the Target Variable after Training

In this test sample, the unobserved Language Code from Table 6, row (6), is selected

as the Query Element. Therefore, the target variable is Language Code, and row (6)

is conceptualized as the Query Simplex, σq, in the simplicial complex in Table 7 .
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Table 7: A Malware Sample Simplicial Complex with Language Code as Target Vari-
able.

(notional) Attribute Set

Lang Code Malware Type AutoExec MntPnt Charset
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ID fr Label X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 dim

σ0 1 English 1 0 0 0 1 0 1 0 0 1 (3)

σ1 1 Korean 1 0 0 0 1 1 0 0 1 0 (3)

σ2 1 Chinese 1 0 0 0 1 1 0 0 0 1 (3)

σ3 2 Xhose 0 1 0 1 0 0 1 1 0 0 (3)

σ4 1 Chinese 0 1 0 1 0 0 1 0 0 1 (3)

σ5 1 Korean 0 0 1 0 1 0 1 0 1 0 (3)

σq 1 〈query〉 0 1 0 1 0 1 0 0 0 1 (3)

By applying the novel distance and weight measures (as detailed in the first ex-

ample, Section 3.6.4.1), the Query Element, 〈query〉, is inferred to be Chinese, with

distance of 1/4, weight 0.5. Xhosa has a distance of 2/4, and a weight of 1.00. En-

glish has a distance of 3/4, and a weight of 1.00. Korean has a distance of 3/4, and

a weight of 0.5.

Changing the Target Variable with no Re-training

In this next test sample, the unobserved Malware Type from Table 6, row (7), is

selected as the Query Element. Therefore, the target variable is Malware Type, and

row (7) is conceptualized as the Query Simplex, σq, in the simplicial complex in

Table 8. The target variable has changed, and no re-training has occurred.
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Table 8: A Malware Sample Simplicial Complex with Malware Type as Target Vari-
able.

(notional) Attribute Set

Malware Type AutoExec MntPnt Charset Lang Code
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ID fr Label X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 dim

σ0 1 NeshtaV. 0 1 0 1 0 0 1 1 0 0 0 (3)

σ1 1 NeshtaV. 0 1 1 0 0 1 0 0 0 1 0 (3)

σ2 1 NeshtaV. 0 1 1 0 0 0 1 0 1 0 0 (3)

σ3 2 WormVik. 1 0 0 1 1 0 0 0 0 0 1 (3)

σ4 1 WormVik. 1 0 0 1 0 0 1 0 1 0 0 (3)

σ5 1 WormVik. 1 0 1 0 0 0 1 0 0 0 0 (2)

σ6 1 WormBr. 0 1 0 1 0 1 0 0 0 0 0 (3)

σq 1 〈query〉 1 0 0 1 1 0 0 0 1 0 0 (3)

By applying the novel distance and weight measures (as detailed in the first ex-

ample, Section 3.6.4.1), the Query Element, 〈query〉, is inferred to be WormViking,

with distance of 1/4, weight 0.5. NeshtaVirus has a distance of 3/4, and a weight of

0.33. WormBrontok has a distance of 3/4, and a weight of 1.00.

This example illustrates a primary advantage of the QS algorithm, compared to

conventional ML algorithms — the target variable can change from test sample to test

sample, without re-training or repopulating the data structure. The algorithm does

not convert the data to the simplicial complex representation, but calculates over the

data on the ordered binary representation. The maximally integrated information

structure remains stable.
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3.6.5 Concept Drift and Transfer Learning (TL).

In ML research, a change in the source of the target is referred to as concept drift

and is a feature of some incremental ML algorithms. Concept drift is one method in

which TL can be achieved. TL is the ability of a system to apply knowledge or skills

learned in previous tasks to subsequent tasks or new domains, which are similar in

some way (Pan and Yang, 2010).

3.6.6 Imagined Experiences.

Inherent in the QMA is the ability to imagine a different set of simulated sensory

experiences. Generating inferences from an imagined set of experiences supports the

imagined past, present or future as posited by Edelman (1989). This is accomplished

by applying the inference generation algorithm to hypothetical test samples, thereby

generating a series of competing hypothesis, a form of abductive reasoning.

This approach will be useful in domains where the accuracy of the training or

test samples are suspect, for example, in malware identification and classification. In

order to avoid detection, malicious actors employ various forms of obfuscation. For

example, malware may import libraries, or call functions, that are not actually used

in the execution of the code. On the other hand, they may rename a library on the

target computer and call that unexpected, renamed library. They may use a foreign

language code, instead of their native language. These actions are intended to evade

detection and make analysis and mitigation more difficult. A domain expert could

use the QMA formalism to generate a series of competing hypothesis to help identify,

classify and mitigate threats.
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3.7 Summary

This chapter detailed the steps taken and tools used to develop the cognitively in-

spired computational agent, thereby answering the research questions of how the com-

ponents can be modeled to produce a complete computational model of the framework

and the data sets can be processed-over to produce a pattern-completion inference

by using hypernetwork theory and custom software.

The research hypothesis was supported with two examples using two different

data sets, demonstrating that a computational agent, inspired by a theory of human

learning-by-experience (Stanovich’s framework), can function as a supervised classifier

and overcome the necessity to identify the target variable before training begins and

the necessity to re-train the cumulative training samples when the target variable

changes. The research questions addressing metrics and performance, as compares to

benchmark classifiers, will be addressed in Chapter 4.
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IV. Results and Analysis

Chapter 1 introduced the motivation for this research, the hypothesis and research

questions addressing the hypothesis. Chapter 2 reviewed the relevant literature and

revealed functions of Stanovich’s tripartite framework which lead to the development

of the Qualia Modeling Agent (QMA). Chapter 3 detailed the steps taken, mathe-

matical formalism and tools used to develop the QMA, and demonstrated support

for the research hypothesis.

This chapter presents the results of data analysis and findings that further sup-

port the research hypothesis. The research hypothesis proposes that a computational

agent, inspired by a theory of human learning-by-experience, the QMA, can function

as a supervised classifier and overcome the necessity to identify the target variable

before training begins and the necessity to re-train the cumulative training samples

when the target variable changes. Previous machine learning (ML) approaches sup-

porting pattern-completion (i.e., predicting the class labels for new samples), require

re-training when the target variable changes.

The first section of this chapter (Section 4.1) presents the appropriate metrics to

assess the performance of benchmark nonparametric classifiers and the QMA. The

second section (Section 4.2) presents further support for the research hypothesis,

by reporting the results of classifying various malicious software (malware) data set

Query Elements as the target variable changes from test sample to test sample. The

next section (Section 4.3) demonstrates concept drift. The last section (Section 4.4)

presents a comparative analysis of classification accuracy between the QMA and two

benchmark nonparametric classifiers, using 4 factual data sets. In this section the

QMA demonstrates improved classification accuracy in data sets with greater dimen-

sionality.

QMA is a novel algorithm that can be used as either an incremental, or a batch

62



learning classifier. As an incremental classifier the QMA supports the research hy-

pothesis and demonstrates support for concept drift when the target variable changes.

When used as a batch classifier QMA demonstrates increased classification accuracy

with multivalued/multiclass data sets.

4.1 Metrics

Based on the motivation for his research and the hypothesis, the appropriate

metrics, with which to assess the performance of benchmark nonparametric classifiers

and the QMA, are: how efficiently the learner adjusts to changes in the target variable;

if the learner retains test samples in a manner that allows their predictive values to

contribute to subsequent test samples; if the learner retains response variables in

a manner that prevents unnecessary redundant classification, and does not distort

the probability distributions applied to subsequent test samples; and, classification

accuracy, i.e., the proportion of correctly classified test samples. These metrics will

be applied the the benchmark learners and to the QMA.

4.2 Supporting the Research Hypothesis

The research hypothesis proposes that a computational agent, inspired by a theory

of human learning-by-experience, can function as a supervised classifier and overcome

the necessity to identify the target variable before training begins and the necessity

to re-train the cumulative training samples when the target variable changes.

Details of the formalism, allowing the target variable to change, were illustrated

with notional examples in Section 3.6.4.2. Table 9 presents results when the formalism

was applied to the factual malware data set, detailed in Appendix G.
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Table 9: Support for the Research Hypothesis, Results of QMA with a Factual Mal-
ware Data Set. The QMA was trained with 1250 Malware data set samples (3 ran-
domized folds).

Test Hash (ID) Target Variable Classes Truth Response Variable

1 72445. . . Char. Set (Metadata) 10 Windows Latin1 Windows Latin1

2 0b6ca. . . Malware Type 9 WormRamnit WormRamnit

3 2d012. . . Subsystem (Metadata) 5 Windows GUI Windows GUI

4 386f5. . . Lang. Code (Metadata) 14 Chinese Simpl. Chinese Simpl.

5 386f5. . . Char. Set (Metadata) 10 UNICODE UNICODE

Six test samples were run, and the target variable was changed between each test

sample. The last two test runs use the same test sample with different target variables

selected. With such a large number of training samples, it is not unexpected that

all 6 test samples classified accurately, based on classification accuracy of this data

set and the QMA algorithm demonstrated later in this chapter. The results reported

here support the research hypothesis and demonstrate the target variable changing

with no re-training required. Also, the test sample’s predictive variables are retained

in the hypernetwork theory representation for their predictive value in subsequent

test samples.

4.3 Concept Drift and Transfer Learning (TL)

Concept drift refers to a learning problem that changes over time. In particular,

the statistical properties of the Target Variable, which the model is trying to predict,

change over time in unforeseen ways (Žliobaitė, 2010). In QMA concept drift occurs

when the target variable changes from test sample to test sample. Concept drift is

discussed in more detail in Appendix D.4.2.

Concept drift is one method in which Transfer Learning (TL) can be achieved

(Geng and Smith-Miles, 2009). TL is the ability of a system to apply knowledge or
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skills learned in previous tasks to subsequent tasks or new domains, which are similar

in some way (Pan and Yang, 2010). Figure 18 illustrates the conceptual difference

between the learning processes of traditional and TL techniques presented in a TL

survey by Pan and Yang.

(a) Learning Process of Traditional ML. (b) Learning Process of Transfer Learning.

Figure 18: Different Learning Processes between Traditional Machine Learning and
Transfer Learning (Pan and Yang, 2010).

The learning process presented in this dissertation is novel, and is conceptually

illustrated in Figure 19. When the target variable changes, the new target variable

becomes the Label Space, and the previous target variable joins the other variables

in the Feature space. Subsequently, the domain marginal probability distribution

(mpd) changes and the predictive function of the task changes. Also, when the target

variable changes each test sample adds knowledge to all other all other domains. For

example, in the malware classification example (Section 3.6.4.2), when the target

variable is changed from language code to malware type, the domain (variables and

predictive function of the simplicial complex) changed, and the task (Query Element)
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Figure 19: Learning Process of QS. When the target variable changes, the new target
variable becomes the label space, and the previous target variable joins the other
variables in the feature space (knowledge).

changed, yet, the declarative knowledge captured in qualia space (QS) remains the

same.

In order for TL to be achieved improved performance, along some axis, must be

demonstrated, as well as, knowledge from one domain and task must be transferred

to another domain and task which share a common feature space (Pan and Yang,

2010). Applying the definitions of (Pan and Yang, 2010) to the QS formalism:

Definition 4.3.1 (QS Domain). The Domain, DQ, consists of two components: a

feature space, XQ, i.e, axes (X1, . . . , Xn) in the simplicial complex, and a mpd,

P (XQ), where XQ = {x1, . . . , xn} ∈ XQ, i.e., a unique mpd created when a

target variable is identified and the Simplicial Complex is created.
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Definition 4.3.2 (QS Task). Given a specific domain, DQ = {XQ, P (XQ)}, a task

consists of two components: a label space YQ , i.e., Simplex Labels in the

Simplicial Complex, and an objective predictive function f(·) (denoted by TQ =

{YQ, f(·)}), which is not observed but can be learned from the training data, which

consists of pairs {xi, yi}, where xi ∈ XQ and yi ∈ YQ. The function f(·) can be used

to predict the corresponding label, f(x), of a new instance x. From a probabilistic

viewpoint, f(x) can be written as PQ(y|x).

Given these definitions, Figure 20 uses Table 7 and Table 8 from the second

example in Chapter 3, to illustrate concept drift and change of domain and task

components presented in this research.

• A domain is a pair DQ = {XQ, P (XQ)}. Thus, the condition DS 6= DT implies

that either XS 6= XT or PS(XQ) 6= PT (XQ). In the QMA formalism both

the feature space and the mpd change: XS 6= XT and PS(XQ) 6= PT (XQ).

• A task is defined as a pair TQ = {YQ, P (YQ|XQ)}. Thus, the condition TS 6=

TT implies that either YS 6= YT or P (YS|XS) 6= P (YT |XT ). In the QMA

formalism both the label space and the objective predictive function

have changed: YS 6= YT and P (YS|XS) 6= P (YT |XT ).

A proposed area of future research is to demonstrate improved performance, along

some axis, when algorithm accommodates target variable changes, therefore demon-

strating TL has been achieved.
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Figure 20: Illustration of Domain and Task Change in QMA. Tables 7 and 8 are used
as examples.
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4.4 Data Analysis and Findings as a Batch Supervised Learning Classifier

Now the methods used to test the validity of the QMA as a batch supervised ML

classifier are presented. The comparative analysis required factual data sets (Table 10)

that could determine the degree to which the model could correctly classify patterns

and infer unobserved elements (classes). In addition to determining the validity of

the model, how well the results generalize to other data sets needed to be assessed.

Therefore, the following steps were taken.

4.4.1 Experimental Design.

Two standard nonparametric supervised classifiers were selected as benchmarks

for this analysis, k-nearest neighbors (kNN) and decision tree (DT). Nonparametric

classifiers make no assumptions about the training data distribution, all training

samples are maintained for the test phase, and classification decisions are based on

the entire training set (see Appendix D.1) (Thirumuruganathan, 2010). QMA is also

a nonparametric supervised classifier.

In addition to the soybean disease and malware data sets, two additional Uni-

versity of California, Irvine (UCI) ML Repository data sets were obtained: the 1984

Congressional Voting (Almanac, 1984) and (standardized) Audiology1 diagnosis data

sets. The three classification algorithms (kNN, DT and the QMA) were combined

with the four data sets (Soybean, Voting, Audiology and Malware) to create a 3x4

factorial between-participant design.

4.4.2 Procedure.

In order to compare the results of the three algorithms, all three were applied to

the four data sets in batch mode, which assumes all training (learning) is complete

1Original Owner: Professor Jergen at Baylor College of Medicine.
2Classes is the number of unique values (Simplex Labels) for the target variable.
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Table 10: Non-trivial, Factual, Data Sets used to Test the Validity of the Model.

Data Set

(target variable)

Samples Classes2 Binary

variables

Multivalued

variables

Missing

values

Soybean (diagnosis) 683 19 15 20 ∼10%

Cong.Voting (Dem/Rep) 435 2 16 0 ∼5%

Audiology (diagnosis) 226 23 61 8 ∼20%

Malware (type) 2088 9 46 3 ∼2%

before the testing begins. The goal was to create a process that would produce a

sufficient number of independent test runs from each data set. Each test run would

subsequently be subjected to each of the three algorithms, kNN, DT and the QMA,

to produce three scores, with each score being a measure of classification accuracy.

For each data set all of the samples were randomly structured into separate par-

titions of equal size. Different subsets of the partitions were identified as training,

validation, and testing partitions to create one test run. To create subsequent test

runs the partitions were rotated through each of 20 possible permutations.

This process is otherwise known as k-fold cross-validation (Russell and Norvig,

2009), k being the total number of partitions. k = 5 was chosen3, which produced

a total of 20 test runs for each possible combination of 3 training, 1 validation and

1 test partition. The entire process was repeated a second time to produce a total

of 40 independent test runs per data set. Each test run was applied to each of three

algorithms: the QMA model, and two analogous ML supervised learning classifiers,

kNN and DT4, producing 40 scores for each data set.

3see Appendix D.2 for k-fold cross-validation discussion and rationale for the choice of k.
4Both of the ML classifiers, kNN and DT, have a validation procedure requiring an additional

validation partition (Russell and Norvig, 2009). The QMA does not have a validation procedure,
therefore the validation partition is simply not used in the QMA test runs.
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4.4.2.1 Results as a Batch ML Classifier.

The 40 scores per data set, collected under each condition of the 3x4 factorial de-

sign, were analyzed in a two-way between-participant analysis of variance (ANOVA),

as illustrated in Table 11 and Figure 21. Figure 21 is computed as the proportion of

accurately classified test samples (ordinate), for three classification algorithms (ab-

scissa). Each data point represents the mean (M) of 120 scores. Algorithm (kNN,

DT and the QMA) and type of data set (Soybean, Voting, Audiology and Malware)

were both between-participant factors. As seen in Table 11 the 2-way ANOVA also

revealed a significant interaction effect. To probe this interaction, tests of simple

main effects were conducted. To do this a one-way ANOVA was computed on the

algorithm factor at each level of the data set factor, as seen in Table 12 and Figure 22.

Figure 22 is computed as the proportion of accurately classified test samples (ordi-

nate), for three classification algorithms (abscissa), for each of four data sets (shown

as parameter). Each data point represents the mean of 40 scores. (Standard error

bars are smaller than symbol used to plot points on graph.)

Table 11: Two-way ANOVAs Revealed a Significant Main Effect for Algorithm and
Data Set, as well as the Interaction (α = 0.050).

Algorithm F (2, 468) = 7.54, p = 0.0006

Data Set F (3, 468) = 1217.91, p < 0.0001

Interaction F (6, 468) = 5.14, p < 0.0001
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Figure 21: Means of Proportion of Correctly Classified Samples, All Data Sets Com-
bined.

Table 12: One-way ANOVA Computed on the Algorithm Factor at each Level of the
Data set Factor (α = 0.050).

DT (1) kNN (2) QMA (3) Tukey’s

Data Set M SE M SE M SE F (2, 117) p HSD

Soybean 0.887 0.0038 0.896 0.0038 0.914 0.0038 12.95 <0.0001 1, 2 < 3

Voting 0.952 0.0026 0.928 0.0026 0.926 0.0026 30.55 <0.0001 2, 3 < 1

Audiology — — — — — — 2.55 0.0824 —

Malware 0.888 0.0048 0.899 0.0048 0.914 0.0048 7.04 0.0013 1 < 3
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Figure 22: Means of Proportion of Correctly Classified Samples, each Data Set Pre-
sented Individually.
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4.4.2.2 Exploring Reduced Response Variable Dimensionality.

Empirical observations of the results indicate that greater dimensionality of the

response variable may improve relative classification accuracy of the QMA algorithm

over the benchmark ML algorithms. In the original experiment, the QMA algorithm

demonstrated the highest relative classification accuracy with the soybean data set,

therefore this is the data set selected to explore the effect of dimensionality.

In the original experiment the soybean data set had 19 classes and the QMA clas-

sified with more accuracy than both kNN and DT, as seen in Figure 23. To explore

this observation further data are removed from the soybean data set. First six ran-

domly selected classes, and then an additional four, were removed from the soybean

data set, leaving 13 and 9 classes respectively. The three algorithms were applied

again using the same technique. Under these new conditions, the classification accu-

racy of the QMA and kNN were statistically equal and greater than the classification

accuracy of DT, as seen in Figure 24 and Figure 25, suggesting that greater response

variable dimensionality increases QMA classification accuracy.
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Figure 23: Means of Proportion of Correctly Classified Samples, Soybean Data Set
with Original 19 Classes, 683 Samples, 20 Independent Test Runs.
DT - M: 0.887; SE: 0.0038, kNN - M: 0.896, SE: 0.0038; QMA - M:0.914, SE: 0.0038.

Figure 24: Means of Proportion of Correctly Classified Samples, Soybean Data Set
with 13 Classes, 545 Samples, 20 Independent Test Runs.
DT - M: 0.881; SE: 0.0043, kNN - M: 0.901, SE: 0.0043; QMA - M:0.915, SE: 0.0043.

Figure 25: Means of Proportion of Correctly Classified Samples, Soybean Data Set
with 9 Classes, 501 Samples, 20 Independent Test Runs.
DT - M: 0.858; SE: 0.0066, kNN - M: 0.914, SE: 0.0066; QMA - M:0.924, SE: 0.0066.
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4.4.2.3 Summary of Results as a Batch Classifier.

In summary, the results reveal that the QMA algorithm yielded more accurate

classification than kNN and DT algorithms for the Soybean data set, and more accu-

rate classification than DT for the malware data set. In contrast, the QMA yielded

fewer accurate classifications than DT for the Voting data set, and provided equivalent

classification accuracy for the Audiology data set.

While the QMA model classified queries with increased accuracy relative to the

benchmark ML algorithms, the processing overhead of situating the model in a cog-

nitive architecture, and concurrently training the autonomous module with inferred

responses, results in a slower processing speed, compared to the benchmark algo-

rithms.

4.4.3 Computational Complexity Order Of Magnitude (OOM).

Table 13 presents a summary of the computational complexity Order Of Magni-

tude (OOM) for kNN, DT and QS given a 5-fold cross-validation technique.

Table 13: Computational Complexity OOM for kNN, DT and QS given 5-fold Cross-
Validation Technique. m = sample size, a = number of features (variables).

kNN DT QMA

Training: O(a(3/5)m)+

O(a(3/25)m2)

O(a(3/5)mLog(3/5m)) O(a(3/5)m)

Test one sample: O(a(3/5)m) O(Log(3/5m)) O(a(6/5)m)

Test all samples: O(a(3/25)m2) O(Log(3/5m)(1/5m)) O(a(6/25)m2)

Total cost: O(a(3/5)m)+

O(a(6/25)m2)

O([a(3/5)+

(1/5)]mLog(3/5m))

O(a(3/5)m)+

O(a(6/25)m2)

The total cost for training and testing using the 5-fold cross-validation technique
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for kNN and QS are the same. The QS algorithm is affectively a 1NN algorithm

with no validation step and a novel distance measure, therefore the training for QS is

just the cost of converting the categorical data from a positional parameter list into

an ordered binary representation, O(a(1/5)m). The kNN training includes the con-

version of data to an ordered binary representation, O(a(1/5)m), and the validation

step, O(a(3/25)m2). However, in the testing phase kNN has only one (Euclidean)

distance to evaluate. In QS the distance measure requires evaluating two eccentricity

measures, therefore the test OOM is twice as large and the total costs are the same.

The complete discussion of OOM for all three algorithms is lengthy, and can be found

in Appendix D.3.

4.4.4 QMA Ordering Effect and Convergence.

In QMA the ordering effect (defined in Appendix D.5) depends on whether or not

the framework is used as a batch or incremental learning algorithm, and the variability

of the target variable. When the QMA is used as a batch algorithm and the target

variable remains constant in the test samples, there is no ordering-effect. This is due

to the fact that the test samples all have the same target variable, therefore they

do not contribute to the inference (predictive function) of subsequent test samples.

Furthermore, batch QMA does not forget any previously learned samples. Therefore,

when used in this way, a classifier is order-independent (Cornuéjols, 1993).

QMA is order-dependent when it is used as an incremental learning algorithm or

when the target variable does not remain constant in the test samples. Each incoming

training sample potentially contributes to the inference (predictive function) for each

subsequent test sample. Each incoming test sample potentially contributes to the

inference (predictive function) for any subsequent test sample in which the target

variable differs.
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For both batch and incremental learning, the QMA is effectively a weighted 1-

nearest neighbor (kNN, k = 1) nonparametric classifier. It does not maintain any

information, or make any calculations, based on the underlying probability function.

Therefore, QMA becomes a Bayes classifier if the probability estimates converge to

the true probability when an infinite number of samples are used. The resulting error

is the Bayes error (Keinosuke, 1990). Bayes probability of error for a multiclass

classifier with discrete features is defined in Appendix D.6.

Theoretical results, and experimental studies, demonstrate that the Generaliza-

tion Error (GE) of the 1NN algorithm converges to Bayes error, asymptotically, as the

number of samples increases (Dhurandhar and Dobra, 2013; Imandoust and Bolan-

draftar, 2013). Keinosuke (1990, 307) and (Duda et al., 2001, 26) further demonstrate

that the error for 1NN is less than twice the Bayes error in the case of infinite number

of samples.

4.5 Summary

This chapter presented the results of data analysis and findings. This chapter

supports the research hypothesis, demonstrating that the computational agent can

function as a supervised classifier and overcome the necessity to identify the target

variable before training begins and the necessity to re-train the cumulative train-

ing samples when the target variable changes. As a supervised learning incremental

classifier the QMA demonstrates support for concept drift when target variable oc-

curs. In addition to increased classification accuracy with the multivalued/multiclass

data sets, and support for changing target variables, the QMA model has additional

advantages over the benchmark ML algorithms: one test sample can have multiple

target variables, which can be inferred in series; at any time a domain expert can

correct a sample, again, without re-training the entire model; and, over time, as the
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autonomous module is trained with responses, subsequent queries are more likely to

have a pattern-matching response available, therefore, the slower QS Computational

Module inference will not be evoked, resulting in a faster response.

As a supervised learning batch classifier the research reveals that a cognitive ar-

chitecture, modeled after a theory of human consciousness, can yield more accurate

classification results than modern ML algorithms kNN and DT. Further research sug-

gests that the QMA demonstrates improved classification accuracy in data sets with

greater dimensionality.
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V. Findings and Conclusions

In this chapter the key findings are summarized, details of the contributions of

this dissertation are provided and areas for future research are explored.

5.1 Key Findings

5.1.1 Support for the Research Hypothesis.

The key findings support the hypothesis of this dissertation, revealing that a

computational agent, modeled after a theory of human learning-by-experience, can

function as an incremental supervised learning classifier, overcome the necessity to

identify the target variable before training begins, and the necessity to re-train the

cumulative training samples when the target variable changes. The Qualia Modeling

Agent (QMA) overcame additional limitations of standard learners: the failure to

retain test samples and their predictive values; the failure to retain response variables

and their predictive values; and, with some learners, the inability to incorporate

additional training samples after testing begins. This last limitation applies only to

learners that work exclusively as batch classifiers.

5.1.2 Comparing Training Requirements between QMA and Bench-

mark Learners.

Figure 26 illustrates a comparison of computational complexity Order Of Magni-

tude (OOM) for training requirements between a standard incremental learner and

the QMA, when the target variable changes, for 200 unique training samples and 5

test samples.
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(a) Standard Supervised Learning Incremental Classifier.

(b) Qualia Modeling Agent (QMA) Cumulative Incremental Classifier.

Figure 26: Example of Training OOM Comparison Between (a) Standard Learner
and (b) QMA.
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The standard learner (Figure 26a) trains a total of 500 samples: time t1, the origi-

nal 100 samples; t3, the original 100 samples again, when the target variable changes;

t5, the next 100 incremental samples; and, t7, the total 200 cumulative samples, when

the target variable changes again. The QMA (Figure 26b) trains once for each unique

training sample: 100 at time t1; and another 100 at t3. Additionally, it incorporates

the predictive variables from the test samples which potentially contribute to im-

proved classification accuracy of subsequent test samples, for a total of 205 training

samples. The QMA also retains responses (test sample/response variable pairs) for

subsequent pattern-recognition of duplicate test samples. In Figures 26a and 26b

solid lines indicate variables incorporated in the predictive model. Dashed lines in-

dicate variables not incorporated in the predictive model. Filled cells in predictive

variables represent changing target variables.

5.1.3 Improved Classification Accuracy.

The QMA overcame the necessity to identify the target variable before training

begins and the necessity to re-train when the target variable changes, while achieving

classification accuracy comparable to, or greater than, benchmark classifiers. The

QMA was compared against two nonparametric benchmark supervised learning clas-

sifiers: decision tree (DT) and k-nearest neighbors (kNN). DT does not support

incremental learning, therefore DT must start training from scratch in order to incor-

porate additional training samples or accommodate a change in target variable. The

QMA classified 2 out of 4 data sets with greater classification accuracy than DT, 1

of the 4 data sets with statistically equal accuracy, and the remaining data set DT

classified with greater accuracy. kNN does support incremental learning, however, if

the target variable changes kNN must re-train all cumulative test samples. The QMA

classified 1 out of 4 data sets with greater classification accuracy than kNN, and the
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remaining 3 of the 4 data sets with statistically equal accuracy.

5.1.4 Practical Application.

Supervised classifiers are used to support decision making in diverse, often cru-

cial, industries, for example: military, health care, farming, marketing, financial,

manufacturing. Organizations frequently maintain large volumes of data (terabytes)

for their own analysis, or to satisfy regulatory requirements (Maimon and Rokach,

2005). Standard supervised learning classifiers are typically trained on these data to

answer a specific question or predict a specific outcome, for example: a diagnosis,

approve a mortgage, a crop yield, the demand for a certain product, etc. If a different

question is asked from the same data, the standard learner has to be re-trained on the

cumulative training samples, which is not only time consuming, but the learner is out

of service for it’s primary purpose while answering alternate questions, for example:

predicting specific symptoms given a diagnosis; predict profit/loss if the mortgage is

approved; given a desired crop yield, estimate water or fertilizer requirements; and,

given a demand for a certain product, estimate factory hiring requirements.

The QMA, efficiently adjusts to changing target variables and would provide in-

creased efficiency and availability over standard classifiers. The QMA can function

as a decision aid in complex environments where data are too broad or diverse for a

human to evaluate without computational assistance, with increased flexibility and

efficiency over these standard learners.

5.1.5 How QMA Contributes to Machine Learning (ML) Research.

The findings of this dissertation fit into concept drift and Transfer Learning (TL)

research, areas of machine learning (ML) which address the challenge of leveraging

previously acquired knowledge in order to improve efficiency or accuracy in a new
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domain that is in some way related to the original domain (Mooney, 2016). The QMA

efficiently adapts to concept drift. Concept drift occurs when the statistical properties

of the target variable change (Pan and Yang, 2010). The QMA is efficient, because

no re-training is required when the target variable changes. The QMA potentially

improves accuracy of classification, because the predictive variables from test samples

are retained.

5.1.6 How QMA Contributes to Cognitive Modeling Research.

This research developed an abstract implementation of the Integrated Information

Theory (IIT) of Consciousness (Balduzzi and Tononi, 2009) that is computationally

tractable. More specifically, an implementation of the maximally integrated informa-

tion structures of qualia space (QS) as proposed by IIT, as well as, a formalism to per-

form fully disjunctive reasoning (FDR) over QS. Previous research (Aleksander and

Gamez, 2011) modeled QS, as specified by Balduzzi and Tononi, and demonstrated

the implementation to be computationally intractable with as few as 30 elements.1

The implementation presented here was applied to over 1802 elements, and is com-

putationally tractable on a typical desktop computer. The QMA implementation of

IIT is a unique contribution to computational models of consciousness.

This research also developed an implementation of a theoretical model of learning

and decision making, specifically, Stanovich’s tripartite framework. The primary func-

tions of the minds and working memory (WM) modeled both unconscious decision

making by pattern-recognition, and conscious decision making by pattern-completion,

as well as re-training the unconscious level with knowledge learned from FDR in the

conscious level. The QMA implementation of Stanovich’s framework is a unique

contribution to the cognitive modeling literature.

1Each unique value from all predictive variables is an element.
2The University of California, Irvine (UCI) audiology diagnosis data set has the largest dimen-

sionality of the data sets tested, containing 181 elements.
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5.1.7 How QMA Contributes to Computational Models of Narrative

(CMN).

An area of research dedicated to understanding the structure of narratives is Com-

putational Models of Narrative (CMN). Cognitive research has demonstrated that

almost every aspect of our lives are comprehended through narrative. We under-

stand events, make decisions and structure our thinking based on verbal narratives.

Narratives allow us to generate a stable, consistent and useful representation of re-

ality, and allow us to select between competing plausible narratives simulated in

WM. Computer systems attempting to model narrative need to address the underly-

ing cognitive structure of both the conscious and unconscious elements of narrative

(Lakoff and Narayanan, 2010; Vaughan et al., 2014). The QMA implementation of

Stanovich’s framework and IIT is a novel contribution to CMN, by presenting an ar-

chitecture which models the underlying cognitive structure of both the conscious and

unconscious decision making, allowing for competing plausible narratives simulated

in WM.

5.1.8 How QMA was Built.

The QMA was built by modeling a widely accepted theory of human learning and

decision making, Stanovich’s framework, consisting of a conscious and an unconscious

level. The unconscious level supports fast decision making using pattern-recognition

of previous responses (analogous to test sample/response variable pairs) in an ex-

tended implementation of an Adaptive Control of Thought–Rational (ACT–R) cog-

nitive modeling toolset. As the agent learns over time, previously predicted responses

may no longer be accurate, therefore they are allowed to obsolesce using the activation

levels integral to the ACT–R cognitive model, which represents memories fading from

lack of recency. ACT–R functionality was extended to provide preattentive processes
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to the algorithmic mind and to accept reprogramming from inferences generated in

WM.

The conscious level performs FDR over a multidimensional array representation of

all cumulative training samples and test samples. The mathematical formalism, which

performs FDR and generates an inferred response variable, is based on Hypernetwork

theory and extensions to hypernetwork theory which are a principal contribution of

this dissertation. All of the custom software for this implementation was written in

Common Lisp (CL), including the hypernetwork theory formalism and interfaces with

ACT–R. A second instantiation of ACT–R is used to convert the inference vector to

ACT–R format for reprogramming the unconscious level.

The QMA mathematical formalism, representing the conscious level, is analogous

to a standard first nearest neighbor (1NN) supervised classifier. However, the formal-

ism uses a novel, weighted, distance measure for inference. Standard learners, such as

kNN, use the Euclidean distance measure, or other standard distance measure, dis-

cussed in Appendix E. The QMA distance measure is inspired by a computationally

tractable model of the maximally integrated information structures of consciousness

as proposed by IIT.

5.1.9 Limitations.

The research presented in this dissertation was not able to demonstrate improved

classification accuracy with partial or corrupt training samples, when compared to

the benchmark classifiers: DT and kNN. When data elements were randomly removed

or corrupted, the three algorithms continued to classify test samples with the same

relative accuracy. Another limitation revealed in this research, is that the QMA

classified with less accuracy, than DT, when there was less dimensionality in the data

set. For example, the 1984 Congressional voting data set is entirely binary, for all
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variables there are only two values: Democratic or Republican, or, yes or no. DT

classified the voting data set with greater accuracy than both QMA and kNN. The

audiology diagnosis data set variables were predominantly binary (61 out of 70), and

all three algorithms classified with statistically comparable accuracy.

5.2 Research Contributions

This dissertation’s novel research contributions are:

1. A computational agent, the QMA which functions as an incremental supervised

learning classifier, overcoming specific limitations of standard learners.

2. Extensions to hypernetwork theory resulting in an inference generating formal-

ism.

3. A novel binary distance measure based on extensions to hypernetwork theory.

4. A computationally tractable implementation of the Integrated Information The-

ory (IIT) of Consciousness.

5. A computational model of Stanovich’s Tripartite Framework.

6. A novel contribution to CMN, by presenting an architecture which allows for

competing plausible narratives.

The primary contribution of this dissertation is a computational agent, the QMA,

that functions as a batch or an incremental supervised learning classifier and over-

comes the necessity to identify the target variable before training begins and the ne-

cessity to re-train the cumulative training samples when the target variable changes.

The QMA achieves classification accuracy comparable to or greater than benchmark

classifiers, and performs at the same computational complexity OOM as the kNN

benchmark classifier. A computational agent that overcomes these limitations has

not appeared before in the research literature.
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The second contribution are extensions to hypernetwork theory to create a dis-

tance measure and an inference (response variable). The simplicial complex concept is

extended with four features. First, multiple simplices with the same Simplex Label are

supported, Second, a frequency variable was added to each simplex, which captures

the count of experiences with the same variable set (i.e., important details of experi-

ences). Third, the option of a Query Element was added, which indicates a Simplex

Label element which will result in an inference generation. Fourth, a Query Simplex is

defined, which is a simplex with one Query Element. The concept of eccentricity, an

asymmetric measure of connectivity between simplices, is extended to complete the

inference generating formalism. Eccentricity was extended with a Hausdorff metric to

produce a distance measure. The novel distance measure was further extended with

a weight and a distance measure between an individual simplex and a family of sim-

plices, to produce an inference. Leveraging the multidimensional relational structures

inherently available in hypernetwork theory, to infer Query Elements, simulate the

maximally integrated information structures, i.e., shapes, in QS, produce a binary

distance measure, and generate an inference is not found elsewhere in the research

literature.

The third contribution is a novel binary distance measure. The extensions to hy-

pernetwork theory resulted in a binary distance measure which calculates a distance

between point sets in multidimensional space: dQ = max
((

c
a+c

)
,
(

b
a+b

))
, Range: [0, 1]

(see Appendix E). This distance measure, along with the weighting function, were

incorporated in the formalism presented in this dissertation which demonstrated

increased classification accuracy with some multivalued/multiclass data sets. This

distance measure is not found elsewhere in the research literature. A proposed area

of future research is comparative analysis of dQ with other binary distance measures,

given select performance criteria, such as improved classification accuracy, consistency
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or outlier identification.

The fourth contribution is a computationally tractable model of consciousness,

i.e., an implementation of the maximally integrated information structures of QS as

proposed by IIT, as well as, a formalism to perform fully disjunctive reasoning (FDR)

over QS. No previous research presenting a computationally tractable implementation

of IIT was found in the literature, and none that implemented FDR or generated an

inference were found in the literature.

The fifth contribution is a computational model of Stanovich’s Tripartite Frame-

work. This contribution provides a decision-making framework in which to place the

computational model of consciousness. The model simulates cognitive decoupling,

which allows the reflective mind to override the autonomous mind and engage QS for

inference generation, and reprogramming of the unconscious level by the conscious

level based on overlearning and practice. A computational model of Stanovich’s

framework is not found elsewhere in the research literature.

The sixth contribution is a novel contribution to CMN, by presenting an archi-

tecture which models the underlying cognitive structure of both the conscious and

unconscious decision making, allowing for competing plausible narratives simulated

in WM.

This research presents contributions to four bodies of knowledge: machine learn-

ing (ML) with a novel classification algorithm, support for concept drift and a novel

distance measure; extensions to hypernetwork theory; cognitive modeling with oper-

ational, computationally tractable, models of Stanovich’s framework and IIT; and,

Computational Models of Narrative (CMN), by presenting an architecture which mod-

els the underlying cognitive structure of conscious and unconscious decision making,

allowing for competing plausible narratives.
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5.3 Areas for Future Research

Develop a Threshold for Tightly Compiled Learned Information

(TCLI). In the QS Computational Module all inferences generated in QS are sent

to the Autonomous Module as TCLI. This assumes that all inferences meet the re-

quirement that these inferences have been “. . . overlearned and practiced (Stanovich,

2009)” enough to become TCLI. Future work could integrate a threshold, based on

participant experimentation, below which inferences would not be sent to the Auton-

omous Module for reprogramming. ACT–R activation levels, already present in the

conscious ACT–R model could be modulated to implement this additional detail.

Modulate agent response to model the cognitive miser. The agent

response, as configured in this dissertation, models FDR (Stanovich, 2009), and is

always either an inference directly from QS, or TCLI, which was previously generated

from an inference. However, humans do not always use FDR, which is evaluating all

alternative hypothesis. Stanovich (2009) present several scenarios where humans tend

to be cognitive misers, and do not use FDR. Advancing the QMA model, representing

these cognitive miser processes and more accurately modeling human decision making,

could be implemented.

Ordinal, Interval or Ratio Scales. Future research could extend this for-

malism to incorporate real-world data sets with ordinal, interval or ratio scaled at-

tributes which will allow for generating a more complete set of inferences, including

spatial and temporal relationships. In addition, this model could be compared to ob-

served behavior from a participant–based experiment, similar to Faghihi et al. (2015)

experiments in which associative memory responses from animal subjects were mod-

eled, and the visual qualia modeled by Arrabales et al. (2010).
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Standard Web Formats. Henson et al. (2012) propose that “. . . the percep-

tion process must generate abstractions [inferences] from observations [experiences]

encoded in Web languages. Much sensor data is encoded in standard Web formats,

is made accessible on the Web, and is increasingly annotated with a sensor ontol-

ogy.” Integrating the QMA with web-available sensor technology would demonstrate

additional utility, and provide current real-world data analytics.

Distance Measure Research. Binary similarity and dissimilarity (i.e., dis-

tance) measures perform critical roles in research, such as, pattern analysis, classifi-

cation, statistics, clustering, and pattern recognition. Numerous distance measures

(over 100 unique binary distance measures in Appendix F) have been developed in

various research fields. The same measure is often developed independently from dif-

ferent research areas, as is evident in the first column of Appendix F. Applying an

appropriate distance measure is important to improved data analysis, yet, despite vo-

luminous literature on the subject, no guidelines exist for selecting optimal measures

for given data set features or research goals (Morris, 2012). Distance measures are

generally selected based on proven superior performance, given select criteria, on a

certain data sets (McCune et al., 2002). In other words, the recommended approach

is empirical evidence based on trial and error.

This dissertation proposes a novel distance measure developed from hypernet-

work theory measures of eccentricity, dQ = max
((

c
a+c

)
,
(

b
a+b

))
, Range: [0, 1]. A pro-

posed area of future research is comparative analysis of dQ with other binary distance

measures, given select performance criteria, such as improved classification accuracy,

consistency or outlier identification.

This dissertation has compared the dQ, using a weighting measure, against the

Euclidean distance in kNN formalism, with four specific data sets. Future research

might demonstrate utility by:
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• comparing dQ against the Euclidean distance for classification accuracy with

no (dQ) weighting factor and no kNN validation (optimal k-selection) step, i.e.,

1-Nearest Neighbor, or,

• comparing dQ against other distance measures using the same, or perhaps ad-

ditional, data sets, given select performance criteria. Some candidate distance

measures, for comparison, are those that also seek maximal distance measures,

such as Goodman and Kruskal (1954) Probability, Goodman and Kruskal (1954)

Lambda, and Relative Decrease of Error Probability, see Appendix F.

Prove, or Disprove, the dQ Distance Measure is a Metric. A recom-

mended area for future research is to to prove, or disprove, this distance measure, dQ,

as defined in Section 3.6.3.1 satisfies the four properties of a metric.

Demonstrate the Algorithm’s Transfer Learning (TL) Capabilities.

In order for TL to be achieved three criteria are necessary: first, one or more, of

the domain or task components must have changed; second, the new domain must

in some way be related to the previous domain; and, third, improved performance,

along some axis, must be demonstrated (Pan and Yang, 2010). In the QMA, when

the target variable changes, concept drift occurs and all four of the task and domain

components change and, with the exception of the source and target target variables,

the domain feature space remains the same. However, further research is necessary to

demonstrate that improved performance, along some axis, has been achieved. Some

axis of performance are: improved classification accuracy and improved efficiency.

In order to test for and potentially demonstrate improved classification accuracy

or efficiency, the QMA algorithm can be run in two separate modes, comparing per-

formance against itself when concept drift is not supported, and when concept drift

is supported. First, with no target variable change without retraining supported,

92



and subsequently in the formalism for which it was designed, testing efficiency and

classification accuracy against itself.

In the first case, multiple batch tests would be run, restarting the algorithm and

changing the target variable between batches. Noting the computational complex-

ity OOM of retraining and testing and the classification accuracy of the combined

multiple batches. Subsequently, the same training and test runs would be run in

one continuous test, changing the target variable to match the original test, without

restarting the algorithm or retraining the cumulative samples. The efficiency of the

second test should demonstrate improvement over the first. Because the test sample

predictive variables are retained within the training samples, given a large enough test

sample set, the classification accuracy of the second set is expected to be improved

over the first, as well.
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Appendix A. Types of Logical Reasoning

Abductive reasoning. “Abductive reasoning is inferring a case (particular

abstract relationship) from a rule (abstract, general claim) and a result (empirical

observation) (Shanahan, 1996).”

The following is the theory of abductive reasoning originally written by Peirce

(1974), as summarized by Svennevig (2001):

Abduction is not just choosing any hypothesis, but selecting one as more
plausible than the others. Peirce presents a set of criteria for choosing the
best hypothesis. And here his theory is more explicitly concerned with the
methodology of scientific inquiry. He mentions three criteria for favoring
one hypothesis over others, namely:

1. The hypothesis should explain the facts
2. It should be economical
3. It should be capable of being subjected to experimental testing.

(Svennevig, 2001)

Furthermore, humans use abductive reasoning to infer knowledge not available in

the environment. Perception, i.e., inferring knowledge, isn’t a deductive or inductive

process, but rather an abductive process, meaning an inference to the best explanation

(Henson et al., 2012; Shanahan, 1996). Generating a series of competing plausible

explanatory hypothesis, and choosing the best based on some set of criteria (Henson

et al., 2012).

Henson et al. (2012) propose an abductive reasoning framework, Parsimonious

Covering Theory (PCT), for evaluating abstractions generated by sensory observations

and context. PCT has primarily been used in medical disease diagnosis. PCT provides

a model of abductive reasoning, i.e., computing the best explanation given a set of

observations. PCT uses an hypothesize-and-test abductive inference process.

Deductive reasoning. A general rule is applied to a specific case, i.e., from

the general to the specific. Deductive reasoning is the only way to achieve a provable,

logical, solution (Svennevig, 2001).
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Inductive reasoning. A generalization is inferred given a specific case, i.e.,

from the specific to the general. In inductive reasoning the conclusion is not assured

to be correct (Svennevig, 2001).

Transductive reasoning. Transductive reasoning is inferring from one spe-

cific experience to another specific case (Vapnik, 2006).
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Appendix B. Hypernetwork Theory: A Mathematical
Formalism

This appendix is a summary of (1) the basic components of set theory on which

hypernetwork theory is based, (2) the definition of metric space, which is used in the

extensions to hypernetwork theory developed in this dissertation, (3) the definition

of a Hausdorff distance (aka Hausdorff metric), which is also used in the extensions

to hypernetwork theory developed in this dissertation, (4) the elements of hypernet-

work theory used in this dissertation, and in the interest of integrity, (5) repeated in

this appendix are the extensions to hypernetwork theory developed as part of this

dissertation. A comprehensive, contemporary, discussion of hypernetwork theory can

be found in Johnson (2013).

B.1 The Mathematical Basis of Hypernetwork Theory: Set Theory

Set theory notation and definitions, necessary for this discussion of hypernetwork

theory, are summarized here, excerpts from Apostol (1974).

B.1.1 Notation.

The following notation is customarily used in set theory and will be used in this

dissertation.

Sets will be denoted by capital letters: A,B,C, . . . , Z; and sometimes in mathemat-

ical formulae as: A,B,C, . . . ,Z, or, A,B, C, . . . ,Z.

Elements will be denoted by lower-case letters: a, b, c, . . . , z. Elements in an un-

ordered set will be surrounded by curly braces, e.g., A = {a, b, c, . . . , z}. Ele-

ments in an ordered set, i.e., a set where the order is relevant, will be surrounded

by parenthesis, e.g., A = (a, b, c, . . . , z).
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Element belongs to a set will be denoted by x ∈ S, which means x belongs to S,

or x is an element of S.

Element does not belong to a set will be denoted by x /∈ S, which means x does

not belong to S, or x is not an element of S.

B.1.2 Definitions.

Definition B.1 (Set). A set S is a collection, infinite or finite, of distinct elements.

Definition B.2 (Ordered pair). A set of two entities in which the order is important.

Let A and B be two sets. Given a ∈ A and b ∈ B, define the ordered pair with the

first component a and the second component b, (a, b). Where (a, b) 6= (b, a).

Definition B.3 (Cartesian product of two sets). Cartesian product of two sets A

and B is a new set denoted by A× B which consists of all ordered pairs of the form

(a, b), where a ∈ A, and b ∈ B. That is, A×B = {(a, b) : a ∈ A and b ∈ B}.

Definition B.4 (Relation). A relation is any set of ordered pairs.

Definition B.5 (Function). A function F is a set of ordered pairs, (x1, y1), (x2, y2),

. . . , (xn, yn), such that no two have the same first element. That is, if x1 = x2, then

y1 = y2.

B.2 Metric Space

Definition B.6 (a metric space). A metric space is a nonempty set M of objects

(called points) together with a function d from M×M⇒ R (called the metric of the

space) satisfying the following four properties for all points x, y, z in M:

1. d(x, x) = 0
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2. d(x, y) > 0 if x 6= y

3. d(x, y) = d(y, x)

4. d(x, y) ≤ d(x, z) + d(z, y). [triangle inequality]

The nonnegative number d(x, y) is to be thought of as the distance from x to y.

A narrative explanation of metric space, provided by Peeler (2011), is presented

here, referencing the definition provided by Apostol (1974):

A metric space is a precise formal measure of distance given any set. Then
we call d a metric on M, and M together with d is called a metric space
(M; d). A metric as defined gives us a formal way to view the notion of
distance between points in a set. The [second] property is simply justified
-distance is never taken to be negative by convention and is only zero for
two nondistinct points. The [third] property makes good sense as well-dis-
tance ought not to depend on which point is considered first. The [fourth]
property comes as a necessity. Consider the set of points comprising a
Euclidean plane: any three non-collinear points form a triangle, and any
one side length of such a triangle must be less than the sum of the other
two side lengths. Therefore, the distance between two points must be less
than the sum of the distances between each of those points and a third
point. (In the case of points along the same line we have equality). This
property is often referred to as the triangle inequality. (Peeler, 2011)

The reason for ensuring the distance measure used is a metric space is to guarantee

that the distances between all members of the set are defined. There is no set of

members, however obscure, where the distance is undefined. Additionally, a metric

space creates well-understood topological properties such as open and closed sets,

which contribute to a better understood behavior of the model (Apostol, 1974).

However, there are many similarity and distance measures, which are, in fact, not

metric spaces. They are often referred to as robust non-metric distances (Jacobs et al.,

2000), and successfully used in classification algorithms. For instance, the Euclidean

distance is a metric space, but the Squared Euclidean (aka Hamming, Manhatten,

City Block, when data are binarized), is not a metric space (see Appendix F). The
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Squared Euclidean fails the triangle inequality test.

If x = (0, 0), y = (0, 2), and z = (0, 1) as elements of R2 for which the pair-wise

distances are: dSE(x, y) = 4, dSE(y, z) = 1, and dSE(x, z) = 1, fails the triangle

inequality, 4 ≤ 1 + 1 (Gardner et al., 2014).

B.3 Hausdorff Distance

A Hausdorff distance, aka Hausdorff metric, is a metric, because it satisfies the

four properties of a metric, defined in Metric Space (Sternberg, 2010).

Definition B.7 (Hausdorff distance). The Hausdorff distance between
two sets of numbers A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm} is
defined as:

d(A,B) = max

{
max
a∈A

min
b∈B
|b− a|,max

b∈B
min
a∈A
|a− b|

}
. (13)

In other words, the Hausdorff distance between A and B is the smallest
value d such that every point of A has a point of B within distance d and
every point of B has a point of A within distance d.

The Hausdorff distance can also be defined for point sets in
two or more dimensions, where |a − b| must be replaced by the
Euclidean distance between a and b (or any other appropriate
distance measure.) (Rote, 1991)

The last paragraph of Rote’s definition is utilized in the Qualia Modeling Agent

(QMA) formalism, in which multiple dimensions are defined, and |a − b| is replaced

by the appropriate distance measure, dQ, defined in Definition B.15.

B.4 Hypernetwork Theory Definitions

Definition B.8 (Incidence Matrix). “A matrix is called the incidence matrix (de-

noted by Λ) of the relation λ is an array of numbers λij, with each λij being either
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0 or 1. The number λij equals 1 if ai is λ-related to bj and is 0 otherwise (Johnson,

2013).”

Example B.1. Incidence Matrix. If A = {1, 2, 3}, B = {0, 4, 8, 10} and λ is the

relation less than, then λ is the subset of A×B defined by the ordered pairs:

λ = {(1, 4), (1, 8), (1, 10), (2, 4), (2, 8), (2, 10), (3, 4), (3, 8), (3, 10)}. For this example,

the relation is a 2-dimensional incidence matrix, illustrated in Table 14:

Table 14: Example Incidence Matrix.

(B)

λ 0 4 8 10

1 0 1 1 1

Λ = (A) 2 0 1 1 1

3 0 1 1 1

Definition B.9 (Polyhedron). In algebraic topology [polyhedron] is defined as a

space that can be built from such building blocks as line segments, triangles, tetrahe-

dra, and their higher dimensional analogs by connecting them at points, or along their

edges, faces, or greater dimensional structures. Original source (Munkres, 1993), as

found at (Wolfram, 2015).

Polyhedra are the geometric realisation of more abstract objects called
simplices. Let V be a set of vertices. An abstract p-simplex is determined
by a set of p + 1 vertices, written as 〈v0, v1, ..., vp〉. Simplices are often
represented by the symbol σ. (Johnson, 2013)

Definition B.10 (Simplex). “A simplex is the generalization of a tetrahedral [or

greater] region of space to n dimensions. The boundary of a k-simplex has k + 1
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0-faces (vertices), k(k+1)/2 1-faces (edges) and
(
k+1
i+1

)
i-faces, where

(
n
k

)
is a binomial

coefficient (Johnson, 1995).”

More specifically, a simplex can be defined as the underlying space of a simplicial

complex, with the additional constraint sometimes imposed that the complex be finite

(Monk, 1974; Munkres, 1993).

The simplex σ = 〈v0, v1, ..., vp〉 is a p-dimensional face, or p-face, of the
simplex σ′ = 〈v0, v1, ..., vp〉 if every vertex of σ is also a vertex of σ′. For ex-
ample, the 3-dimensional tetrahedron 〈v0, v1, v2, v3〉 has four 2-dimensional
triangular faces 〈v1, v2, v3〉, 〈v0, v2, v3〉, 〈v0, v1, v3〉, 〈v0, v1, v2, 〉. (Johnson,
2013)

Definition B.11 (Simplicial Complex). “A set of simplices with all of their faces

(Johnson, 2013).”

A simplicial complex can be represented by an incidence matrix:

• A p-dimensional polyhedron has p+ 1 vertices.
• The vertices of networks, 〈v〉, have dimension zero.
• Edges, 〈v0, v1〉, have dimension one but two vertices.
• For higher dimensional polyhedra, a triangle 〈v0, v1, v3〉 has dimen-

sion two but three vertices. A tetrahedron 〈v0, v1, v3, v4〉 has dimen-
sion three but four vertices, and so on.
• By labelling the first vertex v0, the last vertex of a p-dimensional

polyhedron can be labelled vp, and this convention will be used as
appropriate throughout this appendix.
• Thus the generality is that a p-dimensional polyhedron will be writ-

ten as 〈v0, v1, ..., vp〉. (Johnson, 2013)

Definition B.12 (Eccentricity of a simplex with respect to another (Johnson, 2013)).

ecc(σ|σ′) def
=
|σ r σ′|
|σ|

=
number of σ vertices not shared with σ′

number of vertices of σ
(14)

Definition B.13 (Eccentricity of a simplex with respect to a family of simplices F
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(Johnson, 2013)).

ecc(σ|F )
def
= min{ecc(σ|σ′)|σ′ belongs to F} (15)

Definition B.14 (Eccentricity of a simplicial family F with respect to family F ′

(Johnson, 2013)).

ecc(F |F ′) def
= min{ecc(σ|σ′)|σ′ in F ′} (16)

Eccentricity cannot be used directly as a metric because it does not satisfy the

requirement for symmetry, the third property in Definition B.6. The eccentricity of

σ with respect to σ′, ecc(σ|σ′), is not guaranteed to be equal to the eccentricity of σ′

with respect to σ, ecc(σ′|σ).

(ecc(σ|σ′)) 6= (ecc(σ′|σ)) (17)

B.5 Extending Hypernetwork Theory

In order to satisfy the requirement of symmetry in a metric a Hausdorff distance

(Rote, 1991) was applied, and the distance (dQ) between two simplices defined to be

the maximum of ecc(σ|σ′) and ecc(σ′|σ).

Definition B.15 (Distance between two simplices). Let σ and σ′ be two simplices.

The distance (dQ) between σ and σ′ is defined to be:

dQ(σ, σ′)
def
= max{ecc(σ|σ′), ecc(σ′|σ)} (18)

Definition B.16 (Distance between a simplex and a family of simplices F ). Let σ

be a simplex, and F be a family, i.e., a set of simplices. The distance (distQ) between
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σ and F is defined to be:

distQ(σ, F )
def
= min{dQ(σ, σ′) : σ′ belongs to F} (19)

The weight, wQ, illustrated in Figure 27 is defined to be the proportion of sim-

plices, σ, in family, F, where dQ(σq, σ) is equal to distQ(σq, F ):

wQ(σq, F )
def
=

card{σ ∈ F : dQ(σ, σq) = distQ(σq, F )}
card(F )

(20)

Figure 27: Illustration of Weight Function. Given three families, A,B,C, and a
Query Simplex, Q. The minimum distance, distQ, is represented with a solid line.
Since distQ(Q,A) = distQ(Q,C), the closest family is determined by the largest
weight function. The weight for family A = 1/4, and the weight for family C = 1/2,
therefore C is the closest family.

The value of the Query Element is inferred by finding the Simplicial Family to

which the Query Simplex is closest, i.e., the family with the smallest distance, distQ.

Should more than one family share the closest distance, distQ, the closest family is

determined to be the one with the greatest weight, wQ.
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Appendix C. ACT-R

Note: Adaptive Control of Thought–Rational (ACT–R) is open-source, modular,
written in Common Lisp (CL) and extendable1. The source code, documentation,
tutorials and scientific papers based on ACT–R models, can be found at (Anderson
et al., 2015).

C.1 A Cognitive Modeling Architectures (CMAs)

A cognitive architecture is a theory of the detailed processes of cognitive perfor-

mance and learning. The primary purpose of a well-defined cognitive architecture is

to provide a framework to facilitate research and understanding of components and

processes of cognition. A secondary purpose is the advancement of the computational

sciences by leveraging what is learned from research incorporating cognitive architec-

tures. No cognitive architecture claims to provide a complete, or even nearly complete,

model with the level of human intelligence, however, important design principles have

emerged, pointing to promising models of generic and scalable architectures with close

analogy to human cognitive processing. A cognitive architecture, that has been im-

plemented in a computer-based modeling tool, is referred to as a Cognitive Modeling

Architecture (CMA) (Chong et al., 2007; Hélie and Sun, 2014; Newell, 1990).

C.2 Overview of ACT-R

ACT–R is both a theory of human cognition, originally published by Anderson

and Lebiere (1998), and a software toolset (a CMA) in which many aspects of the

theory are modeled. The ACT–R toolset has been continuously updated and ex-

tended, as the field of cognitive modeling has matured, until present. The goal of the

toolset is to provide a general theory of cognition, explain how information is encoded,

1Extendible ACT–R source code is only available for Windows operating systems.
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retrieved, and processed and help researchers model, predict and explain human be-

havior (Banks, 2013). The title of the theory, Adaptive Control of Thought–Rational

(ACT–R), is interesting, as many would argue, and some cognitive researchers, in par-

ticular Stanovich (2009), have demonstrated that human behavior is often irrational,

but that discussion is beyond the scope of this dissertation.

Banks, a long time user and contributor to ACT–R theory and toolset, provides

a succinct description of ACT–R theory and features:

According to ACT–R theory, cognition emerges through the interaction
of several independent modules in the brain. These modules have special-
ized functions. The declarative memory module governs the storage and
retrieval of declarative information. The problem state (or imaginal) mod-
ule is responsible for the storage of intermediary mental representations
that are used during thinking. The control (or goal) module contains in-
formation about the current goal when completing a task. The procedural
module controls how each of these modules interacts.

Procedural memory controls the interaction of modules through a se-
ries of if-then production rules that comprise procedural memory. The
conditions of each rule are matched against the modules, and if one is
met, then it fires and executes its actions. Typically, these actions in-
volve the further encoding, retrieval, or processing of information and so
the cognitive process is advanced. The cycle then continues and another
production rule (or possibly the same one) will match and fire and so on,
until the process completes.

The conditions of each production rule are matched against various
module buffers. Buffers provide an interface to each of the modules by
holding chunks that are the output of the current processing of that mod-
ule. A chunk is a symbolic representation of facts that have been encoded.
Only one chunk can be held in a buffer at any one time. Depending on
the function of the module, different types of chunk will be placed in
these buffers. For example, the chunk in the declarative memory buffer is
the last item retrieved from declarative memory; the chunk in the prob-
lem state buffer is the intermediary representation that is being used in
the current task. Hence, production rules typically match a pattern of the
buffer contents from several modules and determine the action that should
be taken given that situation, moving it along a step. Different patterns
will trigger different rules and therefore different actions. (Banks, 2013)

ACT–R does not provide an organic feature to represent, i.e., abstract, aggregate,
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blended knowledge, or the maximally integrated information structures of qualia space

(QS) as discussed in Section 2.3.

C.3 Declarative Memory (DM)

In ACT–R instances of declarative memory (DM) are called chunks, which are

programmatically defined as chunk-types, and slots. A chunk-type can be thought

of as a category (e.g., Soybean-Sample) and slots as variables (e.g., disease, precipi-

tation, temperature, hail, mold-growth, etc.).

A chunk-type is defined by the syntax: (chunk-type name slot-name-1 slot-

name-2 . . . slot-name-n) Individual chunks are populated by declaring a chunk of a

particular chunk-type with the ISA keyword, and filling the slots values by position.

Empty slot values are supported with the nil Lisp symbol (Bothell, 2015; Anderson

et al., 2012). The following example defines two memory chunks:

(chunk-type Soybean-Smpl disease precip temp hail mold-growth)

(sample001 ISA Soybean-Smpl brown-stem-rot nil gt-normal yes present)

(sample002 ISA Soybean-Smpl cyst-nema gt-normal lt-normal no absent)

C.4 Procedural Memory (PM)

Procedural Memory (PM) is modeled programmatically with condition-action

pairs, called productions. Productions respond to the patterns in the DM chunks as

contingency, i.e., if-then, rules which control behavior of the model. Pattern-matching

in ACT–R can be either complete or partial (Bothell, 2015; Anderson et al., 2012). For

the purposes of this dissertation, productions implement complete pattern-matching.

A limitation of the toolset is that productions are somewhat inflexible. Produc-

tions do not accept variable parameters, therefore chunk-types, the number of slots,

and slot names (sample variables) have to be hard-coded into the model.
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C.5 Overcoming PM Limitations

In order to make the Qualia Modeling Agent (QMA) generalizable, and to avoid

hand-writing the productions for each new data set, code was written that dynami-

cally generates the productions, based on the variables of the data set.

C.6 Activation Level

Cognitively, an activation level is “A state of memory traces that determines both

the speed and the probability of access to a memory trace (Anderson, 2005, 183)”.

The following discussion describes how activation levels are implemented in ACT–R.

Every chunk in ACT-R’s declarative memory has associated with it a
numerical value called its activation. The activation reflects the degree
to which past experiences and current context indicate that chunk will be
useful at any particular moment. When a retrieval request is made the
chunk with the greatest activation among those that match the specifica-
tion of the request will be the one placed into the retrieval buffer. There is
one constraint on that however. There is a parameter called the retrieval
threshold which sets the minimum activation a chunk can have and still
be retrieved. It is set with the :rt parameter: (sgp :rt -0.5) [in the QMA
:rt is set to the default, 0.0]
If the chunk with the highest activation among those that match the re-
quest has an activation which is less than the retrieval threshold, then
no chunk will be placed into the retrieval buffer and an error state will
indicate the failure. The activation Ai of a chunk i is computed from three
components the base-level, a context component and a noise component.
We will discuss the context component in the next unit. So, for now the
activation equation is:

Ai = Bi + ε (21)

Bi: The base-level activation. This reflects the recency and frequency of
practice of the chunk i.
ε: The noise value. The noise is composed of two components: a perma-
nent noise associated with each chunk and an instantaneous noise com-
puted at the time of a retrieval request.

Base-level Learning
The equation describing learning of base-level activation for a chunk i is:
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Bi = ln (
n∑

j=1

t−dj ) (22)

n: The number of presentations for chunk i.
tj: The time since the jth presentation.
d: The decay parameter which is set using the :bll (base-level learning)
parameter. This parameter is almost always set to 0.5. [in the QMA :bll
is set to 0.5]

This equation describes a process in which each time an item is pre-
sented there is an increase in its base-level activation, which decays away
as a power function of the time since that presentation. These decay ef-
fects are summed and then passed through a logarithmic transformation.
There are two types of events that are considered as presentations of a
chunk. The first is its initial entry into declarative memory. The other
is any merging of that chunk with a chunk that is already in declarative
memory. (Anderson et al., 2012) (Unit #4).
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Appendix D. Machine Learning (ML) Concepts

D.1 Nonparametric Classifiers

Like k-nearest neighbors (kNN) and decision tree (DT), the qualia space (QS) al-

gorithm is nonparametric, meaning that it makes no assumptions about the training

data distribution, all training samples are maintained for the test phase, and classifi-

cation decisions are based on the entire training set. The training cost is very low for

nonparametric classifiers, but the testing phase time and memory cost can be very

high (Thirumuruganathan, 2010). For kNN and QS test cost includes comparison to

all data points.

The QS hypernetwork algorithm can be considered most analogous to a 1-nearest

neighbor classification algorithm with the differences:

1. a modified distance measure,

2. a weighting function,

3. test samples are added to the training data set,

4. the target variable (class) can change from test sample to test sample.

D.2 k-Fold Cross Validation

With k-fold cross validation each sample serves multiple duties, as training, val-

idation, and test, therefore resulting in a more accurate result than training/valida-

tion/test methods that do not use all samples in all roles. Popular rule-of-thumb

values for k in k-fold cross validation are 5 and 10 (Russell and Norvig, 2009).

The lower k-value (2-5) is less computationally expensive, as well as less time con-

suming for result evaluation and reporting, variance is increased, and bias decreased.

Larger k-values (10-20) are more computationally expensive, as well as more time con-

suming for result evaluation and reporting, reduces the variance, while increasing the
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bias. Variance can, however, be reduced, without increasing bias, by re-randomizing

the data and repeating cross-validation with the same k (Kohavi et al., 1995).

Due to the manually expensive process of running the various models, compiling

and reporting the results, a moderate k value of 5 was selected for this research. In

order to reduce variance, while not increasing bias, the entire process was repeated

with the data set re-randomized.

D.3 Computation Complexity Order Of Magnitude (OOM)

The computational complexity Order Of Magnitude (OOM) of kNN, DT and

Qualia Modeling Agent (QMA), summerized in Table 13, are evaluated with the

same 5-fold cross-validation technique used to calculate the proportion of accurately

classified test samples: three folds are used to train, one to validate and one to test.

For the following discussion and equations:

a = number of features (variables) (23)

m = sample size

Tr = training set, (3/5)m

V = validation set, (1/5)m

Te = test set, (1/5)m

D.3.1 K-Nearest Neighbors (kNN) Computation Complexity OOM.

In order to find the closest neighbor(s) to one test sample, the distances between

the test sample and each of the samples in the training set, Tr, must be calculated.

Therefore the OOM for one test sample is O(aTr) (Thirumuruganathan, 2010). This

calculation, however, does not provide any insight into the best choice of k for the
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particular data set. In order to select the best choice of k, 5-fold cross validation was

applied, using the validation fold to select the best choice of k to apply to the test

fold.

In the kNN algorithm, the training step includes converting the categorical data

from a positional parameter list into a ordered binary representation, at a cost of

O(aTr). Additionally, in the 5-fold cross-validation technique the kNN algorithm

training cost also includes the validation step.

In the validation step all validation samples, V , are compared to all training

samples, Tr, to determines the choice for k, which will be used for the test queries.

The cost to train (i.e., determine the best choice for k) is evaluated as follows:

1. Converting the categorical data from a positional parameter list into a ordered

binary representation, at a cost of O(aTr).

2. The cost for one validation sample is O(aTr) (Thirumuruganathan, 2010).

3. All validation samples are compared to all training samples, and a tally is kept

of the distances, therefore kNN training cost is:

O(aTr) +O(aV (Tr))⇒ O(a(3/5)m) +O(a(1/5)m(3/5)m) (24)

⇒ O(a(3/5)m) +O(a(3/25)m2).

4. Each validation sample is evaluated at each level, k = 1 to x , looking at corre-

sponding training labels and assigning the best guess of the k closest, based on

majority vote.

5. At each k level the number of misclassified labels (training errors) are summed.

At the end of the training (validation) process the (smallest) k, with the least mis-

classification errors, is selected for the testing phase.

The cost to test is evaluated as follows:
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1. Given one test sample, it is compared to all training samples, and a tally is kept

of the distances, therefore the kNN query time for one test sample is:

O(a(Tr))⇒ O(a(3/5)m). (25)

2. The k nearest neighbors are polled and the label selected by majority vote.

3. The kNN query time for all test samples is:

O(a(3/5)m(1/5)m)⇒ O(a(3/25)m2) (26)

The total cost of kNN training and testing is:

O(a(3/25)m2) +O(a(3/25)m2) = O(a(3/5)m) +O(a(6/25)m2) (27)

D.3.2 Decision Tree (DT) Computation Complexity OOM.

(Pedregosa et al., 2011) The training cost of the DT algorithm is in building the

tree, and the OOM is highly dependent on the specific balance of features of the data

set, but in general, the cost in constructing a balanced tree is:1

O(nsamplesnfeaturesLog(nsamples)) (28)

and DT query time for one test sample is:

O(Log(nsamples)). (29)

Assuming the subtrees remain approximately balanced, the cost at each node consists

of searching through O(nfeatures), to find the feature resulting in the largest reduction

1Log refers to natural, base-e, logarithm in these calculations.
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in entropy. This has a cumulative cost, at each node, of:

O(nsamplesnfeaturesLog(nsamples)) (30)

resulting in a total cost (summing the cost at each node) of

O(n2
samplesnfeaturesLog(nsamples)). (31)

A more efficient method would be to pre-sort features over all samples, and retaining

a running label count, reduces the complexity at each node to:

O(nfeaturesLog(nsamples)) (32)

resulting in a total DT training cost of:

O(nsamplesnfeaturesLog(nsamples)) (33)

Given the more efficient method and 5-fold cross-validation, the total cost to train

a balanced tree is:

O(a(Tr)Log(Tr))⇒ O(a(3/5)mLog(3/5m)), (34)

the total cost to query all test samples is:

O(Log(Tr)Te)⇒ O(Log(3/5m)(1/5m)). (35)
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The total cost of DT training and testing, is:

O(a(3/5)mLog(3/5m)) + (Log(3/5m)(1/5m)) = O([a(3/5) + (1/5)]mLog(3/5m)).

(36)

D.3.3 Qualia Space (QS) Computation Complexity OOM.

The OOM computed here is taking the QS hypernetwork algorithm in isolation,

not considering the processing overhead of situating the algorithm in the QMA.

In the QS algorithm, the training step is converting the categorical data from a

positional parameter list into a ordered binary representation. The cost to convert

and store the training set in QS, i.e., the training cost is O(aTr).

There is no validation step in QS, therefore the validation (V) samples are dis-

missed.

The cost to test is evaluated as follows:

1. Given one test sample, it is compared to all training samples, Tr, using the

distance measure, dQ, which requires two measures of eccentricity, ecc(σ|σ′)

and ecc(σ′|σ), therefore, the cost to test one sample in QS is:

O(2a(Tr))⇒ O(2a(3/5)m)⇒ O(a(6/5)m). (37)

2. The QS query time for all test samples is:

O(2a(Tr)(Te))⇒ O(2a(3/5)m(1/5)m)⇒ O(a(6/25)m2) (38)

The total cost of QS training and testing is:

O(aTr) +O(2a(Tr)(Te))⇒ O((a(3/5)m+ a(6/25)m2) (39)

114



D.4 Incremental vs Batch Machine Learning

The difference between incremental learning and batch machine learning (ML)

algorithms is that incremental learning does not require the training to be complete

before the testing (querying) process begins, but the test samples continue to be

added to the training model after testing has begun. In batch learning all training

samples are available and incorporated into the model before testing begins. A more

rigorous definition of incremental learning is:

Definition D.1 (Incremental learning). A sequence of instances [obser-
vations] is observed, one instance at a time, not necessarily in equally
spaced time intervals.

Let X t ∈ Rp [be] a vector in p−dimensional feature space observed
at time t and yt is the corresponding label. We call X t an instance and
a pair (X t,yt) a labeled instance. We refer to instances (X1, . . . ,X t)
as historical [or training] data and instance X t+1 as target (or testing)
instance.

At every time step t we have historical data (labeled) available XH =
(X1, . . . ,X t). A target instance X t+1 arrives. The task is to predict a
label yt+1. For that we build a learner Lt, using all or a selection from
the available historical data XH . We apply the learner Lt to predict the
label for X t+1).

At the next step after the classification or prediction decision is casted,
the label yt+1 becomes available. How the instance X t+1 with a label is
a part of historical data. The next testing instance X t+2 is observed.
(Žliobaitė, 2010)
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D.4.1 Instance Memory vs. Conceptual Memory.

(Maloof and Michalski, 2004) Incremental ML algorithms can have two types of mem-

ory, instance or concept, which are analogous to, and modeled after, human episodic

and conceptual memory (knowledge), respectively:

Instance: a memory for representing each individual instance, or episode;

Concept: a memory for representing aggregate information compiled into a concept.

In the QMA all sensory data are stored in both QS and in autonomous Adaptive

Control of Thought–Rational (ACT–R) declarative memory (DM), however, due to

activation levels, older or unaccessed instances in autonomous DM fade over time.

The goal of the QS model is to represent conceptual knowledge, abstracted from

aggregate sensory data to general categories of the properties of that class of experi-

ence.

D.4.2 Incremental Learning with Concept Drift.

A phenomena, particular to incremental learning, is concept drift, which refers to

a learning problem that changes over time. In particular, the statistical properties

of the target variable, which the model is trying to predict, change over time in

unforeseen ways (Žliobaitė, 2010).

Definition D.2 (Concept Drift). Every instance X t is generated by a
source St. If all the data is sampled from the same source, i.e., S1 = S2 =
. . . = St+1 = S we say the concept is stable. If for any two points in time
i and j Si 6= Sj, we say that there is a concept drift.

The core assumption when dealing with the concept drift
problem is uncertainty about the future. We assume that the source
of the target instance X t+1 is not known with certainty. It can be assumed,
estimated or predicted but there is no certainty. (Žliobaitė, 2010)
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Classification problem. A classification problem, independent of the
presence or absence of concept drift, may be described as follows.

Let X t ∈ Rp [be] an instance in p−dimensional feature space. X ∈

ci, where c1, c2, . . . ck is the set of class labels. The optimal classifier to

classify X → ci is completely determined by prior probabilities for the

classes P (ci) and the class-conditional probability density function (pdf)

p(X|ci), i = 1, . . . , k. (Narasimhamurthy and Kuncheva, 2007)

Data source. We define a set of prior probabilities of the classes and
class-conditional pdfs as concept or data source:

S = {(P (c1), p(X|c1)), (P (c2), p(X|c2)), . . . , (P (ck), p(X|ck))} (40)

When referring to a particular source at time t we will use the term source,
while when referring to a fixed set of prior probability and the classes and
class-conditional pdfs we will use the term concept and denote it with S.
(Narasimhamurthy and Kuncheva, 2007)

D.5 Ordering Effect and Convergence

An ordering effect, in incremental learning, occurs when the test samples, intro-

duced to the algorithm in a different order, produce different results. To demonstrate

no ordering effect, using n test sample, the algorithm must produce the same results

at the end of the testing phase for the n! possible orders (Almaksour, 2011; Cornuéjols,

1993).

Convergence, in ML is when the method, or algorithm, converges toward an op-

timal hypothesis, or estimation. Convergence is often achieved by increasing the

number of training samples, if available (Mitchell, 1997).
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D.6 Bayes Error

Definition D.6.1 (Bayes probability of error, B, for a multiclass classifier with

discrete features).

B = 1− P (ωj|x), (41)

where

P (ωj|x) =
P (x|ωj)P (ωj)

P (x)
, (42)

and

P (x) =
c∑

j=1

P (x|ωj)P (ωj) (43)

where c = number of classes, and P (x|ωj) is the conditional probability that x equal

the state of nature ωj (Duda et al., 2001, 36).

D.7 Supervised vs. Unsupervised Machine Learning

“Supervised machine learning is the search for algorithms that reason from exter-

nally supplied instances to produce general hypotheses, which then make predictions

about future instances. In other words, the goal of supervised learning is to build a

concise model of the distribution of class labels in terms of predictor features. The

resulting classifier is then used to assign class labels to the testing instances where the

values of the predictor features are known, but the value of the class label is unknown

(Kotsiantis et al., 2007)”

The defining difference between supervised and unsupervised learning is the exis-

tence of labels which presumably accurately classify the training set samples.

In unsupervised learning the agent learns patterns, even though no explicit labels
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are provided, detecting potentially useful clusters of samples (Russell and Norvig,

2009).

D.8 Transfer Learning (TL)

(Pan and Yang, 2010) In the research field of ML, Transfer Learning (TL) is the ability

of a system to apply knowledge or skills learned in previous tasks to subsequent tasks

or new domains, which are similar in some way. Pan and Yang’s formal definitions of

a domain, a task and TL, as applied to the domain and task, are:

Definition D.8.1 (Domain). A domain, D, consists of two components:
a feature space, X , and a marginal probability distribution (mpd), P (X),
where X = {x1, . . . , xn} ∈ X .

Definition D.8.2 (Task). Given a specific domain, D = {X , P (X)},
a task consists of two components: a label space Y and an objective
predictive function f(·) (denoted by T = {Y , f(·)}), which is not observed
but can be learned from the training data, which consists of pairs {xi, yi},
where xi ∈ X and yi ∈ Y . The function f(·) can be used to predict
the corresponding label, f(x), of a new instance x. From a probabilistic
viewpoint, f(x) can be written as P (y|x).

Definition D.8.3 (Transfer Learning (TL)). Given a source domain, DS,
and learning task, TS, a target domain, DT and learning task, TT , Transfer
Learning (TL) aims to help improve the learning of the target predictive
function fT (·) in DT using the knowledge in DS and TS, where DS 6= DT ,
or TS 6= TT .

Given these definitions, TL is realized under the following conditions:

• A domain is a pair D = {X , P (X)}. Thus, the condition DS 6= DT

implies that either XS 6= XT or PS(X) 6= PT (X).

• A task is defined as a pair T = {Y , P (Y |X)}. Thus, the condition
TS 6= TT implies that either YS 6= YT or P (YS|XS) 6= P (YT |XT ).

• When the domains are different, then either (1) the feature spaces
between the domains are different, i.e., XS 6= XT , or (2) the feature
spaces between the domains are the same but the marginal proba-
bility distributions between domain data are different; i.e., P (XS) 6=
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P (XT ), where XSi
∈ XS and XTi

∈ XT .

When the target and source domains are the same, i.e., DS = DT ,
and their learning tasks are the same, i.e., TS = TT , the learning problem
becomes a traditional machine learning problem (Pan and Yang, 2010).

Pan and Yang categorize various ML methods based on the relationships between

source and target domains and tasks, as well as, whether or not the data are labeled,

as illustrated in Table 15.

Table 15: Relationship between Traditional Machine Learning (ML) and Various
Machine Learning (ML) Methods (Pan and Yang, 2010).

Learning Method Source & Target

Domains

Source & Target

Tasks

Source Data

Labeled

Target Data

Labeled

Traditional ML the same the same both labeled

and unlabeled

both labeled

and unlabeled

Inductive2 TL (case I) the same different

but related

labeled some

Inductive TL (case II) the same different

but related

none some

Unsupervised TL different

but related

different

but related

none none

Transductive3 TL different

but related

the same labeled none

2see Inductive reasoning in Appendix A.
3see Transductive reasoning in Appendix A.
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Appendix E. Distance Measures for Binary Data

Measuring distance, or the inverse, similarity, between two observations, captured

as entities in a data set, is a core requirement for this research. Widely used distance

measures for continuous and ordinal data are the Manhattan Distance and Euclidean

Distance measures, which are specific cases of the more general Minkowski Distance

(Gentle, 2009). However, the data sets to which the qualia space (QS) algorithm

apply, are exclusively categorical data (also known as nominal or qualitative multi-

state data). The notion of a distance measure is not as straightforward for categorical

data as for continuous data values, because there is no natural ordering or unit of

measurement (Boriah et al., 2008).

One contribution of this research is a novel distance measure for categorical data,

dQ, developed from hypernetwork theory, using measures of eccentricity. This section

will compare the dQ distance measure to some common methods for measuring simi-

larity and distances between categorical data points, specifically the Simple Matching,

Euclidean, and Hamming Distance measures.

E.1 Binarizing Categorical Data

The similarity and distance measures described in this research require that the

categorical attributes be converted to binary values, also known as binarizing.

A commonly used method, explained by Lourenco et al. (2004), published origi-

nally by Bação (2002), is to create one binary variable for each categorical attribute.

This is explained here with a simple example. Take the case of a categorical object

with two variables x = (x1, x2). The first variable having three possible values (at-

tributes), e.g. x1 ∈ {A,B,C}, and the second variable having two possible values

(attributes), e.g., x2 ∈ {D,E}. The resulting binary object will be:
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x′ = (x′1, x
′
2, x
′
3, x
′
4, x
′
5) (44)

where

x′1 =


1, if (x1 = A)

0, if (x1 6= A)

and, x′2 =


1, if (x2 = B)

0, if (x2 6= B)

and, x′3 =


1, if (x3 = C)

0, if (x3 6= C)

and,

x′4 =


1, if (x4 = D)

0, if (x4 6= D)

and, x′5 =


1, if (x5 = E)

0, if (x5 6= E)

Given this binary arrangement of the data the features of two objects with the

same number of ordered elements can be compared, x = (x1, x2, . . . , xn) and y =

(y1, y2, . . . , yn), where:

a = number of times xi = 1 and yi = 1

b = number of times xi = 0 and yi = 1

c = number of times xi = 1 and yi = 0

d = number of times xi = 0 and yi = 0

Given the sums a through d, and Table 16, distance measures for binarized data

can be easily calculated and compared.
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Table 16: Contingency Table Values for Binary Similarity and Distance Measures
(Lourenco et al., 2004). Also referred to as the Operational Taxonomic Unit (OTU)
expressions for binary instances (Choi et al., 2010).

Object x

1 0 sum

Object y 1 a b a+b

0 c d c + d

sum a + c b + d n = a + b + c + d

E.2 (Dis)Similarity measures

E.2.1 Simple Matching Similarity.

The simplest similarity measure is the Simple Matching, which is derived from

the simple matching coefficient |A∩B|, i.e., the number of shared, ordered, elements

(van Rijsbergen, 1979). Formally, the Simple Matching similarity measure is the

cardinality of the intersection of two ordered sets, A and B (Lourenco et al., 2004):

SM(A,B) = n|A ∩B| (45)

Equation (45) does not take into consideration the length of the ordered sets.

Simple Matching similarity measure for binarized data, sSM , does take into con-

sideration cardinality and the negative co-occurrence (value d in Table 16), and can

be written as (Lourenco et al., 2004):

sSM =
a+ d

a+ b+ c+ d
, Range: [0, 1] (46)

For the sake of consistency, the inverse, Simple Matching distance measure, dSM can
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be written as:

dSM = 1−
(

a+ d

a+ b+ c+ d

)
, Range: [0, 1] (47)

E.2.2 Euclidean Distance.

(Deza and Deza, 2009) The Euclidean distance is the length of a straight-line between

two points in Euclidean space. In Cartesian coordinates, if x = (x1, x2, ..., xn) and

y = (y1, y2, ..., yn) are two points in Euclidean n-space, then the distance between x

and y is calculated with the Pythagorean formula:

d(x,y) = d(y,x) =
√

(y1 − x1)2 + (y2 − x2)2 + · · ·+ (yn − xn)2 (48)

=

√√√√ n∑
i=1

(yi − xi)2

When the Euclidean distance is applied to binarized Cartesian coordinates, where all

xi, yi ∈ {0, 1}, then the Euclidean distance equation for binarized data, dE, expressed

in OTUs, can be written as (Choi et al., 2010):

dE =
√
b+ c, Range: [0,∞) (49)

E.2.3 Hamming Distance.

The Hamming distance was originally defined for binary codes, as the number of

bits that are different in two binary vectors. However, the Hamming distance can

be applied to any ordered set of equal length. This distance measure being the sum

of the total mismatches of the corresponding attributes of two objects (Gentle, 2009;

Lourenco et al., 2004). Formally, (Lourenco et al., 2004):
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dH(x, y) =
n∑

i=1

δ(xi, yi) (50)

where

δ(xi, yi) =


0, if (xi = yi)

1, if (xi 6= yi)

The Hamming distance function for binarized data, dH , expressed in OTUs, can be

written as (Lourenco et al., 2004):

dH = b+ c, Range: [0,∞) (51)

Another popular distance measure, the Manhattan, or City Block, distance, dM , is

equal to the Hamming distance when applied to binarized data (Choi et al., 2010).

dM = b+ c, Range: [0,∞) (52)

E.2.4 Qualia Space Distance.

The QS distance, dQ, defined in Equation (18), expressed in OTUs, can be written

as:

dQ = max

((
c

a+ c

)
,

(
b

a+ b

))
, Range: [0, 1] (53)

E.2.5 Comparing Standard Distance Measures.

Table 17 will be used to compare the distance measures discussed.

125



Table 17: A simplicial complex, which will be used to compare the different distance
measures discussed.

Attribute Set

disease hail seed

-discolor

precipitation leaf

-mildew

Simplex p
re

se
n
t

a
b

se
n
t

p
re

se
n
t

a
b

se
n
t

lt
n

or
m

al

n
or

m
a
l

g
t

n
o
rm

al

a
b

se
n
t

u
p

p
er

-s
u

rf
ac

e

lo
w

er
-s

u
rf

a
ce

ID Label X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

σ0 bact.-blight 0 1 0 1 0 0 1 1 0 0

σ1 bact.-blight 0 1 1 0 0 0 1 1 0 0

σ2 cyst-nem. 1 0 1 0 1 0 0 0 0 1

σ3 cyst-nem. 1 0 1 0 0 0 0 1 0 0

σ4 herb.-injury 1 0 0 1 0 0 1 0 1 0

σq 〈query〉 1 0 0 1 0 0 1 1 0 0

When categorical features are binarized, the Simple Matching (scaled), the Eu-

clidean (squared), the Hamming and Manhattan distances provide the same results

in terms of boundary delineation when applied to classification problems (Lourenco

et al., 2004). However, the QS distance measure, dQ, would result in a different

boundary delineation, as illustrated in Table 18.
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Table 18: Distance measures between each of σ0 through σ4, and the query, σq
from Table 17. Distance measures are: Simple Matching (scaled), dSM ; Euclidean
(squared), dE; Hamming, dH ; and Qualia Space, dQ;.

Attribute Set Distance (σi, σq)

ID X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 dSM dE dH dQ

σ0 0 1 0 1 0 0 1 1 0 0 2/10
√

2 2 1/4

σ1 0 1 1 0 0 0 1 1 0 0 4/10
√

4 4 2/4

σ2 1 0 1 0 1 0 0 0 0 1 6/10
√

6 6 3/4

σ3 1 0 1 0 0 0 0 1 0 0 3/10
√

3 3 2/4

σ4 1 0 0 1 0 0 1 0 1 0 2/10
√

2 2 1/4

σq 1 0 0 1 0 0 1 1 0 0

Figure 28 illustrates four of the dQ distance measures from Table 18.
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(a) Geometric relationship between

σ0 and σq, dQ(σ0, σq) = 1/4.

(b) Geometric relationship between

σ2 and σq, dQ(σ2, σq) = 3/4.

(c) Geometric relationship between

σ1 and σq, dQ(σ1, σq) = 2/4.

(d) Geometric relationship between

σ3 and σq, dQ(σ3, σq) = 2/4.

Figure 28: Four of the Distance Measures, dQ, from Table 18, Rep-
resented Geometrically.
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Benchmark example. Figure 29 is an artificially designed data set, widely

used as a benchmark for distance and similarity measures in binary data sets, as

referred to in (Lourenco et al., 2004), originally taken from (Ritter and Kohonen,

1989). In this original format missing elements cannot be captured in the purely

binary variables, i.e., hooves, mane, and hunt. The other variables, such as, Is small,

medium, big, i.e., size, are mutually exclusive and presumably exhaustive, therefore

a missing element can be represented by 0 in each small, medium, big, for an animal.

In the original benchmark data set, Figure 29, the following sample distances are:

d(Dove/Hen): dSM = 1/13, dQ = 1/4

d(Dove/Tiger): dSM = 9/13, dQ = 5/5

d(Dove/Cow): dSM = 8/13, dQ = 4/4

d(Cow/Tiger): dSM = 3/13, dQ = 2/5
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Figure 29: Original Benchmark for Distance and Similarity Measures in Binary Data
Sets, as referred to in (Lourenco et al., 2004), Originally taken from (Ritter and
Kohonen, 1989).

Figure 30 is a modified version of Figure 29, which has been expanded to support

missing elements for any variable, and fits the hypernetwork theory formalism used

in this research. However, there are no missing elements in this particular data set.

Mutually exclusive attributes have been combined to create a variable, such as Likes

to run and Likes to fly, were combined to create Likes to travel by, with three potential

attributes: none, fly, run.

In the modified benchmark data set, Figure 30, the following sample distances

differ from Simple Matching and the QS distance measures:

d(Dove/Hen): dSM = 2/18, dQ = 1/8

d(Dove/Tiger): dSM = 10/18, dQ = 5/8

d(Dove/Cow): dSM = 11/18, dQ = 5/8

d(Cow/Tiger): dSM = 5/18, dQ = 3/8
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Figure 30: Modified Benchmark for Distance and Similarity Measures in Binary Data
Sets Which Allows for Missing Elements. This representation of the data allows for
missing elements.

Performance and Selection Criteria for binary distance measures.

While no distance measure is optimal for all types of problems there are some cri-

teria for distance measure selection, for example: accuracy, outlier detection and

consistency of performance (Boriah et al., 2008).
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Appendix F. Binary Similarity and Dissimilarity Measures
Table

Table 19: Binary Similarity Measures (Morris, 2012).

Similarity Measures

(alternative names) Equation Range

Anderberg (1973)
8a

8a+b+c [0, 1]

Anderberg (1973) D

σ−σ′
2n where

σ = max (a, b) + max (c, d) + max(a, c) + max (b, d) and

σ′ = max (a+ c, b+ d) + max (a+ b, c+ d)

[0, 1)

Baroni-Urbani and Buser

(1976)-I

√
ad+a√

ad+a+b+c
[0, 1]

Baroni-Urbani and Buser

(1976)-II

√
ad+a−(b+c)√
ad+a+b+c

[-1, 1]

Batagelj and Bren (1995)
bc
ad [0,∞)

Benini (1901)
a−(a+b)(a+c)

a+min(b,c)−(a+b)(a+c) [1, 2]

Braun-Blanquet et al.

(1932)

a
max(a+b,a+c) [0, 1]

Browsing (Köppen, 1884) a− bc (-∞,∞)

Clement (1976)
a(c+d)
(a+b) + d(a+b)

(c+d) (0,∞)

Cohen’s κ (Cohen, 1960)
2(ad−bc)

(a+b)(b+d)+(a+c)(c+d) [-1/2, 1]

Cole (1949)-I
ad−bc

min((a+b)(a+c),(b+d)(c+d)) [-1,∞)

Cole (1949)-II
ad−bc

(a+b)(b+d) [-1, 1]

Cole (1949)-III
ad−bc

(a+c)(c+d) [-1,∞)

Cosine (Choi, 2008)

Ochiai (1957)-I

Otsuka [Ochiai paper]

Driver and Kroeber (1932)
Fowlkes and Mallows (1983)

Gower and Legendre (1986)

a√
(a+b)(a+c) [0, 1]

d Specific Agreement
(Fleiss et al., 2003)

2d
2a+b+c [0,∞)

Continued on next page
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Table 19: Binary Similarity Measures (Morris, 2012).

Similarity Measures
(alternative names) Equation Range

Dennis Dennis (1965)
ad−bc√

n(a+b)(a+c) [-1,∞)

Dice (1945)-I

Wallace (1983)

Post and Snijders (1993)

a
a+b [0, 1]

Dice (1945)-II

Wallace (1983)

Post and Snijders (1993)

a
a+c [0, 1]

Digby (1983)
(ad)

3
4−(bc)

3
4

(ad)
3
4 +(bc)

3
4

[-1, 1]

Dispersion
(Morris, 2012)

ad−bc
(a+b+c+d)

2 [-1/3, 1/3]

Doolittle (1885)

Pearson (1926)

(ad−bc)2
(a+b)(a+c)(c+d)(b+d)

[0, 1]

Eyraud (1938)
n2(na−(a+b)(a+c))

(a+b)(a+c)(b+d)(c+d) (-∞,∞)

Fager and McGowan

(1963)

a√
(a+b)(a+c)

− 1

2
√

max(a+b,a+c) [-1/2, 1)

Faith et al. (1987) a+0.5d
a+b+c+d [0, 1]

Fleiss (1975)
(ad−bc)[(a+b)(b+d)+(a+c)(c+d)]

2(a+b)(a+c)(b+d)(c+d) (-∞, 1]

Forbes (1907)-I
na

(a+b)(a+c) [0,∞)

Fossum (1966)

Jones and Curtice (1967)

n(a−0.5)
2

(a+b)(a+c)
(0,∞)

Gilbert (1884)

(Ratio of Success)

a− (a+b)(a+c)
n

a+b+c− (a+b)(a+c)
n

[-1/3, 1]

Gilbert and Wells (1966) log a− log n− log(a+b
n )− log

(
a+c
n

)
[0,∞)

Gini (1912)
a−(a+b)(a+c)√

(1−(a+b)
2)(1−(a+c)

2) [-4/3, 0]

Continued on next page
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Table 19: Binary Similarity Measures (Morris, 2012).

Similarity Measures
(alternative names) Equation Range

Gleason (1920)

Dice (1945)

Sørensen (1948)

(Coincidence Index)

(Quotient Similarity)

Czekanowski (1932)

Nei and Li (1979)

(Genetic Coefficient)
Gower and Legendre (1986) VII

2a
2a+b+c [0, 1]

Goodman and Kruskal

(1954) Max

a+d−max(a,d)− b+c2
1−max(a,d)− b+c2

[-1, 1]

Goodman and Kruskal

(1954) Min

2 min(a,d)−b−c
2 min(a,d)+b+c [−1, 1]

Goodman and Kruskal

(1954) Probability

max(a,c)+max(b,d)−max(a+b,c+d)
1−max(a+b,c+d) [-1/3, 0]

Goodman and Kruskal

(1954) Lambda

max(a,b)+max(c,d)+max(a,c)+max(b,d)−max(a+c,b+d)−max(a+b,c+d)
2−max(a+c,b+d)−max(a+b,c+d)

[0, 1]

Goodman and Kruskal

(1954) Tau

(a−(a+b)(a+c))2+(b−(a+b)(b+d))2

(a+b)
+

(c−(a+c)(c+d))2+(d−(b+d)(c+d))2

(c+d)

1−(a+c)2−(b+d)2
(-∞, -2]

Gower (1971)
a+d√

(a+b)(a+c)(b+d)(c+d) [0, 1.5]

Hamann (1961)
Holley and Guilford (1964)

Hubert (1977)
Gower and Legendre (1986) IX

(a+d)−(b+c)
a+b+c+d

[-1, 1]

Harris and Lahey (1978)
a((c+d)+(b+d))

2(a+b+c) + d((a+b)+(a+c))
2(b+c+d) [0,∞)

Hawkins and Dotson

(1973)

1
2

(
a

a+b+c + d
b+c+d

)
[0, 1]

Inner Product
(Hamming (1950) Complement)

a+ d [0,∞)

Intersection a [0,∞)

Continued on next page
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Table 19: Binary Similarity Measures (Morris, 2012).

Similarity Measures
(alternative names) Equation Range

Jaccard (1912)

Gilbert (1884)

(Ratio of Verification)

Tanimoto (1957)

(Cosine Coefficient)
Gower and Legendre (1986) III

a
a+b+c [0, 1]

Jaccard-3W
3a

3a+b+c [0, 1]

Johnson (1967)
a
a+b + a

a+c [0, 2]

Kent and Foster (1977)-I
−bc

b(a+b)+c(a+c)+bc [-1/3, 0]

Kent and Foster (1977)-II
−bc

b(c+d)+c(b+d)+bc [-1/3, 0]

Köppen (1870)
(a+b)(1−a−b)−c

(a+b)(1−a−b) (-∞,∞)

Köppen (1884) a+ b+c
2 [0,∞)

Kuder and Richardson (1937)

Cronbach (1951)

4(ad−bc)
(a+b)(c+d)+(a+c)(b+d)+2(ad−bc) [-2, 1]

Kuhns (1965)
2(ad−bc)
n(2a+b+c) [-1/2, 1]

Kuhns (1965) Proportion
ad−bc

n(1− a
(a+b)(a+c))(2a+b+c− (a+b)(a+c)

n ) [-1/3, 1)

Kulczyński (1927)-I
Gower and Legendre (1986) I

a
b+c [0,∞)

Kulczyński (1927)-II

Driver and Kroeber (1932)
Gower and Legendre (1986) X

a
2 (2a+b+c)

(a+b)(a+c) [0, 1]

Loevinger (1947, 1948) H

Forbes (1907)-II

Mokken (1971)
Sijtsma and Molenaar (2002)

na−(a+b)(a+c)
nmin(a+b,a+c)−(a+b)(a+c) [-1, 1]

Maron and Kuhns (1960)
ad−bc

(a+b+c+d) (-∞,∞)

Maxwell and Pilliner

(1968)

2(ad−bc)
(a+b)(c+d)+(a+c)(b+d) [-1, 1]

McConnaughey (1964)
a2−bc

(a+b)(a+c) [-1, 1]

Continued on next page
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Table 19: Binary Similarity Measures (Morris, 2012).

Similarity Measures
(alternative names) Equation Range

Michael (1920)
4(ad−bc)

(a+d)
2
+(b+c)

2 [-1, 1]

Gini (1912)
a−(a+b)(a+c)

1− |b−c|2 −(a+b)(a+c)
[0, 4/3]

Mountford (1962)
a

0.5(ab+ac)+bc [0, 2]

Pearson and Heron

(1913)-II
cos
(

π
√
bc√

ad+
√
bc

)
[-1, 1]

Pearson (1904)-I

(Coefficient of

Chi-square Contingency)

χ2 where χ2 =
n(ad−bc)2

(a+b)(a+c)(c+d)(b+d)
[0,∞)

Pearson (1904)-II

(Coefficient of
Mean Square
Contingency)

√
χ2

n+χ2 where χ2 =
n(ad−bc)2

(a+b)(a+c)(c+d)(b+d)
[0,

√
1/2)

Pearson (1926)-III

(Coefficient of

Racial Likeness)

√
ρ

n+ρ where ρ =
ad−bc√

(a+b)(a+c)(b+d)(c+d) [0,
√

1/3)

Peirce (1884)-I
ad−bc

(a+b)(c+d) [-1, 1]

Peirce (1884)-II
ad−bc

(a+c)(b+d) [-1, 1]

Peirce (1884)-III
ab+bc

ab+2bc+cd [0, 1]

Phi Coefficient
Yule (1912)

Pearson and Heron (1913)-I

(Fourfold point

correlation)

(binary version of

Pearson (1904)
Product Moment

Correlation Coefficient)
Gower and Legendre (1986) XIV

ad−bc√
(a+b)(a+c)(b+d)(c+d) [-1, 1]

Relative Decrease of
Error Probability

max(a,b)+max(c,d)−max(a+c,b+d)
1−max(a+c,b+d) [-1, 0]

Rogers and Tanimoto (1960)

Farkas (1978)
Gower and Legendre (1986) VI

a+d
a+2(b+c)+d [0, 1]

Continued on next page
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Table 19: Binary Similarity Measures (Morris, 2012).

Similarity Measures
(alternative names) Equation Range

Rogot and Goldberg

(1966)

a
(a+b)+(a+c) + d

(c+d)+(b+d) [0, 1]

Russel and Rao (1940)

(dot product)

(inner product)
Gower and Legendre (1986) II

a
a+b+c+d [0, 1]

Scott (1955)
4(ad−bc)−(b−c)2

(2a+b+c)(b+c+2d)
[-1, 1]

Simpson (1943)

(Ecological Coexistence

Coefficient)

a
min(a+b,a+c) [0, 1]

Sokal and Michener (1958)

(Simple Matching

Coefficient)

Rand (1971)

Brennan and Light (1974)
Gower and Legendre (1986) IV

a+d
a+b+c+d [0, 1]

Sokal and Sneath (1963)-I
Gower and Legendre (1986) V

a
a+2b+2c [0, 1]

Sokal and Sneath (1963)-II

Gower and Legendre (1986) VIII

2(a+d)
2a+b+c+2d

[0, 1]

Sokal and Sneath

(1963)-III

a+d
b+c [0,∞)

Sokal and Sneath (1963)-IV

Gower and Legendre (1986) XI

a
(a+b)+

a
(a+c)+

d
(b+d)+

d
(c+d)

4
[0, 1]

Sokal and Sneath (1963)-V

Ochiai (1957)-II
Gower and Legendre (1986) XIII

ad√
(a+b)(a+c)(b+d)(c+d) [0, 1]

Sorgenfrei (1958)
Cheetham and Hazel (1969)

(Correlation Ratio)

a2

(a+b)(a+c) [0, 1]

Stiles (1961) log10
n(|ad−bc|−n2 )

2

(a+b)(a+c)(b+d)(c+d)
(-∞,∞)

Stuart (1953) τc 2 (ad− bc) (-∞,∞)

Continued on next page
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Table 19: Binary Similarity Measures (Morris, 2012).

Similarity Measures
(alternative names) Equation Range

Tarantula (Jones et al., 2001)

Ample (Dallmeier et al., 2005)

a
(a+b)
c

(c+d)
= a(c+d)

c(a+b) [0,∞)

Tarwid (1960)
na−(a+b)(a+c)
na+(a+b)(a+c) [-1, 1)

Tversky (1977)

(Feature Contrast Model)
a− b− c (-∞,∞)

Warrens (2008)-I
2a−b−c
2a+b+c [-1, 1]

Warrens (2008)-II
2d

b+c+2d [0, 1]

Warrens (2008)-III
2d−b−c
b+c+2d [-1, 1]

Warrens (2008)-IV
4ad

4ad+(a+d)(b+c) [0, 1]

Warrens (2008)-V
ad−bc

min((a+b)(a+c),(c+d)(b+d)) [-1,∞)

Yule (1900) Q

(Coefficient of

Association)
Montgomery and Crittenden (1977)

Gower and Legendre (1986) XV

ad−bc
ad+bc [-1, 1]

Yule (1912) Y

(Coefficient of

Colligation)

√
ad−
√
bc√

ad+
√
bc

[-1, 1]

Table 20: Binary Dissimilarity Measures (Morris, 2012).

Dissimilarity measures
(alternative names) Equation Range

Chord (Orloci, 1967)

√
2
(
1− a√

(a+b)(a+c)

)
[0,
√

2]

Euclidean
(Pythagorean metric)

√
b+ c [0,∞)

Continued on next page
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Table 20: Binary Dissimilarity Measures (Morris, 2012).

Dissimilarity measures
(alternative names) Equation Range

Hamming (1950)
Squared-Euclidean

Canberra
(Lance and Williams, 1966)

Manhattan
CityBlock
Minkowski

b+ c [0,∞)

Hellinger (Rao, 1995) 2
√

1− a√
(a+b)(a+c) [0, 2]

Lance and Williams (1967)

Bray and Curtis (1957)

b+c
(2a+b+c) [0, 1]

Mean Manhattan
b+c

(a+b+c+d) [0, 1]

Pattern Difference
4bc

(a+b+c+d)
2 [0, 1]

Shape Difference
Baulieu (1989)

n(b+c)−(b−c)2

(a+b+c+d)
2 [0, 1]

Size Difference
Baulieu (1989)

(b−c)2

(a+b+c+d)
2 [0, 1]

Variance (b+c)
4(a+b+c+d) [0, 0.25]

Yule (1900) Q

dissimilarity

2bc
ad+bc [-1, 1]
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Appendix G. Malware Data Set

G.1 Introduction

Classifying malicious software (malware), and identifying its behavior, is a neces-

sary step in mitigation and helps to identify new and emerging threats (Szor, 2005).

Malware metadata provides additional information about the malware, including po-

tentially identifying the source, which can help analysts recognize persistent threats

and take appropriate actions to protect the network, as well as support forensic in-

vestigations (Sikorski and Honig, 2012).

The goal of the data set creation process, discussed in this appendix, was to create

a reasonably large data set of malware labels (type-classification), and an attribute

set of behavior and metadata. In order to ensure an accurate (type-classification)

label, in this highly contested environment, for each sample collected at least three,

of four, domain experts from well-respected Antivirus (AV) software vendors had to

agree on the type-classification. This process was additionally complicated by the

fact that AV vendors have different naming conventions.

The results of this process is a data set of 2088 samples, consisting of 9 malware

types, 46 behavioral and 3 metadata attributes, exported from the VirusTotal (2016b)

malware repository. See Table 21 for a summary of the malware types selected for

the data set, number of samples of each type and the benchmark AV vendors. See

Appendix G.4.1 through Appendix G.4.9 for descriptions of the individual types, and

Table 22 for a description of the behavior and metadata attributes selected for the

data set.
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G.2 Data Source — VirusTotal

VirusTotal is a website for malware analysts, currently owned and managed by

Google, Inc. VirusTotal aggregates (at the time of this research) contributions from

57 AV vendors, 60+ scanning engines and data sets, and 17 file characterization tools

and data sets (VirusTotal, 2016a).

Anyone can submit a suspect file to VirusTotal for analysis. Each contributing

AV vendor has the opportunity to individually evaluate the malware instance and

determine if it is, by their analysis, malicious, and, if so, classify it according to their,

often unique, type-classification ontology. Suspect files submitted are executed in

a controlled instantiation of Cuckoo Sandbox (Guarnieri et al., 2016) environment.

The behavior, captured by Cuckoo, are recorded in order to give the analyst a high

level overview of what the sample is doing, but does not provide a (malware) type-

classification or recommend mitigation steps (VirusTotal, 2015a,b).

Individual files are identified by their sha256 hash. This creates a considerable

amount of redundancy in the VirusTotal database, as, even a one-bit difference be-

tween files, which are effectively identical in behavior, creates a new instance. Obvi-

ously, malicious actors use this fact to defeat traditional signature-based AV tools.

For the malware research accomplished in this dissertation, a private (premium)

VirusTotal API was obtained. The private Application Programmer Interface (API)

allowed access to VirusTotal related metadata (first seen and last seen dates, number

of submissions, submission file names, etc.), file tool information (sigcheck, packer

information, Portable Executable (PE) structure, sandbox analysis, etc.). This addi-

tional level of access provided behavioral features and metadata contributing to the

data set presented here (VirusTotal, 2015b).
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G.3 Malware Type Selection Process

Selecting and downloading a data set of behavioral features and metadata from

VirusTotal as a test set for the Qualia Modeling Agent (QMA) model was a com-

plex, and somewhat convoluted, task. Malware type-classification is a contested,

non-standardized environment, on many levels. The malicious actors intentionally

obfuscate the information being searched. There is no industry-standard naming

convention for malware identification, despite some well-publicized efforts. Notably,

Computer Anti-Virus Researchers’ Organization (CARO) in the early 1990’s devel-

oped a standard naming schema, and in the early 2000’s Common Malware Enumer-

ation (CME) initiative by Mitre attempted to address the differences in AV naming

conventions by establishing vendor-neutral identification numbers for vendors to ref-

erence in addition to their own assigned names. With the explosion of new and

emerging malware, the administrative overhead of support the CME soon because in

feasible (Dube, 2011; Szor, 2005).

The data set needed to contain malware types that are not so dissimilar as to make

differentiation trivial. Therefore, the scope was limited to currently active, as of May

2015, Portable Executable (PE)s, type:peexe, whose intended target is a variant of the

Microsoft Operating System (OS).

Avira, Kaspersky, Symantec and McAfee were selected as benchmark AV vendors

because they maintain comprehensive current type-classification documentation, pro-

vide freely available descriptions of malware, and sometimes, on a case-by-case basis,

provide cross references to other vendors.

In order to accomplish the following data gathering and parsing tasks a series

of Python scripts were developed to execute http get request methods against the

VirusTotal databases, and parse the files returned. The data gathering process was

accomplished in May 2015.
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Malware type-classification collection tasks:

1. Initially manually searched Kaspersky Lab’s Virus Watch web site Kaspersky

(2015) for current threats, which had been identified in the last few weeks as

PE, a significant threat, and whose intended target is a variant of the Microsoft

OS. For example, Trojan.Win32.Autoit.

2. Submit a query (http get request method) to the VirusTotal repository for

instances of this particular variant. Each VirusTotal query returns up to 300

hashes (instances) meeting the query requirements. If a significant number

of hashes (200+) were returned then that is an indicator that there may be

adequate number of instances to include in the data set.

3. Subsequent queries are submitted, which download the individual detailed Re-

ports on each of the 300 hashes.

4. The results were evaluated to identify type-classifications between vendors that

tended to be coincident, and the cross-references between vendor identifications

were manually searched, if available. For example: With the Kaspersky classifi-

cation of Trojan.Win32.Autoit, Avira tended to be classified as DR/AutoIt.Gen,

Symantec tended to be classified as WS.Reputation.1 and McAfee tended to be

classified as Artemis!

5. Submit a subsequent query to the VirusTotal repository for instances where

the classifications for the select AV vendors matched the expected classifica-

tions. For example: Kaspersky classification was Trojan.Win32.Autoit, Avira

was DR/AutoIt.Gen, Symantec was WS.Reputation.1 and McAfee was Artemis!

6. This process resulted in trial and error, and several malware variants were dis-

missed as there were not enough agreement among the vendors as to a consistent

classification. Often the malware was too new to obtain 200+ instances.
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7. Next the JavaScript Object Notation (JSON) files were checked for behavior

data, indicating the instance had been sandboxed. If instanced had not yet

been sandboxed, then they are removed from the analysis, because there will

be no behavioral attributes to analyze.

These steps resulted in the data set summarized in Table 21.

G.4 Malware Types

Table 21: Malware Type-Classifications, Sample Count and Original AV Vendor
Names. Type is the label given to the malware variance in this dissertation.

Type # Avira Kaspersky Symantec McAfee

Autoit 125 DR/AutoIt.Gen
Trojan.Win32.
Autoit

WS.
Reputation.1

Artemis!

MBR-
Ransomware

285 TR/Spy.Banker
Trojan-
Banker.Win32

Infos-
tealer.Bancos

W32/
VirRansom

Neshta-
Virus

261 W32/Neshta or
W32/Delf

Virus.Win32.
Neshta

W32.Neshta W32/HLLP

Sality 194 W32/Sality
Virus.Win32.
Sality

W32.Sality
W32/Sality.
gen.z

Spy-Banker 270 TR/Crypt.
XPACK.Gen

Virus.Win32.
PolyRansom

W32.
Ransomlock.A

PWS-Banker

VikingAT 209 W32/Viking.AT
Virus.Win32.
Qvod.a

W32.
Wapomi!inf

W32/Fujacks.be

WORM-
Brontok

170 WORM/
Brontok

Email-Worm.
Win32. Brontok

W32.
Rontokbro

W32/
Rontokbro.gen

Worm-
Ramnit

282 W32/Ramnit
Virus.Win32.
Nimnul

W32.Ramnit W32/Ramnit.a

WormViking 292 TR/Kryptik or
TR/Cryptic

Worm.Win32.
Viking

WS.
Reputation.1

Obfuscated-
FHH!

154



G.4.1 Autoit.

Autoit is a family of Trojans, also known as a dropper. Activities this
family of Trojans/Droppers may attempt in order to accomplish the goal:

1. Propagation – Autorun

2. Propagation – Peer-to-peer (P2P)

3. Propagation – mapped network drives

4. Downloads files

5. Establishes network connection (connect external domain)

6. Drops malicious files

7. Lowers security settings

8. Registry modification in order to run the processes after reboot.
(maintain persistence)

9. Queries registry keys to retrieve shared P2P folders and propagate

10. Checks for internet connections

11. Creates Mutex

(AVIRA, 2015, . . . ?sq=DR%2FAutoIt)

G.4.2 MBRRansomware.

MBRRansomware is a family of Trojans, which drops ransom ware. Activ-
ities this family of Trojans/Droppers may attempt in order to accomplish
the goal:

1. Drops a malicious file

2. Registry modification

3. Steals information

4. Pricetrap function – user is fooled into making a costly subscription
via web page

5. Enumerates many system files and directories.

6. Enumerates process list

7. Process attempts to call itself recursively

(AVIRA, 2015, . . . ?sq=TR%2FCrypt.XPACK.Gen)

G.4.3 NeshtaVirus.

Activities this virus may attempt in order to accomplish the goal:

1. propagation – through infected files
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2. Registry modification

3. Code integration – The virus merges its own code with the host pro-
gram’s code. This is a complicated process that requires completely
disassembling and reassembling of the host file.

(AVIRA, 2015, . . . ?sq=W32%2FNeshta)

G.4.4 Sality.

Activities this virus may attempt in order to accomplish the goal:

1. propagation – through infected file from:

• Local network

• Mapped network drives

2. Drops a malicious file, or type:

• Windows Executables (*.exe)

• Windows Dynamic Link Libraries (*.dll)

• HyperText Markup Language (*.htm/ *.html)

3. Appender – The virus main code is added at the end of the infected
file. The last section of the file is modified to include the virus code.

4. This direct-action infector actively searches for files.

(AVIRA, 2015, . . . ?sq=sality)

G.4.5 SpyBanker.

The goal of this malware is to steal financial information allowing for
access to financial accounts, subsequently transferring money to unautho-
rized accounts. Displays a fake banking web browser display in order to
trick the user into entering username and password information.
Activities this family of Banker Trojan may attempt in order to accom-
plish the goal:

1. Connect to a domain that may pose a security risk.

2. Enumerate system files and directories.

3. Send data or commands via HTTP

4. Send stolen information via Email

5. Add or modify browser cookies

6. Modify registry keys, in order to run after reboot (maintain persis-
tence)

7. Begins logging keystrokes after a particular banking site is visited

8. Downloads files
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9. Steals information (exfiltration information)

10. Mitigation techniques (covering its tracks): remove registry entries,
remove malware, clear cookies

(AVIRA, 2015, . . . ?sq=TR%2FSpy.Banker)

G.4.6 VikingAT.

This is a worm, which self-propagates. Activities this worm may attempt
in order to accomplish the goal:

1. Infect a *.exe file

2. Appender – The virus main code is added at the end of the infected
file. The following section is added to the infected file: Dbt

3. Drops a malicious file

4. Disable Safe boot and Network boot modes.

5. Registry modification in order to run the processes after reboot.
(maintain persistence)

6. Install a rootkit

7. Create new named pipes to communicate with the lsasvc.dll and the
rootkit component.

8. Disables show hidden files.

9. copy iteself to network shares using known default and common pass-
words

(McAfee, 2015, . . . ?id=141204)

G.4.7 WORMBrontok.

This is a worm, which self-propagates. Activities this worm may attempt
in order to accomplish the goal:

1. Propagation – Email

2. Drops a malicious file

3. Lowers security settings

4. Registry modification in order to run the processes after reboot.
(maintain persistence)

5. Overwrites autoexec.bat

(AVIRA, 2015, . . . ?sq=Brontok)
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G.4.8 WormRamnit.

Virus:Win32/Viking.G is a virus that can infect other executable files.
It may also spread to other computers in the network by copying itself
to network shares. It may terminate other security-related software and
download files from certain web sites
(Microsoft, 2016, . . . /entry.aspx?Name=Win32%2fRamnit).

G.4.9 WormViking.

This is a worm that spreads via removable drives and network shares. It
can terminate security-related processes, relocate certain Windows files,
drop other malware, modify the HOSTS file and Internet files, infect cer-
tain files, and connect to a remote server
(Microsoft, 2016, . . . /entry.aspx?Name=Worm:Win32/Viking.NA).

G.5 Feature (i.e., Attribute) Selection Process

For each of the 2088 malware samples collected, VirusTotal provides two files:

[SHA256]Report.txt, and [SHA256]Behaviour.txt. The Report file contains static

information, including metadata and Dynamic-Link Library (DLL) imports (declared

at compile time). The Behaviour file includes the dynamic information gathered,

primarily API calls, collected via Cuckoo Sandbox analysis.

Ideally, all of the features provided in these two files will be used to classify the

select malware types. However, many of the API calls are standard among non-

malicious PEs, and some of the larger malware instances may incorporate hundreds

of API calls.

Therefore, the task described here, was used to identify a small set of high-level

behaviorial features, imports and metadata, which were used to classify malware

types.

Malware attribute collection tasks:

1. Specific API calls, imports and metadata, were selected for inclusion in an initial
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attribute set based on analysis, provided by domain experts (AV vendors), listed

in Appendix G.4.

2. An initial set of 93 attributes was used in the QMA formalism and classified

malware with accuracy comparable to the results reported in Chapter IV. The

computational overhead of such a large set of attributes was, however, a prob-

lem.

3. In order to reduced the number of attributes in the data set, while maintaining

classification accuracy, statistical methods of multivariate attribute correlation

were employed. The analysis resulted in identifying several attributes that were

highly correlated.

4. Subsequently 44 attributes were removed from the data set, leaving 49. The

QMA still classified malware with significant accuracy, as reported in Chap-

ter IV.

These steps resulted in the attribute set summarized in Table 22
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Table 22: Malware Type, Behavior, Features, and Descriptions. Malware type, 34
Application Programmer Interface (API) calls, 9 imported DLLs, 3 communications
protocols and 3 (multivalued) metadata.

Type Description Index

Type-Classification
Multivalued: Autoit, MBRRansomware, NeshtaVirus, Sality,

SpyBanker, VikingAT, WORMBrontok, WormRamnit, WormViking
0

API Call (binary) Description Index

CopyFileExW: C:\Program

Files \Microsoft

\DesktopLayer.exe

Possibly infected executable file.

(Microsoft, 2016a, Search: DesktopLayer.exe)
31

CreateFileW:

\.\MountPointManager

Mount Point Manager – Windows 7 Service Driver responsible with

maintaining persistent drive letters and names for volumes

(Batcmd.com, 2016, . . . /windows/7/services/mountmgr/)

3

CreateFileW:

\.\PIPE\lsarpc

The lsarpc interface is used to communicate with the Local Security

Authority (LSA) subsystem. Used by Windows Remote Procedure Call

(RPC) services.

(Herve Schauer Consultants, 2016, Select: lsarpc interface)

4

CreateFileW:

c:\autoexec.bat
Executed on startup of all windows systems. 1

CreateFileW: C:\cmt.exe
Supports remote access to system files and resources.

(Microsoft, 2016b, . . . /ee391643(v=vs.85).aspx)
18

CreateFileW: C:\Program

Files \Microsoft\px1.tmp

Randomly named portable executable temp file.

(TRENDMicro, 2016, . . . /troj ramnit.smc)
30

CreateFileW:

C:\WINDOWS\system32

\drwtsn32.exe

Dr. Watson for Windows program error debugger tool.

(Microsoft, 2016c, . . . /kb/308538)
22

Continued on next page
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Table 23: Malware Type, Application Programmer Interface (API) calls, Imported
DLLs, Communications Protocols and MetaData.

API Call (binary) Description Index

CreateFileW:

C:\WINDOWS\system32

\winsock.dll

“WINSOCK.DLL is a dynamic-link library that provides a common

API for developers of network applications that use the Transmission

Control Protocol/Internet Protocol (TCP/IP) stack. This means that a

programmer who develops a Windows-based TCP/IP application, such

as an FTP or Telenet client, can write one program that works with

any TCP/IP protocol stack that provides Windows Socket Services

(WINSOCK.DLL). Other applications that depend on a Windows

Socket provider include Eudora (a mail package) and Mosaic (a browser

for the Internet World Wide Web)

(Microsoft, 2016c, . . . /kb/122982).”

21

LoadLibraryA: advapi32.dll

The process known as Advanced Windows (version 32 Base API)

belongs to software Windows Management Instrumentation Driver

Extensions (Wmi). Some malware camouflages itself as advapi32.dll.

(file.net, 2016, . . . /process/advapi32.dll.html), (DLL Information,

2016a, . . . /advapi32 dll.html)

23

LoadLibraryA:

C:\WINDOWS\system32

\mswsock.dll

Library which supports windows sockets. The socket function creates a

socket that is bound to a specific transport service provider.

(Microsoft, 2016b, . . . /windows/desktop/ms740506(v=vs.85).aspx)

10

LoadLibraryA: comctl32.dll

Support for common controls is provided by ComCtl32.dll, which all

32-bit and 64-bit versions of Windows include. Supports common

Graphical User Interface (GUI) displays – used to receive user input.

(Microsoft, 2016b, . . . /windows/desktop/hh298349(v=vs.85).aspx)

5

LoadLibraryA: DNSAPI.dll
This library support Domain Name System (DNS) functions.

(Microsoft, 2016b, . . . /windows/desktop/ms682058(v=vs.85).aspx)
11

LoadLibraryA: kernel32.dll
over 1500 functions supporting kernel (i.e., root) system functionality.

(Chappell, 2016)
17

LoadLibraryA: ntdll.dll

Windows NT kernel functions, which run prior to Windows OS

instantiation.

(DLL Information, 2016a, . . . /ntdll dll.html)

28

LoadLibraryA: ole32.dll
a library which contains core Object Linking and Embedding (OLE)

(ProcessLibrary.com, 2016, . . . /ole32/23128/)
8

LoadLibraryA: oleaut32.dll
The oleaut32 module contains functions for application developers.

(Microsoft, 2016b, . . . /ms923851.aspx)
9

Continued on next page
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Table 23: Malware Type, Application Programmer Interface (API) calls, Imported
DLLs, Communications Protocols and MetaData.

API Call (binary) Description Index

LoadLibraryA: rasadhlp.dll
Remote Access AutoDial Helper

(DLL Information, 2016a, . . . /rasadhlp dll.html)
20

LoadLibraryA: rpcrt4.dll

Remote Procedure Call Runtime used by Windows applications for

network and Internet communication.

(ProcessLibrary.com, 2016, . . . /rpcrt4/23580/)

24

LoadLibraryA: Secur32.dll

Provides required components of windows security — Secure Socket

Layer (SSL).

(Microsoft, 2016b, . . . /ms913708(v=winembedded.5).aspx)

13

LoadLibraryA: sensapi.dll

“Library to support System Event Notification Service System Event

Notification Service (SENS). The sensapi.dll library is used by windows

applications when performing synchronization with mobile devices

using SENS. Sensapi.dll is required for synchronization (using SENS)

to function correctly

(Microsoft, 2016b, . . . /windows/desktop/aa377589(v=vs.85).aspx).”

16

LoadLibraryA:

SHELL32.dll

“SHELL32.dll is not essential for the Windows OS and causes relatively

few problems. SHELL32.dll is [should be] located in the

C:\Windows\System32folder. The program has a visible window and

provides file access support and webpage opening support to caller

applications. The process is loaded during the Windows boot process.

SHELL32.dll is able to record keyboard and mouse inputs

. . . Some malware disguises itself as SHELL32.dll, particularly when not

located in the C:\Windows\System32 folder.

(file.net, 2016, . . . /process/shell32.dll.html)”

14

LoadLibraryA: shlwapi.dll

“Shell Light-Weight API DLL — contains the functions for Universal

Naming Convention (UNC) and Uniform Resource Locator (URL)

paths, registry entries, and color settings is the shlwapi.dll module. The

functions can be structured into four categories: string manipulation,

path manipulation, registry access and miscellaneous

(Microsoft, 2016b, . . . /windows/desktop/bb776779(v=vs.85).aspx).”

Wrapper functions that provide limited Unicode functionality for

user32.dll, kernel.dll, advapi32.dll, shell32 functions.

(Microsoft, 2016b, . . . /windows/desktop/bb759845(v=vs.85).aspx)

26

Continued on next page
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Table 23: Malware Type, Application Programmer Interface (API) calls, Imported
DLLs, Communications Protocols and MetaData.

API Call (binary) Description Index

LoadLibraryA:

VERSION.dll

Version Checking and File Installation Libraries.

(DLL Information, 2016b)
27

LoadLibraryA: WS2 32.dll

Library which supports windows sockets. The socket function creates a

socket that is bound to a specific transport service provider.

(Microsoft, 2016b, . . . /windows/desktop/ms740506(v=vs.85).aspx)

12

LoadLibraryW:

comctl32.dll
Unicode version of LoadLibraryA: comctl32.dll (ASCII library) 6

LoadLibraryW: rpcrt4.dll Unicode version of LoadLibraryA: rpcrt4.dll (ASCII library) 25

LoadLibraryW:

RTUTILS.DLL

“Routing Utilities, a module that contains functions used by a tracing

API that provides a uniform mechanism for generating diagnostic

output for the Microsoft Windows NT/Windows 2000 Routing and

Remote Access Service (RRAS) components. The RRAS supports

Internet Protocol version 4 (IPv4) and Internet Protocol version 6

(IPv6) network routing and remote user or site-to-site connectivity by

using Virtual Private Network (VPN) or dial-up connections

(ProcessLibrary.com, 2016, . . . /rtutils/18866/), (Microsoft, 2016,

. . . /Dd469790.aspx).”

19

LoadLibraryW:

SHELL32.dll
Unicode version of LoadLibraryA: SHELL32.dll (ASCII library) 15

OpenMutexW:

ShimCacheMutex

This Mutex cache supports synchronization of shared resources

between processes.

(Davis, 2012)

29

OpenServiceW: RASMAN

“rasman.exe is a Windows service which is used to dial phone numbers

from the phone book. This program is important for the stable and

secure running of your computer and should not be terminated

(liutilities.com, 2016,

. . . /products/wintaskspro/processlibrary/rasman/).”

2

RegCreateKeyExW: Soft-

ware\Microsoft\Windows

NT\CurrentVersion

\Winlogon

creates registry key for login shell.

(Microsoft, 2016b,

. . . /windows/desktop/ms838576(v=winembedded.5).aspx)

7

Continued on next page
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Table 23: Malware Type, Application Programmer Interface (API) calls, Imported
DLLs, Communications Protocols and MetaData.

API Call (binary) Description Index

RegOpenKeyExA:

HKEY LOCAL MACHINE

Open the registry key tree that contains detailed information about the

local computer.

(Microsoft, 2016, . . . /Cc959046.aspx)

34

RegOpenKeyExW:

HKEY LOCAL MACHINE
Unicode version of RegOpenKeyExA: HKEY LOCAL MACHINE 33

VirtualAllocEx: Cmgr.exe

VirtualAllocEx: reserves, commits of changes state of memory in

virtual address space for specified file, Cmgr.exe. Cmgr.exe is possibly

an infected PE file.

(Microsoft, 2016b, . . . /windows/desktop/aa366890(v=vs.85).aspx),

(SystemExplorer.net, 2016, . . . /file/cmgr-exe)

32

Table 24: Malware Type, Application Programmer Interface (API) calls, Imported
DLLs, Communications Protocols and MetaData.

IMPORTS (binary) Description Index

Import comctl32.dll see LoadLibraryA: comctl32.dll, above 38

Import ole32.dll see LoadLibraryA: ole32.dll, above 39

Import oleaut32.dll see LoadLibraryA: oleaut32.dll, above 40

Import WS2 32.dll see LoadLibraryA: WS2 32.dll, above 41

Import SHELL32.dll see LoadLibraryA: SHELL32.dll, above 42

Import advapi32.dll see LoadLibraryA: advapi32.dll, above 43

Import shlwapi.dll see LoadLibraryA: shlwapi.dll, above 44

Import VERSION.dll see LoadLibraryA: VERSION.dll, above 45

Import ntdll.dll see LoadLibraryA: ntdll.dll, above 46

Communication
Protocol (binary) Description Index

DNS

Domain Name System (DNS) comminations protocol is the (Internet,

Uniform Resource Identifier (URI)) name resolution protocol for

TCP/IP networks.

(Microsoft, 2016, . . . /dd197470(v=ws.10).aspx)

35

Continued on next page
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Table 25: Malware Type, Application Programmer Interface (API) calls, Imported
DLLs, Communications Protocols and MetaData.

Communication
Protocol (binary) Description Index

HTTP

Hypertext Transfer Protocol (HTTP) is the communication protocol

used to exchange information between a client system and a Web server

across a TCP/IP connection.

(Microsoft, 2016, . . . /cc780570(v=ws.10).aspx)

36

TCP

Transmission Control Protocol (TCP) comminations protocol which

provides a connection-based, reliable service to applications.

(Microsoft, 2016, . . . /cc940037.aspx)

37

MetaData Description Index

CharacterSet

The character set used to write the executable code. Multivalued,

examples: ASCII, Unicode, Windows Latin1,

Windows Chinese Simplified, Windows Turkish, Windows Cyrillic,

Windows Taiwan Big5, Windows Korea Shift KSC 5601

(Harvey, 2016)

47

Language Code

The human language extracted from the executable code. Multivalued,

examples: Chinese Simplified, Chinese Traditional, English British,

English U.S., Russian, Korean, Neutral, Spanish Modern, Turkish,

Japanese, German Austrian, Xhosa, Portuguese Brazilian.

(Harvey, 2016)

48

Subsystem

The environment that the executable runs in. Multivalued, examples:

Windows command line, Windows GUI, Console, Native, POSIX.

(Harvey, 2016), (Microsoft, 2016b, . . . /windows/desktop/fcc1zstk.aspx)

49
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Appendix H. Glossary of Acronyms, Cognitive and
Technical Terms

abductive (reasoning) An inference to the best explanation (Henson et al., 2012).

Abduction is inferring a case (particular abstract relationship) from a rule (ab-

stract, general claim) and a result (empirical observation) (Shanahan, 1996).

Generating a series of competing plausible explanatory hypothesis, and choos-

ing the best based on some set of criteria (Henson et al., 2012). 3, 94

abstraction Abstractions are a conceptualization of a set of related concepts or a

recurring pattern (Henson et al., 2012). 23, 40, 91, 94, 105, 171

ACT–R Adaptive Control of Thought–Rational (ACT–R). A modern Cognitive

Modeling Architecture (CMA) based on the cognitive theory originally pub-

lished by Anderson and Lebiere (1998). 8, 33ff., 39, 56, 85f., 90, 104, 104,

105ff., 116, 170

activation level “A state of memory traces that determines both the speed and the

probability of access to a memory trace (Anderson, 2005, 183)”. 19, 27, 33, 90,

107, 116

agent An agent is a physical or virtual entity, with some capability of acting or

reasoning (Ferber, 1999). 5f., 10f., 21, 29, 33, 61ff., 78, 80, 87, 90, 169

agent-centric From the perspective of an individual agent, as opposed to the term

subjective which implies exclusively a human agent. 20, 176

AI Artificial Intelligence (AI). The field of AI incorporates four broad areas of com-

putational sciences: thinking humanly, thinking rationally, acting humanly and

acting rationally (Russell and Norvig, 2009). 1

algorithmic The conscious, algorithmic mind, is is responsible for sequencing be-

havior and cognitive decoupling (Stanovich and Evans, 2013).. 6f., 11, 13, 16,
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27, 30, 86

ANOVA analysis of variance (ANOVA). xiv, 71f.

API Application Programmer Interface (API). 151, 158

ASCII American Standard Code for Information Interchange (ASCII). 163

autonomous Refers to cognitive Type I processing. 5–8, 11, 13, 15f., 18f., 27, 30,

33, 38, 56, 76, 79, 89, 116, 179

AV Antivirus (AV) software. 150–153, 159

bit-reduced Depending on the context, bit-reduced indicates the reduction in the

amount of memory required to represent knowledge or the reduction in the

amount of information transfer required. 21

CARO Computer Anti-Virus Researchers’ Organization (CARO). 152

chunk A single declarative unit of knowledge. In some cognitive theories, includ-

ing Adaptive Control of Thought–Rational (ACT–R), elements of declarative

knowledge are called chunks (Anderson et al., 2004). 34, 39, 56, 105, 105f.,

107f.

CL Common Lisp (CL) programming language. 34f., 86, 104

CMA Cognitive Modeling Architecture (CMA). A cognitive architecture which has

been implemented in a computer-based system. 29, 33, 35, 104, 104, 169ff.

CME Common Malware Enumeration (CME) initiative by Mitre Corporation. 152

CMN Computational Models of Narrative (CMN). 85, 87, 89

cognitive architecture A cognitive architecture is both a theory and the repre-

sentation of that theory in a computer-based modeling tool, referred to as a

Cognitive Modeling Architecture (CMA). The theory is “The fixed (or slowly

varying) structure that forms the framework for the immediate processes of
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cognitive performance and learning (Newell, 1990).” No CMA claims to fully

model cognitive processes. 76, 104, 170

cognitive decoupling “Cognitive decoupling appears to be the central cognitive

operation accounting for individual differences in fluid intelligence and, because

of its role in [mental] simulation and hypothetical thinking, cognitive decoupling

is a crucial mental capacity. Decoupling operations help us carry out cognitive

reform: the evaluation of our own beliefs and the critique of our own desires.

Decoupling secondary representations from the world and then maintaining the

decoupling while simulation is carried out is a Type 2 processing operation

(Stanovich, 2009)”. 13ff., 37, 89, 169

concept drift Concept drift refers to a learning problem that changes over time. In

particular, the statistical properties of the target variable, which the model is

trying to predict, change over time in unforeseen ways (Žliobaitė, 2010). iv, 1,

43, 43, 49, 54, 60, 62ff., 78, 83f., 89, 92, 116, 116, 117

conceptual knowledge A theory of the way episodic memories are abstracted and

recorded into Long-term Memory (LTM) is conceptual knowledge. Also referred

to as aggregate, abstract or blended knowledge, or conceptual memory. This

knowledge is primarily declarative, in that we are aware of we know and can

usually describe to others, therefore it may also be referred to as declarative ag-

gregate knowledge. When experiences are represented in memory, every detail

is not captured. Details, perceived as unimportant, are dropped from memory.

Specific episodes are abstracted to general categories of experiences. This ab-

straction creates conceptual knowledge (Anderson, 2005). 10, 14ff., 18, 23–26,

29–32, 116

conscious See consciousness. 6, 11, 13

consciousness The experiencing of qualia (Cowell, 2001). 5f., 10, 13, 16–23, 26, 29,
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171

context “That subset of the complete state of an individual that is used for reasoning

about a given goal (Giunchiglia, 1993)”. 94

cuckoo Cuckoo Sandbox is a malware analysis system (Guarnieri et al., 2016). 151,

158

deductive (reasoning) A general rule is applied to a specific case, i.e., from the gen-

eral to the specific. Deductive reasoning is the only way to achieve a provable,

logical, solution (Svennevig, 2001). 94, 94

DLL Dynamic-Link Library (DLL). 158, 160–165

DM Declarative Memory (DM). Also called declarative knowledge, corresponds to

things we are aware we know and can usually describe to others. declarative

memory (DM) is generally used to represent episodic memory and semantic

memory (Anderson, 2007). 106, 116, 172

DNS Domain Name System (Server) (DNS). 161, 164

DPT Dual–Process Theory of Higher Cognition (DPT). A widely accepted view

that most creatures, especially humans, have two distinct cognitive processes.

One is fast and automatic, such as reactively ducking when an object comes

too close to ones face. This is referred to as Type I, the autonomous/reactive

mind. Type I processing is often credited with intuitive behavior, such as a

babies ability to suck at birth or the physical reaction to a foul odor or loud

noise. The second form of cognition is when a being consciously deliberates

over a decision, such as choosing a menu option, or when a squirrel learns how

to defeat the expensive anti-squirrel bird feeder. This is referred to as Type

II, the deliberative/reflective mind. It is believed that these two minds work

together to provide the cognitive processing for survival, problem solving as well
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as creativity in humans (Stanovich and Evans, 2013; Stanovich, 2009).. 5, 8,

10f., 16, 19, 25

DT decision tree (DT). 69ff., 74, 76, 79, 82, 86f., 109f., 112ff.

eccentricity Hypernetwork Theory: Eccentricity is an asymmetric measure of con-

nectivity between two simplices (Johnson, 2013). 46f., 88, 102

FDR fully disjunctive reasoning (FDR). 15, 23, 27, 34, 36, 84, 86, 89f.

GUI Graphical User Interface (GUI). 161

Hausdorff distance “Given two sets of points, . . . the maximum of the distance

from a point in any of the sets to the nearest point in the other set (Rote,

1991)”. 47, 88, 96, 99, 99, 102

HTTP Hypertext Transfer Protocol (HTTP). 165

hypernetwork theory aka Hypernetworks, a theory which extends network theory

to multidimensional hypernetworks for modeling multi-element relationships, in

particular systems in nature, society and cognition. Also referred to as Poly-

hedral dynamics in earlier literature (Casti, 1977; Johnson, 2013; Wang et al.,

2010). 8, 32–35, 39, 41f., 47f., 54, 61, 64, 87ff., 96

IIT The Integrated Information Theory (IIT) of Consciousness equates consciousness

with integrated information (Tononi, 2012). iv, 1, 8, 21ff., 26, 28–31, 84–87, 89,

175

incidence matrix “The incidence matrix of a graph gives the (0, 1)-matrix which

has a row for each vertex and column for each edge, and (v, e) = 1 iff vertex v

is incident upon edge e (Wolfram, 2015)”. 99, 101

inductive (reasoning) A generalization is inferred given a specific case, i.e., from the

specific to the general. In induction the conclusion is not assured to be correct
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(Svennevig, 2001). 94, 95

ISR Intelligence, Surveillance, and Reconnaissance (ISR). 3

JSON JSON, (JavaScript Object Notation). 154

kNN k Nearest Neighbors. 69ff., 74, 76–79, 82, 86f., 91f., 109–112

LSA Local Security Authority (LSA). 160

LTM Long-term Memory (LTM). Relatively permanent storage of memory. ”Infor-

mation must be rehearsed before it can be moved into a relatively permanent

Long-term memory (Anderson, 2005, 176) ”. 171

malware malicious software (malware). 3, 50, 54, 56f., 60, 62f., 69, 150–153, 158f.

metric “A formal way to view the notion of distance between [elements] in a set.

(Peeler, 2011)”. 97, 102

metric space A precise formal measure of distance given any set. A abstracted

notion of Euclidean spaces applied to any set (Peeler, 2011). 97ff.

ML Machine Learning (ML). iv, 1, 3, 10, 29, 33, 41, 43, 49, 54, 59f., 62, 69f., 74, 76,

78f., 83, 89, 115ff., 119f., 178

mpd marginal probability distribution (mpd). 65ff., 119

Mutex Mutex, Short for mutual exclusion object. A Mutex is a program object that

allows multiple program threads to share the same resource, such as file access,

but not simultaneously. (Webopedia, 2015) (/term/m/mutex.html)). 155, 163

OLE Object Linking and Embedding (OLE). 161

OOM order of magnitude (OOM). xiv, 76f., 80, 87, 93, 110, 112, 114

OS Operating System (OS). 152f.

OTU Operational Taxonomic Unit (OTU). 123, 124f.
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P2P P2P, (Peer-to-peer). 155

packer Packers are wrappers put around pieces of software to compress and/or en-

crypt their contents (Bulletin, 2015).. 151

PCT Parsimonious Covering Theory (PCT), primarily used for medical diagnosis,

PCT uses domain-specific background knowledge to determine the best expla-

nation (e.g., diagnosis) for a set of observations (Henson et al., 2012). 94

pdf Probability density function (pdf). 117

PE Portable Executable (PE). 151ff., 158, 164

PM Procedural Memory (PM), also referred to as procedural knowledge. “An im-

plicit memory [a memory without conscious awareness] involving knowledge

about how to perform tasks (Anderson, 2005, 238)” Procedural knowledge is

knowledge which we display in our behavior but of which we are not conscious

(Anderson, 2005). 106

polyhedral dynamics Polyhedral dynamics (aka Hypernetwork, aka Q-Analysis)

developed from set theory, and is entirely compatible with network theory, as a

methodology to address the analysis of large-scale systems represented in mul-

tidimensional arrays, the relationship between qualitative data, psychological

and social relations (Casti, 1977; Johnson, 2013; Empowerment, 2008). 32, 173

QMA Qualia Modeling Agent (QMA). iv, xiiff., 1, 29ff., 36ff., 49f., 56, 60, 62ff., 67,

69ff., 74, 76–87, 90ff., 99, 107f., 110, 114, 116, 152, 159, 176

QS Qualia Space (QS). A component of the Integrated Information Theory (IIT)

of Consciousness which equates consciousness with integrated information.

“Qualia space (QS) is a space where each axis represents a possible state of

the complex, each point is a probability distribution of its states, and arrows

between points represent the informational relationships among its elements

175



generated by causal mechanisms (connections). Together, the set of informa-

tional relationships within a complex constitute a shape in QS that completely

and univocally specifies a particular experience (Tononi, 2008)”. iv, xii, 1,

21–26, 31f., 40f., 59, 66, 76f., 84, 88ff., 106, 109, 114, 116, 121, 125f., 130

quale Plural: qualia. The abstracted, agent-centric, context dependent internal rep-

resentations of evoked experiences based on perceived or predicted sensor data.

The mental representations used throughout cognitive processing through which

high-level perception, chaotic environmental stimuli are organized into the men-

tal representations (Chalmers et al., 1992; Hubbard, 1996). xii, 20, 20, 21, 21,

22, 24, 26, 30, 32, 171

Query Element In QMA: The Query Element is the specific element that is to be

inferred. An observation/experience can have multiple unobserved elements,

but only one (at a time) can be a Query Element.. 43, 48, 54, 55–59, 65, 88,

103, 176

Query Simplex In QMA: A simplex with one Query Element. 48f., 54, 55, 57f.,

88, 103

reflective The conscious, reflective mind, is explicit, effortful, pattern-completion

(i.e., hypothetical) decision making which supports slow deliberation, and uses

working memory (WM) (Anderson, 2005; Kahneman, 2011; Stanovich and

Evans, 2013).. 6f., 11, 13–18, 23, 27, 30, 34f., 39

RPC Remote Procedure Call (RPC). 160

RRAS Routing and Remote Access Service (RRAS). 163

schemata (aka Schematic memory) “Existing knowledge providing a framework

within which new knowledge is integrated (Young, 1998).” F.C. Bartlett’s work

(Bartlett, 1932) (as cited in M. J. Young, 1998) “An active organization of
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past experiences and reactions that shapes a person’s response to new stimuli

(Young, 1998).” J. M. Mandler’s work (as cited in M. J. Young, 1998) “A

modern definition of the schema concept defines a schema as a temporally or

spatially organized structure whose components are a set of variables or slots

that are filled or instantiated by values. Mandler proposes that schema are

formed on the basis of proximities experienced in space or time (Young, 1998)”.

xii, 23–26, 30ff.

semantic memory Semantic memories reflect general knowledge of the world, and

is typically viewed as a non-instance based representation. Although we have

all encountered the fact that 2+2=4 hundreds of times in our lives, we might

only have one memory representation of this fact (Anderson, 2005, 240), (Sims

and Gray, 2004). 172

SENS System Event Notification Service (SENS). 162

sigcheck Sigcheck is a command-line utility that shows file version number, times-

tamp information, and digital signature details, including certificate chains

(Russinovich, 2016).. 151

simplex “A simplex is the generalization of a tetrahedral [or greater (Johnson, 1995)]

region of space to n dimensions. The boundary of a k-simplex has k+ 1 0-faces

(vertices), k(k + 1)/2 1-faces (edges) and
(
k+1
i+1

)
i-faces, where

(
n
k

)
is a binomial

coefficient (Wolfram, 2015)”. 44, 47f., 88, 100ff.

simplicial complex “a set of simplices with all of their faces (Johnson, 2013)”. 101

SSL Secure Socket Layer (SSL). 162

Stanovich’s framework An explanation for human behavior by describing the in-

teraction of the three minds or cognitive levels (Stanovich, 2009). iv, xii, 1, 5,

7f., 10f., 15f., 19, 22, 25, 27, 29ff., 37, 61f., 84f., 89
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supervised machine learning “Supervised machine learning is the search for al-

gorithms that reason from externally supplied instances to produce general hy-

potheses, which then make predictions about future instances. In other words,

the goal of supervised learning is to build a concise model of the distribution of

class labels in terms of predictor features. The resulting classifier is then used

to assign class labels to the testing instances where the values of the predictor

features are known, but the value of the class label is unknown (Kotsiantis et al.,

2007)”. 118

target variable In QS: The variable, which is the target of the inference/pattern-

completion formalism, whose value is to be inferred. The term target variable

is also referred to as class or category in machine learning (ML) terminology

(Pang–Ning et al., 2006). iv, 1f., 5, 10f., 29, 33, 43f., 49f., 53f., 56–59, 61–67,

69f., 77f., 80, 82ff., 87, 92f., 109, 171, 179

TCLI Tightly Compiled Learned Information (TCLI), which is knowledge generated

in WM that has become “. . . tightly compiled and available to the autonomous

mind due to overlearning and practice (Stanovich, 2009).” TCLI is retained in

the autonomous mind [Type I] and provided to the reflective and algorithmic

minds [Type II] for production (Stanovich, 2009). 13, 16–19, 27, 33f., 90

TCP Transmission Control Protocol (TCP). 165

TCP/IP Transmission Control Protocol/Internet Protocol (TCP/IP). 161, 164f.

TL Transfer Learning (TL) In the research field of ML, transfer learning is the ability

of a system to apply knowledge or skills learned in previous tasks to subsequent

tasks or new domains, which are similar in some way (Pan and Yang, 2010).

43, 43, 60, 64–67, 83, 92, 119

transductive (reasoning) Transductive reasoning is inferring from one specific ex-
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perience to another specific case (Vapnik, 2006). 95

Type I Refers to autonomous cognitive processing. 170, 172

Type II Refers to reflective cognitive processing. 172

type-classification The classification of potentially malicious software (malware)

into categories based on various attributes, such as, spreading mechanism, de-

structive behavior, system dependencies, specific target variables, etc. . . (Szor,

2005). 151ff.

UCI University of California, Irvine (UCI). xiv, 49, 51, 69, 84

UNC Universal (or Uniform, or Unified)[file] Naming Convention (UNC). 162

unconscious See autonomous. 5, 11, 13

URI Uniform Resource Identifier (URI). 164

URL Uniform Resource Locator (URL). 162

VirusTotal VirusTotal. 152

VPN Virtual Private Network (VPN). 163

WM Working memory (WM), is the knowledge that is currently available in memory

for working on a problem. That knowledge may consist of a combination of vari-

ous forms: e.g., declarative, conceptual, procedural (Anderson, 2005; Stanovich,

2009). 5–8, 11–18, 21, 23, 25, 27, 30f., 33ff., 39, 84ff., 89, 176, 178
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