
ARL-TN-0789• SEP 2016

US Army Research Laboratory

3-D SyntheticMicrostructure Generationwith
Ellipsoid Particles
by Mark A Tschopp

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-
ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TN-0789• SEP 2016

US Army Research Laboratory

3-D SyntheticMicrostructure Generationwith
Ellipsoid Particles
by Mark A Tschopp
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704‐0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704‐0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202‐
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD‐MM‐YYYY)

2. REPORT TYPE

3. DATES COVERED (From ‐ To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

	

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

September 2016 Technical Note

3-D Synthetic Microstructure Generation with Ellipsoid Particles

Mark A Tschopp

ARL-TN-0789

Approved for public release; distribution is unlimited.

January 2016–June 2016

US Army Research Laboratory
ATTN: RDRL-WMM-F
Aberdeen Proving Ground, MD 21005-5069

Synthetic 2-phase microstructures are often used as a surrogate for real microstructures based on experimental microstructure
statistics or as a way to test how different microstructure features affect properties of materials. These can be generated through
a number of different techniques. In this technical note, a random sequential adsorption algorithm implemented in MATLAB is
used to generate 3-dimensional synthetic microstructures composed of packing of ellipses within a voxelized microstructure.
The MATLAB scripts are attached as appendices for future development and application.

microstructure, MATLAB, synthetic, random sequential adsorption, ellipse

32

Mark A Tschopp

410-306-0855Unclassified Unclassified Unclassified UU

ii

Approved for public release; distribution is unlimited.

Contents

List of Figures iv

1. Introduction 1

2. Algorithm/Code Description 1

3. Implementation and Usage 2

4. Examples 3

5. Conclusion 7

6. References 8

Appendix A. MATLAB Scripts: Main Code 11

Appendix B. MATLAB Function: Create Ellipse 17

Appendix C. Other MATLAB Functions 23

Distribution List 26

iii

Approved for public release; distribution is unlimited.

List of Figures
Fig. 1 2-D images of 3-D synthetic microstructures with uniform size

circles/ellipses that are randomly oriented with aspect ratios of a) 1:1:1, b)
2:1:1, and c) 4:1:1. The volume fraction in this microstructure is 30% for
all microstructures. For the volume computed, there were over 13,000
particles placed for each of the cases. ...4

Fig. 2 2-D images of 3-D periodic synthetic microstructure with uniform ellipses
of 4:1:1 aspect ratio that are randomly oriented. The volume fraction in
this microstructure is 30%. For the volume computed, there were 14,133
particles placed. ...5

Fig. 3 2-D images of 3-D periodic synthetic microstructure with uniform ellipses
of 8:8:1 aspect ratio (i.e., plates) that are randomly oriented. The volume
fraction in this microstructure is 19%. For the volume computed, there
were 1,326 particles placed..6

iv

Approved for public release; distribution is unlimited.

1. Introduction
Synthetic 2-phase microstructures are often used as a surrogate for real microstruc-
tures based on experimental microstructure statistics or as a way to test how dif-
ferent microstructure features affect properties of materials. These can be gener-
ated through processes such as the random sequential algorithm described within
or other techniques, some of which are outlined in the book on heterogeneous mi-
crostructures by Torquato.1 Random sequential adsorption (RSA) has been applied
to understand microstructure and phenomena in a number of different systems and
applications, including far-from-equilibrium processes,2 car parking and protein ad-
sorption,3 colloids,4 dimer adsorption,5 fiber composites,6 and even disks,7 rectan-
gles8,9 and n-star objects.10

In this technical note, a random sequential adsorption11,12 algorithm implemented in
MATLAB13 is used to generate three-dimensional (3-D) synthetic microstructures
composed of packing of ellipses within a voxelized microstructure. The MATLAB
scripts are attached as appendices for future development and application. This
work is an extension of a previous two-dimensional (2-D) synthetic microstructure
builder that incorporates 2-D ellipses, aspect ratio, area fraction, size (polydisper-
sivity), orientation, and size/orientation distributions.14

2. Algorithm/Code Description
The algorithm used to generate the synthetic microstructures is an RSA algorithm,
which is typically used to represent particle deposition on surfaces. For instance,
there are multiple stages in particle deposition: 1) initially, the surface is clean and
free of particles, 2) then particles begin to spontaneously attach to the surface at
small concentrations, and 3) the deposition progressively slows down due to de-
posited particles blocking subsequent deposition of other particles. This process is
typically studied by the RSA model (for more information, see Torquato1), which
occurs via the following steps:

• A spherical/ellipsoidal particle is randomly placed on the surface. Once placed,
this particle’s position is fixed and it cannot move.

• A trial spherical/ellipsoidal particle is randomly placed. If this particle over-
laps previously placed particle(s), then this attempt is rejected. Otherwise, the
placement is accepted.

1

Approved for public release; distribution is unlimited.

• The model generally proceeds by adding until a predetermined area/volume
fraction of particles is reached or the jamming limit is reached. The jamming
limit or saturation of the surface occurs when it is no longer possible to place
a particle within the holes of the other deposited particles.

3. Implementation and Usage
This is implemented through the MATLAB scripts in Appendix A, Appendix B,
and Appendix C by using 3-D matrices, where the background is 0 and the particle
is 1. For the 3-D ellipses, it is possible to alter the 3 orthogonal axes of the ellipse
(i.e., spheres, plates, or needles), the orientations of the ellipses, and the volume
fraction. In both cases, it is relatively straightforward to include distributions of
ellipse shapes, ellipse orientations, or ellipse sizes. Appendix A is the main code,
Appendix B is the optimized ellipse builder function, and Appendix C includes a
few functions called within the script.

The attached scripts have been tested on MATLAB R2014 and R2015 on a Win-
dows operating system. The code can be executed by following these steps:

• Download the various scripts into the same directory:

– generate_synthetic_structure_ellipse_3D_anisotropic.m

– image_ellipse_3D_fast.m

– image_view.m

– deleteEmptyExcelSheets.m

• Open the script “generate_synthetic_structure_ellipse_3D_anisotropic.m” in
MATLAB

• Type “generate_synthetic_structure_ellipse_3D_anisotropic” at the command
prompt to run.

Different 3-D microstructures can be obtained by adjusting the initialization param-
eters volume fraction (Vf_max), ellipse axis lengths (a,b,c), and image size (e.g.,
the “I=false(256,256,256);” statement). The approximate number of particles are
calculated to give an approximate indication of the time that may be required. For

2

%% Generate Synthetic 3D Structure with Ellipses
% Mark Tschopp
% 2016
% Random Sequential Adsorption algorithm that varies
% ellipse volume fraction, size, aspect ratio, and
% orientation

clear all; clc;

% Initialize variables used in generation of 3D microstructure
tic
Vf = 0; Vf_max = 0.05;
a = 12; b = 6; c = 6;
nparticles = 0;
I = false(256,256,256);
image_size = size(I);

% Calculate approximate Vf of particle and approximate number of
% particles to generate the specified volume fraction. This
% will impact the time that it takes to render the 3D volume.

% Assign random orientation
psi1 = 2*pi*rand; psi2 = 2*pi*rand; phi = acos(rand);
I_ellipse = image_ellipse_3D_fast(a,b,c,psi1,psi2,phi);
Vf_particle = sum(I_ellipse(:)) / numel(I);
approx_nparticles = Vf_max/Vf_particle;
disp(['Approximate # of particles: ' num2str(approx_nparticles)]);

% Main loop for generating microstructure
h = waitbar(0,'Ellipsoid placement');
while Vf < Vf_max

 psi1 = 2*pi*rand;
 psi2 = 2*pi*rand;
 phi = acos(rand);

 I_ellipse = image_ellipse_3D_fast(a,b,c,psi1,psi2,phi);

 x0 = ceil(rand*image_size(1));
 y0 = ceil(rand*image_size(2));
 z0 = ceil(rand*image_size(3));

 diam = size(I_ellipse,1);

 % Merge circle matrix with synthetic microstructure image
 nlo = x0 - floor(diam/2); nhi = x0 + ceil(diam/2)-1;
 ix = mod(nlo:nhi,image_size(1));ix(ix==0)=image_size(1);
 nlo = y0 - floor(diam/2); nhi = y0 + ceil(diam/2)-1;
 iy = mod(nlo:nhi,image_size(2));iy(iy==0)=image_size(2);
 nlo = z0 - floor(diam/2); nhi = z0 + ceil(diam/2)-1;
 iz = mod(nlo:nhi,image_size(3));iz(iz==0)=image_size(3);

 Itest = logical(I(ix,iy,iz));
 if sum(Itest(I_ellipse)) == 0
 Itest(I_ellipse) = 1;
 I(ix,iy,iz) = Itest;
 accept = 1;
 else
 accept = 0;
 iter = 0;
 while accept == 0 && iter <= 10
 iter = iter + 1;
 x0 = ceil(rand*image_size(1));
 y0 = ceil(rand*image_size(2));
 z0 = ceil(rand*image_size(3));
 diam = size(I_ellipse,1);

 % Merge circle matrix with synthetic microstructure
 nlo = x0 - floor(diam/2); nhi = x0 + ceil(diam/2)-1;
 ix = mod(nlo:nhi,image_size(1));
 ix(ix==0)=image_size(1);
 nlo = y0 - floor(diam/2); nhi = y0 + ceil(diam/2)-1;
 iy = mod(nlo:nhi,image_size(2));
 iy(iy==0)=image_size(2);
 nlo = z0 - floor(diam/2); nhi = z0 + ceil(diam/2)-1;
 iz = mod(nlo:nhi,image_size(3));
 iz(iz==0)=image_size(3);

 Itest = logical(I(ix,iy,iz));
 if sum(Itest(I_ellipse)) == 0
 Itest(I_ellipse) = 1;
 I(ix,iy,iz) = Itest;
 accept = 1;
 end
 end
 end
 if accept;
 nparticles = nparticles + 1;
 Vf_particle = sum(I_ellipse(:)) / numel(I);
 Vf = Vf + Vf_particle;
 ellipse(nparticles,1:10) = ...
 [x0 y0 z0 a b c psi1 psi2 phi Vf_particle];
 end

 waitbar(Vf/Vf_max)
end
close(h)
disp(['3D Digital Slices (sec): ' num2str(toc)]);
disp(['Number of particles: ' num2str(nparticles)]);

%% Write ellipse parameters to Excel
% Store all ellipse parameters in Excel so that the 3D structure
% can be generated without worrying about overlap.

image_save_flag = 1;
if image_save_flag

 string_path = pwd;
 Excel_fileName = sprintf('%s\\3D_ellipses.xlsx',string_path);
 sheet = sprintf('ellipse_%dvf_%da_%db_%dc_%05d',...
	round(100*Vf),a,b,c,nparticles);
 warning off MATLAB:xlswrite:AddSheet;
 ColHeaders = {'x0','y0','z0','a','b','c','psi1','psi1','phi'};
 xlswrite(Excel_fileName, ColHeaders, sheet, 'A1');
 xlswrite(Excel_fileName, ellipse, sheet, 'A2');
 deleteEmptyExcelSheets(Excel_fileName);

end

%% View slices of a 3D section
% This routine views 2D orthogonal planes in the 3D structure as a
% function of depth

j=1;
close all;
figure;
while j
 for i = 1:image_size(3)
 J = 1-I(:,:,i);
 image_view(J);
 title(['Slice ' num2str(i)])
 pause(0.05)
 end
end

% Hit control-C to exit

%% Save individual slices as jpegs for animated gifs
% For use with ImageJ - First, open ImageJ and select Plugins -> List
% Opener, then select the *.txt file that contains all the image
% paths. Once the images are loaded in ImageJ, then convert them to
% Slices using the Image -> Stacks -> Image to Stacks command. Now
% the stack of images can be saved as an animated *.gif format for
% insertion into Powerpoint. The Volume viewer and VolumeJ renderers
% in ImageJ also accept stacks of images.

tic
close all; figure;
sheetname = sprintf('ellipse_%dvf_%da_%db_%dc_%05d',...
	round(100*Vf),a,b,c,nparticles);
if ~isdir(sheetname), mkdir(sheetname); end
copyfile('image_view.m',sheetname)
cd(sheetname)
fid = fopen([sheetname '.txt'],'w');
for i = 1:image_size(3)
 K = reshape(1-I(:,:,i),image_size(1),image_size(2));
 J = K;
 image_view(J);
 pause(0.05)
 image_filename = [sheetname, sprintf('_%03d.jpg',i)];
 fprintf(fid,'%s \n',image_filename);
 if image_save_flag; imwrite(J,image_filename,'jpg'); end
end
fclose(fid);
delete('image_view.m')
cd ..

% Save to *.mat file as well
save([sheetname '.mat'],'I')

disp(['Image viewing and saving (sec): ' num2str(toc)]);

% *.mat file is useful for subsequent operations in MATLAB or writing
% files, *.jpg is useful for visualization, *.tif binaries are a useful
% if lossless compression is desired, *.txt contains a list of images,
% *.xls contains spreadsheet with all ellipse parameters, if desired

Mark Tschopp

function y = image_ellipse_3D_fast(a, b, c, psi1, psi2, phi)

% Mark Tschopp
% 2016
% This subroutine generates a 3D ellipse in a matrix (y) using the
% orthogonal distances in the ellipse (a,b,c) and the Euler angles
% (psi1,psi2,phi), which define the rotation of the ellipse.

%{
% These parameters can be used for debug purposes.
a = 40;
b = 10;
c = 10;
a = ceil(rand*40);
b = ceil(rand*40);
c = ceil(rand*40);
psi1 = 2*pi*rand;
psi2 = 2*pi*rand;
phi = acos(rand);
%}

% First, identify what the size of the matrix must be to contain the
% ellipse and also what the central symmetry plane will be (ic).

if a > b; diameter = 2*a; else diameter = 2*b; end
if 2*c > diameter; diameter = 2*c; end
if mod(diameter,round(diameter))~= 0; diameter = ceil(diameter); end
radius = diameter/2;
if mod(radius,round(radius))~= 0;
	diameter = diameter+1; radius = diameter/2;
end
dist(1:diameter+1,1:diameter+1,1:diameter+1) = 2;
ic = 1 + radius;

% M is the rotation matrix for the ellipse, based on the Euler angles
% psi1, psi2, and phi. Different rotation matrices and Euler angle
% conventions can be used, if necessary.

M = zeros(3);
M(1,1) = cos(psi1)*cos(psi2)-sin(psi1)*sin(psi2)*cos(phi);
M(2,1) = -cos(psi1)*sin(psi2)-sin(psi1)*cos(psi2)*cos(phi);
M(3,1) = sin(psi1)*sin(phi);
M(1,2) = sin(psi1)*cos(psi2)+cos(psi1)*sin(psi2)*cos(phi);
M(2,2) = -sin(psi1)*sin(psi2)+cos(psi1)*cos(psi2)*cos(phi);
M(3,2) = -cos(psi1)*sin(phi);
M(1,3) = sin(psi2)*sin(phi);
M(2,3) = cos(psi2)*sin(phi);
M(3,3) = cos(phi);

% This step creates a matrix with the distances to the ellipse
% centroid (ic, ic, ic). This has been optimized to minimize the
% time to generate the 3D ellipse. The changes resulted in a
% 94% decrease in the cpu time required to generate the ellipse.

k = ic-1;
i0 = 1; i1 = diameter + 1;
j0 = 1; j1 = diameter + 1;
while k < diameter+1
 k = k + 1;

 % This loops over all the pixels in the first plane to find
 % the pixels belonging to the ellipse

 for i = i0:i1
 for j = j0:j1
 a1 = [i-ic, j-ic, k-ic];
 a2 = [a^2, b^2, c^2];
 c1 = a1*M;
 c2 = c1.^2./a2;
 dist(i,j,k) = sum(c2);
 end
 end

 % If there are no pixels belonging to the ellipse on this plane,
 % then go ahead and exit out of the loop by setting k to the
 % final plane

 if sum(sum(dist(:,:,k)<=1))==0
 k = diameter + 1;
 end

 % If this is not the first or last plane, then the program
 % is smarter about which pixels it checks for ellipse pixels in

 if k ~= ic && k ~= diameter + 1
 d = dist(:,:,k-1) <= 1;
 e = dist(:,:,k) <= 1;
 d1 = diff(sum(d,1)~=0); dmin = find(d1 == 1);
 dmax = find(d1 == -1);
 if size(dmin,2) > 1; dmin = dmin(1); dmax = dmax(2); end
 e1 = diff(sum(e,1)~=0); emin = find(e1 == 1);
 emax = find(e1 == -1);
 if size(emin,2) > 1; emin = emin(1); emax = emax(2); end
 if dmin - emin < 0;
 j0 = emin - 1;
 j1 = j0 + 3 + (dmax-dmin);
 if j1 > diameter + 1; j1 = diameter + 1; end
 end
 if dmax - emax > 0;
 j1 = emax + 1;
 j0 = j1 - 3 - (dmax-dmin);
 if j0 < 1; j0 = 1; end
 end

 d1 = diff(sum(d,2)~=0); dmin = find(d1 == 1);
 dmax = find(d1 == -1);
 if size(dmin,1) > 1; dmin = dmin(1); dmax = dmax(2); end
 e1 = diff(sum(e,2)~=0); emin = find(e1 == 1);
 emax = find(e1 == -1);
 if size(emin,1) > 1; emin = emin(1); emax = emax(2); end
 if dmin - emin < 0;
 i0 = emin - 1;
 i1 = i0 + 3 + (dmax-dmin);
 if i1 > diameter + 1; i1 = diameter + 1; end
 end
 if dmax - emax > 0;
 i1 = emax + 1;
 i0 = i1 - 3 - (dmax-dmin);
 if i0 < 1; i0 = 1; end
 end
 end
end

%% Generate whole ellipse
% This section uses symmetry of the ellipse about the center plane
% to generate the entire ellipse in matrix y. The defined distance
% matrix in the previous section has a threshold of 1. Distances
% less than or equal to 1 belong to the ellipse; all other distances
% do not.

y = dist <= 1;
x = y(1:diameter+1,1:diameter+1,ic + 1:diameter+1);
x1(1:diameter+1,1:diameter+1,1:ic-1) = 0;
for i = 1:size(x,3)
 x1(:,:,size(x,3)-i+1) = flipud(fliplr(x(:,:,i)));
end
y(1:diameter+1,1:diameter+1,1:ic-1) = x1;

%% Show images
% For debug purposes, change the 'while 0' to 'while 1' for a stack
% of images through the ellipse.

while 0
 for i = 1:length(y)
 image_view(1-y(:,:,i));
 pause(0.15)
 end
end

Mark Tschopp

function image_view(I)

% Mark Tschopp
% 2016
% Quick image view function that doesn't require
% the MATLAB Image Processing toolbox

imagesc(I);
colormap(gray);
axis off;
axis equal;

Mark Tschopp

% created by: Quan Quach
% date: 11/6/07
% this function erases any empty sheets in an excel document

function deleteEmptyExcelSheets(fileName)

% the input fileName is the entire path of the file
% e.g., fileName = 'C:\Documents and Settings\matlab\myExcelFile.xls'

excelObj = actxserver('Excel.Application');
% opens up an excel object
excelWorkbook = excelObj.workbooks.Open(fileName);
worksheets = excelObj.sheets;
% total number of sheets in workbook
numSheets = worksheets.Count;

count=1;
for x=1:numSheets
 % stores the current number of sheets in the workbook
 % this number will change if sheets are deleted
 temp = worksheets.count;

 % if there's only one sheet left, we must leave it or else
 % there will be an error.
 if (temp == 1)
 break;
 end

 % this command will only delete the sheet if it is empty
 worksheets.Item(count).Delete;

 % if a sheet was not deleted, we move on to the next one
 % by incrementing the count variable
 if (temp == worksheets.count)
 count = count + 1;
 end
end
excelWorkbook.Save;
excelWorkbook.Close(false);
excelObj.Quit;
delete(excelObj);

Mark Tschopp

Approved for public release; distribution is unlimited.

higher-volume fractions, the code will have a progressively harder time placing par-
ticles as less matrix space is available. The code supplied can be easily extended to
incorporate size distributions, aspect ratio distributions, or orientation distributions,
as has been done in previous work.14

4. Examples
This code was developed to examine the structure-property relationship based on
the influence of particle aspect ratio, area fraction, packing/clustering, and parti-
cle orientation. For instance, prior work has examined metrics for characterizing
length scales in different composite microstructures.15,16 The voxelized microstruc-
tures can be output as images or meshes for subsequent calculations. Also, the pa-
rameters used to generate the synthetic microstructures can be output for building
within another software package (i.e., box dimensions in x,y,z coordinates, center
of ellipse in x,y,z coordinates, orthogonal major/minor axis lengths of the ellipse
[aspect ratio], and the orientation of the ellipse in Euler angles [ψ1,ψ2,φ]). For in-
stance, Fig. 1 shows an example of a subset of 2-D slices from a 3-D synthetic mi-
crostructure with over 13,000 particles placed at a volume fraction of 30%, where
the aspect ratio is increased from spherical (1:1:1) to more needle-like (4:1:1). Since
all ellipses in these microstructures are identical, Fig. 1c shows how difficult it is to
deduce the 3-D microstructure from 2-D microstructure slices (i.e., this microstruc-
ture appears to have particles with a distribution of aspect ratios). Figure 2 illustrates
the full 2-D slice for this microstructure to illustrate this more clearly. Notice that
the periodic boundaries are somewhat visible in this image for some of the particles
where the major axis of the ellipse is perpendicular to the viewing direction (i.e.,
they appear more elliptical in the cross-section image). Figure 3 illustrates the full
2-D slice for a microstructure with randomly oriented ellipses that have an 8:8:1
aspect ratio (i.e., plates). Again, the 2-D image appears to contain a mix of particle
sizes and shapes when in reality, these particles are all the same size.

3

Approved for public release; distribution is unlimited.

(a) (b) (c)

Fig. 1 2-D images of 3-D synthetic microstructures with uniform size circles/ellipses that are
randomly oriented with aspect ratios of a) 1:1:1, b) 2:1:1, and c) 4:1:1. The volume fraction in
this microstructure is 30% for all microstructures. For the volume computed, there were over
13,000 particles placed for each of the cases.

4

Approved for public release; distribution is unlimited.

Fig. 2 2-D images of 3-D periodic synthetic microstructure with uniform ellipses of 4:1:1 as-
pect ratio that are randomly oriented. The volume fraction in this microstructure is 30%. For
the volume computed, there were 14,133 particles placed.

5

Approved for public release; distribution is unlimited.

Fig. 3 2-D images of 3-D periodic synthetic microstructure with uniform ellipses of 8:8:1 as-
pect ratio (i.e., plates) that are randomly oriented. The volume fraction in this microstructure
is 19%. For the volume computed, there were 1,326 particles placed.

6

Approved for public release; distribution is unlimited.

5. Conclusion
Synthetic 2-phase microstructures are often used as a surrogate for real microstruc-
tures based on experimental microstructure statistics or as a way to test how dif-
ferent microstructure features affect properties of materials. In this technical note,
an RSA algorithm was implemented in MATLAB to generate 3-D synthetic mi-
crostructures composed of packing of ellipses within a voxelized microstructure.
The MATLAB scripts are attached as appendices for future application or develop-
ment.

7

Approved for public release; distribution is unlimited.

6. References

1. Torquato S. Random heterogeneous materials: microstructures and macro-
scopic properties. New York (NY): Springer; 2002.

2. Evans JW. Random and cooperative sequential adsorption. Rev Modern Phys.
1993;65:1281.

3. Talbot J, Tarjus G, Van Tassel PR, Viot P. From car parking to protein adsorp-
tion: an overview of sequential adsorption processes. Colloids Surf A: Phys-
iochem Eng Aspects. 2000;165:287–324.

4. Adamczyk Z. Modeling adsorption of colloids and proteins. Curr Opin Colloid
& Interf Sci. 2012;17(3):173–186.

5. Cieśla M, Barbasz J. Modelling of interacting dimer adsorption. Surf Sci.
2013;612:24–30.

6. Lu Z, Yuan Z, Liu Q. 3D numerical simulation for the elastic properties of
random fiber composites with a wide range of fiber aspect ratios. Comp Mater
Sci. 2014;90:123–129.

7. Shelke PB, Limaye AV. Dynamics of random sequential adsorption (RSA) of
linear chains consisting of n circular discs – role of aspect ratio and departure
from convexity. Surf Sci. 2015;637–638:1–4.

8. Vigil RD, Ziff RM. Random sequential adsorption of unoriented rectangles
onto a plane. J Chem Phys. 1989;91:2599–2602.

9. Dickman R, Wang JS, Jensen I. Random sequential adsorption: series and virial
expansions. J Chem Phys. 1991;94:8252–8257.

10. Shelke PB. Random sequential adsorption of n-star objects. Surf Sci.
2016;644:34–40.

11. Widom B. Random sequential addition of hard spheres to a volume. J Chem
Phys. 1966;44:3888.

12. Feder J. Random sequential adsorption. J Theoret Biol. 1980;87(2):237–254.

13. MATLAB. Release 2015. Natick (MA): The MathWorks, Inc.; 2015.

8

Approved for public release; distribution is unlimited.

14. Tschopp MA. Synthetic microstructure generator. Version 1.2. Natick (MA):
MathWorks; 2009 Sep 23 (updated 2009 Nov 10) [accessed 2016 Aug
25]. http://www.mathworks.com/matlabcentral/fileexchange/25389-synthetic-
microstructure-generator/.

15. Tschopp MA, Wilks GB, Spowart JE. Multi-scale characterization of or-
thotropic microstructures. Modell Simul Mater Sci Eng. 2008;16(6):065009.

16. Wilks GB, Tschopp MA, Spowart JE. Multi-scale characterization of in-
homogeneous morphologically textured microstructures. Mater Sci Eng.
2010;527(4):883–889.

9

http://www.mathworks.com/matlabcentral/fileexchange/25389-synthetic-microstructure-generator/
http://www.mathworks.com/matlabcentral/fileexchange/25389-synthetic-microstructure-generator/

Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

10

Approved for public release; distribution is unlimited.

Appendix A. MATLAB Scripts: Main Code

This appendix appears in its original form, without editorial change.

11

Approved for public release; distribution is unlimited.

%% Generate Synthetic 3D Structure with Ellipses

% Mark Tschopp

% 2016

% Random Sequential Adsorption algorithm that varies

% ellipse volume fraction, size, aspect ratio, and

% orientation

clear all; clc;

% Initialize variables used in generation of 3D microstructure

tic

Vf = 0; Vf_max = 0.05;

a = 12; b = 6; c = 6;

nparticles = 0;

I = false(256,256,256);

image_size = size(I);

% Calculate approximate Vf of particle and approximate number of

% particles to generate the specified volume fraction. This

% will impact the time that it takes to render the 3D volume.

% Assign random orientation

psi1 = 2*pi*rand; psi2 = 2*pi*rand; phi = acos(rand);

I_ellipse = image_ellipse_3D_fast(a,b,c,psi1,psi2,phi);

Vf_particle = sum(I_ellipse(:)) / numel(I);

approx_nparticles = Vf_max/Vf_particle;

disp(['Approximate # of particles: ' num2str(approx_nparticles)]);

% Main loop for generating microstructure

h = waitbar(0,'Ellipsoid placement');

while Vf < Vf_max

psi1 = 2*pi*rand;

psi2 = 2*pi*rand;

phi = acos(rand);

I_ellipse = image_ellipse_3D_fast(a,b,c,psi1,psi2,phi);

x0 = ceil(rand*image_size(1));

y0 = ceil(rand*image_size(2));

z0 = ceil(rand*image_size(3));

diam = size(I_ellipse,1);

12

Approved for public release; distribution is unlimited.

% Merge circle matrix with synthetic microstructure image

nlo = x0 - floor(diam/2); nhi = x0 + ceil(diam/2)-1;

ix = mod(nlo:nhi,image_size(1));ix(ix==0)=image_size(1);

nlo = y0 - floor(diam/2); nhi = y0 + ceil(diam/2)-1;

iy = mod(nlo:nhi,image_size(2));iy(iy==0)=image_size(2);

nlo = z0 - floor(diam/2); nhi = z0 + ceil(diam/2)-1;

iz = mod(nlo:nhi,image_size(3));iz(iz==0)=image_size(3);

Itest = logical(I(ix,iy,iz));

if sum(Itest(I_ellipse)) == 0

Itest(I_ellipse) = 1;

I(ix,iy,iz) = Itest;

accept = 1;

else

accept = 0;

iter = 0;

while accept == 0 && iter <= 10

iter = iter + 1;

x0 = ceil(rand*image_size(1));

y0 = ceil(rand*image_size(2));

z0 = ceil(rand*image_size(3));

diam = size(I_ellipse,1);

% Merge circle matrix with synthetic microstructure

nlo = x0 - floor(diam/2); nhi = x0 + ceil(diam/2)-1;

ix = mod(nlo:nhi,image_size(1));

ix(ix==0)=image_size(1);

nlo = y0 - floor(diam/2); nhi = y0 + ceil(diam/2)-1;

iy = mod(nlo:nhi,image_size(2));

iy(iy==0)=image_size(2);

nlo = z0 - floor(diam/2); nhi = z0 + ceil(diam/2)-1;

iz = mod(nlo:nhi,image_size(3));

iz(iz==0)=image_size(3);

Itest = logical(I(ix,iy,iz));

if sum(Itest(I_ellipse)) == 0

Itest(I_ellipse) = 1;

I(ix,iy,iz) = Itest;

accept = 1;

end

end

end

13

Approved for public release; distribution is unlimited.

if accept;

nparticles = nparticles + 1;

Vf_particle = sum(I_ellipse(:)) / numel(I);

Vf = Vf + Vf_particle;

ellipse(nparticles,1:10) = ...

[x0 y0 z0 a b c psi1 psi2 phi Vf_particle];

end

waitbar(Vf/Vf_max)

end

close(h)

disp(['3D Digital Slices (sec): ' num2str(toc)]);

disp(['Number of particles: ' num2str(nparticles)]);

%% Write ellipse parameters to Excel

% Store all ellipse parameters in Excel so that the 3D structure

% can be generated without worrying about overlap.

image_save_flag = 1;

if image_save_flag

string_path = pwd;

Excel_fileName = sprintf('%s\\3D_ellipses.xlsx',string_path);

sheet = sprintf('ellipse_%dvf_%da_%db_%dc_%05d',...

round(100*Vf),a,b,c,nparticles);

warning off MATLAB:xlswrite:AddSheet;

ColHeaders = {'x0','y0','z0','a','b','c','psi1','psi1','phi'};

xlswrite(Excel_fileName, ColHeaders, sheet, 'A1');

xlswrite(Excel_fileName, ellipse, sheet, 'A2');

deleteEmptyExcelSheets(Excel_fileName);

end

%% View slices of a 3D section

% This routine views 2D orthogonal planes in the 3D structure as a

% function of depth

j=1;

close all;

figure;

while j

for i = 1:image_size(3)

J = 1-I(:,:,i);

14

Approved for public release; distribution is unlimited.

image_view(J);

title(['Slice ' num2str(i)])

pause(0.05)

end

end

% Hit control-C to exit

%% Save individual slices as jpegs for animated gifs

% For use with ImageJ - First, open ImageJ and select Plugins -> List

% Opener, then select the *.txt file that contains all the image

% paths. Once the images are loaded in ImageJ, then convert them to

% Slices using the Image -> Stacks -> Image to Stacks command. Now

% the stack of images can be saved as an animated *.gif format for

% insertion into Powerpoint. The Volume viewer and VolumeJ renderers

% in ImageJ also accept stacks of images.

tic

close all; figure;

sheetname = sprintf('ellipse_%dvf_%da_%db_%dc_%05d',...

round(100*Vf),a,b,c,nparticles);

if ~isdir(sheetname), mkdir(sheetname); end

copyfile('image_view.m',sheetname)

cd(sheetname)

fid = fopen([sheetname '.txt'],'w');

for i = 1:image_size(3)

K = reshape(1-I(:,:,i),image_size(1),image_size(2));

J = K;

image_view(J);

pause(0.05)

image_filename = [sheetname, sprintf('_%03d.jpg',i)];

fprintf(fid,'%s \n',image_filename);

if image_save_flag; imwrite(J,image_filename,'jpg'); end

end

fclose(fid);

delete('image_view.m')

cd ..

% Save to *.mat file as well

save([sheetname '.mat'],'I')

disp(['Image viewing and saving (sec): ' num2str(toc)]);

15

Approved for public release; distribution is unlimited.

% *.mat file is useful for subsequent operations in MATLAB or writing

% files, *.jpg is useful for visualization, *.tif binaries are a useful

% if lossless compression is desired, *.txt contains a list of images,

% *.xls contains spreadsheet with all ellipse parameters, if desired

16

Approved for public release; distribution is unlimited.

Appendix B. MATLAB Function: Create Ellipse

This appendix appears in its original form, without editorial change.

17

Approved for public release; distribution is unlimited.

function y = image_ellipse_3D_fast(a, b, c, psi1, psi2, phi)

% Mark Tschopp

% 2016

% This subroutine generates a 3D ellipse in a matrix (y) using the

% orthogonal distances in the ellipse (a,b,c) and the Euler angles

% (psi1,psi2,phi), which define the rotation of the ellipse.

%{

% These parameters can be used for debug purposes.

a = 40;

b = 10;

c = 10;

a = ceil(rand*40);

b = ceil(rand*40);

c = ceil(rand*40);

psi1 = 2*pi*rand;

psi2 = 2*pi*rand;

phi = acos(rand);

%}

% First, identify what the size of the matrix must be to contain the

% ellipse and also what the central symmetry plane will be (ic).

if a > b; diameter = 2*a; else diameter = 2*b; end

if 2*c > diameter; diameter = 2*c; end

if mod(diameter,round(diameter))~= 0; diameter = ceil(diameter); end

radius = diameter/2;

if mod(radius,round(radius))~= 0;

diameter = diameter+1; radius = diameter/2;

end

dist(1:diameter+1,1:diameter+1,1:diameter+1) = 2;

ic = 1 + radius;

% M is the rotation matrix for the ellipse, based on the Euler angles

% psi1, psi2, and phi. Different rotation matrices and Euler angle

% conventions can be used, if necessary.

M = zeros(3);

M(1,1) = cos(psi1)*cos(psi2)-sin(psi1)*sin(psi2)*cos(phi);

M(2,1) = -cos(psi1)*sin(psi2)-sin(psi1)*cos(psi2)*cos(phi);

M(3,1) = sin(psi1)*sin(phi);

M(1,2) = sin(psi1)*cos(psi2)+cos(psi1)*sin(psi2)*cos(phi);

18

Approved for public release; distribution is unlimited.

M(2,2) = -sin(psi1)*sin(psi2)+cos(psi1)*cos(psi2)*cos(phi);

M(3,2) = -cos(psi1)*sin(phi);

M(1,3) = sin(psi2)*sin(phi);

M(2,3) = cos(psi2)*sin(phi);

M(3,3) = cos(phi);

% This step creates a matrix with the distances to the ellipse

% centroid (ic, ic, ic). This has been optimized to minimize the

% time to generate the 3D ellipse. The changes resulted in a

% 94% decrease in the cpu time required to generate the ellipse.

k = ic-1;

i0 = 1; i1 = diameter + 1;

j0 = 1; j1 = diameter + 1;

while k < diameter+1

k = k + 1;

% This loops over all the pixels in the first plane to find

% the pixels belonging to the ellipse

for i = i0:i1

for j = j0:j1

a1 = [i-ic, j-ic, k-ic];

a2 = [a^2, b^2, c^2];

c1 = a1*M;

c2 = c1.^2./a2;

dist(i,j,k) = sum(c2);

end

end

% If there are no pixels belonging to the ellipse on this plane,

% then go ahead and exit out of the loop by setting k to the

% final plane

if sum(sum(dist(:,:,k)<=1))==0

k = diameter + 1;

end

% If this is not the first or last plane, then the program

% is smarter about which pixels it checks for ellipse pixels in

if k ~= ic && k ~= diameter + 1

d = dist(:,:,k-1) <= 1;

19

Approved for public release; distribution is unlimited.

e = dist(:,:,k) <= 1;

d1 = diff(sum(d,1)~=0); dmin = find(d1 == 1);

dmax = find(d1 == -1);

if size(dmin,2) > 1; dmin = dmin(1); dmax = dmax(2); end

e1 = diff(sum(e,1)~=0); emin = find(e1 == 1);

emax = find(e1 == -1);

if size(emin,2) > 1; emin = emin(1); emax = emax(2); end

if dmin - emin < 0;

j0 = emin - 1;

j1 = j0 + 3 + (dmax-dmin);

if j1 > diameter + 1; j1 = diameter + 1; end

end

if dmax - emax > 0;

j1 = emax + 1;

j0 = j1 - 3 - (dmax-dmin);

if j0 < 1; j0 = 1; end

end

d1 = diff(sum(d,2)~=0); dmin = find(d1 == 1);

dmax = find(d1 == -1);

if size(dmin,1) > 1; dmin = dmin(1); dmax = dmax(2); end

e1 = diff(sum(e,2)~=0); emin = find(e1 == 1);

emax = find(e1 == -1);

if size(emin,1) > 1; emin = emin(1); emax = emax(2); end

if dmin - emin < 0;

i0 = emin - 1;

i1 = i0 + 3 + (dmax-dmin);

if i1 > diameter + 1; i1 = diameter + 1; end

end

if dmax - emax > 0;

i1 = emax + 1;

i0 = i1 - 3 - (dmax-dmin);

if i0 < 1; i0 = 1; end

end

end

end

%% Generate whole ellipse

% This section uses symmetry of the ellipse about the center plane

% to generate the entire ellipse in matrix y. The defined distance

% matrix in the previous section has a threshold of 1. Distances

% less than or equal to 1 belong to the ellipse; all other distances

% do not.

20

Approved for public release; distribution is unlimited.

y = dist <= 1;

x = y(1:diameter+1,1:diameter+1,ic + 1:diameter+1);

x1(1:diameter+1,1:diameter+1,1:ic-1) = 0;

for i = 1:size(x,3)

x1(:,:,size(x,3)-i+1) = flipud(fliplr(x(:,:,i)));

end

y(1:diameter+1,1:diameter+1,1:ic-1) = x1;

%% Show images

% For debug purposes, change the 'while 0' to 'while 1' for a stack

% of images through the ellipse.

while 0

for i = 1:length(y)

image_view(1-y(:,:,i));

pause(0.15)

end

end

21

Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

22

Approved for public release; distribution is unlimited.

Appendix C. Other MATLAB Functions

This appendix appears in its original form, without editorial change.

23

Approved for public release; distribution is unlimited.

function image_view(I)

% Mark Tschopp

% 2016

% Quick image view function that doesn't require

% the MATLAB Image Processing toolbox

imagesc(I);

colormap(gray);

axis off;

axis equal;

24

Approved for public release; distribution is unlimited.

% created by: Quan Quach

% date: 11/6/07

% this function erases any empty sheets in an excel document

function deleteEmptyExcelSheets(fileName)

% the input fileName is the entire path of the file

% e.g., fileName = 'C:\Documents and Settings\matlab\myExcelFile.xls'

excelObj = actxserver('Excel.Application');

% opens up an excel object

excelWorkbook = excelObj.workbooks.Open(fileName);

worksheets = excelObj.sheets;

% total number of sheets in workbook

numSheets = worksheets.Count;

count=1;

for x=1:numSheets

% stores the current number of sheets in the workbook

% this number will change if sheets are deleted

temp = worksheets.count;

% if there's only one sheet left, we must leave it or else

% there will be an error.

if (temp == 1)

break;

end

% this command will only delete the sheet if it is empty

worksheets.Item(count).Delete;

% if a sheet was not deleted, we move on to the next one

% by incrementing the count variable

if (temp == worksheets.count)

count = count + 1;

end

end

excelWorkbook.Save;

excelWorkbook.Close(false);

excelObj.Quit;

delete(excelObj);

25

Approved for public release; distribution is unlimited.

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

2
(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL CIO L
IMAL HRA MAIL & RECORDS MGMT

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

1
(PDF)

RDRL WMM F
M TSCHOPP

26

	List of Figures
	Introduction
	Algorithm/Code Description
	Implementation and Usage
	Examples
	Conclusion
	References
	Appendix A. MATLAB Scripts: Main CodeThis appendix appears in its original form, without editorial change.0
	Appendix B. MATLAB Function: Create EllipseThis appendix appears in its original form, without editorial change.0
	Appendix C. Other MATLAB FunctionsThis appendix appears in its original form, without editorial change.0
	Distribution List

