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1. SUMMARY

This report covers the work completed under the UNM/AFRL research grant FA9453-11-1-0276 
including the theoretical development and implementation of a novel electron transport method 
in the Geant4 toolkit, and other related work including the generation of response functions for 
the CEASE telescope.  It has long been of interest to develop an alternative to the standard 
Condensed History (CH) method that is free of its inherent limitations. The Moment-Preserving 
method, is such an alternative and within this report the accuracy and efficiency of this method 
is demonstrated and contrasted with the CH method.  The Moment-Preserving (MP) Monte Carlo 
electron transport method was developed and implemented in the Geant4 toolkit as C++ classes 
for constructing the libraries that are required by the MP method physics models. Given the 
successful implementation of the physics models, the MP method was then tested on a wide 
variety of problems including a theoretical test suite, experimental validations, and the CEASE 
particle telescope.  

2. INTRODUCTION

This report covers the work completed under the UNM/AFRL research grant FA9453-11-1-0276 
during the period of April 2011 to March 2015 including the primary objective, or the theoretical 
development and implementation of a novel electron transport method in the Geant4 toolkit, and 
other related work including the modeling of detectors associated with the AFRL Demonstration 
and Science Experiment (DsX) detectors for use in response function determination. In efforts to 
complete the primary objective, the Moment-Preserving (MP) Monte Carlo electron transport 
method was developed and implemented in the Geant4 toolkit. Specifically, C++ classes were 
developed for constructing the reduced order physics (ROP) differential cross-section (DCS) 
libraries that are required by the MP method physics models developed for the Geant4 toolkit. 
Given the successful implementation of the physics models, the MP method was then tested on a 
wide variety of problems including a theoretical test suite, experimental validations, and 
generation of response functions for the CEASE telescope (i.e. a DsX instrument). The 
motivation for MP method and the key properties are now summarized. 

Analog electron transport is computationally impractical; and therefore, methods such as 
condensed history were developed to alleviate the computational cost associated with analog 
Monte Carlo electron transport. However, the condensed history method suffers from limitations 
inherent to the method resulting from the formulation of the method. Therefore, it is of interest to 
develop an advanced method that is free of the limitations of condensed history, while remaining 
efficient and accurate with respect to the analog transport model. The analog description of 
transport can be mathematically expressed in terms of the linear Boltzmann or transport equation 
for the phase space particle distribution function, where interaction physics is represented 
through total cross sections and differential cross sections for energy transfer and angular 
deflection. In the so-called advanced method, a reduced order transport problem is posed, but 
with modified cross sections such that the resulting single-event Monte Carlo simulation is 
computationally efficient (minutes vs. days). Underlying the approach is a method of 
systematically preserving energy-loss and angular deflection moments of the analog differential 
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cross sections and using only a finite number of these moments to reconstruct a reduced order 
physics differential cross section. This method is characterized by the following properties: 

1. The mean free path of the reduced order physics model will be longer than the true or
analog mean free path and the differential cross sections less peaked, with accuracy
depending on the number of moments preserved.

2. The moment-preserving methodology will enable accuracy to systematically approach
analog by incorporating increasingly higher order moments with precision.

3. By retaining the “look and feel” of the analog transport process, i.e., using
approximations based on Boltzmann or integral forms of the collision operators
describing interactions, collisions are exactly treated as Markov events, thereby allowing
material and vacuum interfaces to be handled without algorithmic modifications in
condensed history methods.

4. In aggregate, the smoother cross section variation with energy and angle as well as the
correct transport mechanics will result in considerable computational savings over using
strictly analog Monte Carlo simulation. We expect the savings to be such that the
moment-preserving method will be computationally competitive with condensed history,
but it also has the potential to be more efficient than condensed history.

5. The methodology will be independent of charged particle species and will therefore
apply to species of disparate masses, such as protons and electrons.

6. The methodologies proposed here can be directly incorporated into production Monte
Carlo codes such as MCNPX and Geant4 without necessitating new logic because this
approach will treat charged particles similar to neutral particles with regards to transport.

Given a summary of the advanced Monte Carlo method and its’ properties, the background 
information necessary to understand the motivation of developing such a method is provided. 

3. BACKGROUND

The need for computational charged particle transport developed from early work in charged 
particle transport theory, which emerged as a flourishing sub-branch of mathematical physics 
when fast charged particles became available to the experimentalist [2]. As computer 
technology improved, the problems of interest to charged particle computational physicist 
expanded to areas including: space physics, accelerator physics, medical physics, health physics, 
and electromagnetic pulses. The advantage of computational charged particle transport over 
analytical transport is the possibility of simulating complicated geometries and sophisticated 
boundary conditions or source configurations, which are all characteristics of real world 
applications. In other words, it is possible to simulate real, physical phenomena using charged 
particle transport codes. An example of such a code is the Geant4 toolkit [3] which is used 
frequently on problems including: design of full-scale experiments such as the Large Hadron 
Collider [4, 5], design of radiation therapy machines [6] as well as treatment planning systems 
[7], estimation of detector geometric factors [8], shielding calculations [9], and EMP 
calculations [10]. It is undisputed that particle transport codes play an important role in the 
research and development of charged particle applications and reasonable to suggest that 
particle transport codes will continue to play an important role into future. Therefore, 
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algorithmic improvements to particle transport codes are critical to improving the field of 
computational charged particle transport. 

To make clear the impact of this work and the importance of the remaining chapters, it is 
necessary to provide, at least, a cursory discussion on what is meant by charged particle 
transport codes and the associated challenges. First, the purpose of charged particle transport 
codes is to obtain solutions to the Boltzmann trans- port equation [11] using stochastic 
methods like Monte Carlo [12] or deterministic methods like SN [13]. The Boltzmann transport 
equation is a balance equation for particles in a six-dimensional phase-space including space, 
angle, and energy. The solution to this equation describes the particle population and is referred 
to as the angular flux. For a given analog DCS model, the corresponding transport equation is 
referred to as the analog model and the angular flux is assumed to be exact. Analog, (detailed, 
step by step), simulation is feasible under strict circumstances (relatively low energies, thin 
targets, ...), but for high-energy electrons (above a few hundred keV), the number of 
interactions suffered by an electron along its trajectory is too large for detailed simulations 
[14]. For this reason, numerous computationally efficient approximate methods have emerged 
over the past 60 years. The most notable and prolific approximate method is Condensed History 
(CH). Berger describes CH as an artificially constructed random walk, each step of which takes 
into account the combined effects of many collisions [2]. The distances between collisions or the 
steps are significantly longer than those associated with the analog problem, making CH 
efficient. However, the theoretical basis and practical implementation of the CH algorithm 
introduces inherent and irreducible limitations that are unique to the method.  

It is of interest to develop a method free of such limitations. To better understand benefits of 
such a method, the remaining sections provide a qualitative discussion of the literature relevant 
to the analog problem and the associated analog differential cross-sections (DCS), the 
Condensed History (CH) method, and Reduced Order Physics (ROP) models including the 
Moment-Preserving (MP) method. The analog problem is the point of departure for both CH 
and ROP models, so we begin with a discussion of the analog problem.  

3.1. The Analog Problem 

The analog description of transport can be mathematically expressed in terms of the linear 
Boltzmann or transport equation for the angular flux, where the interaction physics are 
represented through total cross sections (inverse mfp) and the DCSs for angular deflection 
and energy loss. The total cross sections and DCSs appear in the elastic and inelastic collision 
operators, which are integral operators or Boltzmann-type operators. Though electrons can 
undergo several different electromagnetic interactions, the dominant interactions are elastic 
collisions with nuclei and inelastic collisions with atomic electrons. Typical DCSs for elastic 
nuclear scattering include relativistic screened Rutherford, Wentzel, or the partial-wave 
expansion [15, 16, 17], while typical DCSs for inelastic electronic scattering include 
Rutherford, Moller, or the Evaluated Electron Data Library [18, 19]. These DCSs are highly 
peaked about small changes in direction and small energy losses and the associated total 
cross sections are very large resulting in extremely short mfps. Interaction physics of this 
nature present a difficult computational task. 
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Boundary conditions for the transport equation depend on the application, but typically include 
vacuum, pencil beams, or sources distributed in space, energy, and angle. However, mono-
energetic pencil beams are very common in electron trans- port and further complicate the 
computational challenges because pencil beams are singular in space, energy, and angle.  

The problem of computational inefficiencies associated with the analog physics was 
recognized immediately by early charged particle computational physicists. In fact, Berger [2] 
acknowledged that a direct analog Monte Carlo procedure would be quite costly, because of the 
enormous number of collisions that must be sampled. For example, it takes on the order of tens 
of thousands of collisions for an electron with energy of roughly 1-MeV to slow down to 1-keV, 
while only 20 to 30 Compton scatterings will reduce the energy of a photon from several MeV 
down to 1-keV or 18 elastic collisions in hydrogen will reduce a neutron from 2-MeV to 
thermal energies [2]. In 1963, only one calculation by direct analog Monte Carlo was reported 
[20]. Since then, several analog Monte Carlo electron transport codes have been developed 
[14, 21] and a few production codes have included analog physics options [22, 23, 24]. 
Solutions to the analog problem are exact for a given DCS; therefore, it is understandable that 
analog physics options were implemented, despite the fact that analog Monte Carlo is 
computationally inefficient. Moreover, it is feasible to use analog Monte Carlo for occasional 
calculations if significant computing resources are available. However, analog Monte Carlo 
remains impractical for routine calculations with exception of very restrictive problems like 
transport through optically thin materials. For this reason, approximate methods remain a 
critical component of most Monte Carlo electron transport codes.  

3.2. Condensed History 

Condensed history has been the prevailing approximate method in computational charged 
particle transport since the emergence of the field. The usual practice is to use "condensed" 
(class I) simulation methods, in which the global effect of multiple interactions is described by 
means of approximate multiple scattering theories. Alternatively, one can use "mixed" (class II) 
schemes in which hard (catastrophic) interactions, with energy loss or angular deflection above 
given thresholds, are simulated individually. For a given set of DCSs, class II schemes are 
intrinsically more accurate than class I simulations [14]. Some examples of codes containing 
class I schemes are ETRAN, ITS, MCNP, while examples of production codes containing class 
II CH schemes are Geant4, PENELOPE, and EGS4 [3, 24, 25]. Both class I and class II 
schemes utilize various results from multiple scattering theory, which is a subbranch of 
mathematical physics developed around the solution of the trans- port equation with limited 
applicability resulting from severe restrictions required to obtain analytical solutions [26, 27, 
28, 29]. The analytical solutions or multiple scattering distributions describe the angular or 
energy distributions of electrons after traveling some distance s or a step, that are on the order of 
hundreds of analog mfps.  

The major distinction between class I and class II schemes is how the grouping of collisions is 
handled. That is, class I schemes utilize precomputed multiple-scattering (MS) distributions 
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[30, 31, 32, 33] determined for fixed step-sizes on a fixed energy grid. For this reason, energy 
straggling is sampled from a MS distribution [32, 33] and secondaries are accounted for on an 
average basis. Therefore, it is not possible to distinguish between inelastic collisions resulting in 
secondary production (hard) and those that do not (soft). In contrast, a class II scheme like EGS 
allows all physical processes and boundaries to affect the choice of step size [34]. Thus, distance 
to hard collision is exponentially distributed, while secondary production is treated exactly by 
sampling energy-loss from the inelastic DCS above the secondary production threshold.  

Regardless of the choice in the scheme, substantial efficiency gains over analog Monte Carlo 
can be realized with CH. However, the accuracy of early forms of CH was strongly dependent 
on step-size and while it was found that reducing the electron step-size causes the results to 
converge to the correct values, the computing time increases rapidly in proportion to the inverse 
of the step-size [35, 36, 37]. Therefore, special algorithms like PRESTA [38] were developed to 
select the optimal step-size during the process of a Monte Carlo simulation. Without an 
algorithm like PRESTA, one must resort to a tedious study to determine the optimal step-size 
such that acceptable accuracy and efficiency is achieved. However, this optimization may not be 
universal. The various production codes currently available differ in this optimization issue. 
Some codes, like ITS, have pre-determined step-size parameters, while codes like EGS utilize 
the PRESTA algorithm [38] or random hinging combined with lateral corrections found in 
PENELOPE. In addition to step-size limitations, condensed history suffers from inconsistent 
handling of the material and free surface boundaries. Material interfaces are a fundamental 
challenge for condensed history because the MS distributions are infinite medium solutions and 
are not valid for heterogeneous regions. Therefore, if a material interface is encountered, a 
special algorithm like the Jordan-Mack algorithm [39] or PRESTA is required. Another issue 
specific to class I schemes that utilize the Goudsmit-Saunderson distribution [30, 31] for 
sampling angular deflection is that the numerical methods required to generate the Goudsmit-
Saunderson distribution are sensitive to small step-sizes. The backwards recurrence used to 
generate the Goudsmit-Saunderson is unstable for small steps. Even if the step-size is 
sufficiently long that the backwards recurrence is stable, it is possible that more than the pre-
scripted number of recurrence coefficients are required to accurately resolve the Goudsmit-
Saunderson distribution [40].  

3.3. Reduced Order Physics Models 

For the reasons stated above, various alternatives to the CH method were developed. Of 
particular interest are alternatives referred to as Reduced Order Physics (ROP) models, which 
are a family of transport-based approximations. ROP models include various approximate 
representations of the analog collision operators that are of both integral and differential forms. 
ROP models are obtained through some type of regularization procedure that removes reduce 
the nearly-singular behavior of the analog DCS, while systematically capturing the key physics 
through preservation of angular and energy-loss moments of the analog DCSs. Moreover, the 
zeroth or the total cross section is not preserved, rather it is determined self-consistently by the 
method. The resulting ROP model is then characterized by less peaked scattering with mfps 
longer than the analog mfp. Efficiency is achieved by not preserving the total cross section, 
while accuracy is achieved by preserving the necessary number of moments beyond the zeroth. 
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There are numerous approximations that qualify as ROP models including Fokker-Planck, 
Boltzmann Fokker-Planck, Generalized Fokker-Planck, and Generalized Boltzmann Fokker-
Planck. The remainder of this chapter is devoted to introducing each of these approximations 
and indicating how these methods contributed to the development of the MP method.  

The classical Fokker-Planck operator is obtained by Taylor expanding the scattering kernels. 
This is a reasonable approach, assuming the angular flux is sufficiently smooth, because the 
DCSs fall of rapidly away from small deflection cosines and energy-losses. The resulting 
operator is differential in angle and energy and models elastic and inelastic scattering as 
diffusive processes. As a result, the Fokker-Planck operator does not capture large-angle scatter 
and can lead to energy gains. Pomraning confirmed these inconsistencies by showing that the 
Fokker-Planck operator is an asymptotic limit of the Boltzmann collision operator and only 
valid for unrealistically peaked scattering [41]. That is, the FP approximation is strictly valid in 
the limit that the total scattering cross section goes to infinity and the mean deflection cosine 
goes to unity such that the transport cross section remains bounded [42]. Under these conditions, 
large angle scattering is negligible and the FP operator is equivalent to the Boltzmann integral 
collision operator. Clearly, there is a limitation on the type of physics for which the classical FP 
operator is valid. Regardless, various implementations of Fokker-Planck operator were studied 
for in deterministic settings [43, 44, 45, 46].  

In efforts to incorporate large-angle scattering, a kernel decomposition approach was introduced 
by Ligou and is referred to as the Boltzmann-Fokker-Planck (BFP) equation [47, 48, 49]. Ligou 
recognized that it is easier to numerically treat forward- peaked elastic scattering and small 
energy losses associated with such scattering using Fokker-Planck (FP) differential operators 
[45] rather than Boltzmann integral operators. However, the FP operator does not accurately 
capture large angle scattering. Therefore, it is necessary to decompose the scattering cross 
section into its singular and smooth components and apply the FP approximation to the 
singular component while leaving the smooth operator intact [50]. One important feature of the 
decomposition process is that there is no rigorous definition of the components so there are 
infinite decompositions. The key, as indicated by Landesman and Morel [50], is to select a 
decomposition that is not only accurate and efficient, but also easily integrated into existing 
transport codes. The early methods for solving the BFP equation were deterministic, but Morel 
and Sloan [51, 52] developed a hybrid multigroup/continuous-energy Monte Carlo method for 
solving the BFP equation or the MGBFP method. Morel described the MGBFP method as a 
new form of condensed history with the major distinction being that path lengths between 
collision sites are exponentially distributed.  

In retrospect, application of kernel decomposition serves to stabilize the divergent behavior of 
the Fokker-Planck expansion [53] by effectively renormalizing the expansion coefficients. This 
renormalization process is central to the Generalized Fokker-Planck (GFP) method [54, 55] and 
resulted after attempting to generalize the FP operator to a broad class of physics with higher 
order FP operators [53]. In principle, the FP approximation can be improved by retaining 
higher order terms in the Taylor expansion of the collision operators. Thus, leading to a more 
accurate description of large angle scattering, but this is only true for specific kernels. For 
example, it is known that there are no valid FP operators for the Henyey-Greenstein kernel [41] 
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and that the standard FP operator is only marginally valid for screened Rutherford or screened 
Mott [42]. However, Pomraning [53] completed the same kernel analysis for the exponential 
and delta function and showed that higher order FP operators are valid for kernels such as these, 
but they are unphysical. In addition to characterizing the stability of higher order FP operators 
with respect to specific scattering kernels, this analysis revealed the explicit role of the analog 
DCS moments to developing approximations. That is, higher order FP expansions suggest that 
the accuracy of the approximation is improved by incorporating higher order moments. GFP 
approaches provide a means to stabilize higher-order FP operators through renormalization of 
the various terms that appear in the operator. The renormalization process, in essence, allows 
for an arbitrary ordered FP operator; hence, the approach referred to as generalized FP. Lastly, 
work on GFP showed that the key to a stable ROP model is preserving the integral form of the 
collision operator and retaining an arbitrary number of low order moments while approximating 
all of the higher order moments.  

Insight gained from the foregoing approximations - FP, BFP, and GFP - combined with Lewis 
theory [56, 57] and practical experience from implementing and testing CH led to the 
development of the Generalized Boltzmann Fokker-Planck (GBFP) method [58]. Like the other 
ROP models, the GBFP method is a transport-based approximation. However, the GBFP 
method is more appropriate for Monte Carlo calculations like CH. The emphasis of GBFP 
method is the development of stable, moment-preserving representations of the collision 
operators. This is achieved by constructing ROP DCSs that are moment-preserving, per Lewis 
theory, while leaving the collision operators intact by simply replacing the analog DCSs with 
the ROP DCSs. Another key feature of the GBFP approach is that angular deflection and 
energy-loss interactions depend only on Legendre moments and energy-loss moments, not the 
detailed form of the analog DCSs. Therefore, the GBFP method is applicable to both continuous 
DCSs [59] and tabulated DCS data [60] and code modifications are not required for physics 
refinements because this is accomplished by providing moments of the desirable analog model 
through input data. The bulk of the work on the GBFP method to date emphasizes the most 
simple, but also the most effective ROP DCSs referred to as the discrete and hybrid models. 
The discrete model [61] is a superposition of discrete points and weights over the full range of 
the DCS, while the hybrid model [62] is a superposition of discrete points and weights over the 
peaked portion of the DCS and the tail is represented exactly by the analog DCS. Recently, the 
name Moment-Preserving method was adopted in place of the GBFP method to distinguish the 
method from Fokker-Planck and to emphasize the concept most fundamental to the method - 
moment preservation.  

4. METHODS, ASSUMPTIONS, AND PROCEDURES

In this section, the Moment-Preserving method is presented along with a discussion of the analog 
DCSs and the analog transport model. 

Approved for public release; distribution is unlimited.
7



4.1. Analog Differential Cross-Sections and the Analog Transport Model 

In the following sections, the analog physics are presented along with the analog transport 
model. The analog electron physics render application of the Monte Carlo method to analog 
transport model computationally inefficient. Specific features associated with the analog physics 
that attribute to the extreme computational cost are discussed. Herein, solutions to the analog 
transport model are referred to as the analog benchmark and accuracy and efficiency of the 
Moment-Preserving method are measured with respect to the analog benchmark. Therefore, the 
analog transport model is presented along with boundary conditions and applicable assumptions. 

4.1.1. Elastic and Inelastic Analog Differential Cross-Sections 

In this paper, we are concerned with the interactions that render analog Monte Carlo electron 
transport computationally inefficient. That is, elastic collisions with atomic nuclei (primary 
source of deflection) and inelastic collisions with atomic electrons (primary source of energy-
loss). These interactions are characterized by highly peaked DCSs about small changes in 
direction and small energy transfers or energy losses resulting in extremely large total cross-
sections or short mfps on the order of microns.  

Figure 1: Electron interaction diagrams for elastic and inelastic scattering [24]. 

The analog DCSs used in this work are referred to as the partial-wave elastic DCS and the 
Moller inelastic DCS. However, the nature of electronic interactions is understood through 
simple forms of the elastic and inelastic DCSs such as screened Rutherford and the Rutherford 
energy-loss DCS. These DCSs describe Coulombic interactions between incident and target 
particles and are therefore dominated by distant collisions. As such, the DCSs are highly peaked 
and near-singular about forward directions and zero energy-losses resulting in extremely short 
collision mean free paths. For instance, nuclear scattering of high energy electrons is well 
described by the screened Rutherford DCS, or 

Σ𝑒𝑒𝑒𝑒(𝐸𝐸, 𝜇𝜇0) =  2𝜋𝜋𝑟𝑟𝑒𝑒2𝑍𝑍2𝑁𝑁
1 − 𝛽𝛽2

𝛽𝛽4
1

[1 + 2𝜂𝜂 − 𝜇𝜇0]2 , (1) 
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where, aside from physical parameters, 𝛽𝛽 = 𝑣𝑣/𝑐𝑐, 𝑣𝑣 being the speed of the ion and 𝑐𝑐 the speed of 
light in vacuum, and 𝜂𝜂 is the screening parameter typically in the range of 10−7 to 10−4 with 
smaller numbers corresponding to higher energies and lighter target nuclei. From this it follows 
that the total scattering cross section  

Σ𝑒𝑒𝑒𝑒(𝐸𝐸) ~ 
1

𝜂𝜂(𝐸𝐸)
≫ 1, (2) 

demonstrating that the mean free path is very small, while 

Σ𝑒𝑒𝑒𝑒(𝐸𝐸, 𝜇𝜇0 = 1)
Σ𝑒𝑒𝑒𝑒(𝐸𝐸, 𝜇𝜇0 < 0.95) ~

1
𝜂𝜂2(𝐸𝐸)

≫ 1, (3) 

Demonstrating that scattering is highly forward peaked. Thus, the picture of charged particle 
interactions is one of infinitely frequent collisions with infinitesimally small changes of state. 
Clearly then, except in rare cases of large angle scattering, a single collision is not representative 
of the transport process. Noticeable, indeed physically interesting, changes in the particle state 
occur on the average only after a large number of collisions. A more useful measure of the rate 
of change of the particle state is then provided by the momentum transfer or transport cross 
section defined by 

 Σ𝑡𝑡𝑡𝑡(𝐸𝐸) = 2𝜋𝜋� (1 − 𝜇𝜇0)Σ𝑒𝑒𝑒𝑒(𝐸𝐸, 𝜇𝜇0)𝑑𝑑𝜇𝜇0
1

−1
, (4) 

from which it readily follows that 

Σ𝑡𝑡𝑡𝑡(𝐸𝐸)
Σ𝑒𝑒𝑒𝑒(𝐸𝐸) ~𝜂𝜂(𝐸𝐸)𝑙𝑙𝑙𝑙 �

1
𝜂𝜂(𝐸𝐸)

� ≪ 1. (5) 

The physical significance of this result is that it is on the scale of a transport mean free path that 
an initially collimated angular distribution will have broadened considerably. Key to any 
approximate treatment of charged particle transport is then to recognize that it is not necessary to 
resolve the solution with respect to the true mean free path. More realistic cross sections such as 
the PW DCSs differ from the screened Rutherford cross section at larger scattering angles, but 
the singular behavior at forward scattering angles is given precisely by screened Rutherford. 
Likewise, proton and heavier ion scattering is described by the screened Rutherford DCS near 
forward scattering angles and all of the above considerations apply. 

Inelastic energy losses are similarly singular about zero energy transfers. For instance, the 
energy-loss DCS for an ion colliding with a target electron is accurately described by the 
relativistic Rutherford cross section given by 

Σ𝑖𝑖𝑖𝑖(𝐸𝐸,𝑄𝑄) =  0.1536
𝑍𝑍12𝑍𝑍2𝜌𝜌
𝐴𝐴2

1
𝛽𝛽2𝑄𝑄2 �1 − 𝛽𝛽2

𝑄𝑄
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

� ,𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 ≤ Q ≤ Qmax(β), (6) 
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where 𝑄𝑄 is the single collision energy loss variable. We see from this that the total cross section 
is 

Σ𝑖𝑖𝑛𝑛(𝐸𝐸) =  � Σ𝑖𝑖𝑖𝑖(𝐸𝐸,𝑄𝑄)𝑑𝑑𝑑𝑑 ~ 
1

𝛽𝛽2𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

, (7) 

while mean energy loss per unit pathlength travelled, or the stopping power, is given by 

𝑆𝑆(𝐸𝐸) =  � Q Σ𝑖𝑖𝑖𝑖(𝐸𝐸,𝑄𝑄)𝑑𝑑𝑑𝑑 ~ 
1
𝛽𝛽2

𝑙𝑙𝑙𝑙 �
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚(𝛽𝛽)
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

. (8) 

Thus, because 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 ≪ 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚, we find for fixed 𝛽𝛽 that 𝛴𝛴𝑖𝑖𝑖𝑖(𝐸𝐸) ≫ 𝑆𝑆(𝐸𝐸) and hence the mean 
energy loss per collision 〈𝛥𝛥𝛥𝛥〉 ≡  𝑆𝑆(𝐸𝐸)

𝛴𝛴𝑖𝑖𝑖𝑖(𝐸𝐸) ≪ 1. As an example, for protons incident on tungsten, 
the total interaction cross section ranges from about 2 × 103 𝑐𝑐𝑚𝑚−1 at an energy of 2 GeV to 
about 8 × 104 𝑐𝑐𝑚𝑚−1 at 10 MeV, while the mean energy loss varies over the same energy range 
from 6 × 10−3 MeV to 2.5 × 10−3 MeV. Given that the range of the proton is about 30 cm, the 
difficulty of resolving energy spectra or dose distributions using an analog description of the 
physics can be readily appreciated. Electron and positron inelastic electronic collisions are 
similarly described by DCSs that are singular about zero energy transfers, specifically given by 
Moller and Bhabha cross sections respectively for electrons and positrons. 

That is to say, the physical interactions that dominate scattering and energy-loss of all charged 
particles are mediated by long range Coulomb forces which strongly weight small deflections 
and small energy-losses per collision. As a consequence, solving the analog problem by Monte 
Carlo or deterministic methods is completely impractical. Significant changes to the particle 
distribution function in space, angle, and energy can arise only from the cumulative effect of a 
large number of collisions and any approximate transport description must recognize and exploit 
this fact.  

In this work, elastic and inelastic scattering are given by the partial-wave DCS  and the Moller 
DCS respectively. The PW DCSs are numerically evaluated using the ELSEPA code [17] and 
are considered accurate representations of the elastic scattering of electrons by atomic nuclei at 
energies above roughly 1-keV. The PW DCSs utilized in this work are similar to those included 
in the ICRU-ELSEP database [63] with an exception being that the PW DCSs were evaluated on 
an energy grid with 16 logarithmically spaced points between 10-MeV and 20-MeV and 107 
logarithmically spaced points between 1-keV and 10-MeV. A log-log linear interpolation scheme 
[64] was used to obtain both the total cross section and the DCS for a given energy between grid 
points.  

The elastic collisions with nuclei considered herein deflect the incident electron through some 
scattering angle. While some energy is transferred to the nucleus during an elastic collision, the 
mass of the nucleus is so large in comparison to the electron mass that the energy transferred to 
the nucleus is assumed negligible. As mentioned, elastic scattering DCSs are extremely peaked 
about very small deflection angles and in some cases vary up to 28 orders of magnitude resulting 
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in extremely short mfps as small as fractions of a micron. This behavior is seen in Figure 2 
where PW DCSs are presented for aluminum and gold at various energies.  

Figure 2: Partial-wave elastic differential cross-sections for various energy electrons 
scattering with aluminum (left) and gold (right) nuclei. 

The Moller inelastic DCS [18] accounts for energy transferred to atomic electrons resulting in 
ionization or excitation of the target atom. In the Moller DCS, binding energies for the electrons 
shells are neglected; therefore, Moller is an approximation over all of the shells where the 
minimum energy transfer 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 is assumed to be the mean ionization potential IMeV [65]. The 
resulting inelastic DCS in which the incident electron with rest mass of and kinetic energy E 
transfers energy Q to the slower electron is given by 

Σ𝑖𝑖𝑖𝑖(𝐸𝐸,𝑄𝑄) =  
2𝜋𝜋𝑟𝑟𝑒𝑒2𝑍𝑍𝑚𝑚0𝑐𝑐2

𝛽𝛽2
�

1
𝑄𝑄2 +

1
(𝐸𝐸 − 𝑄𝑄)2 +

1
(𝐸𝐸 + 𝑚𝑚0𝑐𝑐2)

−
𝑚𝑚0𝑐𝑐2(2𝐸𝐸 + 𝑚𝑚0𝑐𝑐2)

𝑄𝑄(𝐸𝐸 − 𝑄𝑄)(𝐸𝐸 + 𝑚𝑚0𝑐𝑐2)
� , 

(9) 

where 𝑄𝑄 ∈ [𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚] and the upper bound is 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸/2. Like the elastic scattering DCS, 
the inelastic DCS is peaked about small energy transfers or 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚. The Moller DCS is not 
considered an accurate representation of inelastic collisions except for large energy transfers. In 
fact, the first moment of the Moller DCS, that is the stopping power, fails to reproduce the 
stopping powers given by the ICR Report 37 [66]. Here, we renormalize the Moller DCS such 
that the first moment is in agreement with the stopping powers in ICRU Report 37.  

4.1.2. Analog Transport Model 

Given a description of the electron interaction physics under consideration, we turn our attention 
to the corresponding transport equation. The linear Boltzmann equation for the angular flux of 
electrons 𝜓𝜓(𝑟𝑟,𝐸𝐸,Ω��⃗ ) with position 𝑟𝑟(𝑥𝑥,𝑦𝑦, 𝑧𝑧), energy 𝐸𝐸, and direction Ω��⃗   is expressed by 

Ω��⃗ �� ψ�r⃗, E, Ω��⃗ � = HBψ�r⃗, E, Ω��⃗ �, (10)
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where the Boltzmann collision operator is defined as 

𝐻𝐻𝐵𝐵𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � = � 𝑑𝑑𝐸𝐸′
∞

0
� 𝑑𝑑𝑑𝑑
4𝜋𝜋

′�𝛴𝛴𝑒𝑒𝑒𝑒�𝑟𝑟,𝐸𝐸′ → 𝐸𝐸,𝛺𝛺�⃗ ′ ⋅ 𝛺𝛺�⃗ �

+ 𝛴𝛴𝑖𝑖𝑖𝑖�𝑟𝑟,𝐸𝐸′ → 𝐸𝐸,𝛺𝛺�⃗ ′ ⋅ 𝛺𝛺�⃗ �� 𝜓𝜓�𝑟𝑟,𝐸𝐸′,Ω′���⃗ � − 𝛴𝛴𝑡𝑡(𝑟𝑟,𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �,
(11) 

and the total interaction cross section is the sum of the elastic and inelastic total cross-sections, 
or 𝛴𝛴𝑡𝑡(𝑟𝑟,𝐸𝐸) = 𝛴𝛴𝑒𝑒𝑒𝑒,0(𝑟𝑟,𝐸𝐸) + 𝛴𝛴𝑖𝑖𝑖𝑖,0(𝑟𝑟,𝐸𝐸), which are denoted by the subscript zero. Eq. (10) is 
subject to the following boundary condition 

 ψ(r⃗, E, 𝜑𝜑, 𝜇𝜇 ) =𝜓𝜓𝑏𝑏(r⃗, E, 𝜑𝜑, 𝜇𝜇 ),  r⃗  ∈ 𝜕𝜕𝜕𝜕,  𝛺𝛺���⃗ ⋅  𝑛𝑛���⃗ < 0,  0 < 𝐸𝐸 < ∞. (12) 

For electrons, elastic and inelastic scattering are treated separately as indicated in Eq. (11). 
Furthermore, it is assumed that elastic scattering occurs without energy loss and angular 
deflection from inelastic scattering is given by kinematics, so the collision operator can be 
expressed as 

𝐻𝐻𝐵𝐵𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � = 𝐻𝐻𝑒𝑒𝑒𝑒𝐵𝐵𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � + 𝐻𝐻𝑒𝑒𝑒𝑒𝐵𝐵𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �, (13) 

where 

𝐻𝐻𝑒𝑒𝑒𝑒𝐵𝐵𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � = � 𝑑𝑑𝑑𝑑
4𝜋𝜋

′𝛴𝛴𝑒𝑒𝑒𝑒�𝑟𝑟,𝐸𝐸,𝛺𝛺�⃗ ′ ⋅ 𝛺𝛺�⃗ �𝜓𝜓 �𝑟𝑟,𝐸𝐸,Ω′���⃗ � − 𝛴𝛴𝑒𝑒𝑒𝑒,0(𝑟𝑟,𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �, (14) 

and 

𝐻𝐻𝑖𝑖𝑖𝑖𝐵𝐵 𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � = � 𝑑𝑑𝐸𝐸′
∞

0
𝛴𝛴𝑖𝑖𝑖𝑖(𝑟𝑟,𝐸𝐸′ → 𝐸𝐸) 𝛿𝛿[𝛺𝛺�⃗ ′ − 𝑓𝑓(𝐸𝐸′,𝑄𝑄)]𝜓𝜓�𝑟𝑟,𝐸𝐸′,Ω��⃗ �

− 𝛴𝛴𝑖𝑖𝑖𝑖,0(𝑟𝑟,𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �.
(15) 

Here the angle of the primary is 

𝑓𝑓(𝐸𝐸′,𝑄𝑄) = �
𝐸𝐸 − 𝑄𝑄
𝐸𝐸

𝐸𝐸 + 2𝑚𝑚0𝑐𝑐2

𝐸𝐸 − 𝑄𝑄 + 2𝑚𝑚𝑜𝑜𝑐𝑐2
, (16) 

and the angle of the secondary is 

𝑓𝑓(𝐸𝐸′,𝑄𝑄) = �
𝐸𝐸 − 𝑄𝑄
𝐸𝐸

𝐸𝐸 + 2𝑚𝑚0𝑐𝑐2

𝐸𝐸 − 𝑄𝑄 + 2𝑚𝑚𝑜𝑜𝑐𝑐2
. (17) 

In the event that secondary production is neglected, deflection of the primary from inelastic 
scattering is also neglected and Eq. (15) reduces to 
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𝐻𝐻𝑖𝑖𝑖𝑖𝐵𝐵 𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � = � 𝑑𝑑𝐸𝐸′
∞

0
𝛴𝛴𝑖𝑖𝑖𝑖(𝑟𝑟,𝐸𝐸′ → 𝐸𝐸) 𝜓𝜓�𝑟𝑟,𝐸𝐸′,Ω��⃗ � − 𝛴𝛴𝑖𝑖𝑖𝑖,0(𝑟𝑟,𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �. (18) 

As previously mentioned, direct numerical solution of Eq. (10) is not realistic for most 
applications of interest because of the large total cross sections, 𝛴𝛴𝑒𝑒𝑒𝑒,0 and 𝛴𝛴𝑖𝑖𝑖𝑖,0, and DCSs, 𝛴𝛴𝑒𝑒𝑒𝑒 
and 𝛴𝛴𝑖𝑖𝑖𝑖, that are highly peaked about small deflections and energy losses. Because the 
computational effort is related to the number of collisions simulated per particle history and the 
outcome of the collision, simulation of Coulomb collisions are far more computationally 
intensive than the interactions characterizing neutral particles.  

4.2. Moment-Preserving Method 

In the MP method, a reduced order physics (ROP) transport equation is formed by replacing the 
analog DCSs in Eqs. (14) and (18) with ROP DCSs, . That is, 

𝐻𝐻𝑒𝑒𝑒𝑒𝐵𝐵𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � = � 𝑑𝑑𝑑𝑑
4𝜋𝜋

′𝛴𝛴�𝑒𝑒𝑒𝑒�𝑟𝑟,𝐸𝐸,𝛺𝛺�⃗ ′ ⋅ 𝛺𝛺�⃗ �𝜓𝜓 �𝑟𝑟,𝐸𝐸,Ω′���⃗ �  − 𝛴𝛴�𝑒𝑒𝑒𝑒,0(𝑟𝑟,𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �, (19) 

and 

𝐻𝐻𝑖𝑖𝑖𝑖𝐵𝐵 𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � = � 𝑑𝑑𝐸𝐸′
∞

0
𝛴𝛴�𝑖𝑖𝑖𝑖(𝑟𝑟,𝐸𝐸′ → 𝐸𝐸) 𝜓𝜓�𝑟𝑟,𝐸𝐸′,Ω��⃗ � − 𝛴𝛴�𝑖𝑖𝑖𝑖,0(𝑟𝑟,𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �. (20) 

Although simply replacing the analog DCS with an ROP DCS may seem trivial or even arbitrary, 
there is no absence of rigor in this method. Particularly, much consideration is given to the form 
and properties of the ROP DCSs. The ROP DCSs are constructed such that they are smoother or 
less-peaked functions of deflection angle and energy loss and have significantly longer mfps than 
the analog DCSs. Thus, the ROP collision operators in Eqs. (11) and (12) have better properties 
than the analog collision operators, especially, from an efficiency standpoint.  

Beyond efficiency, there are additional properties of the ROP collision operators that set this 
method apart from other approximate methods. For example, one of the unique characteristics of 
this method is that the integral form of the Boltzmann collision operators are maintained. 
Therefore, the description of the underlying transport mechanics is not lost, specifically, the 
correct Markovian feature of exponentially distributed collision sites [58]. Therefore, special 
algorithms for handling material and vacuum interfaces are not required. Moreover, exact 
treatment of collisions as Markov processes and less-peaked DCSs with longer mfps make it 
practical to simulate transport with a single-event method. Implementation of single-event 
methods is very straightforward compared to other methods like CH that is considerably more 
complicated. In fact, Monte Carlo codes with pre-existing single-event algorithms do not require 
any retrofitting when implementing the MP method, because this method treats electrons like 
neutral particles.  
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The MP method is efficient and implementation is straightforward, but there has been no 
mention of accuracy. This method must not only be competitive with, and potentially superior to 
CH with regard to efficiency and simplicity, but accuracy as well, and in many cases it is. Unlike 
CH, which introduces inherent and irreducible limits on accuracy as a result of the underlying 
theory, accuracy is systematically controllable. This is largely a result of the moment-preserving 
strategies that are central to this approach. The moment-preserving strategy is motivated by 
Lewis theory [56, 57], where Lewis proved that one can relate space-angle moments of the 
angular flux to momentum-transfer moments of the elastic scattering DCS. In addition, the 
eigenvalues of the elastic collision operator are directly dependent on the momentum-transfer 
moments. For these reasons, it is prudent to construct an ROP DCS that preserves moments of 
the analog DCS. 

Given the relationship between the ROP DCS and the analog DCS moments, the following 
moment-preservation constraints are a natural choice when constructing an ROP DCS. If the 
analog elastic scattering moments are given by 

𝛴𝛴𝑒𝑒𝑒𝑒,𝑙𝑙(𝐸𝐸) = 2𝜋𝜋� 𝑑𝑑𝑑𝑑
1

−1
𝑃𝑃𝑙𝑙(𝜇𝜇)𝛴𝛴𝑒𝑒𝑒𝑒(𝐸𝐸, 𝜇𝜇), (21) 

the moment preserving constraint is 

𝛴𝛴𝑒𝑒𝑒𝑒,𝑙𝑙(𝐸𝐸) = 𝛴𝛴�𝑒𝑒𝑒𝑒,𝑙𝑙(𝐸𝐸), 𝑙𝑙 = 1,2, … , 𝐿𝐿, (22) 

and the higher order moments are functions of the lower order moments 

𝛴𝛴�𝑒𝑒𝑒𝑒,𝑙𝑙(𝐸𝐸) = 𝑓𝑓(𝛴𝛴𝑒𝑒𝑒𝑒,1 𝛴𝛴𝑒𝑒𝑒𝑒,2, … ,𝛴𝛴𝑒𝑒𝑒𝑒,𝐿𝐿), 𝑙𝑙 >  𝐿𝐿. (23) 

For inelastic scattering the moments are given by 

𝛴𝛴𝑖𝑖𝑖𝑖,𝑗𝑗(𝐸𝐸) = � 𝑑𝑑𝑑𝑑
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

𝑄𝑄𝑗𝑗𝛴𝛴𝑖𝑖𝑖𝑖(𝐸𝐸,𝑄𝑄), (24) 

and the moment preserving constraint is similar and given by 

𝛴𝛴𝑖𝑖𝑖𝑖,𝑗𝑗(𝐸𝐸) = 𝛴𝛴�𝑖𝑖𝑖𝑖,𝑗𝑗(𝐸𝐸), 𝑗𝑗 = 1,2, … , 𝐽𝐽. (25) 

Again, the higher order moments are functions of the lower order moments 

𝛴𝛴�𝑖𝑖𝑖𝑖,𝑗𝑗(𝐸𝐸) = 𝑓𝑓(𝛴𝛴𝑖𝑖𝑖𝑖,1 𝛴𝛴𝑖𝑖𝑖𝑖,2, … ,𝛴𝛴𝑖𝑖𝑖𝑖,𝐿𝐿), 𝑗𝑗 >  𝐽𝐽. (26) 

By constructing an ROP DCS that preserves moments of the analog DCS, one can systematically 
control the accuracy of the ROP DCS models. That is, improvements in accuracy are achieved 
by simply preserving more moments of the analog DCS. In addition, the higher order moments 
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are functions of the exact lower order moments, so the higher order moments are good 
approximations rather than being neglected, as is the case for other ROP models like Fokker-  
Planck. The following sections present the two ROP DCS models that are used in this paper. 
Given the discrete ROP DCS model, we present a corresponding derivation of the ROP transport 
model for a discrete elastic and inelastic ROP DCS to emphasize the difference in the ROP 
transport model and the analog model. Lastly, the details of the ROP DCS construction process 
for each model are presented. 

4.2.1. Reduced Order Physics Differential Cross-Sections 

In this section, we present two forms of the elastic and inelastic ROP DCSs that are 
demonstrated herein: the discrete DCS and the hybrid DCS. The discrete DCS is a superposition 
of discrete points and weights. One of the benefits of the discrete DCS is the simple form of the 
DCS. The discrete DCS is simple to sample and requires significantly less memory requirements 
than DCS data because only a few points and weights are required for most problems of inter-est. 
The accuracy and efficiency of the discrete DCS are especially promising when calculating 
integral quantities like dose [58]. We define the discrete DCS for elastic scattering as 

𝛴𝛴�𝑒𝑒𝑒𝑒(𝑟𝑟,��⃗ 𝐸𝐸, 𝜇𝜇0) = �
𝛼𝛼𝑛𝑛(𝐸𝐸)

2𝜋𝜋

𝑁𝑁

𝑛𝑛=1

𝛿𝛿[𝜇𝜇0 − 𝜁𝜁𝑛𝑛], (27) 

and for inelastic scattering as 

𝛴𝛴�𝑖𝑖𝑖𝑖(𝑟𝑟,��⃗ 𝐸𝐸,𝑄𝑄) = �𝛽𝛽𝑛𝑛(𝐸𝐸)
𝑁𝑁

𝑛𝑛=1

𝛿𝛿[𝑄𝑄 − 𝛾𝛾𝑛𝑛]. (28) 

The one drawback of the discrete DCS is the presence of discrete artifacts [61, 62], especially, if 
the discrete DCS is used when calculating differential quantities in thin slabs. However, discrete 
artifacts can be mitigated by use of the hybrid DCS, while still achieving efficiency gains. The 
hybrid DCS is a superposition of both discrete points and weights and a smooth function 
represented by an analog DCS. In previous work [61], the smooth component was represented by 
the SR DCS over [-1, 1]. The screening parameter was artificially selected such that the smooth 
component was less peaked near one. Moments of the smooth component are then subtracted 
from the analog DCS moments and this difference is then used to generate the discrete scattering 
angles. In this work, a slightly different representation was chosen where the tail is represented 
exactly by the analog model up to some cutoff point, 𝜇𝜇0∗ . Beyond the cutoff point, or for 𝜇𝜇0 ∈
[𝜇𝜇0∗ , 1], a discrete representation is used. The resulting hybrid DCS is 

𝛴𝛴�𝑒𝑒𝑒𝑒(𝑟𝑟,��⃗ 𝐸𝐸, 𝜇𝜇0) = 𝛴𝛴𝑒𝑒𝑆𝑆(𝐸𝐸, 𝜇𝜇0) + �
𝛼𝛼𝑛𝑛(𝐸𝐸)

2𝜋𝜋

𝑁𝑁

𝑛𝑛=1

𝛿𝛿[𝜇𝜇0 − 𝜁𝜁𝑛𝑛], (29) 
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where 𝛴𝛴𝑒𝑒𝑆𝑆(𝐸𝐸, 𝜇𝜇0) is an analog DCS for 𝜇𝜇0 ∈ [−1, 𝜇𝜇0∗) and otherwise zero. The cutoff, 𝜇𝜇0∗ , is 
typically chosen to be near the peak or unity to gain the benefit of the properties of the discrete 
DCS, while capturing the large-angle scattering exactly by the analog DCS. For inelastic 
scattering, the cutoff, Q, is selected near the peak, or near 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚, for the aforementioned reasons. 

From an implementation standpoint, there is little difference between the discrete and hybrid 
DCS. It requires the ability to sample hard collisions from the analog DCS and soft collisions 
from the discrete DCS. The only difference in generating the discrete DCS versus the hybrid 
DCS is that the moments are now defined over a partial interval corresponding to the peak. 

Given the form of the ROP DCSs, a derivation of the ROP collision operators that comprise the 
ROP transport equation is presented. 

4.2.2. Derivation of the Reduced Order Physics Collision Operators 

The ROP DCS is constructed such that the singular contribution to inscatter and outscatter cancel 
(similar to the FP operator [45]). Ultimately, the purpose of constructing such a DCS is that the 
resulting ROP transport equation can be solved accurately and efficiently using single-scatter 
models. To be clear, a derivation of the elastic and inelastic ROP collision operators is presented. 
A derivation of both operators is presented because there is a subtle difference between the two 
that deserves some attention. For the sake of simplicity, the discrete DCS is used, but the same 
ideas carry over to any ROP DCS.  

The starting point is the elastic collision operator. Substitution of Eq. (27) into Eq. (19) gives 

𝐻𝐻𝑒𝑒𝑒𝑒𝐵𝐵𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � = � 𝑑𝑑𝑑𝑑
4𝜋𝜋

′�
𝛼𝛼𝑛𝑛(𝐸𝐸)

2𝜋𝜋

𝑁𝑁+1

𝑛𝑛=1

𝛿𝛿[𝜇𝜇0 − 𝜁𝜁𝑛𝑛]𝜓𝜓(𝑟𝑟,𝐸𝐸, ) − �� 𝛼𝛼𝑛𝑛(𝐸𝐸)
𝑁𝑁+1

𝑛𝑛=1

�𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �. (30) 

It is required that the discrete point 𝜁𝜁𝑁𝑁+1 = 1. Now, this point is intentionally separated from the 
remaining N points and weights in the inscatter and outscatter terms. That is, 

𝐻𝐻𝑒𝑒𝑒𝑒𝐵𝐵𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � = � 𝑑𝑑𝑑𝑑
4𝜋𝜋

′�
𝛼𝛼𝑛𝑛(𝐸𝐸)

2𝜋𝜋

𝑁𝑁

𝑛𝑛=1

𝛿𝛿[𝜇𝜇0 − 𝜁𝜁𝑛𝑛]𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ ′� − ��𝛼𝛼𝑛𝑛(𝐸𝐸)
𝑁𝑁

𝑛𝑛=1

�𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �

+ � 𝑑𝑑𝑑𝑑
4𝜋𝜋

′ 𝛼𝛼𝑁𝑁+1(𝐸𝐸)
2𝜋𝜋

𝛿𝛿[𝜇𝜇0 − 𝜁𝜁𝑁𝑁]𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ ′� − 𝛼𝛼𝑁𝑁+1(𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,𝛺𝛺�⃗ �. 

(31) 

If it can be shown that the last two terms in Eq. (31) indeed cancel, the resulting ROP transport 
equation will have an elastic scattering kernel that is significantly less peaked with reduced total 
cross section because 𝛼𝛼𝑁𝑁+1 no longer contributes to the total cross section. It is not difficult to 
show that the last two terms cancel because 𝜇𝜇0 = Ω��⃗ ′ ⋅ Ω��⃗ = 1, if and only if Ω��⃗ ′ = Ω��⃗  (see ref. [67] 
for details). Therefore, the following is true 
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� 𝑑𝑑𝑑𝑑
4𝜋𝜋

′ 𝛼𝛼𝑁𝑁+1(𝐸𝐸)
2𝜋𝜋

𝛿𝛿[𝜇𝜇0 − 1]𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ ′� = � 𝑑𝑑𝑑𝑑
4𝜋𝜋

′ 𝛼𝛼𝑁𝑁+1(𝐸𝐸)
2𝜋𝜋

𝛿𝛿�Ω��⃗ ′ ⋅ Ω��⃗ − 1�𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ ′�

= 𝛼𝛼𝑁𝑁+1(𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �. 
(32) 

This term clearly cancels with the last term in Eq. (31). However, the same is not true for the 
inelastic collision operator, which is now shown. 

The derivation of the inelastic ROP collision operator is easier to follow after a change of 
variables change variables from Q to (𝐸𝐸′ − 𝐸𝐸). This gives 

𝛴𝛴�𝑖𝑖𝑖𝑖(𝑟𝑟,��⃗ 𝐸𝐸,𝑄𝑄) = �𝛽𝛽𝑛𝑛(𝐸𝐸)
𝑁𝑁

𝑛𝑛=1

𝛿𝛿[(𝐸𝐸′ − 𝐸𝐸) − 𝛾𝛾𝑛𝑛]. (33) 

Again, Eq. (33) is substituted into Eq. (20) and the argument of the delta function is rewritten as 
𝐸𝐸′ − (𝐸𝐸 + 𝛾𝛾𝑛𝑛) which gives 

𝐻𝐻𝑖𝑖𝑖𝑖𝐵𝐵 𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � = � 𝑑𝑑𝐸𝐸′
∞

0
� 𝛽𝛽𝑛𝑛(𝐸𝐸)
𝑁𝑁+1

𝑛𝑛=1

𝛿𝛿[𝐸𝐸′ − (𝐸𝐸 + 𝛾𝛾𝑛𝑛) ] 𝜓𝜓�𝑟𝑟,𝐸𝐸′,Ω��⃗ �

− �� 𝛽𝛽𝑛𝑛(𝐸𝐸)
𝑁𝑁+1

𝑛𝑛=1

�𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �. 
(34) 

Now, the singular component or the N + 1 term is separated from the inscatter and the outscatter, 
the inelastic ROP collision operator becomes 

𝐻𝐻𝑖𝑖𝑖𝑖𝐵𝐵 𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � = � 𝑑𝑑𝐸𝐸′
∞

0
�𝛽𝛽𝑛𝑛(𝐸𝐸)
𝑁𝑁

𝑛𝑛=1

𝛿𝛿[𝐸𝐸′ − (𝐸𝐸 + 𝛾𝛾𝑛𝑛)] 𝜓𝜓�𝑟𝑟,𝐸𝐸′,Ω��⃗ �

− ��𝛽𝛽𝑛𝑛(𝐸𝐸)
𝑁𝑁

𝑛𝑛=1

�𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � 

 +� 𝑑𝑑𝐸𝐸′𝛽𝛽𝑁𝑁+1(𝐸𝐸)𝛿𝛿[𝐸𝐸′ − (𝐸𝐸 + 𝛾𝛾𝑁𝑁+1)]
∞

0
𝜓𝜓�𝑟𝑟,𝐸𝐸′,Ω��⃗ � 

− 𝛽𝛽𝑁𝑁+1(𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �.

(35) 

Carrying out the integration over the N +1 term results in the following singular contributions to 
inscatter and outscatter 

𝛽𝛽𝑁𝑁+1(𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸 + 𝛾𝛾𝑁𝑁+1,Ω��⃗ � − 𝛽𝛽𝑁𝑁+1(𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �. (36) 

The terms in Eq. (36) do not cancel, unless 𝛾𝛾𝑁𝑁+1 = 0. Typically, the singular component of the 
inelastic DCS and the lower bound of the inscatter or energy-loss moments is chosen as the mean 
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ionization potential. Therefore, 𝛾𝛾𝑁𝑁+1 = 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀, where 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 is the mean ionization potential in 
MeV. So, if 𝜓𝜓�𝑟𝑟,𝐸𝐸 + 𝛾𝛾𝑁𝑁+1,Ω��⃗ � is expanded as a Taylor series about E, one can get a sense of the 
error introduced by choosing 𝛾𝛾𝑁𝑁+1 = 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀. That is, 

𝛽𝛽𝑁𝑁+1(𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸 + 𝛾𝛾𝑁𝑁+1,Ω��⃗ � − 𝛽𝛽𝑁𝑁+1(𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �

= ��
𝛾𝛾𝑁𝑁+1
𝑗𝑗

𝑗𝑗!
𝜕𝜕𝑗𝑗

𝜕𝜕𝐸𝐸𝑗𝑗

∞

𝑗𝑗=1

�𝛽𝛽𝑁𝑁+1(𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ ��� + 𝛽𝛽𝑁𝑁+1(𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ � − 𝛽𝛽𝑁𝑁+1(𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ �

= �
𝛾𝛾𝑁𝑁+1
𝑗𝑗

𝑗𝑗!
𝜕𝜕𝑗𝑗

𝜕𝜕𝐸𝐸𝑗𝑗

∞

𝑗𝑗=1

�𝛽𝛽𝑁𝑁+1(𝐸𝐸)𝜓𝜓�𝑟𝑟,𝐸𝐸,Ω��⃗ ��

(37) 

So, to first order, the error introduced by assuming that 𝛾𝛾𝑁𝑁+1 = 0 is proportional to 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 which is 
<< 1. Therefore, this assumption introduces manageable error.  

4.2.3. Generation of the Discrete and Hybrid Differential Cross-Sections 

The procedure for constructing both the discrete and hybrid DCS from analog DCS moments is 
described. The form of the moment preservation constraints in Eqs. (22) and (25) is unstable to 
direct numerical inversion, so another approach similar to generation of Radau quadrature is 
taken [68]. Initially, attention is given to the discrete elastic DCS and then the discussion is 
extended to the discrete inelastic DCS and the hybrid DCS.  

It is of interest to obtain a DCS that satisfies the moment constraint in Eq. (22). Given the 
discrete elastic DCS in Eq. (27), a system of equations for N points and weights (in total 2N 
unknowns) is formed. Substitution of Eq. (27) into the right-hand-side of Eq. (22) results in the 
following system of equations 

𝛴𝛴𝑒𝑒𝑒𝑒,𝑙𝑙(𝐸𝐸) = 𝛴𝛴�𝑒𝑒𝑒𝑒,𝑙𝑙(𝐸𝐸) 

 = 2𝜋𝜋� 𝑑𝑑𝜇𝜇0𝑃𝑃𝑙𝑙(𝜇𝜇0)𝛴𝛴�𝑒𝑒𝑒𝑒(𝐸𝐸, 𝜇𝜇0)
1

−1
 

 = �𝛼𝛼𝑛𝑛(𝐸𝐸)� 𝑑𝑑𝜇𝜇0𝑃𝑃𝑙𝑙(𝜇𝜇0)𝛿𝛿[𝜇𝜇0 − 𝜁𝜁𝑛𝑛]
1

−1

𝑁𝑁

𝑛𝑛=1

 

 = �𝛼𝛼𝑛𝑛(𝐸𝐸)𝑃𝑃𝑙𝑙(𝜁𝜁𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 

(38) 

A total of L = 2N equations are necessary because there are 2N unknowns. That is, 

𝛴𝛴𝑒𝑒𝑒𝑒,1(𝐸𝐸) = 𝛼𝛼1(𝐸𝐸)𝑃𝑃1(𝜁𝜁1) + 𝛼𝛼2(𝐸𝐸)𝑃𝑃1(𝜁𝜁2) + ⋯+ 𝛼𝛼2𝑁𝑁(𝐸𝐸)𝑃𝑃1(𝜁𝜁2𝑁𝑁) 
𝛴𝛴𝑒𝑒𝑒𝑒,2(𝐸𝐸) = 𝛼𝛼1(𝐸𝐸)𝑃𝑃2(𝜁𝜁1) + 𝛼𝛼2(𝐸𝐸)𝑃𝑃2(𝜁𝜁2) + ⋯+ 𝛼𝛼2𝑁𝑁(𝐸𝐸)𝑃𝑃2(𝜁𝜁2𝑁𝑁) 

 ⋮ 
(39) 
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𝛴𝛴𝑒𝑒𝑒𝑒,2𝑁𝑁(𝐸𝐸)     = 𝛼𝛼1(𝐸𝐸)𝑃𝑃2𝑁𝑁(𝜁𝜁1) + 𝛼𝛼1(𝐸𝐸)𝑃𝑃2𝑁𝑁(𝜁𝜁2) + ⋯+ 𝛼𝛼2𝑁𝑁(𝐸𝐸)𝑃𝑃2𝑁𝑁(𝜁𝜁2𝑁𝑁) 

The system formed in Eq. (39) emphasizes the requirement that 𝛼𝛼𝑛𝑛 and 𝜁𝜁𝑛𝑛 are obtained such that 
Legendre moments of the analog DCS are preserved. The system is then recast into one 
encountered when generating Gauss-Radau Quadrature for a non-classical weight function [69, 
70]. That is, 

𝛴𝛴𝑒𝑒𝑒𝑒,𝑙𝑙 = �𝛼𝛼𝑛𝑛(𝐸𝐸)𝑃𝑃𝑙𝑙(𝜁𝜁𝑛𝑛) + 𝛼𝛼𝑁𝑁+1(𝐸𝐸)𝑃𝑃𝑙𝑙(𝜁𝜁𝑁𝑁+1 = 1)
𝑁𝑁

𝑛𝑛=1

, (40) 

which is a Gauss-Radau Quadrature system for a non-classical weight function, where in this 
case, the weight function is the analog DCS. Note that an additional unknown, 𝛼𝛼𝑁𝑁+1(𝐸𝐸), is 
added in Eq. (40) and multiplied by 𝑃𝑃𝑙𝑙(𝜁𝜁𝑁𝑁+1 = 1). This is indicative of Radau quadrature and an 
expression for determining 𝛼𝛼𝑁𝑁+1(𝐸𝐸) is given below. A Radau approach is selected rather than 
standard Gauss quadrature because Radau ensures that one point will correspond to the peaked 
component of the DCS (that is, 𝜁𝜁𝑁𝑁+1 = 1). Once the discrete points and weights are obtained, the 
peaked component is eliminated, thus, reducing the total cross section after renormalizing the 
discrete DCS. This is equivalent to satisfying the moment preservation constraints given in Eqs. 
(22) and (25).  

To obtain the points and weights, coefficients of monic Legendre polynomials (𝛼𝛼𝑗𝑗 and 𝛽𝛽𝑗𝑗) are 
mapped to the coefficients of polynomials orthogonal to the analog DCS (𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑗𝑗). The 
algorithm for this mapping is referred to as the modified Chebyshev algorithm (MCA) [70] and 
requires 2N+1 moments of the analog DCS and 2N+2 coefficients of monic Legendre 
polynomials. Given a successful mapping and the resulting coefficients, 𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑗𝑗, the Golub and 
Welsch algorithm [71] is used to obtain the eigenvalues of the Jacobi matrix. The Jacobi matrix 
is a tridiagonal matrix where the diagonal is set to 𝑎𝑎𝑗𝑗 and the off-diagonals are set to √𝑏𝑏𝑗𝑗. The 
eigenvalues of the Jacobi matrix are the points and the first entry of each corresponding 
eigenvector squared are the weights. That is, 𝜁𝜁𝑛𝑛 = 𝜆𝜆𝑛𝑛(𝐽𝐽) and 𝛼𝛼𝑛𝑛 = �𝑉𝑉𝑛𝑛,1�

2
, where 𝑉𝑉 is a

eigenvector matrix. The application of the Golub and Welsch algorithm to the aforementioned 
Jacobi matrix will result in Gauss Quadrature and must be modified according to Golub [69] for 
Radau quadrature. Therefore, the Jacobi matrix is modified such that 

𝐽𝐽𝑁𝑁+1 = �
𝐽𝐽𝑁𝑁 𝑏𝑏𝑁𝑁 𝑒𝑒𝑁𝑁

𝑏𝑏𝑁𝑁 𝑒𝑒𝑁𝑁𝑇𝑇 𝑎𝑎𝑁𝑁+1
� , (41) 

where 

𝛼𝛼𝑁𝑁+1 = 1 − 𝑏𝑏𝑁𝑁
𝑝𝑝𝑁𝑁−1(1)
𝑝𝑝𝑁𝑁(1) . (42) 
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Application of the Golub and Welsch algorithm to Eq. (41) will result in N + 1 points and N +1 
weights normalized to unity. To obtain the final discrete DCS, the N + 1 point and weight is 
eliminated and the remaining weights are then scaled by the analog total cross section or 𝛴𝛴𝑒𝑒𝑒𝑒,0. 
The total cross section for the discrete DCS is then 

𝛴𝛴�𝑒𝑒𝑒𝑒,0 = �𝛼𝛼𝑛𝑛(𝐸𝐸)
N

n=1

 (43) 

which does not include the N + 1 weight. The total cross section in Eq. (43) is significantly 
reduced depending on the order of the discrete DCS, the particle energy, and the target material, 
thus, extending the mfp. This completes the process of generating a discrete elastic DCS.  

The process of generating a discrete inelastic DCS is similar. To use the same quadrature tools, 
the inelastic DCS must be mapped to an elastic DCS because the bounds on the elastic DCS are 
ideal for these tools (that is, [-1, 1]). Given a mapping, the moments of the inelastic DCS are 
related to Legendre moments of an ROP elastic DCS. Points on (-1, 1] are generated with 
corresponding weights and then mapped back to (0,𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚]. The mapping is  

𝑄𝑄(𝜇𝜇) =
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

2
(1 − µ), (44) 

and the resulting relationship between the moments is 

𝛴𝛴�𝑒𝑒𝑒𝑒,𝑙𝑙 = �𝑐𝑐𝑗𝑗𝑙𝑙
(−1)𝑗𝑗

𝑗𝑗!
�

2
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑗𝑗

𝛴𝛴𝑖𝑖𝑖𝑖,𝑗𝑗

𝑙𝑙

𝑗𝑗=0

, (45) 

where 

𝑐𝑐𝑗𝑗𝑙𝑙 =
1

2𝑗𝑗𝑗𝑗!
�[𝑙𝑙(𝑙𝑙 − 1) − 𝑖𝑖(𝑖𝑖 − 1)]
𝑗𝑗−1

𝑖𝑖=0

. (46) 

This summarizes the process of generating the discrete elastic and inelastic DCS. Many of the 
same ideas carry over to generation of the discrete component of the hybrid DCS.  

To generate the discrete points and weights for the hybrid DCS a cutoff value is selected. It 
should be selected such that additional accuracy is gained while still maintaining efficiency. That 
said, selection of the cutoff is problem dependent and mostly a heuristic exercise. 

Given a cutoff, the following moments are used to generate the discrete points and weights 
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𝛴𝛴𝑒𝑒𝑒𝑒,𝑙𝑙𝐷𝐷 = 2𝜋𝜋� 𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙(𝜇𝜇)𝛴𝛴𝑒𝑒𝑒𝑒(𝜇𝜇)
1

𝜇𝜇0∗
. (47) 

and 

𝛴𝛴𝑖𝑖𝑖𝑖,𝑗𝑗
𝐷𝐷 = � 𝑑𝑑𝑑𝑑 𝑄𝑄𝑗𝑗𝛴𝛴𝑖𝑖𝑖𝑖(𝑄𝑄)

𝑄𝑄∗

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

. (48) 

In both cases, to use the DCS generation tools, the moments must be mapped to the appropriate 
domain [-1, 1] just as for the discrete inelastic DCS. For the inelastic hybrid DCS the mapping 
does not change significantly from Eqs. (44) and (45) and is  

𝑄𝑄(𝜇𝜇) =
𝑄𝑄∗

2
(1 − µ), (49) 

where µ is on [-1, 1] and Q is on [0,𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐]. Given this mapping, the moments are related by 

𝛴𝛴�𝑒𝑒𝑒𝑒,𝑙𝑙 = �𝑐𝑐𝑗𝑗𝑙𝑙
(−1)𝑗𝑗

𝑗𝑗!
�

2
𝑄𝑄∗ − 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑗𝑗𝑙𝑙

𝑗𝑗=0

��𝑗𝑗𝑘𝑘�
(−𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚)𝑗𝑗−𝑘𝑘

𝑗𝑗

𝑘𝑘=0

𝛴𝛴𝑖𝑖𝑖𝑖,𝑘𝑘
𝐷𝐷 , (50) 

where 𝑐𝑐𝑗𝑗𝑙𝑙 is given by Eq. (46).  

The map for the hybrid elastic DCS is given by 

𝜇𝜇′(𝜇𝜇) =
𝜇𝜇0∗ − 1

2
(1 − µ) + 1, (51) 

where is on 𝜇𝜇 [-1, 1] and 𝜇𝜇′ is on [𝜇𝜇0∗ , 1]. Given this mapping, the moments are related by 

𝛴𝛴�𝑒𝑒𝑒𝑒,𝑙𝑙 = �𝑐𝑐𝑗𝑗𝑙𝑙
(−1)𝑗𝑗

𝑗𝑗!
�

2
1 − 𝜇𝜇0∗

�
𝑗𝑗𝑙𝑙

𝑗𝑗=0

�𝑏𝑏𝑘𝑘
𝑗𝑗

𝑗𝑗

𝑘𝑘=0

𝛴𝛴𝑒𝑒𝑒𝑒,𝑘𝑘𝐷𝐷 , (52) 

where 𝑏𝑏𝑘𝑘
𝑗𝑗

𝑏𝑏𝑘𝑘
𝑗𝑗 = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘(𝜇𝜇)(1− 𝜇𝜇)𝑗𝑗

1

−1
= � 𝑐𝑐𝑚𝑚𝑘𝑘

(−1)𝑚𝑚

𝑚𝑚!
2𝑗𝑗+𝑚𝑚+1

𝑗𝑗 + 𝑚𝑚 + 1

𝑘𝑘

𝑚𝑚=0

, (53) 

and the coefficient 𝑐𝑐𝑚𝑚𝑘𝑘  is given in Eq. (46). 
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4.3. Development of the Geant4 Toolkit Moment-Preserving Method Classes 

Reduced order physics DCS models are central to the Moment-Preserving method and therefore, 
the majority of the development e ort is in generating, storing, and accessing the ROP DCSs. 
Geant4 considers all physical interactions as processes, requiring implementation of the 
G4VEmProcess class, and the details of each process is captured by the model. This is 
accomplished through implementation of the G4VEmModel class, which is the primary source 
of development for the MP method (assuming the ROP DCS are available in the form of a DCS 
data library). The reason that the majority of the development occurs when implementing the 
G4VEmModel class is because it is at this level where the ROP DCSs are stored in Geant4 data 
classes, and also it is at this level where the ROP DCSs are accessed. 

It should noted that if one were to use the total number of lines of code required to implement an 
electron transport algorithm as a metric for quantifying development and maintenance effort, the 
effort associated with MP method is about ten times less than the effort required by the Geant4 
default multiple-scattering model used to transport electrons. That is, the G4UrbanMscModel 
requires roughly 2000 lines of code, while the comparable MP elastic model, 
G4DiscreteElasticModel, only requires 300 lines of code.  

The remaining sections provide detail on the associated physics process and model classes, the 
cross-section construction classes, and the cross-section library and data processing tools. 

4.3.1. Physics Processes 

Physics processes for discrete and hybrid DCSs were implemented and include: 
G4DiscreteElasticProcess, G4HybridSoftElasticProcess, G4HybridHardElasticProcess, 
G4DiscreteInelasticProcess, G4HybridSoftInelasticProcess, and G4HybridHardInelasticProcess. 
The physics process is relatively simple because use is made of many of the virtual methods in 
G4VEmProcess. The only methods that required implementation include a method to initialize 
the process class (this consist of constructing the associated physics model and setting a few data 
members) and a method that determines the applicable particles.  

4.3.2. Physics Models 

Physics models for discrete and hybrid DCSs were implemented and include: 
G4DiscreteElasticModel, G4HybridSoftElasticModel, G4HybridHardElasticModel, 
G4DiscreteInelasticModel, G4HybridSoftInelasticModel, and G4HybridHardInelasticModel. 
Three important methods are included in the physics model class: an initialization method where 
the cross-section data is read in; a method for obtaining the total cross-section; and a method for 
sampling the DCS. Use of the ROP DCS data reduces runtime and pre-existing Geant4 data tools 
were utilized that reduced development overhead and eased integration of the models into the 
toolkit. The code required to utilize the Geant4 data classes is left to section 6.3, which describes 
the use the Geant4 data classes in greater detail.  
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There are two methods remaining for the physics model discussion, a method for obtaining the 
ROP total cross-section and a method for sampling the ROP DCS. Obtaining the total cross-
section is trivial and requires a table look-up as a function of energy (some minor modifications 
to the Geant4 data classes were required). The method for sampling the DCS requires two steps. 
First, the energy index of the data is determined using the previously discussed binary search; 
however, the linear interpolation is accomplished through random sampling using the weights 
from a linear interpolation on log-log scale [64]. Given an ROP DCS evaluated at some energy 
gird point, the scattering angle is determined through inverting a discrete CDF, which is a very 
simple process. 

At this point, no mention was made of the hybrid cross-section. As seen in the list of models, the 
hybrid cross-section is composed of two models: one for soft collisions and one for hard 
collisions. The soft collisions are given by the discrete cross section and all of the previous 
discussion carries over. The hard collisions are given by the analog DCS. For the partial-wave 
elastic DCS much of the previous discussion also carries over. However, for the Moller inelastic 
DCS, an analytical expression is used to obtain the total cross-section and a rejection technique is 
used to sample the DCS. 

4.3.3. Cross-Section Library and Data Processing 

A ROP cross-section library was generated for the partial-wave and Moller DCS for 1, 2, 4, and 
8 points and weights. The libraries are formatted such that the Geant4 data classes could be used. 
For each material and number of points and weights, there are two data les: one for the total 
cross-section and one for the CDF. The les are named accordingly. For example, for a 2-angle 
discrete DCS based on the partial-wave DCS for aluminum the two les are named 
gbfp_pwe_tcs_13_2.dat and gbfp_pwe_cdf_13_2.dat, where the first number is the atomic 
number and the second number is the number of points and weights.  

There are two primary Geant4 data classes utilized in processing and storing the ROP DCS data: 
G4ElementData and G4PhysicsVector.  G4ElementData is a very powerful class that stores data 
for a particular element and then only requires the atomic number to retrieve the data. Upon 
construction, the G4ElementData object requires the atomic number and the data in the form of a 
pointer to a G4PhysicsVector object, so the G4ElementData class is really a container of 
G4PhysicsVector objects. The data is stored in the G4PhysicsVector object, which is also a very 
powerful class because as long as the data is properly formatted, one must simply pass the 
G4PhysicsVector object a stream of the data.  

Given a brief description of the implementation of the MP method within the Geant4 toolkit, we 
now present results.  
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5. RESULTS AND DISCUSSION

In this section, a wide array of results that capture the key features of the Moment-  
Preserving (MP) method is presented. In particular, the key features of this method demonstrated 
are: systematic accuracy, efficient, mathematically robust, versatile and simple. 

The results section begins by demonstrating the first feature of the MP method through 
calculation of highly differential quantities like angular distributions and energy spectra. In these 
calculations, the MP method is tested under the strictest possible conditions (that is, high-energy 
mono-energetic pencil beams normally incident on thin slabs). Under these conditions, analog or 
single-scatter models are typically required. However, it is shown that both transmitted and 
reflected angular distributions and energy-loss spectra can be resolved through use of the hybrid 
DCS. Though the emphasis of this section is the demonstration of the systematic nature of the 
MP method, efficiency gains of at least five times analog efficiencies were demonstrated while 
maintaining analog level accuracy in very thin slabs. Under these extreme conditions where the 
hybrid model is successful, the discrete model tends to result in artifacts. However, it is possible 
to utilize the discrete model in thicker slabs where the benefit of efficiency gains is significantly 
improved. Following the angular distribution and energy spectrum results, longitudinal and 
lateral distributions are presented where the first two features of the method are again 
demonstrated on this different, but important quantity.  

Given a clear understanding of the systematic feature of this method, results for less extreme 
problem conditions are presented to show that for more practical applications the MP method is 
not just accurate, but also very efficient. That is, we show that for 1-D and 2-D dose calculations 
the MP method achieves analog level accuracy while improving efficiency up to three orders of 
magnitude over analog efficiencies. We show that this is true for low-Z and high-Z materials, for 
molecules like water or bone, and multi-region problems. Furthermore, it is shown that material 
interfaces in multi-region problems do not introduce additional error at interfaces as does the 
condensed history method. This is because the MP method is a transport- based approximation 
and the benefit of this type of approach is that no additional algorithm is required to handle 
material interfaces.  

Prior to this work, no effort had been made to validate the MP method through comparison with 
experimental benchmarks. Therefore, several results are presented in efforts to begin this 
validation process. Specifically, results from the MP method are compared to the experimentally 
determined energy deposition profiles (that is, the Lockwood data [72]). Similar calculations are 
made with the Geant4 default electromagnetic physics option 3, so that accuracy and efficiencies 
for the MP method can be compared to the Geant4 physics. In addition, we compare charge 
deposition results generated using MP method with experimentally determined charge 
depositions (that is, the Tabata data [73]). A key concept to point out in comparing with 
experimental results is that if an analog model exists that is in acceptable agreement with an 
experimental benchmark and moments of this analog model are readily available, one can 
generate reduced order physics DCSs based on the aforementioned analog model and show 
similar levels of agreement while significantly improving efficient. In this sense, the versatility 
and simplicity of the method is demonstrated. That is, to improve agreement through use of a 
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different analog model algorithmic changes are not required; one must simply obtain moments of 
some preferable analog model, generate an ROP DCS library for this analog model, and run the 
calculation.  

Finally, for completeness the MP method is applied to a space weather application  
to show that this method is not just effective for theoretical calculations. In particular, the total 
response function is generated for the CEASE detector telescope using an analog model, a 
discrete model, and the default Geant4 electromagnetic physics with option 3.  

In all comparisons, the analog benchmark is obtained by using an analog elastic  
DCS and an analog inelastic DCS (with exception of the validation section). The analog 
benchmark is numerical rather than experimental, so to some degree it is idealized. This type of 
benchmarking is required to illustrate how accuracy is achieved through preservation of the 
analog DCS moments. In the following sections, accuracy and efficiency is measured with 
respect to the analog benchmark.  

5.1. Angular Distributions and Energy Spectra 

In this section, the accuracy of the MP method is tested under conditions that are often times 
impractical to simulate without the use of an analog model. That is, the transport of a mono-
energetic pencil beam of electrons with energies above several hundred keV in thin slabs. Of 
particular interest is the calculation of reflected and transmitted angular distributions and energy 
spectra in slabs with varying thick- nesses down to 100 analog elastic mfps (∼ 1 to 100 µm). It is 
shown that under these conditions the MP method is effective at resolving angular distributions 
and energy spectra through the use of suitable reduced order physics (ROP) DCSs. Under these 
extreme conditions, a hybrid DCS is, in most cases, required to resolve these distributions. While 
it is possible to resolve highly peaked distributions with analog level accuracy using the MP 
method, this is typically accompanied by losses in efficiency. Nonetheless, the ability to 
systematically control accuracy such that one can predict angular distributions and energy 
spectra for highly-peaked scattering in thin slabs is a strong feature of this method.  

While it is true that one cannot expect to realize significant efficiency gains with analog level 
accuracy under the aforementioned conditions, in more realistic settings (that is, thicker regions) 
it is possible to relax the ROP models such that both analog level accuracy and significant 
efficiency gains are achieved. Relaxation of the ROP models is possible in thicker slabs because 
the initial pencil beam experiences more spreading in space, angle, and energy in thicker slabs. 
This is simply an effect of the number of collisions sustained by an electron while traversing a 
medium. In thicker slabs, electrons suffer more collisions; thus, causing additional spreading of 
the initial state of the beam. With additional spreading of the beam, less information in the form 
of analog DCS moments is required to resolve angular distributions and energy spectra. 
Therefore, the ROP DCS can be relaxed or models preserving fewer moments can be utilized.  

In the following two sections, the impact of the size of the slab on the accuracy of the MP 
method is demonstrated. Both discrete and hybrid models are tested for angular distribution and 
energy spectrum calculations in low-Z and high-Z slabs with varying thicknesses. The thickness 
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of the slab is measured with respect to the analog elastic mfp corresponding to the source particle 
energy and the target material. Results for slabs with thicknesses of 100, 300, 1000, and 3000 
analog elastic mfps are presented (in the remaining discussion mfp implies analog elastic mfp). 
In Figure 3, problem setup is described.  
 

 
Figure 3: Thin slab problem setup. 

 

5.1.1. Angular Distributions 

Reflected and transmitted angular distributions are presented below for one-dimensional slabs 
composed of aluminum or gold with thicknesses of 100, 300, 1000, and 3000 mfps. The source is 
positioned at x = 0 with a direction of Ω = (1, 0, 0). A total of 4E+07 source particles are 
simulated when calculating the angular distributions. The analog benchmark is a solution to the 
aforementioned problem using analog Monte Carlo, where elastic scattering is given by the 
partial-wave DCS and inelastic scattering is given by the Moller DCS. Uncertainties associated 
with these results are within 1% in most bins, such that one can state conclusively that good 
agreement exists between the ROP models and the analog benchmark.  
 
First, the most challenging problem is presented. That is, calculation of transmitted angular 
distributions for 10000-keV electrons incident on an aluminum or gold slab 100 mfps thick. In 
Figure 4, transmitted angular distributions in aluminum and gold computed using the discrete 
and hybrid DCSs are compared to the analog benchmark. There are a few features to note in 
Figure 4. The peakedness of this distribution is extreme and varies about three orders of 
magnitude over only 10 degrees. This level of peakedness is difficult to resolve with a discrete 
elastic DCS and results in the discrete artifacts seen clearly in Figure 4. The difficulty in 
resolving highly peaked distributions using the discrete DCS results from the form of the DCS. 
That is, electrons can only scatter through N discrete angles determined by the order of the DCS. 
Therefore, the N discrete angles are favored in the angular distribution because in thin slabs 
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electrons do not suffer enough collisions such that various combinations of scattering events 
smooth out the artifacts. However, through use of the hybrid model the discrete artifacts are 
mitigated and the only noticeable differences in the hybrid model solution and the analog 
benchmark are in the tail where the differences in the solutions are statistically insignificant. In 
Figure 4, the impact of target atomic number is shown, where for increasing Z the distribution is 
less peaked. However, the impact of the atomic number on the peakedness of the scattering is not 
significant enough to dramatically improve the discrete results in thin slabs for 10000-keV 
electrons.  
 
 
 
 
 
 

 

 
Figure 4: Transmitted angular distributions for 10000-keV electrons on aluminum and 
gold. 
 
Even in aluminum slabs with thicknesses of 3000 mfps for 10000-keV electrons, the discrete 
DCS results in artifacts as seen in Figure 5. This is an indication of the extreme peakedness of 
the scattering at higher energies and in this regime a hybrid DCS is required to resolve the 
transmitted angular distribution unless additional angles are used. However, it is clear by Figure 5 
that in thicker slabs where particles undergo thousands of collisions that the discrete artifacts are 
greatly reduced. Furthermore, the impact of the atomic number is seen in Figure 5, where the 
discrete artifacts are less pronounced in the gold slab because scattering of electrons by high-Z 

Approved for public release; distribution is unlimited.
27



materials is less peaked. Nonetheless, it is always possible to utilize a hybrid model to resolve 
angular distributions overwhelmed by discrete artifacts.  

In thicker slabs, it is possible to relax the cutoff to µ∗ = 0.99 for the hybrid model improving the 
efficiency of the calculation while remaining accurate. The results in Figure 4 and Figure 5 
indicate that it is possible to resolve angular distributions in highly-peaked scattering regimes by 
systematically increasing the accuracy of the ROP DCS through preservation of additional 
moments. Of course, increasing accuracy will reduce the efficiency of the calculation, but under 
these conditions (highly-peaked scattering in thin slabs) analog Monte Carlo efficiencies are 
typically manageable, so efficiency gains of two to five times faster than analog Monte Carlo is 
considered a significant improvement. As was pointed out, the emphasis of this section was not 
to necessarily demonstrate orders of magnitude efficiency gains, but rather to show that the ROP 
models limit to analog level accuracy even under extreme conditions. That said, it is of interest to 
maximize efficiency gains whenever possible. Therefore, the following results provide a sense of 
the accuracies associated with a less-extreme scattering regime. Efficiency results are presented 
later in section 5.1.3 and indicate that it is possible to resolve angular distributions efficiently (up 
to two orders of magnitude more efficient than analog) and accurately, especially, in  
less-extreme scattering regimes.  

Figure 5: Transmitted angular distributions for 1000-keV electrons on aluminum and gold. 

The following figures present transmitted angular distributions in a less-peaked scattering 
regime. That is, 1000-keV electrons incident on gold slabs with varying thicknesses. As noted, 
the peakedness of the scattering is a function of particle energy and the target atomic number. 
With decreased particle energy and increased atomic number, the peakedness is reduced. 
Nonetheless, even for 1000-keV electrons on gold the problem is still extremely anisotropic with 
respect to neutral particle scattering. In Figure 6, the impact of slab thickness and in turn, the 
effectiveness of the discrete model is demonstrated. In Figure 6 discrete artifacts are present for 
slabs 100 and 300 mfps thick, but the hybrid model is in good agreement in these cases. 
However, in Figure 6, discrete models with at most 4-angles are sufficient when resolving the 
transmitted angular distribution. In fact, in Figure 6 the discrete artifacts resulting from a single-
angle discrete model are almost negligible and though there is not perfect agreement the general 
behavior of the transmitted angular distribution is captured. 
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Figure 6: Impact of slab thickness on transmitted angular distributions on 1000-keV 
electrons on gold. 

We now present reflected angular distributions for 1000-keV and 10000-keV electrons on 
aluminum or gold slabs with thicknesses of 100, 300, 1000, and 3000 mfps. In Figure 7 reflected 
angular distributions for 10000-keV electrons on gold are presented. First, note the distributions 
in Figure 7 are significantly reduced in magnitude relative to the transmitted angular 
distributions for 10000-keV electrons. For highly- peaked scattering, a very small fraction of 
particles are reflected. Slab thickness has a similar impact on reflected distributions as for 
transmitted distributions. That is, with increasing slab thickness electrons suffer more collisions 
before being reflected, spreading the distributions in angle. In general, the discrete model tends 
to have the correct behavior; however, the distribution is roughly two to five times greater in 
magnitude. Once again, the hybrid model can be used in all cases. The disagreement between the 
analog benchmark and the hybrid models is statistical because very few particles are reflected.  
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Figure 7: Impact of slab thickness on reflected angular distributions for 10000-keV 
electrons on aluminum. 

 
In Figure 8 angular distributions for 1000-keV electrons incident on gold slabs with thicknesses 
of 100, 300, 1000, and 3000 mfps are presented. For lower energies in high-Z materials the 
scattering is less peaked and the ROP model can be relaxed under these conditions. Specifically, 
reflected angular distributions generated using the discrete model are not overwhelmed by 
artifacts as seen in Figure 8. For slabs of sufficient thickness, a hybrid model is not required and 
the more efficient discrete model can be utilized. For slabs that are 3000 mfps thick (Figure 8), a 
single-angle, single-energy discrete model provides noteworthy agreement. 
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Figure 8: Impact of slab thickness on reflected angular distributions for 1000-keV electrons 
on gold. 

5.1.2. Energy Spectra 

Next, reflected and transmitted energy spectra are examined. The simulation characteristics, 
including slab thickness, material types, and the number of source particles, are the same as 
described in the previous section. Discrete inelastic DCS models are not presented because a 
sufficient number of inelastic collisions do not occur in thin slabs overwhelming the spectra with 
discrete artifacts. Therefore, the focus is on two different hybrid inelastic DCS models. The 
hybrid models include DCSs with Q∗ = 10-keV and one or two discrete energies. In each of the 
following results, elastic scattering is modeled by a discrete four-angle DCS. Again, the most 
challenging problem, 10000-keV electrons on aluminum slabs, is considered first. In Figure 9, 
transmitted energy-loss spectra are presented for aluminum slabs with thicknesses of 100, 300, 
1000, and 3000 mfps. As seen in Figure 9, it is possible to resolve the transmitted energy-loss 
spectra with a sufficiently accurate hybrid inelastic model. For 10000-keV electrons on 
aluminum, a two-energy hybrid model is required. How- ever, for 1000-keV electrons on gold, it 
is possible to relax the inelastic model to a single energy with the same cutoff. In Figure 10, 
results for 1000-keV electrons on gold are presented. Under these conditions, inelastic scattering 
is also less peaked and the hybrid model can be relaxed. However, a discrete representation is 
still not sufficient.  
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Figure 9: Impact of slab thickness on transmitted energy-loss spectra for 10000-keV 
electrons on aluminum. 
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Figure 10: Impact of slab thickness on transmitted energy-loss spectra for 1000-keV 
electrons on gold. 
 
 
Reflected energy-loss spectra for 10000-keV and 1000-keV electrons on gold are presented next. 
Reflected energy-loss spectra for 10000-keV electrons on aluminum are not presented because 
the reflected electrons experience almost no inelastic collisions. This is true even for gold as seen 
in Figure 11 for slabs that are 100 and 300 analog mfps thick, where the distributions are nearly 
singular about zero energy-loss. That said, the hybrid model also predicts this nearly singular 
behavior. For thicker slabs, 1000 and 3000 analog mfps, the reflected energy-loss spectra spreads 
out more. Here, the hybrid model is in good agreement in the statistically significant regions of 
the spectra (that is, the peaked region of the spectra).  
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Figure 11: Impact of slab thickness on reflected energy-loss spectra for 10000-keV 
electrons on aluminum. 
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In Figure 12, reflected energy-loss spectra are presented for 1000-keV electrons on gold. Once 
again, in this less-peaked regime the spectra are not nearly as singular and a relaxed, single-
energy hybrid model can be utilized.  

Figure 12: Impact of slab thickness on reflected energy-loss spectra for 1000-keV electrons 
on gold. 

5.1.3. Efficiencies for Thin Slab Problems 

In this section, efficiency results for the previously discussed thin slab problems are presented in 
Table 1 and Table 2 for 1000-keV and 10000-keV on aluminum or gold slabs of various 
thicknesses respectively. In general, efficiency gains depend on the slab thickness, the target 
atomic number, and the energy of the particle. The dependence on the problem geometry, or the 
slab thickness in particular, is captured in the following tables. The greatest efficiencies are 
realized in thicker slabs where particles undergo more collisions. In thin slabs (100 and 300 
analog mfps), efficiency gains range from 5 to 60 times faster than analog Monte Carlo. Whereas 
for thicker slabs, efficiency gains range from one to three orders of magnitude faster than analog 
Monte Carlo.  

In previous sections, it was mentioned that there is a trade-of between accuracy and efficiency. 
This will be clarified in remainder of this discussion. First, remember that under the most 
extreme conditions (10000-keV electrons on 100 to 300 mfps of aluminum) hybrid models were 
required to resolve angular distributions and energy spectra. The efficiency gains associated with 
these models, under these conditions range from 15-47 times the efficiency of an analog Monte 
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Carlo calculation. What would take a day now requires only an hour without sacrificing 
accuracy. Now, note that it was possible to resolve angular distributions for 1000-keV electrons 
on gold slabs with thicknesses of 1000 and 3000 mfps using various discrete models. Under 
these conditions, efficiency gains of 150-500 times the efficiency of an analog Monte Carlo 
calculation are realized without sacrificing accuracy. In this case, what would take a day takes 
less than ten minutes.  

Table 1: Efficiency gains for various ROP DCSs when simulating 1000-keV and 10000-keV 
electrons incident on aluminum slabs 100, 300, 1000, and 3000 mfps thick. 

Reduced Order Physics Model 

Slab Width 
(mfps) 

Particle 
Energy 

1-Angle 
1-Energy 

4-Angles 
1-Energy 

4-Angles 
4-Energies 

1-Angle 
𝜇𝜇0∗ = 0.99 
4-Energies 

4-Angles 
1-Energy 

𝑄𝑄∗ = 10 𝑘𝑘𝑘𝑘𝑘𝑘 

100 1000-keV 
10000-kev 

21 
22 

18 
22 

15 
21 

5 
16 

10 
13 

300 1000-keV 
10000-kev 

56 
60 

43 
62 

33 
55 

16 
48 

22 
27 

1000 1000-keV 
10000-kev 

174 
200 

63 
170 

56 
145 

11 
86 

41 
85 

3000 1000-keV 
10000-kev 

475 
610 

178 
556 

109 
360 

21 
114 

76 
71 

Table 2: Efficiency gains for various ROP DCSs when simulating 1000-keV and 10000-keV 
electrons incident on gold slabs 100, 300, 1000, and 3000 mfps thick. 

Reduced Order Physics Model 

Slab Width 
(mfps) 

Particle 
Energy 

1-Angle 
1-Energy 

4-Angles 
1-Energy 

4-Angles 
4-Energies 

1-Angle 
𝜇𝜇0∗ = 0.99 
4-Energies 

4-Angles 
1-Energy 

𝑄𝑄∗ = 10 𝑘𝑘𝑘𝑘𝑘𝑘 

100 1000-keV 
10000-kev 

20 
19 

16 
20 

15 
19 

8 
17 

12 
20 

300 1000-keV 
10000-kev 

61 
62 

37 
57 

33 
54 

10 
86 

26 
45 

1000 1000-keV 
10000-kev 

174 
200 

63 
170 

56 
145 

18 
89 

30 
39 

3000 1000-keV 
10000-kev 

565 
1174 

134 
861 

122 
591 

23 
255 

91 
254 

In section 5.1.1 and 5.1.2, it was shown that for a given ROP DCS model, the accuracy of the 
result depends on the peakedness of the distribution being resolved. The peakedness of the 
distribution, in turn, depends on the slab thickness and the regime of scattering, which is a 
function of particle energy and target atomic number. Regardless, an ROP DCS can be made to 
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preserve additional moments of the analog DCS; thus, refining the model and achieving analog 
level accuracy under very extreme simulation conditions. While it is not possible to achieve 
several orders of magnitude efficiency gains under these conditions, the ROP models were at 
least five times faster than analog Monte Carlo and up to 45 times faster in some cases. Under 
more relaxed conditions, up to three orders of magnitude efficiency gains were achieved. 
Regardless, accuracy and efficiency suitable for a wide variety of problems can be realized by 
adjusting the ROP DCSs.  

5.2. Longitudinal and Lateral Distributions 

At this point, it is clear that accuracy and efficiency is problem dependent. Nonetheless, it is 
possible to refine the ROP DCS such that sufficient levels of accuracy and efficiency are 
realized. In this section, a few additional results are presented that overlap with the previous 
section in the sense that problems corresponding to scattering regimes ranging from extreme 
peakedness to less-extreme peakedness are tested. Here, results in connection with Lewis theory 
are presented to demonstrate the moment-preserving property of this method, while again 
demonstrating the accuracy of this method is systematically controllable.  

In particular, longitudinal and lateral distributions for 100-keV, 1000-keV, and 10000-keV 
electrons after traveling a distance of 100, 300, 1000, and 3000 mfps in an infinite medium of 
copper are presented (similar to Benedito et al. [64]). In these problems, energy-loss is not 
considered. The longitudinal and lateral distributions are generated using the analog Monte Carlo 
method where elastic scattering is given by the partial-wave DCS. These distributions are 
referred to as the analog benchmark and are compared with several solutions generated using 
discrete and hybrid models. In all of the results presented in this section, 4E+07 electrons were 
simulated for each model and uncertainties associated with the majority of the results are within 
1%; especially, in the highly probable regions. However, in regions where the distribution is 
small with respect to the maximum value (for example, in the tails of the distributions), the 
results are statistically insignificant.  

In Figure 13, a diagram of the problem simulated is presented. The electron starts at s = 0 with 
an initial direction and travels until reaching a distance of 𝑠𝑠 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚. At this point, the electrons 
longitudinal displacement, or the projection of the path traveled onto the initial trajectory, and 
lateral displacement, or the orthogonal projection of the pathlength, is tallied. Although it is not 
clear from Figure 13, it is possible for an electron to turn around and travel in directions 
opposite to the initial direction. In these cases, it is possible for the electron to have a negative 
longitudinal displacement. The same is not true for lateral displacement because the lateral 
displacement is a measure of radius and therefore, non-negative.  
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Figure 13: Infinite medium problem setup. 

In addition to the longitudinal and lateral distributions, a few Lewis moments are compared 
including 〈𝑧𝑧〉 and 〈𝑥𝑥2 + 𝑦𝑦2〉 or  

〈𝑧𝑧〉 = � 𝑑𝑑𝑑𝑑
4𝜋𝜋

� 𝑑𝑑𝑑𝑑
∞

−∞
� 𝑑𝑑𝑑𝑑
∞

−∞
� 𝑑𝑑𝑑𝑑 𝑧𝑧𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑠𝑠,𝛺𝛺�⃗ )
∞

−∞
. (54) 

and 

〈𝑥𝑥2 + 𝑦𝑦2〉 = � 𝑑𝑑𝑑𝑑
4𝜋𝜋

� 𝑑𝑑𝑑𝑑
∞

−∞
� 𝑑𝑑𝑑𝑑
∞

−∞
� 𝑑𝑑𝑑𝑑 (𝑥𝑥2 + 𝑦𝑦2)𝜓𝜓(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑠𝑠,𝛺𝛺�⃗ )
∞

−∞
. (55) 

Here, the Monte Carlo method is used to carry out the integrals in Eqs. (54) and (55), by 
simulating the particle transport and tallying the longitudinal and lateral displacement after 
traveling 100, 300, 1000, or 3000 analog mfps. These results are presented in the following 
tables for each energy. As predicted by Lewis theory and seen in  
Table 3, models preserving at least 𝛴𝛴𝑒𝑒𝑒𝑒,1 will preserve 〈𝑧𝑧〉. Therefore, even the very efficient 
single-angle model will have the correct average longitudinal displacement. Once again as 
predicted by Lewis theory and seen in Table 4, models preserving at least 𝛴𝛴𝑒𝑒𝑒𝑒,1 and 𝛴𝛴𝑒𝑒𝑒𝑒,2will 
preserve 〈𝑥𝑥2 + 𝑦𝑦2〉. Therefore, the single-angle model that preserves 𝛴𝛴𝑒𝑒𝑒𝑒,1 and 𝛴𝛴𝑒𝑒𝑒𝑒,2will have the 
correct average lateral displacement as well. Models preserving additional moments are not 
presented in  
Table 3 and Table 4 because these results are redundant. Preservation of average longitudinal 
and lateral displacement are important to electron transport methods and in many cases these 
methods seek to preserve at least average longitudinal and lateral displacement. One of the major 
distinctions between condensed history and the MP method is that typically in condensed history 
the underlying multiple scattering theory is only setup to preserve 𝛴𝛴𝑒𝑒𝑒𝑒,1 and 𝛴𝛴𝑒𝑒𝑒𝑒,2, while the MP 
method can preserve an arbitrary number of Legendre moments guaranteeing preservation of 
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higher-order Lewis moments. Not to mention, the most simple, efficient ROP model associated 
with the MP method preserves at least the average longitudinal and lateral distances. 

Table 3: Average longitudinal displacement for 100-keV, 1000-keV, and 10000-keV 
electrons in copper traveling a distance of 100, 300, 1000, and 3000 mfps. 

Table 4: Average lateral displacement for 100-keV, 1000-keV, and 10000-keV electrons in 
copper traveling a distance of 100, 300, 1000, and 3000 mfps. 

Although preservation of 𝛴𝛴𝑒𝑒𝑒𝑒,1 and 𝛴𝛴𝑒𝑒𝑒𝑒,2 guarantees preservation of 〈𝑧𝑧〉 and 〈𝑥𝑥2 + 𝑦𝑦2〉, resolving 
the longitudinal and lateral distributions requires preservation of additional moments. Similar to 

〈𝑧𝑧〉 
Pathlength 

(mfps) 
Particle Energy 

(keV) Analog 1-Angle Rel. Unc. 

100 
100 
1000 
10000 

0.8432 
0.986667 
0.999644 

0.8433 
0.98667 
0.999644 

0.00006 
0.00001 
0.000001 

300 
100 
1000 
10000 

0.61815 
0.96069 
0.998931 

0.61820 
0.96070 
0.998932 

0.0002 
0.00004 
0.000005 

1000 
100 
1000 
10000 

0.2761 
0.87673 
0.996449 

0.2763 
0.87680 
0.996448 

0.001 
0.0001 
0.00001 

3000 
100 
1000 
10000 

0.09493 
0.6861 

0.989399 

0.09497 
0.6863 

0.989387 

0.006 
0.0007 
0.00005 

〈𝑥𝑥2 + 𝑦𝑦2〉 
Pathlength 

(mfps) 
Particle Energy 

(keV) Analog 1-Angle Rel. Unc. 

100 
100 
1000 
10000 

0.154457 
0.016420 
0.000455 

0.154456 
0.016415 
0.000454 

0.0003 
0.0008 
0.003 

300 
100 
1000 
10000 

0.26942 
0.04683 
0.001365 

0.26944 
0.04682 
0.001364 

0.0004 
0.0009 
0.004 

1000 
100 
1000 
10000 

0.2365 
0.1315 

0.004524 

0.2366 
0.1314 

0.004525 

0.0007 
0.001 
0.0009 

3000 
100 
1000 
10000 

0.11012 
0.2532 
0.01338 

0.11016 
0.2531 
0.01339 

0.002 
0.001 
0.004 
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results from the previous section, discrete artifacts impact the shape of the longitudinal and 
lateral distributions. The impact of the artifacts is again dependent on the peakedness of the 
scattering and the number of collisions suffered by the electrons before tallying their 
displacement.  

In Figure 14 through Figure 19, longitudinal and lateral distributions for 10000-keV down to 
100-keV electrons in an infinite copper medium are presented. Each figure contains four results 
corresponding to gradually increasing pathlengths of 100, 300, 1000, and 3000 mfps. Again, the 
most challenging problem, or longitudinal and lateral distributions for 10000-keV electrons in 
copper, is presented first in Figure 14 and Figure 15. In all cases, the hybrid DCS utilized is in 
excellent agreement with the analog benchmark. For shorter pathlengths, both discrete models 
oscillate about the analog benchmark. The oscillations are an effect resulting from the 
discreteness of the DCS model where electrons tend to travel in preferential directions. Even for 
pathlengths of 1000 analog mfps, the 16-angle discrete model still oscillates subtly about the 
analog benchmark, but does not for pathlengths of 3000 analog mfps.  

Figure 14: Comparison of longitudinal distributions for 10000-keV electrons after traveling 
a distance of 100 (top left), 300 (top right), 1000 (bottom left), and 3000 (bottom right) 
analog elastic mfps. 
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Figure 15: Comparison of lateral distributions for 10000-keV electrons after traveling a 
distance of 100 (top left), 300 (top right), 1000 (bottom left), and 3000 (bottom right) analog 
elastic mfps. 

As the energy of the particle decreases, the effectiveness of relaxed models (that is, models 
preserving fewer moments) is improved. For example, longitudinal and lateral distributions for 
1000-keV electrons in copper are presented first in Figure 16 and Figure 17. In all cases, the 
hybrid DCS utilized is in excellent agreement with the analog benchmark and was relaxed from a 
cutoff of 0.99 down to a cutoff of 0.9 for pathlengths of 100 and 300 analog mfps and down to a 
cutoff of 0.5 for pathengths of 1000 and 3000 analog mfps. Moreover, discrete artifacts are not 
nearly as significant for 1000-keV electrons with exception of longitudinal and lateral 
distributions for pathlengths of 100 and 300 analog mfps. In fact, a 4-angle discrete model is 
sufficient for resolving longitudinal and lateral distributions for pathlengths of 1000 and 3000 
analog mfps. 
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Figure 16: Comparison of longitudinal distributions for 1000-keV electrons after traveling 
a distance of 100 (top left), 300 (top right), 1000 (bottom left), and 3000 (bottom right) 
analog elastic mfps. 
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Figure 17: Comparison of lateral distributions for 1000-keV electrons after traveling a 
distance of 100 (top left), 300 (top right), 1000 (bottom left), and 3000 (bottom right) analog 
elastic mfps. 
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Finally for 100-keV electrons, the most relaxed models tested are sufficient for pathlengths down 
to 100 analog mfps as seen in Figure 18 and Figure 19. Although single-angle results were not 
presented, a single-angle model is reasonably accurate for 100-keV electrons for pathlengths of 
100 analog mfps and greater. 

Figure 18: Comparison of longitudinal distributions for 100-keV electrons after traveling a 
distance of 100 (top left), 300 (top right), 1000 (bottom left), and 3000 (bottom right) analog 
elastic mfps. 
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Figure 19: Comparison of lateral distributions for 100-keV electrons after traveling a 
distance of 100 (top left), 300 (top right), 1000 (bottom left), and 3000 (bottom right) analog 
elastic mfps. 

In this section, longitudinal and lateral results were presented to demonstrate the effectiveness of 
the MP method when calculating quantities that are critical to most CH methods and electron 
transport methods in general. It was shown that the average longitudinal and lateral displacement 
(typically used in CH pathlength correction algorithms) is in exact agreement with analog results 
for a single-angle (two moment-preserving) model. In other words, no additional pathlength 
correction algorithm is required in the MP method because the ROP DCS are constructed such 
that the Lewis moments are inherently preserved. In addition, longitudinal and lateral 
distributions for 100-keV (less-peaked scattering) to 10000-keV (highly-peaked scattering) were 
generated using various ROP models. Depending on the problem at hand, ROP models requiring 
preservation of only a few moments were required for agreement with the analog benchmark. 
When necessary, additional moments were preserved to achieve analog level accuracy, but there 
was never a problem too extreme that the MP method failed to resolve the longitudinal or lateral 
distributions.  

5.3. 1-D and 2-D Dose Calculations 

In this section, 1-D and 2-D dose results are presented. The dose results were generated using the 
partial-wave elastic scattering DCS and the Moller inelastic scattering model for the analog 
benchmark and the ROP DCSs were, in turn, constructed from these DCSs. Secondary 
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production was not considered for this section. The following results show that the MP method 
can be used to calculate dose accurately in both relatively isotropic and highly peaked regimes 
regardless of the form of the analog model used to construct the ROP DCS. That is, accurate 
models can be constructed from both analytical DCS and tabulated DCS data. In this report the 
emphasis is on tabulated elastic DCS data, as applications of the MP method to analytical DCSs 
has been demonstrated in the past [58, 59]. Efficiency gains improve significantly with 
increasing source energies without sacrificing accuracy. The trade-of between accuracy and 
efficiency, where it exist, ultimately depends on the application and the level of accuracy 
required by the user.  

5.3.1. One-Dimensional Depth-Dose Profiles 

Transversely integrated depth-dose profiles and relative differences are presented for 250-keV 
electrons in gold and 20000-keV electrons in water. In Figure 20, the results are nearly 
indistinguishable from the benchmark. However, the relative error plot in Figure 20 shows 
disagreements that would otherwise be indistinguishable. In this simulation, disagreement is 
attributed to both the elastic and inelastic scattering models. Additional angles or use of the 
hybrid DCS smooths out the overestimation in the first cell. Adding another energy point to the 
discrete inelastic model smooths out the oscillation that begins near the peak dose. Though some 
refinement was necessary, only small adjustments were required to reduce the relative 
differences to within 1%.  
 

 
Figure 20: Dose deposition profile (left) and relative error (right) for 250-keV electrons on 
a gold slab. 

 
 
Efficiency gains are presented in Tables 9.5 and 9.6. For 250-keV electrons in gold efficiencies 
range from about 3 to 50 times faster than analog depending on the accuracy of the ROP DCS 
used. For 20000-keV electrons, in gold efficiencies range from about 70 to 1800 times faster 
than analog, while achieving accuracies nearly the same as those presented in Fig. 9.18b.  
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Table 5: Efficiency gains for various discrete DCSs when calculating dose due to 250-kev, 
1000-keV, and 20000-keV electrons on gold slabs. 

Reduced Order Physics Model 

Particle Energy 
1-Angle 
1-Energy 

2-Angles 
1-Energy 

2-Angles 
2-Energies 

4-Angles 
1-Energy 

4-Angles 
4-Energies 

250-keV 
1000-keV 
20000-kev 

51 
164 
1794 

23 
72 
967 

23 
71 
883 

11 
31 
416 

11 
31 
379 

Table 6: Efficiency gains for various hybrid DCSs when calculating dose due to 250-kev, 
1000-keV, and 20000-keV electrons on gold slabs. 

Reduced Order Physics Model 

Particle Energy 

𝜇𝜇0∗ = 0.5 
1-Angle 

2-Energies 

𝜇𝜇0∗ = 0.9 
1-Angle 

2-Energies 

𝜇𝜇0∗ = 0.99 
1-Angle 

2-Energies 
250-keV 
1000-keV 
20000-kev 

18 
60 
844 

7 
22 
302 

3
6
68 

In Figure 21, the results are distinguishable from the benchmark at 20000-keV because the 
relaxed approximations do not capture large angle scatter or large energy losses. Once again, 
small refinements to the elastic and inelastic ROP scattering models improve the accuracy of the 
results. As seen in Figure 21, model refinement through preservation of additional moments 
reduces the relative differences to <1%. Efficiency gains for the 20000-keV water simulation 
range from about 110 to 1600. However, accuracies within 1% were achieved with models that 
were 650 to 700 times more efficient than analog. Additional efficiency gains are presented in 
Tables 9.7 and 9.8.  

Figure 21: Dose deposition profile and relative error for 20000-keV e- on H2O. 
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Table 7: Efficiency gains for various discrete DCSs when calculating dose due to 250-kev, 
1000-keV, and 20000-keV electrons on water slabs. 

Reduced Order Physics Model 

Particle Energy 
1-Angle 
1-Energy 

2-Angles 
1-Energy 

2-Angles 
2-Energies 

4-Angles 
1-Energy 

4-Angles 
4-Energies 

250-keV 
1000-keV 
20000-kev 

54 
147 
1607 

30 
83 

1122 

24 
61 
709 

15 
39 
612 

11 
27 
293 

Table 8: Efficiency gains for various hybrid DCSs when calculating dose due to 250-kev, 
1000-keV, and 20000-keV electrons on water slabs. 

Reduced Order Physics Model 

Particle Energy 

𝜇𝜇0∗ = 0.5 
1-Angle 

2-Energies 

𝜇𝜇0∗ = 0.9 
1-Angle 

2-Energies 

𝜇𝜇0∗ = 0.99 
1-Angle 

2-Energies 
250-keV 
1000-keV 
20000-kev 

20 
52 
647 

9 
25 
380 

3
7

109 

In addition to the single-material depth-dose profiles, an interface problem is presented. In this 
problem a 150-keV pencil beam of electrons is normally incident on a gold-aluminum slab. The 
first 0.0004 cm of the slab is gold and the remainder of the slab is aluminum. In Figure 22, the 
depth-dose profiles for the analog benchmark and a single-angle, single-energy discrete model 
are presented along with the relative error in several discrete models. The interface occurs 
between the 4th and 5th cells; however, there is no distinguishable error in Figure 22 resulting 
from the interface. As previously noted, the MP method preserves transport mechanics allowing 
for exponentially distributed collision sites. Clearly, boundary crossings are a non-issue for this 
method and no additional algorithms are required to handle boundary crossings.  

Figure 22: Dose deposition profile (left) and relative error (right) for 150-keV electrons on 
a gold/aluminum slab. 
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5.3.2. Two-Dimensional Dose Deposition 

As indicated by the transversely integrated dose results in the previous section, this method 
provides excellent accuracy and efficiency when radial spreading is not considered. However, in 
this section we present two-dimensional dose deposition results that include the impact of 
radially spreading. At lower energies this method is more effective at capturing radial spreading. 
We begin the two-dimensional dose deposition results by presenting the low energy simulation. 
The geometry setup for this simulation is presented in Figure 23. For the 150-keV simulation 
109 histories were completed. In Figure 23, the analog benchmark for the 150-keV simulation is 
presented. A significant portion of the dose is deposited along the beamline close to the source. 
In the gold region the dose is deposited more rapidly than in the silicon region where it is 
apparent that the dose diffuses slower.  

Figure 23: Problem setup (left) and analog benchmark (right) for 150-keV electrons on a 
silicon cube with gold region. 

In Figure 24, relative differences for discrete models are presented to demonstrate the impact of 
adjusting the number of discrete angles and energies, and in turn, the number of moments 
preserved. In Figure 24 (top), low-order moment- preserving models are presented. Discrete 
artifacts are very distinct in Figure 24 (top left) for the single-angle, single-energy model. By 
increasing the number of discrete angles in Figure 24 (bottom), the discrete artifacts are 
mitigated without requiring the hybrid model. However, there are still some significant 
differences in the dose in some regions resulting from the single-energy model seen in Figure 24 
(top right and bottom left). By including additional energies, the relative error in all regions is 
significantly reduced as seen in Figure 24 (bottom right). Notice that along the gold-silicon 
interface near the beam, the agreement is within 1%, with exception of the single-angle model 
where the solution is overwhelmed with discrete artifacts.  

Another artifact to point out is the over/under estimation of the dose in the first two cells next to 
the source. This error persists as the models are refined, but it is actually an artifact of the source 
type and source location. That is, the source is a pencil beam that is singular in space and it is 
directed at the tally cell boundary between. In the next 2-D result, the source is no longer 
singular in space and the artifact is no longer present.  
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Figure 24: Relative error in discrete 1-Angle, 1-Energy model (top left), discrete 2-Angles, 
1-Energy model (top left), discrete 4-Angles, 1-Energy model (top left), discrete 4-Angles, 4-
Energies model (top left) for 150-keV electrons on silicon/gold cube. 
 
Table 9: Efficiency gains for various discrete DCSs when calculating dose due to 150-kev 
electrons on silicon/gold cube. 
 

 Reduced Order Physics Model 

Particle Energy 
1-Angle 
1-Energy 

2-Angles 
1-Energy 

2-Angles 
2-Energies 

4-Angles 
1-Energy 

4-Angles 
4-Energies 

250-keV 51 29 29 16 16 
 
In Figure 25 (left), the two-dimensional problem setup is given along with the analog 
benchmark in Figure 25 (right). In this simulation, a beam of 10000-keV electrons are 
transported with radius of 0.02 cm is normally incident on a water cube with a small bone region. 
The analog benchmark is in logscale and provides a sense of where most of the dose is deposited. 
That is, a significant portion of the dose is deposited along the beamline within fractions of a cm 
to the left and right of the origin. The electrons with these energies penetrate deeply into the 
medium as seen in Figure 25 (right).  
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Figure 25: Problem setup (left) and analog benchmark (right) for 10000-keV electrons on a 
water cube with bone region. 

The following figure presents relative error results corresponding two discrete ROP DCS 
models. In Figure 26 (left), the relative error in the four-angle, four-energy discrete DCS models 
with respect to the analog benchmark is presented. Discrete artifacts can be seen clearly in 
Figure 26 (left). However, by refining the model through preservation of additional moments 
with the addition of four more discrete angles, discrete artifacts are mitigated and backscatter is 
captured more accurately as seen in the relative error result in Figure 26 (right). In both the four-
angle and eight-angle results, no interface effects are present. It should be noted that in the 
backscatter is not significant at 10000-keV and some of the error in the lower left and right 
corners is statistical in nature.  

Figure 26: Relative error in discrete 4-Angles, 4-Energies model (left) and discrete 8-
Angles, 4-Energies model (right) for 10000-keV electrons on water/bone cube. 

In Figure 27, the relative error between the analog benchmark and two hybrid models are 
presented. In Figure 27 (left), a hybrid model with µ∗ = 0.9 shows very subtle discrete artifacts, 
but otherwise is in good agreement. In Figure 27 (right), a hybrid model with µ∗ = 0.99 does not 
suffer from any discrete artifacts and the only disagreement is in the lower left and right corners 
where again the error is statistical in nature.  
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In adding more discrete angles, or through use of the hybrid model, we demonstrated an 
approach to mitigate discrete artifacts through controlling the accuracy of the ROP DCS models. 
The only drawback to applying a more accurate ROP DCS model is the loss of efficiency as 
presented in Table 9.10. Here, the 4-angle model is the most efficient as expected. Inclusion of 
additional discrete angles or use of the hybrid model reduces the efficiency gain from roughly 
120 to between 47 and 94.  
 

 
Figure 27: Relative error in hybrid 1-Angle with cutoff of 0.9, discrete 4-Energies model 
(left) and hybrid 1-Angle with cutoff of 0.99, discrete 4-Energies model (right) for 10000-
keV electrons on water/bone cube. 
 
Table 10: Efficiency gains for various discrete DCSs when calculating dose due to 10000-
keV electrons on water/bone cube. 
 

 
As 
previously 
noted, it is 
possible to 
optimize 

such that significant reduction in efficiency is not incurred by applying higher-order models in 
regions nearby the source where the solution remains highly peaked and splaying lower-order 
models in regions where the solution is less-peaked. The following results present region 
dependent elastic ROP DCSs.  
 
In Figure 28, the schematic for a region dependent discrete elastic model is presented along with 
the associated relative error from such an approach. As seen in Figure 28 (left), default 4-angle, 
4-energy discrete model is applied to all regions. The default is then deactivated in the region 
bounded by the red dashed line and an 8-angle, 4-energy discrete model is applied in this region. 
The associated relative error is given in Figure 28 (right). The relative error in Figure 28 (right) 
is nearly indistinguishable from the relative error in Figure 28 (right) where an 8-angle discrete 
model is applied everywhere. The resulting gain in efficiency is 106 times faster than the analog 
simulation as opposed to 86 when applying an 8-angle model to all regions.  
 

 Reduced Order Physics Model 

Particle Energy 
4-Angles 

4-Energies 
8-Angles 

4-Energies 

1-Angle 
𝜇𝜇0∗ = 0.9 

4-Energies 

1-Angle 
𝜇𝜇0∗ = 0.99 
4-Energies 

10000-keV 121 86 94 47 
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Figure 28: Schematic for region dependent ROP DCS (left) and the relative error in dose 
(right) for 10000-keV electrons on a water cube with bone region. 

In Figure 29, the schematic for another region dependent discrete elastic model is presented 
along with the associated relative error from such an approach. Again, in this problem a 4-energy 
discrete inelastic model is used in all regions. As seen in Figure 29 (left), an 8-angle model is 
applied in the region where the peak dose occurs and a single-angle model is applied in all other 
regions. The associated relative error is given in Figure 29 (right) and is a modest improvement 
over the relative error in Figure 29 (right) as the backscatter is captured more accurately. Again, 
the relative error in Figure 29 (right) is nearly indistinguishable from the relative error in Figure 
29 (right) where an 8-angle discrete model is applied everywhere. The resulting gain in 
efficiency is 97 times faster than the analog simulation and is reduced slightly from 106, which 
was efficiency gain associated with the previous region dependent models, but accuracy was 
improved.  

Figure 29: Schematic for region dependent ROP DCS (left) and the relative error in dose 
(right) for 10000-keV electrons on a water cube with bone region. 

Ultimately, a region dependent application of the ROP DCS models is simply an exercise in 
demonstrating that accuracy and efficiency can be optimized. In practice, a more suitable 
approach would be to develop an algorithm that determines the optimal DCS model as the 
electron is transported. At this point, it is unclear what metric should is ideal for determining the 
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optimal ROP DCS model because the parameter space is large. The following problem is 
illustrates this point.  

For problems with singular boundary conditions like the previous problem, it is clear that high-
order models are necessary nearby the source and low-order models can be used away from the 
source as the solution becomes less peaked. However, the same is not necessarily true for 
distributed sources. For example, in the following problem an isotropic point source of 2500-keV 
electrons in a gold cube 1 cm on each face is simulated. The problem setup and analog benchmark 
is given in Figure 30 (left). As seen in Figure 30 (right), the dose is deposited uniformly about the 
point source located at the origin. It is also of interest to point out that most of the dose is deposited 
nearby the source.  

Figure 30: Problem setup (left) and analog benchmark (right) for an isotropic source of 
2500-keV electrons in a gold cube. 

As seen in Figure 31, relatively low-order models can used to estimate the dose due to distributed 
sources. The most efficient model tested, single-angle, single-energy, is about 400 times more 
efficient than the analog simulation and the associated relative error is presented in Figure 31 
(left). By adding another discrete energy the relative error improves as seen in Figure 31 (middle), 
but the efficiency decrease to about 300 times faster than the analog simulation. Finally, the most 
accurate model tested, 2-angles, 2-energies, is presented in Figure 31 (right). This model provides 
good agreement, while remaining roughly 180 times more efficient than the analog simulation. Here 
we showed that accuracy and efficiency is impacted by the source configuration. Again, region 
dependent models could be applied in this setting for optimization, but more importantly an adaptive 
cross-section algorithm that incorporates source information and solution information for given 
problem would improve the MP method.  
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Figure 31: Relative error in discrete 1-Angle, 1-Energy model (left), discrete 2-Angles, 1-
Energy model (middle) and discrete 2-Angles, 2-Energies model (right) for 2500-keV 
electrons in gold cube. 

5.4. Comparison with Experiment 

In this section, an initial validation of the Moment-Preservation method is presented. Given the 
nature of the method, the key is to first obtain analog elastic and inelastic DCSs that are in good 
agreement with the experimental benchmarks of interest. Therefore, the following results are 
really a validation of the analog DCS models used herein. Initial validation results indicate that 
the renormalized Moller DCS (see Chapter 3) does not give good agreement with the Lockwood 
energy deposition data [72]. Use of the Geant4 G4eIonization class in place of the renormalized 
Moller DCS improved agreement. However, when comparing with the Tabata charge deposition 
data [73], differences between the renormalized Moller DCS and the G4eIonization class were 
negligible. Until further development of the analog in- elastic model is completed, use is made of 
the G4eIonization class (see Chapter 8) for the validation test under consideration in this section 
to be consistent. Once again, the analog elastic DCS models used are the partial-wave elastic 
DCSs generated using the ELSEPA code. The first validation test includes comparisons to depth-
dose profiles referred to as the Lockwood data [72]. Next, comparisons to charge deposition 
experiments due to Tabata [73] are presented. In addition to the Lockwood and Tabata data, 
numerous experimental benchmarks are available for validation test [74, 75, 76, 77, 78, 79, 80, 
81]. However, further validation of the MP method remains as future work.  

5.4.1. Energy Deposition Profiles 

One of the most common electron transport results in basic research is energy deposition, where 
an accurate description of particle transport is required for different energies in various 
materials. Below, energy deposition profiles and total energy de- position calculations are 
compared with experimental results from Lockwood et al. [71]. The Lockwood data was 
produced by Sandia National Laboratories using a sophisticated calorimetric technique for 
measuring absolute, high-resolution electron energy deposition profiles in a wide range of materials. 
The uncertainty of the data is estimated to be from 1.0% to 2.0%.  
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The comparisons cover low-Z and high-Z materials including carbon, aluminum, molybdenum, and 
tantalum for pencil beam sources with energies of 500-keV and 1000-keV and angles of incidence 
of 0◦ and 60◦. In each simulation, 105 source particles were transported and the energy deposition 
profiles are normalized to the mean CSDA range and the depth variable is in terms of a fraction of 
the mean CSDA range. The primary objective of this comparison is to validate the ROP models that 
are the subject of this report, but also to demonstrate how well these models perform with respect to 
the current state-of-art physics models available to Geant4 users. Both accuracy and efficiency 
results are presented, contrasting the MP method and the default Geant4 electromagnetic physics.  
 
Simulations were completed for three different models where the treatment of elastic scattering 
varies between each model. These models include an analog elastic scattering model given by the 
partial-wave DCS, a discrete single-angle DCS, and the geant4 elastic multiple scattering model 
referred to as the Urban model or the G4UrbanMscModel96 class. Each of the models tested used 
the same inelastic scattering model and bremsstrahlung model along with the same physics for 
transporting photons and positrons. The settings associated with the aforementioned physics are in 
accordance with the Geant4 standard electromagnetic physics list option 3, which was found to give 
the best agreement with the Lockwood data [82] and enforces the strictest multiple scattering step 
limitation [83] (this is only relevant to the Urban model). In addition, the maximum step-size was 
set to 0.01 mm for carbon and aluminum and 0.001 mm for molybdenum and tantalum when using 
the Urban model (step limits are not required for the analog model or the discrete model).  
 
In general, the energy deposition profiles calculated using the analog model, the ROP model, and 
the geant4 CH model exhibit behavior similar to the experimental results. The Geant4 physics 
tends to estimate values higher than the discrete model in the peak energy deposition region, 
while the discrete model tends to estimate higher values in the tails of the energy deposition 
profile (see Figure 32 through Figure 38). This is true for both normal incidence and 60◦ of-
normal incidence. The total energy deposition tends to be nearly the same for both the MP 
method and the Geant4 physics models. For normally incident electrons, the agreement between 
all models and the experimentally determined total energy deposition is roughly 1-3% relative 
difference for all materials and energies with exception of 1000-keV electrons on tantalum, 
which is between roughly 4-5% (see Table 11). For of-normal incidence, the agreement between 
all models and the experimentally determined total energy deposition is roughly 2-4% relative 
difference (see Table 12) for all materials and energies with exception of 1000-keV electrons on 
molybdenum, which is between roughly 6-7%. While this level of agreement is generally 
acceptable, it is of interest to develop an analog inelastic model that improves overall agreement 
to within a few percent relative error.  
 
The timing results are presented in Table 13 and Table 14. For normal incidence, efficiency 
gains are roughly the same for the MP method and the Geant4 physics. However, for of-normal 
incidence, the MP method is in all cases a factor of two times faster than the Geant4 physics.  
 
For energy deposition calculations, neither the MP method nor the Geant4 physics 
overwhelmingly outperform the other. However, the MP method was more efficient for the of-
normal incidence simulations. In addition, if an analog model were developed that provides 
better agreement with experiment, the same level of agreement would be anticipated for the MP 
method. Therefore, it is important to identify an ideal analog inelastic model as the partial-wave 
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DCSs are assumed to be most accurate representation of elastic scattering and do not contribute 
to any disagreement found herein.  

Furthermore, no multi-region problems were validated in this section. It is known that material 
interfaces are problematic for condensed history methods and there are reported discrepancies 
between the Geant4 physics and the Lockwood data for material interfaces [82]. Validation of 
the MP method for energy deposition in slabs with material interfaces remains as future work, 
but it has been shown in the past that the MP method does not suffer from boundary crossing 
limitations [58, 59, 60]. Therefore, no significant interface discrepancies are anticipated.  

Table 11: Total energy deposition comparison for 500-keV and 1000-keV electrons 
normally incident on aluminum, molybdenum, and tantalum semi-infinite slabs. 

Energy 
(keV) 

Material 
Type 

Model 
Type 

Total Energy 
(keV) 

Relative 
Error 

500 aluminum 
Analog 

Discrete 1-Angle 
G4EmStandard 

472.921 
471.169 
468.550 

-0.013 
-0.016 
-0.022 

1000 aluminum 
Analog 

Discrete 1-Angle 
G4EmStandard 

958.381 
954.665 
953.089 

-0.012 
-0.016 
-0.017 

500 molybdenum 
Analog 

Discrete 1-Angle 
G4EmStandard 

383.612 
381.167 
376.032 

0.028 
0.022 
0.008 

1000 molybdenum 
Analog 

Discrete 1-Angle 
G4EmStandard 

801.527 
795.534 
791.940 

0.029 
0.021 
0.017 

500 tantalum 
Analog 

Discrete 1-Angle 
G4EmStandard 

323.144 
316.823 
321.674 

0.023 
0.003 
0.018 

1000 tantalum 
Analog 

Discrete 1-Angle 
G4EmStandard 

681.921 
675.622 
678.301 

0.052 
0.043 
0.047 
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Table 12: Total energy deposition comparison for 500-keV and 1000-keV electrons with 60 
degrees off-normal incidence on aluminum, molybdenum, and tantalum semi-infinite slabs. 

Energy 
(keV) 

Material 
Type 

Model 
Type 

Total Energy 
(keV) 

Relative 
Error 

500 aluminum 
Analog 

Discrete 1-Angle 
G4EmStandard 

380.501 
379.573 
375.752 

-0.027 
-0.029 
-0.038 

500 molybdenum 
Analog 

Discrete 1-Angle 
G4EmStandard 

282.940 
279.703 
277.925 

0.040 
0.028 
0.022 

1000 molybdenum 
Analog 

Discrete 1-Angle 
G4EmStandard 

597.557 
593.249 
591.644 

0.073 
0.065 
0.062 

500 tantalum 
Analog 

Discrete 1-Angle 
G4EmStandard 

230.202 
226.327 
232.331 

0.014 
-0.003 
0.023 

1000 tantalum 
Analog 

Discrete 1-Angle 
G4EmStandard 

493.342 
489.207 
495.368 

0.045 
0.036 
0.050 
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Table 13: Timing results for energy deposition calculations for 500-keV and 1000-keV 
electrons normally incident on carbon, aluminum, molybdenum, and tantalum semi-
infinite slabs. 

Energy 
(keV) 

Material 
Type 

Model 
Type 

CPU time 
(mins) 

Efficiency 
Gains 

1000 carbon 
Analog 

Discrete 1-Angle 
G4EmStandard 

75 
3
3

1 
25 
25 

500 aluminum 
Analog 

Discrete 1-Angle 
G4EmStandard 

41 
3
2

1 
14 
21 

1000 aluminum 
Analog 

Discrete 1-Angle 
G4EmStandard 

74 
4
3

1 
19 
25 

500 molybdenum 
Analog 

Discrete 1-Angle 
G4EmStandard 

100 
2
2

1 
50 
50 

1000 molybdenum 
Analog 

Discrete 1-Angle 
G4EmStandard 

151 
3
5

1 
50 
30 

500 tantalum 
Analog 

Discrete 1-Angle 
G4EmStandard 

90 
2
1

1
45 
90 

1000 tantalum 
Analog 

Discrete 1-Angle 
G4EmStandard 

134 
3
3

1 
45 
45 
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Table 14: Timing results for energy deposition calculations for 500-keV and 1000-keV 
electrons with 60 degrees off-normal incidence on aluminum, molybdenum, and tantalum 
semi-infinite slabs. 

 
Energy 
(keV) 

Material 
Type 

Model 
Type 

CPU time 
(mins) 

Efficiency 
Gains 

500 aluminum 
Analog 

Discrete 1-Angle 
G4EmStandard 

60 
2 
5 

1 
30 
12 

500 molybdenum 
Analog 

Discrete 1-Angle 
G4EmStandard 

71 
1 
2 

1 
71 
35 

1000 molybdenum 
Analog 

Discrete 1-Angle 
G4EmStandard 

115 
2 
4 

1 
58 
29 

500 tantalum 
Analog 

Discrete 1-Angle 
G4EmStandard 

61 
1 
2 

1 
61 
30 

1000 tantalum 
Analog 

Discrete 1-Angle 
G4EmStandard 

103 
1 
2 

1 
103 
52 

 
 

 
 
Figure 32: Comparison with Lockwood data for 1000-keV electrons normally on carbon 
slab. 
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Figure 33: Comparison with Lockwood data for 500-keV (left) and 1000-keV (right) 
electrons normally on aluminum slab. 

Figure 34: Comparison with Lockwood data for 500-keV (left) and 1000-keV (right) 
electrons normally on molybdenum slab. 

Figure 35: Comparison with Lockwood data for 500-keV (left) and 1000-keV (right) 
electrons normally on tantalum slab. 
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Figure 36: Comparison with Lockwood data for 1000-keV electrons with 60 degrees off-
normal incidence on aluminum slab. 

Figure 37: Comparison with Lockwood data for 500-keV (left) and 1000-keV (right) with 
60 degrees off-normal incidence on molybdenum slab. 
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Figure 38: Comparison with Lockwood data for 500-keV (left) and 1000-keV (right) 
electrons with 60 degrees off-normal incidence on tantalum slab. 

5.4.2. Charge Deposition Profiles 

Another important electron transport result is charge deposition. Charge deposition is important 
to understanding charge buildup in nonconductive materials. Below, charge-deposition profiles 
are compared with experimental results from Tabata et al. [73]. Among the published 
experimental results of charge deposition distributions, those of Tabata et al. [74] cover the 
widest regions of absorber atomic number (from 4 to 79) and incident-electron energy (from 4.09 
to 23.5 MeV) [73].  

Calculations of charge deposition distributions were performed for normally incident electron 
pencil beams with energies of 5000-keV, 10000-keV, and 20000-keV on aluminum and gold 
targets of thickness 2.5r0, where r0 is the CSDA range. A total of 2.4E+05 source particles were 
simulated. The target regions were divided into 80 sub-regions for scoring (scoring regions are 
not physical boundaries) for 5000-keV source particles and 40 sub-regions for 10000-keV and 
20000-keV source particles. Particles are tracked down to 250-keV.  

Figure 39 through Figure 44, present comparisons of charge-deposition and dose distributions 
generated using the partial-wave elastic DCS or a discrete DCS with the default Geant4 inelastic 
physics for electrons and the default Geant4 physics for positrons and photons. The charge-
deposition distributions are compared with experimental results from Tabata et al. [73]. In 
general the correct behavior of the charge- deposition distribution is captured for all energies and 
materials tested. In aluminum, agreement with the experimental benchmark is satisfactory with 
exception of a slight shift in the distribution. In gold, agreement with the experimental bench- 
mark is again satisfactory with exception of the 5000-keV results where the charge deposition is 
overestimated. Notice that the analog solution and the discrete solution are in excellent 
agreement. Again, the conclusion is that an analog model that gives good agreement should be 
identified and it is assumed that the ROP models will provide similar levels of agreement. 
Further investigation is required to understand the disagreements seen below (in particular, 5000-
keV electrons on gold).  
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The dose results in Figure 39 through Figure 44, do show good agreement in gold but do not in 
aluminum. This result was not anticipated considering the level of agreement in the previous 
section and suggests that future validations should be avoided until this disagreement can be 
identified. Possible sources of the disagreement includes the increased presence of 
bremsstrahlung radiation at higher energies, an inconsistency between the Geant4 physics 
implementation and discrete model, or a coding error. Regardless, future work will include the 
use of an inelastic ROP model based on an improved inelastic DCS, so that reliance on the 
Geant4 physics is reduced.  

Table 15: Timing results for charge deposition calculations for 5000-keV, 10000-keV, and 
20000-keV electrons with normally incident on aluminum and gold semi-infinite slabs. 

Energy 
(keV) 

Material 
Type 

Model 
Type 

CPU time 
(hours) 

Efficiency 
Gains 

5000 aluminum 
Analog 

Discrete 4-Angles 
Discrete 8-Angles 

1.8 
0.009 
0.02 

1 
178 
80 

5000 aluminum 
Analog 

Discrete 4-Angles 
Discrete 8-Angles 

2.7 
0.01 
0.03 

1 
270 
90 

5000 aluminum 
Analog 

Discrete 4-Angles 
Discrete 8-Angles 

5.8 
0.02 
0.05 

1 
290 
116 

5000 gold 
Analog 

Discrete 4-Angles 
Discrete 8-Angles 

2.3 
0.03 
0.06 

1 
77 
38 

10000 gold 
Analog 

Discrete 4-Angles 
Discrete 8-Angles 

4.3 
0.06 
0.11 

1 
72 
43 

20000 gold 
Analog 

Discrete 4-Angles 
Discrete 8-Angles 

13.8 
0.2 
0.3 

1 
69 
46 
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Figure 39: Charge deposition comparison with Tabata data (left) and dose comparison 
(right) for 5000-keV electrons normally incident on aluminum slab. 

Figure 40: Charge deposition comparison with Tabata data (left) and dose comparison 
(right) for 10000-keV electrons normally incident on aluminum slab. 

Figure 41: Charge deposition comparison with Tabata data (left) and dose comparison 
(right) for 20000-keV electrons normally incident on aluminum slab. 
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Figure 42: Charge deposition comparison with Tabata data (left) and dose comparison 
(right) for 5000-keV electrons normally incident on gold slab. 

Figure 43: Charge deposition comparison with Tabata data (left) and dose comparison 
(right) for 10000-keV electrons normally incident on gold slab. 

Figure 44: Charge deposition comparison with Tabata data (left) and dose comparison 
(right) for 20000-keV electrons normally incident on gold slab. 
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5.5. CEASE Response Function Calculation 

Given the experimental validation and the associated level of confidence in the accuracy of the 
analog DCS models and the ROP DCSs constructed from such models, the CEASE response 
function calculation is revisited. Here, it is shown that the response function can be generated 
with an efficient ROP DCS model while remaining accurate. For this calculation, three models 
were tested each with the same positron, photon, and electron inelastic physics. What varies for 
each of the models is the elastic scattering physics. An analog model given by the partial-wave 
elastic DCS is tested and a single-angle discrete model based on the partial-wave elastic DCS is 
compared. In addition, the response function is also calculated using the default Geant4 
electromagnetic physics option 3. In Figure 45, response functions generated using each 
different model are compared. The analog and the discrete model are in excellent agreement, 
while the Geant4 physics (that is, class II CH with out a user applied step limitation) shows 
significant disagreement at higher energies. Assuming the analog model is the most accurate, the 
Geant4 physics tends to under predict the detector response at higher energies. This could be an 
effect of the collimator, as it is known that the Geant4 physics, without step limitation, tends to 
overestimate energy deposition in high-Z materials. Therefore, it is possible that electrons do not 
fully penetrate the collimator because they lose too much energy in the tungsten collimator.  See 
Figure 46 for an example of trajectories penetrating the collimator.  The collimator is in green; 
the detectors are in blue; and the electron tracks are in red.  

The efficiency gains associated with the discrete DCS are outstanding. To complete an analog 
simulation of 1116 runs for 18 source angles and 62 source energies with 1000 source particles 
each, it requires roughly 46 processor-days, while for the discrete model it only takes roughly 
five processor-days. That is an order of magnitude efficiency gain. The CH runs were roughly 10 
times faster than the discrete model or 0.5 processor-days.  

Figure 45: Comparison of response functions generated using the analog model, the 
discrete model, and the Geant4 multiple-scattering model. 
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Figure 46: Electrons traversing the CEASE telescope. 

5.6. Detector Modeling and Simulation 

The following section present related work including the modeling of detectors associated with 
the AFRL Demonstration and Science Experiment (DsX) detectors for use in response function 
determination. Modeling and analysis was completed for the Compact Environmental Anomaly 
Sensor (CEASE), the High Energy Proton Spectrometer (HEPS), and the Low Energy 
Electrostatic Analyzer (LEESA). Each detector was modeled using MCNPX (Monte Carlo N-
Particle Extended) particle transport software.  The detector models were completed by 
constructing an MCNPx input file with detail of the detector consistent with the available 
information (e.g. detector drawings, and so on).  

Given the highest possible fidelity detector models, electron and proton simulations were 
completed for a wide range of particle energies and angles of incidence. The output or result 
from the individual simulations was detailed particle-by-particle energy deposition for each 
region of interest (that is, sensitive detector regions). In the CEASE detector the sensitive regions 
included two silicon PIPS detectors; whereas, the HEPS detector contains three silicon PIPS 
detectors and three plastic scintillators, or six sensitive regions. 

With detailed energy deposition information for the relevant source particle energies and angles, 
and detector logic, the response function for various detector channels and or the total response 
function is determined. To do so, a data processing algorithm is required where the details of 
such an algorithm are given in [1]. Ultimately, the response functions generated using models 
built by UNM and the UNM algorithm for data processing were satisfactory. That is, good 
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agreement was found between the UNM generated response functions for CEASE and HEPS and 
relevant response functions from Brautigan et al. [1].  

The focus for LEESA was on familiarization with the detector system and high fidelity modeling 
of the detector, rather than conducting analysis. Familiarization with the detector and an 
extensive model was completed. Once the model was completed, emphasis was shifted to the 
completing the research under consideration for the grant.  

6. CONCLUSIONS

It is of interest to develop an alternative to the CH method that is free of the limitations inherent to 
CH. The subject of this report, or the Moment-Preserving method, is such an alternative and 
therefore, the accuracy and efficiency of this method must be demonstrated and contrasted (to some 
degree) with the CH method. To do so, the theoretical development of the method was discussed in 
great detail, emphasizing how elements of accuracy and efficiency are inherent to the method, 
while also providing an exhaustive numerical demonstration including validation of the method.  

Through theoretical development, it was shown that in the Moment-Preserving method a reduced 
order physics (ROP) transport equation is formed by replacing the analog DCS with ROP DCSs 
that are less peaked with longer mfps. By doing so, solution to the ROP transport equation using a 
single-event Monte Carlo method is computationally efficient with respect to analog Monte Carlo. 
To simply replace the analog DCSs with another more ideal DCS requires a process for 
constructing such a DCS that guarantees accurate results. This is achieved by applying a theory 
ubiquitous in electrons transport methods, or Lewis theory, that relates moments of the analog DCS 
to moments of the solution. By recognizing the importance of Lewis theory, a process was 
developed for constructing ROP DCSs by applying a moment- preservation constraint, where both 
elastic and inelastic ROP DCSs are constructed such that they preserve some finite number of 
moments of the analog DCS exactly and higher-order moments are approximated in terms of the 
lower-order moments. The resulting ROP DCSs preserve key physical moments like the mean 
scattering cosine, the transport cross-section, the stopping power, and the straggling coefficient, 
along with any other user specified higher-order moments. Furthermore, by constructing the ROP 
DCSs such that one point is required to coincide with the nearly-singular point of the analog DCS, 
the method takes advantage of a convenient cancellation of in-scatter and out-scatter due to these 
nearly-singular points about zero changes- in-state resulting in a reduction of the total cross-
section. Between the moment preserving constraint and the cancellation of the nearly-singular 
points, moment- preserving ROP DCSs that are less-peaked with a longer mfp (up to four orders of 
magnitude longer than the analog mfp) can be generated and accurate solutions to the 
corresponding ROP transport equation can be obtained efficiently. These findings, though 
satisfactory, only partially satisfy the objective of the research, which is to develop and demonstrate 
an alternative for electron transport.  

To completely satisfy the objectives, a numerical demonstration of the Moment-Preserving method 
was presented. The results associated with the numerical demonstration, served to extend and 
modernize the significant body of work completed by Franke and Prinja in 2005 [58]. By extending 
their study, several key features of this method were addressed including: systematically 
controllable accuracy, efficiency, mathematical robustness, versatility through the independence of 
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the method from the form of the analog DCS, flexibility of the method through usage of both the 
discrete and hybrid DCS, and simplicity easing implementation in transport codes. The accuracy and 
efficiency of the method was demonstrated through calculation of both differential and integral 
quantities in both highly-peaked scattering regimes and less- peaked scattering regimes for a wide 
variety of target materials and source energies. Results including reflected and transmitted angular 
distributions and energy-loss spectra in thin slabs, longitudinal and lateral distributions in infinite 
media, dose deposition in 1-D and 2-D slabs, and charge deposition were presented. For the 
theoretical problems where the method is compared to an analog benchmark, analog level 
accuracies were achieved with efficiency gains up to three orders of magnitude greater than analog 
level efficiencies. For the validation results, the accuracies and efficiencies were similar to the 
default Geant4 electromagnetic physics with a factor of two improvement in efficiency for of-
normal incidence source problems. Although the Moment-Preserving method was not a dramatic 
improvement over the default Geant4 electromagnetic physics, this was a first attempt at validating 
the method and much work remains in identifying an analog DCS model for inelastic scattering. 
Improvements in accuracy beyond what was reported herein are anticipated with such an inelastic 
DCS model. As it stands, the Moment-Preserving is a suitable alternative; however, with these 
improvements one can expect that the Moment-Preserving method will provide a clear advantage 
over the default Geant4 electromagnetic physics.  

In its current state with regards to accuracy and efficiency, the Moment-Preserving method is a 
strong alternative to CH methods. Under conditions where CH methods and the Moment-Preserving 
method provide identical levels of accuracy and efficiency, the Moment-Preserving method has the 
added advantage of versatility and simplicity. That is, no changes to the source code or the 
algorithm are required to make significant changes to the underlying physics. The moment-
preserving algorithms are completely independent of the form of the analog DCS that ultimately 
drives the accuracy of this method. Therefore, if an improved elastic or inelastic DCS is 
developed, one must simply generate an ROP DCS library corresponding to the improved models. 
In addition, initial implementation of the Moment-Preserving method is straightforward; especially, 
in transport codes with pre-existing single- scatter algorithms. As a result of the mathematical 
robustness of the method, no additional algorithms are required beyond what is typically used for a 
single-scatter algorithm that uses tabulated DCS data. The algorithm simply requires methods for 
table look-ups to obtain the total-cross section, methods for sampling DCS data without 
interpolation, and methods for processing the ROP DCS. In Geant4, this required utilization of the 
existing data classes and base classes for physics models and processes. Any maintenance 
associated with Moment-Preserving method would be a result of changes to the base classes from 
which the Moment-Preserving method physics inherit.  

Given the accuracy, efficiency, mathematical robustness, versatility, flexibility, and simplicity of 
the Moment-Preserving method, this method provides a clear alternative to the prevailing electron 
transport method - Condensed History. This work establishes a modern basis from which further 
testing of this method will be completed. 
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