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1. Introduction
In this effort, we consider the problem of learning low-dimensional representations
of objects from a spatially distributed network of sensors. Such a sensor network
can be used to construct rich appearance models for objects in their common field
of view.1 These models can then be used in a variety of ways, for example, to
identify previously seen objects if they reappear in the network at a later time, or
distill important common or discriminating characteristics associated with different
objects.

As an example, consider a network of cameras capturing images of an object from
different but possibly overlapping aspects, say, as the object traverses through the
network’s field of view. The ensemble of images captured by the network may be
well modeled by a low-dimensional nonlinear manifold in the high-dimensional
ambient space of images. One approach to estimating this appearance model might
be to learn independent models of a local object manifold at each sensor node, and
then later share these models across the network. Such an approach is likely to
produce models with high uncertainty or even gaps if a given sensor node observes
the object for only a limited set of aspects. An alternative approach, and the one we
pursue in this report, is to construct a single joint model for the image ensemble
across the network. The parameter estimates of the joint model will improve with
the number of sensor nodes,2 since the number of unknown parameters in the model
is intrinsic to the object and fixed, whereas the measurements scale linearly with the
number of sensor nodes.

We model the overall statistics of the observations, as seen across multiple aspects
and multiple sensors, as a mixture of factor analyzers (MFA)3 and derive a cen-
tralized gradient-based algorithm for learning model parameters. The MFA model
is both probabilistic and generative, and can be used for dimensionality reduction,
manifold learning, and signal recovery from compressed sensing.1 In the case of
learning a data manifold, the MFA model is a linearization of a potentially nonlin-
ear structure. Each MFA factor mean relates to a point on the manifold, while the
tangent plane of the manifold at that point is spanned by the columns of that factor’s
loading matrix.

Factor analysis has been used successfully in many problems.1,4 Ghahramani and
Hinton3 applied the expectation-maximization (EM) algorithm to parameter esti-
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mation for the MFA model. The EM algorithm5 is a popular iterative method for
maximum-likelihood (ML) estimation with local convergence properties and a sim-
ple implementation for many applications in statistical signal processing. However,
in many practical scenarios, it can exhibit slow convergence,6 which leads to re-
search in acceleration methods, notably hybrid methods7 that complement EM with
information from the problem’s likelihood and its gradient. In this report, we derive
a constrained Fisher scoring method that can be viewed as a hybrid approach since
a subset of the parameter updates have an equivalence with the EM algorithm for
the MFA model.

The relationship between the method of scoring and the EM algorithm for the ex-
ponential family of distributions was first described by Titterington.8 The specific
relationship for a Gaussian mixture model (GMM) was later formulated by Xu and
Jordan,9 where they showed EM steps can be related to the score function in the
parameter space through a positive definite scaling matrix. In Xu and Jordan,9 the
scaling matrix was teased out from the EM update equations. Alternatively, one
can show that this matrix is the expected Fisher information matrix (FIM) of the
complete data model for a GMM. In this case, the scoring method provides a more
procedural approach for determining the gradient-scaling matrix and enables con-
vergence analysis using standard tools from optimization theory.

The contributions of this report are as follows.

First, we develop a computationally attractive method of scoring for estimating the
parameters of a MFA model from measurements collected by a spatially distributed
sensor network. The algorithm is a centralized approach in that it assumes that the
sensed data can be accumulated at a single, central point for joint data processing.
The proposed scoring algorithm is derived using the complete data FIM, as opposed
to the incomplete data FIM. The complete data FIM has a block-diagonal structure,
leading to significantly reduced computations compared to Newton’s method. Fur-
thermore, the FIM exposes a low-rank structure that permits further reductions in
computations. The scoring method is shown to have faster convergence than the EM
algorithm for a MFA,3 sometimes significantly faster, while retaining comparable
computational complexity.

Second, we demonstrate the efficacy of the constrained scoring approach for ef-
ficiently federating across the entire sensor network a global appearance model

2
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of objects, even if each sensor observes only a very limited subset of the entire
model appearance. Thus, the approach presented in this report is an efficient method
for learning a global model. Previously developed methods10 provided learning of
aspect-independent object signatures; in this work, we develop a method for learn-
ing appearance models with aspect dependence.

The remainder of this report is outlined as follows. In Section 2, we outline the MFA
observation model. In Section 3, we derive the update equations of the centralized
scoring method for the MFA model. In Section 4, numerical examples demonstrate
the improved performance of the centralized algorithm over EM. Finally, conclu-
sions are given in Section 5.

2. Mixture of Factor Analyzers
Consider a set of M spatially distributed sensors that observe a scene. Sensor nodes
collect N vector observations each, denoted xmi ∈ Rp, for m = 1, 2, . . . ,M and
i = 1, 2, . . . , N . The observations are statistically independent, but not identically
distributed across the sensor network. Each observation from the mth sensor node
is modeled as a mixture of Gaussians, with likelihood given by

pm(x;θ) =
K∑
k=1

αmkN (x;µk,Σk), (1)

where

N (x;µ,Σ) =
1√

(2π)p|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2)

The covariance takes on a low-rank structure according to

Σk = ψkIp + ΛkΛ
T
k , (3)

where ψk > 0 and Λk ∈ Rp×r, with r < p. The matrix Λk is called the factor loading

matrix and ψk is called the uniqueness.11 The factor loading matrix characterizes
the lower-dimensional latent space and the uniquenesses account for observation
noise and imperfect modeling as a low-rank structure. Each αmk represents the
mixing proportion of factor k that sensor m observes. Each sensor node observes
the common factors with potentially differing proportions.

3
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The vector θ consists of the parametersαm = [αm1, . . . , αmK ]T form = 1, 2, . . . ,M

and ξk =
[
µT
k ,λ

T
k , ψk

]T
for k = 1, . . . , K where λk = vec (Λk). We specify the

vector of unknown parameters as

θ =
[
ξT

1 , ξ
T
2 , . . . , ξ

T
K ,α

T
1 , . . . ,α

T
M

]T
. (4)

The log-likelihood function of θ given observation x at sensor node m is given by

`m(θ;x) = log pm(x;θ). (5)

GivenN independent observations from each of theM sensors, the data log-likelihood
function is then

`(θ;X) =
M∑
m=1

N∑
i=1

`m(θ;xmi), (6)

whereX represents the collection of NM observations from across the sensor net-
work.

To simplify the notation, it is assumed the sensor nodes all collect the same number
of observationsN . However, the model and the proposed algorithms that follow can
be readily modified to accommodate differing numbers of observations.

It is common to treat the MFA model as having latent variables, variables that are
not directly observed. The MFA model can be interpreted as having both continuous
and discrete latent variables (e.g., see McLachlan and Peel12). We consider only the
discrete latent terms. We denote by z ∈ {1, 2, . . . , K} the index to which factor
generated observation x. Instead of modeling continuous latent terms to describe
the factors, the low-rank structure in Eq. 3 is favored as a parametric model of each
factor’s covariance. The joint distribution of the complete data pair {x, z} at sensor
node m is given by

pm(x, z;θ) = pm(z;θ)p(x|z;θ) = αmzN (x;µz,Σz). (7)

The complete data log-likelihood of θ, given the MN independent observation

4



Approved for public release; distribution is unlimited.

pairs, is given by

`c(θ;X,Z) =
M∑
m=1

N∑
i=1

logαmzmi
N (xmi;µzmi

,Σzmi
). (8)

3. Constrained Fisher Scoring
It is well known that no closed-form solution exists for ML estimates of the param-
eters of an MFA. Instead, we must rely on iterative algorithms, such as Newton’s
method or EM. While Newton’s method may converge to a solution quickly, the
computational complexity tends to be impractical. On the other hand, the computa-
tional complexity of EM per iteration tends to be favorable, but its convergence rate
can be less favorable. As a balance between Newton’s method and EM, we consider
Fisher’s method of scoring. Similar to EM but unlike Newton’s method, the scor-
ing method requires only first-order derivatives. Though like Newton’s method, the
performance of the scoring method, in terms of convergence and convergence rate,
can be analyzed using standard techniques from optimization theory.

As an unconstrained problem, parameters of the MFA are unidentifiable.11 There-
fore, we must impose constraints. One immediate constraint is the mixing propor-
tions be proper probabilities (i.e., αmk ≥ 0 and

∑
k αmk = 1). Additionally, the

uniquenesses must be positive and the factor loading matrix must be restricted to
achieve identifiability. It is easy to show that there are an infinity of solutions for
each factor loading matrix Λ with equivalent product ΛΛT. There are many ways to
constrain the factor loading matrix to ensure identifiability.13 One particularly use-
ful condition is that the factor loading matrix be a lower-triangular matrix, which
removes the indeterminacy due to matrix rotations.13

We denote by f(θ) the vector of constraints on the unknown parameters such that
f(θ) = 0. The constrained ML problem is given by

max
θ

`(θ;X) s.t. f(θ) = 0. (9)

The maximizer of Eq. 9 can be solved iteratively via the constrained scoring method.14

5
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The constrained scoring method is an iterative, gradient-based algorithm given by

θ(t+1) = θ(t) +
(
Uθ
(
UT
θ JθUθ

)−1
UT
θ∇θ`(θ;X)

∣∣∣
θ=θ(t)

, (10)

where Jθ is the (unconstrained) expected FIM, defined by

Jθ = E
(
∇θ`(θ;X)∇T

θ`(θ;X)
)
, (11)

matrix Uθ is defined by the constraints on θ, and ∇θ`(θ;X) is the score function
of the (incomplete) data log-likelihood. In Moore et al.14 and Stoica and Ng,15 the
matrix Uθ is required to be orthonormal (i.e., UT

θUθ = I). However, as shown in
Appendix A, the orthonormality requirement is unnecessary.

Instead of using the FIM in Eq. 11, we propose substituting the complete data in-
formation matrix. The complete data FIM is defined according to

J cθ = E
(
∇θ`c(θ;X,Z)∇T

θ`
c(θ;X,Z)

)
. (12)

This substitution was previously proposed for recursive estimation with incomplete
data.8 Though not proven directly, Titterington states equivalence between batch-
mode EM and (unconstrained) Fisher scoring when substituting the complete data
FIM and when the complete data can be expressed as an exponential family dis-
tribution.8 We do not arrive at identical update equations between unconstrained
scoring and EM. Instead, we find equivalence for a subset of the equations between
EM and constrained scoring. In particular, the iterates for the mixing proportions
are identical between EM and constrained scoring. The iterates for the each factor’s
means are equivalent in an asymptotic sense,

In Eqs. 11 and 12, the expectations are with respect toX and (X,Z), respectively.
For data setX , the factor indicators are not observed directly. In this view, the FIM
in Eq. 11 is of the incomplete data, whereas Eq. 12 is of the complete data. For
the remainder of this report, references to the FIM imply the expected information
matrix of the complete data in Eq. 12. The proposed scoring method is then given
by

θ(t+1) = θ(t) +
(
Uθ
(
UT
θ J

c
θUθ

)−1
UT
θ∇θ`(θ;X)

∣∣∣
θ=θ(t)

. (13)

6
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For the MFA model, the FIM J cθ has a closed-form expression and can be de-
termined through a change of variables from the standard GMM. Define Φ =

[µT
1 ,σ

T
1 , . . . ,µ

T
K ,σ

T
K ,α

T
1 , . . . ,α

T
M ]T, where σk = vec (Σk). The information ma-

trix of the MFA model is given by

J cθ = GT
θJ

c
ΦGθ, (14)

where J cΦ is the complete data FIM of the GMM defined by

J cΦ = E
(
∇Φ`

c(Φ;X,Z)∇T
Φ`

c(Φ;X,Z)
)
, (15)

and Gθ is the Jacobian matrix for the change of variables defined by

Gθ =
∂Φ

∂θT . (16)

We admit a slight abuse of notation in Eq. 15 by substituting Φ for θ in `c from
Eq. 8. This is for notational convenience intended to simply imply the complete
data log-likelihood function of the GMM without the low-rank structure in Eq. 3
imposed on the covariance.

The details of J cΦ and Gθ are provided in Appendix B, where J cΦ, the FIM of the
GMM, is shown to be block diagonal. It is clear from the definitions of θ and Φ

that a change of variables is necessary only for each factor’s covariance. Thus, the
FIM of the MFA has the block-diagonal form

J cθ = diag
(
Jµ1

, (GT
σ1
Jσ1

Gσ1
), . . . , JµK

, (GT
σK
JσK

GσK
), Jα1

, . . . , JαM

)
. (17)

This represents the unconstrained information matrix of the complete data model.
However, the MFA is overparameterized and not identifiable.11,13 While the factor
means may remain unconstrained, the factor loading matrices, the uniquenesses,
and the mixing proportions should be constrained. The details of these constraints
are provided in the following subsections. First, we remark that the constraints are
decoupled across the parameters such that the constrained FIM for the MFA takes

7
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on the block-diagonal form given by

UT
θ J

c
θUθ = diag

(
Jµ1

, (UT
σ1
GT
σ1
Jσ1

Gσ1
Uσ1

), Jµ2
, (UT

σ2
GT
σ2
Jσ2

Gσ2
Uσ2

), . . . ,

JµK
, (UT

σK
GT
σK
JσK

GσK
UσK

), (UT
α1
Jα1

Uα1
), . . . , (UT

αM
JαM

UαM
)
)
.

(18)

As a result of this form, the parameter iterates of a factor are decoupled from those
of other factors. Also, for a given factor, the iterates of the means and mixing prob-
ability decouple. In contrast, the parameters of the structured covariance remain
coupled. Subsequently, the constrained scoring method in Eq. 13 factors into a set
of update equations given by

α(t+1)
m = α(t)

m +
(
Uαm

(
UT
αm
Jαm

Uαm

)−1
UT
αm
∇αm

`(θ;X)
∣∣∣
θ=θ(t)

, (19)

µ
(t+1)
k = µ

(t)
k +

(
J−1
µk
∇µk

`(θ;X)
∣∣∣
θ=θ(t)

, (20)[
λ

(t+1)
k

ψ
(t+1)
k

]
=

[
λ

(t)
k

ψ
(t)
k

]
+
(
Uσk

(
UT
σk
GT
σk
Jσk

Gσk
Uσk

)−1
UT
σk
GT
σk
∇σk

`(Φ;X)
∣∣∣
θ=θ(t)

,

(21)

where σ(t)
k is evaluated by substituting (λ

(t)
k , ψ

(t)
k ) in Eq. 3. Though they appear

fairly complex, the update equations significantly simplify. The details of the update
equations and their simplification are provided in the following subsections.

3.1 Mixing Proportions
In this section, we derive an explicit expression for iterates of the mixing propor-
tions that is simplified compared to Eq. 19 and achieves the desired probability con-
straints. The iterates of each mixing probability basically reduce to sample averages
of posterior probabilities of an observation belonging to a corresponding factor.

We briefly drop the dependence on the specific sensor node m to simplify the nota-
tion and note that the following results are identical for eachm = 1, . . . ,M . We de-
fineα = [α1, . . . , αK ]T as the vector of mixing proportions and α̃ = [α1, . . . , αK−1]T

as the reduced parameter vector.

The probability constraint can be applied through a change of variables since we
have a parametric form of α with respect to the reduced parameter vector α̃.16

8
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From the sum-to-one condition, we have αK = 1 − 1Tα̃, and for the change of
variables we have

Uα =
∂
[
α̃T, 1− 1Tα̃

]T

∂α̃T =

[
IK−1

−1T

]
. (22)

From Eq. B-8 in Appendix B, the term Jα for the mixing proportions from the FIM
is given by

Jα = diag (α)−1 . (23)

From Eqs. 22 and 23, the inverse of matrix UT
αJαUα evaluates to

(
UT
αJαUα

)−1
=

1

N

(
diag (α̃)−1 + α−1

K 11T)−1

=
1

N

(
diag (α̃)− diag (α̃) 1

(
αK + 1Tdiag (α̃) 1

)−1
1Tdiag (α̃)

)
(24)

=
1

N

(
diag (α̃)− α̃α̃T) . (25)

Equation 24 follows from application of the Woodbury matrix identity and Eq. 25
follows since αK + 1Tdiag (α̃) 1 =

∑K
k=1 αK = 1. Lastly, it is straightforward to

show that

Uα
(
UT
αJαUα

)−1
UT
α =

1

N

[
diag (α̃)− α̃α̃T −αKα̃
−αKα̃T αK − α2

K

]
=

1

N

(
diag (α)−ααT) . (26)

In Xu and Jordan,9 it was shown that Eq. 26 is positive definite provided α is con-
strained to a probability simplex. Furthermore, it is shown by Xu and Jordan9 that
the iteration in Eq. 19 with the scaling matrix in Eq. 26 simplifies to

α
(t+1)
mk =

1

N

N∑
i=1

w
(t)
mik, (27)

where

wmik =
αmkN (xmi;µk,Σk)∑K
j=1 αmjN (xmi;µj,Σj)

, (28)

9
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for k = 1, . . . , K, m = 1, . . . ,M , and w
(t)
mik is Eq. 28 evaluated at θ = θ(t).

From Eq. 28, it is easy to see that Eq. 27 and therefore Eq. 19 meet the probability
constraints. Subsequently, Eq. 26 is positive definite at θ = θ(t). Thus, the iteration
in Eq. 19 strictly increases the likelihood with respect to the mixing proportions, at
least locally.

3.2 Factor Means
Similar to the mixing proportions, the update equations for the factor means sim-
plify. The score function with respect to µk equates to

∇µk
`(θ;X) =

M∑
m=1

N∑
i=1

wmikΣ
−1
k (xmi − µk), (29)

for k = 1, . . . , K. From Eq. B-7 in Appendix B, the term Jµk
for the factor mean

from the FIM is given by

Jµk
= N

M∑
m=1

αmkΣ
−1
k . (30)

Inserting Eqs. 29 and 30 in Eq. 20, the iteration for the kth factor’s mean reduces to

µ
(t+1)
k = µ

(t)
k +

∑M
m=1

∑N
i=1 w

(t)
mik(xmi − µ

(t)
k )

N
∑M

m=1 α
(t)
mk

. (31)

Provided the uniquenesses are positive, the matrix Jµk
is guaranteed to be positive

definite by the definition of the covariance in Eq. 3 when evaluated at θ = θ(t).
Therefore, the iterations in Eqs. 20 and 31 strictly increase the likelihood with re-
spect to each factor’s mean.

3.3 Factor Loading Matrix and Uniqueness
In this section, we focus on detailing the scoring function and the constrained FIM
in Eq. 21 with respect to the covariance parameters (λk, ψk). The score function
with respect to the parameters (λk, ψk) is found through a change of variables from
the score function with respect to σk. It is straightforward to show that the score

10
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function with respect to σk is given by

∇σk
`(Φ;X) =

1

2

M∑
m=1

N∑
i=1

wmikvec
(
Σ−1
k (xmi − µk)(xmi − µk)TΣ−1

k − Σ−1
k

)
.

(32)

We briefly drop the dependence on the specific factor k to simplify the notation and
note that the following results are identical for each k = 1, . . . , K. For the change
of variables, we have

Gσ =
[
Gλ, gψ

]
=

[
∂σ

∂λT ,
∂σ

∂ψ

]
. (33)

The partial derivatives in Eq. 33 evaluate to

Gλ = (Λ⊗ Ip) + (Ip ⊗ Λ)E, (34)

gψ =
[
(ep1 ⊗ e

p
1) , (ep2 ⊗ e

p
2) , . . . ,

(
epp ⊗ epp

)]
1, (35)

where (A⊗B) represents the Kronecker product between matrices A and B and
eai is a (a× 1) unit vector such that all the entries are 0 except the ith entry is 1. The
matrix E ∈ Rpr×pr is defined by

E =
∂vec

(
ΛT
)

∂vec (Λ)T = [(Ip ⊗ er1) , (Ip ⊗ er2) , . . . , (Ip ⊗ err)] . (36)

Matrix E is a permutation matrix that satisfies ETE = EET = Ipr. Vector gψ ∈
Rp

2×1 simply sums the diagonal elements of a vectorized (p× p) matrix.

From Eqs. 32 and 33, it is straightforward to show that the score function with
respect to the parameters (λ, ψ) is given by

GT
σ∇σ`(Φ;X) =

[
2
(
ΛT ⊗ Ip

)
∇σ`(Φ;X)

gT
ψ∇σ`(Φ;X)

]
=

[
∇λ`(θ;X)

∇ψ`(θ;X)

]
. (37)

We constrain each factor loading matrix to be lower triangular. This constraint per-
mits local identifiability of the factor loading matrices.13 The lower-triangular con-
straint is also convenient since it is a linear transformation of the loading matrix in
vector form. The reduced parameter vector of the factor loading matrix is defined

11
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by

λ̃ =
[
λ̃T

1 , λ̃
T
2 , . . . , λ̃

T
r

]T
, (38)

where λ̃i = [Λ1,i,Λ1,i+1, . . . ,Λ1,p]
T is the ith column vector from Λ not including

the elements above the diagonal. The constrained factor loading may be expressed
according to

λ = Uλλ̃, (39)

where Uλ ∈ Rpr×pr−r(r−1)/2 simply expands λ̃ to λ by inserting zeros at the appro-
priate entries. Specifically, Uλ is given by

Uλ = [(er1 ⊗ I1) , (er2 ⊗ I2) , . . . , (err ⊗ Ir)] , (40)

where

Ii =

[
0(i−1)×p−(i−1)

Ip−(i−1)

]
. (41)

The term 0a×b represents a (a×b) matrix of zeros. It is clear thatUT
λUλ = Ipr−r(r−1)/2

so that UT
λλ = λ̃.

We do not constrain the uniquenesses to be positive within the gradient steps. In-
stead, each uniqueness ψ(t+1) is projected onto the interval [ε,∞) for a small ε > 0

after each iteration. As a result, the constraint matrix Uσ for the gradient update in
Eq. 21 is given by

Uσ =

[
Uλ 0

0T 1

]
. (42)

In the reduced parameter space, we have

UT
σG

T
σ∇σ`(Φ;X) =

[
∇λ̃`(θ;X)

∇ψ`(θ;X)

]
. (43)

12
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The constrained FIM with respect to a factor’s covariance parameters is given by

UT
σG

T
σJσGσUσ =

N

2

M∑
m=1

αmA
TA, (44)

where

A =
(
Σ−1/2 ⊗ Σ−1/2

)
GσUσ. (45)

Since (Σ−1 ⊗ Σ−1) is positive definite, a (positive) matrix square root is defined.

Provided Eq. 44 is positive definite, the iteration in Eq. 21 will strictly increase the
data likelihood with respect to the covariance parameters. Matrix ATA is clearly
either positive definite or positive semidefinite. Either way, the iteration in Eq. 21
will not decrease the likelihood. MatrixATA is positive definite ifA has full column
rank. Defining

(
Σ−1/2 ⊗ Σ−1/2

)
as the positive root so that it is positive definite, we

have the equivalent condition that ATA is positive definite if GσUσ has full column
rank.

Inserting Eqs. 44 and 43 in the iteration in Eq. 21, the iteration for the reduced
parameters is given by[

λ̃
(t+1)

k

ψ
(t+1)
k

]
=

[
λ̃

(t)

k

ψ
(t)
k

]
+

2

N
∑M

m=1 α
(t)
mk

(
(AT

kAk)
−1

[
∇λ̃`(θ;X)

∇ψ`(θ;X)

]∣∣∣∣∣
θ=θ(t)

.

(46)

3.4 Convergence and Stopping Condition
We briefly discuss algorithm convergence and provide a stopping condition for the
iterative algorithm. We set Pθ = Uθ

(
UT
θ J

c
θUθ

)−1
UT
θ . For a sufficient number of

iterations, the scoring method converges according to9

∣∣∣θ(t+1) − θ∗
∣∣∣ ≤ ρg

∣∣∣θ(t) − θ∗
∣∣∣ , (47)

if ρg < 1 for fixed point θ∗, where ρg = |I + Pθ∗Hθ∗|. The term Hθ is the Hessian
matrix of the data log-likelihood defined by

Hθ = ∇θ∇T
θ`(θ;X). (48)

13



Approved for public release; distribution is unlimited.

The rate ρg depends on the form of matrix Pθ∗ and how well it conditions Hθ∗ .
Using the triangle inequality and repeated application of Eq. 47, the change between
consecutive iterates is upper-bounded, for large t, according to∣∣∣θ(t+1) − θ(t)

∣∣∣ ≤ ρtgCg, (49)

where Cg = (1 + ρg)
∣∣∣θ(0) − θ∗

∣∣∣ > 0. If ρg < 1, this change-error also predictably
contracts. Unlike Eq. 47, the left-hand side of Eq. 49 does not require knowledge of
θ∗. Therefore, we rely on the change-error to exit the gradient steps. For a desired
tolerance εg, the algorithm exits when the condition

∣∣∣θ(t) − θ(t−1)
∣∣∣ < εg is met.

3.5 Algorithm Summary
Figure 1 summarizes the constrained Fisher scoring algorithm for an MFA.
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Input: Each sensor m measures xmi for i = 1, . . . , N
Output: Initialization: t = 0, θ(0), θ(−1) s.t. |θ(0) − θ(−1)| > εg

while |θ(t) − θ(t−1)| > εg do
Update parameters via constrained Fisher scoring
for k = 1, . . . , K, m = 1, . . . ,M , i = 1, . . . , N do

Calculate posterior probability of xmi belonging to factor k given θ(t)

w
(t)
mik =

α
(t)
mkN (xmi;µ

(t)
k ,Σ

(t)
k )∑K

j=1 α
(t)
mjN (xmi;µ

(t)
j ,Σ

(t)
j )

end for
for k = 1, . . . , K do

Update kth factor’s parameters

µ
(t+1)
k = µ

(t)
k +

∑M
m=1

∑N
i=1 w

(t)
mik(xmi−µ

(t)
k )

N
∑M

m=1 α
(t)
mk[

λ̃
(t+1)

k

ψ
(t+1)
k

]
=

[
λ̃

(t)

k

ψ
(t)
k

]
+ 2

N
∑M

m=1 α
(t)
mk

(
(AT

kAk)
−1

[
∇λ̃`(θ;X)
∇ψ`(θ;X)

]∣∣∣∣
θ=θ(t)

λ
(t+1)
k = Uλλ̃

(t+1)

k

if ψ(t+1)
k ≤ 0 then

ψ
(t+1)
k = ε

end if
end for
for m = 1, . . . ,M do

Update mixing probabilities for sensor m
α

(t+1)
m = 1

N

∑N
i=1[w

(t)
mi1, . . . , w

(t)
miK ]T

end for
t← t+ 1

end while
return θ(t+1)

Fig. 1 Constrained Fisher scoring for an MFA
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3.6 Relationship with Expectation-Maximization
The constrained scoring iteration for the mixing proportions is identical to that for
the EM algorithm.3 Furthermore, the iteration for the factor means are equivalent
to the EM algorithm in an asymptotic sense. If in Eq. 31 we substitute

∑M
m=1 α

(t+1)
mk

for
∑M

m=1 α
(t)
mk, and note that

N
M∑
m=1

α
(t+1)
mk =

M∑
m=1

N∑
i=1

w
(t)
mik, (50)

the iterates for each k = 1, 2, . . . , K factor mean becomes

µ
(t+1)
k = µ

(t)
k +

∑M
m=1

∑N
i=1 w

(t)
mik(xmi − µ

(t)
k )∑M

m=1

∑N
i=1 w

(t)
mik

=

∑M
m=1

∑N
i=1w

(t)
mikxmi∑M

m=1

∑N
i=1 w

(t)
mik

. (51)

This iteration for the factor mean is exactly the EM-based iteration.3

Since α(t+1)
m , for each m = 1, 2, . . . ,M , converges to a solution, the sequence

{α(0)
m ,α

(1)
m , . . . ,α

(t)
m } is a Cauchy sequence. Thus, the difference α(t+1)

m −α(t)
m can

be made arbitrarily small for a sufficiently large t. Hence, in an asymptotic sense,
the factor mean updates in Eqs. 31 and 51 are equivalent.

In terms of each factor’s covariance parameters, the constrained scoring and EM
methods differ. The EM-based iterates for the factor uniqueness and loading matrix
are decoupled,3 while the iterates from the constrained scoring method are coupled.
This difference may also manifest in the difference in convergence rates seen in the
simulation examples in the following section.

4. Simulation Examples
We present 2 simulation examples that illustrate the effectiveness of the proposed
centralized scoring method. We first consider a synthetic MFA example under dif-
ferent observation noise conditions to compare algorithm convergence and com-
putation. We then consider a multi-aspect observation model that demonstrates the
benefits of information sharing in global model learning.
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4.1 Synthetic MFA Example
We first compare the performance of the proposed algorithms using the generative
MFA model. Parameter estimates are generated using the centralized EM algorithm
in Whipps et al.,17 a constrained Newton’s method, and the proposed constrained
Fisher scoring method. The constrained Newton’s method implements the gradient
step according to

θ(t+1) = θ(t+1) +
(
Uθ(−UT

θHθUθ)
−1UT

θ∇θ`(θ;X)
∣∣
θ=θ(t)

, (52)

where Hθ is the Hessian matrix of the data log-likelihood defined by

Hθ = ∇θ∇T
θ`(θ;X). (53)

In general terms, the EM algorithm for the MFA model is simple computation-wise,
but tends to converge slowly. Newton’s method typically converges faster than first-
order methods, but at a higher computational cost per iteration. We demonstrate
that the constrained Fisher scoring has EM-like computational requirements with
improved convergence properties.

We consider a simple MFA model. The sensor observations are 3 dimensional (p =

3) with a 2-D latent space (r = 2) and 2 mixed factors (J = 2). The latent object
is composed of 2 planar segments in the shape of a “L” that intersect along the
line between points (−1, 0, 0) and (1, 0, 0). Specifically, the parameters of the 2-
component mixture are given by

µ1 =

 0

0

1

 ,µ2 =

 0

1

0

 , (54)

Λ1 =

 1 0

0 0

0 1

 ,Λ2 =

 1 0

0 1

0 0

 , (55)

ψ1 = ψ2 = ψ, (56)

αm = [0.75−m0.05, 0.25 +m0.05]T , (57)

for m = 1, 2, . . . , 9. A similar simulation example was used by Baek and McLach-
lan18 to measure performance for the single-sensor case.
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For these simulations, there are M = 9 sensor nodes. For each of the M = 9

sensor nodes, N = 50 samples are generated using the generative MFA model. The
algorithms do not attempt to account for the relationship λk = µk of the simulated
mixture.

The algorithms are initialized by the true values perturbed by small, independent
errors. The algorithms are initialized with θ(0) = P(θ + ν ), where P(θ) projects
θ onto the feasible set (i.e., mixing proportions are proper probabilities, the unique-
nesses are positive, and the factor loading matrices are lower-triangular). ν is a re-
alization of spherical noise distributed according to ν ∼ N (0, σ2I) with σ = 10−2.
We note that iterative algorithms such as EM and gradient ascent are sensitive to
their initialization, and ML problems typically have multiple stationary points. The
proposed algorithm is no different in this regard. The k-means algorithm can be
viewed as a simplification of EM19 and can provide a fast initialization for all 3
algorithms. However, we do not explore initialization methods here. To make fair
comparisons, the initial values are close to the true values and are the same for each
algorithm.

Figures 2–4 are results from a single set of NM = 450 samples with each factor’s
uniqueness at ψ = 1/32. The sample points are plotted in Fig. 2 as markers (each
marker type corresponds to a sensor node) along with the 2 true latent line segments.
Figure 2 is a 2-D perspective of the 3-D sensor data. As seen in Fig. 2, the data
points are concentrated about their factors save a few points near the vertex.
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Fig. 2 3-D and 2-D views of simulated sensor data of the simulated MFA with uniqueness
ψ = 1/32 from M = 9 sensor nodes.
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We first compare the performance of the proposed scoring algorithm with (con-
strained) Newton’s method and the EM algorithm. The iterative algorithms are
stopped after the error |θ(t+1) − θ(t)| falls below εg = 10−12.

Figure 3 demonstrates algorithm convergence by showing the error |θ(t+1) − θ(t)|
versus gradient iterations from the methods of constrained Newton (+), EM (4),
and constrained Fisher scoring (◦). As seen in Fig. 3, the change-error from both
Newton’s method and Fisher scoring decreases much faster than EM, with Newton’s
method having the steepest slope.
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Fig. 3 Change-error vs. gradient iterations from constrained Newton (+), EM (4), and con-
strained Fisher (◦) with uniqueness ψ = 1/32

Figure 4 plots the execution times in milliseconds reported by MATLAB for each
gradient step of each algorithm and illustrates the relative computation times for
the algorithms. As seen in Fig. 4, Fisher scoring and EM execute a gradient step in
nearly equal time and approximately 10 times faster than Newton’s method.
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Fig. 4 Execution times per gradient step of constrained Newton (+), EM (4), and constrained
Fisher (◦) with uniqueness ψ = 1/32
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Table 1 provides total algorithm execution times reported by MATLAB to reach the
error tolerance εg = 10−12, sample averaged over 100 Monte Carlo trials; shown in
parenthesis are the execution time standard deviations. The 2 columns of execution
times in Table 1 correspond to uniquenesses of ψ = 1/32 and ψ = 1/8, respec-
tively. As seen in Table 1, Fisher scoring reaches the error tolerance in the shortest
amount of execution time of all the methods.

Table 1 Average total execution times in milliseconds to reach a tolerance of εg = 10−12. The
total times are sample-averaged over 100 Monte Carlo trials with the sample deviation listed
in parenthesis.

Method ψ = 1/32 ψ = 1/8
Newton 1288 (1404) 1551 (1526)
EM 992 (1134) 310 (85)
Fisher 58 (10) 130 (26)

Figures 5–7 and Table 1 show convergence and computation results for the previ-
ous example, but here we quadruple the factor uniqueness to ψ = 1/8. As seen in
Fig. 5, it is more difficult to visually assign many of the samples to a specific factor
with ψ = 1/8. Thus, we might expect longer convergence times in this case. This
is illustrated by comparing the convergence of Fisher scoring between Figs. 3 and
6, where we see somewhat longer convergence times with ψ = 1/8. Curiously, the
convergence rate of EM appears improved, but remains slower than Fisher scor-
ing. The total execution time of Fisher scoring remains shorter than both Newton’s
method and EM, as seen in the last column of Table 1 with ψ = 1/8. Fisher scor-
ing outperforms EM in terms of convergence rate and Newton’s method in terms of
computations per iteration.

Comparing Figures 4 and 7, the execution times per iteration of each algorithm
between ψ = 1/32 and ψ = 1/8 are essentially the same, as expected.
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Fig. 5 3-D and 2-D views of simulated sensor data of the simulated MFA with variance ψ = 1/8
from M = 9 sensor nodes
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Fig. 6 Change-error vs. gradient iterations from constrained Newton (+), EM (4), and con-
strained Fisher (◦) with uniqueness ψ = 1/8
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Fig. 7 Execution times per gradient step of constrained Newton (+), EM (4), and constrained
Fisher (◦) with uniqueness ψ = 1/8
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4.2 Manifold Learning Example
In this example, we demonstrate that the scoring method benefits from information
sharing and integration in model learning. In the previous examples, every node ob-
served, with differing proportions, every factor of the mixture. In this example, the
observations depend on the perspective of the sensors relative to the target object.
Additionally, the underlying structure is not a finite mixture, but instead a smooth
manifold in the form a decaying spiral. Specifically, the decaying spiral is given by

y = [(13− 0.5ω) cosω, (0.5− 13) sinω, ω]T, (58)

where ω ∈ [0, 4π). Each observation of the spiral is corrupted by additive white
Gaussian noise with unit variance. This model was used in previous works to demon-
strate the efficacy of learning an MFA model as a surrogate for a nonlinear mani-
fold.20,21

The model is set up to illustrate a case in which each node observes a fraction of
the entire manifold. Figures 8 and 9 depict this case. Figure 8 shows the samples
observed by Node 5, and Figure 9 is an overlay of the observations from all 9
sensors.

Fig. 8 A realization of noisy samples of the decaying spiral observed by Node 5

We discretize the angles of the spiral so that each sensor observes the spiral accord-
ing to a discrete probability distribution. The angle distributions as seen by Node 1,
5, and 9 are shown in Fig. 10. As seen in the figure, Node 1 and Node 9 will observe
overlapping segments of the spiral with higher probability than Node 5.
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Fig. 9 Samples observed by all sensor nodes. Each marker relates samples to a sensor node
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Fig. 10 Distributions of angles of a simulated decaying spiral viewed by sensor nodes. The
modes are centered at the sensor’s angle relative to the spiral, which is defined over [0, 4π), in
the spiral’s xy-plane

For the given set of samples, we compare the results of executing the scoring al-
gorithm at Node 5 with only its data against the centralized scoring method having
access to observations from all the nodes. The models are learned with a change-
error tolerance of εg = 10−6. Figures 11 and 12, respectively, display the locally
and globally learned tangent vectors of the decaying spiral. By itself, Node 5 learns
only a fraction of the overall object. When federated, a central node is able to learn
a more rich appearance model of the object despite limited views of the object at
each sensor node.
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Fig. 11 Estimates of the MFA parameters at Node 5 via Fisher scoring

Fig. 12 Estimates of the MFA parameters at a central node via Fisher scoring

5. Conclusions
We derived a constrained Fisher scoring algorithm that exploits block-diagonal and
low-rank structures of the expected FIM of the complete data; this results in sig-
nificantly faster computation per iteration compared to Newton’s method. We ob-
served the scoring algorithm converging faster than the EM algorithm at similar
per-iteration computation, resulting in speedup factors of 2–10 for the examples
considered. Finally, we demonstrated the efficacy of the centralized learning ap-
proach for efficiently federating low-rank MFA models across an entire sensor net-
work to provide a global appearance model, even when each sensor has a limited
view of the object.
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Appendix A. Constrained Cramér-Rao Bound
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Stoica and Ng1 developed an expression for the constrained Cramér-Rao Bound
(CRB) for parametric estimation that does not require the Fisher information matrix
(FIM) of the unconstrained problem to be of full rank. The constrained CRB is given
by

E
(

(θ̂ − θ)(θ̂ − θ)T
)
≥ U(UTJU)−1UT, (A-1)

where θ̂ is an unbiased estimate of θ ∈ Rn and J is the FIM of the unconstrained
problem. The matrix U is an orthonormal basis for the null space of matrix F de-
fined by

F =
∂f(θ)

∂θT ∈ Rk×n (A-2)

where f ∈ Rk is a column vector of constraints on θ such that f(θ) = 0. It is
assumed that f satisfies all the conditions in Stoica and Ng1, such as the number of
constrains in f are fewer than the number of parameters in θ (i.e., k < n), and the
set of parameters that satisfies the constraints is nonempty. However, as we show
next, the basis U need not be orthonormal.

Let the columns of U ∈ Rn×n−k form a basis for the null space of F . The matrix
defined by

PU = U(UTU)−1UT (A-3)

projects onto the column space of U . If U is orthonormal, then PU = UUT as in
Stoica and Ng1. Define Ũ = U(UTU)−1, and W ∈ Rn×n is an arbitrary matrix. Let
UTJU be positive definite with spectral decomposition given by UTJU = QDQT

where Q is an orthogonal matrix and D is diagonal with positive entries along its
diagonal. From Eq. 9 in Stoica and Ng1, we have

E
(

(θ̂ − θ)(θ̂ − θ)T
)
≥ WPU + PUW

T −WPUJPUW
T (A-4)

= WŨUT + U(WŨ)T − (WŨQ)D(WŨQ)T

= UQD−1QTUT − (WŨQ− UQD−1)D(WŨQ− UQD−1)T.

(A-5)

1Stoica P, Ng BC. On the Cramér-Rao bound under parametric constraints. IEEE Signal Pro-
cessing Letters. 1998;5(7):177-179.
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The W that maximizes the right-hand side of Eq. A-4 satisfies

WŨ = UQD−1QT. (A-6)

By substituting Eq. A-6 into Eq. A-5, we arrive at the lower bound in Eq. A-1
without restricting U to be orthonormal.
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Appendix B. Complete Data Fisher Information Matrix for an MFA
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In this section, we derive the Fisher information matrix (FIM) for a complete-data
model of a mixture of factor analyzers (MFA). We first derive the complete data
FIM for a Gaussian mixture model (GMM) and then through a change of variables
arrive at the FIM for a MFA.

The complete data log-likelihood of the GMM is given by

`c(Φ;X,Z) =
M∑
m=1

N∑
i=1

logαmzmi
N (xmi;µzmi

,Σzmi
). (B-1)

The complete data FIM of the GMM is defined by

J cΦ = E
(
∇Φ`

c(Φ;X,Z)∇T
Φ`

c(Φ;X,Z)
)
. (B-2)

The gradient of `c with respect to Φ = [µT
1 ,σ

T
1 , . . . ,µ

T
K ,σ

T
K ,α

T
1 , . . . ,α

T
M ]T is

given by

∇Φ`
c(Φ;X,Z) =

M∑
m=1

N∑
i=1



δ(zmi − 1)∇µ1
logN (xmi;µ1,Σ1)

δ(zmi − 1)∇σ1 logN (xmi;µ1,Σ1)
...

δ(zmi −K)∇µK
logN (xmi;µK ,ΣK)

δ(zmi −K)∇σK
logN (xmi;µK ,ΣK)

δ(zmi − 1)δ(m− 1)α−1
11

...
δ(zmi −K)δ(m− 1)α−1

1K
...

δ(zmi − 1)δ(m−M)α−1
M1

...
δ(zmi −K)δ(m−M)α−1

MK



, (B-3)

where δ(a − b) is 1 when a = b and 0 otherwise. It is straightforward to show that
the gradients in Eq. B-3 are given by

∇µk
logN (xmi;µk,Σk) = Σ−1

k (xmi − µk), (B-4)

∇σk
logN (xmi;µk,Σk) =

1

2
vec
(
Σ−1
k (xmi − µk)(xmi − µk)TΣ−1

k − Σ−1
k

)
,

(B-5)
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for k = 1, . . . , K. It is clear from Eq. B-3 that the complete data FIM of the GMM
is block diagonal, and can therefore be expressed as

J cΦ = diag
(
Jµ1

, Jσ1 , . . . , JµK
, JσK

, Jα1 , . . . , JαM

)
, (B-6)

where

Jµk
=

M∑
m=1

N∑
i=1

E
(
δ(zmi − k)Σ−1

k (xmi − µk)(xmi − µk)TΣ−1
k

)
= N

M∑
m=1

αmkΣ
−1
k , (B-7)

Jαm =
N∑
i=1

E
(
α−2
mzmi

ezmi
eT
zmi

)
= N diag (αm)−1 , (B-8)

for k = 1, . . . , K and m = 1, . . . ,M . For the term Jσk
we use the identity

E
(
∇Φ`

c(Φ;X,Z)∇T
Φ`

c(Φ;X,Z)
)

= E
(
−∇Φ∇T

Φ`
c(Φ;X,Z)

)
. (B-9)

Subsequently, we have for k = 1, . . . , K

Jσk
=

M∑
m=1

N∑
i=1

E
(
−δ(zmi − k)∇σk

∇T
σk

logN (xmi;µk,Σk)
)

=
M∑
m=1

N∑
i=1

E
(
δ(zmi − k)

1

2

(
Σ−1
k ⊗ Σ−1

k (xmi − µk)(xmi − µk)TΣ−1
k

))

+
M∑
m=1

N∑
i=1

E
(
δ(zmi − k)

1

2

(
Σ−1
k (xmi − µk)(xmi − µk)TΣ−1

k ⊗ Σ−1
k

))

−
M∑
m=1

N∑
i=1

E
(
δ(zmi − k)

1

2

(
Σ−1
k ⊗ Σ−1

k

))

=
N

2

M∑
m=1

αmk
(
Σ−1
k ⊗ Σ−1

k

)
. (B-10)

We have established the block-diagonal form of the complete data FIM of the
GMM. Now we relate the FIM of the MFA to the FIM of the GMM through a
change of variables. The factor means and mixing proportions remain unchanged
between the GMM and MFA. The change is limited to the parameterization of each
factor’s covariance through the structure given in Eq. 3. The Jacobian matrix for the
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transformation is given by

Gθ =
∂Φ

∂θT =



Ip 0

0 Gσ1

. . .

Ip 0

0 GσK

IMK


, (B-11)

where Gσk
∈ Rp

2×p(r+1) is defined in Eq. 33. The complete data FIM of the MFA
is then given by

J cθ = diag
(
Jµ1

, (GT
σ1
Jσ1

Gσ1
), . . . , JµK

, (GT
σK
JσK

GσK
), Jα1

, . . . , JαM

)
.

(B-12)
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List of Symbols, Abbreviations, and Acronyms
Terms:

EM expectation-maximization

FIM Fisher information matrix

GMM Gaussian mixture model

MFA mixture of factor analyzers

ML maximum likelihood

Mathematical symbols:

αmk mixing proportion of the kth factor observed by the mth sensor node

Λk loading matrix of the kth factor

µk mean of the kth factor

Φ vector of unknown parameters of the GMM model

ψk uniqueness of the kth factor

Σk covariance of the kth factor

θ vector of unknown parameters of the MFA model

xmi i
th observation from the mth sensor node

Mathematical operators:

diag (A1, A2, . . . , An) a diagonal matrix with A1, A2, . . . , An along the diagonal where each Ai
may be a square matrix with differing sizes across i = 1, 2, . . . , n

E() the expected value of a random quantity

max( ) the maximum of an otherwise variable quantity

∇θf(θ) the gradient of function f with respect to θ

(A⊗B) the Kronecker product of matrix A and B

vec (A) the vectorization of matrix A. If A = [a1,a2, . . . ,an], then vec (A) =

[aT
1 ,a

T
2 , . . . ,a

T
n]T

34



Approved for public release; distribution is unlimited.

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

2
(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL CIO L
IMAL HRA MAIL & RECORDS MGMT

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

4
(PDF)

DIR USARL
RDRL SES A

J GEORGE
L KAPLAN
B RIGGAN
N SROUR

2
(PDF)

OHIO STATE UNIV
E ERTIN
R MOSES

35



Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

36


