

 ARL-TR-7817 ● SEP 2016

 US Army Research Laboratory

EventSlider User Manual

by Christian D Schlesiger

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7817 ● SEP 2016

 US Army Research Laboratory

EventSlider User Manual

by Christian D Schlesiger
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2016
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

01/2014–08/2016
4. TITLE AND SUBTITLE

EventSlider User Manual
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Christian D Schlesiger
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CII-B
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7817

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The EventSlider is a Windows Presentation Foundation (WPF) control developed using the .NET framework in Microsoft
Visual Studio. As a WPF control, it can be used in any WPF application as a graphical visual element. The purpose of the
control is to visually display time-related events as vertical lines on a horizontal timescale slider. These events can take any
form the developer needs for their specific application. Properties are set on the EventSlider control to instruct the control
where to find the time information on these data objects. This report outlines how a developer can use the control and
integrate it into an application. An application programming interface reference is described for all of the properties, events,
and methods available on the control.

15. SUBJECT TERMS

Windows Presentation Foundation, WPF, control, C#, .NET framework, Microsoft Visual Studio

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

36

19a. NAME OF RESPONSIBLE PERSON

Christian D Schlesiger
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-2473
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution unlimited.
iii

Contents

List of Figures vi

1. Introduction 1

2. Visual Elements of the EventSlider 2

3. Manipulation 3

4. Library and Namespace 4

5. Event Data 4

6. Initialization 5

7. Currency 7

8. Runtime Changes 8

9. Application Programming Interface (API) Reference 10

9.1 Properties 10

9.1.1 ColorPath 10

9.1.2 ColorPathProperty 11

9.1.3 CurrentEvent 11

9.1.4 CurrentEventChangedEvent 12

9.1.5 CurrentEventProperty 12

9.1.6 CurrentInterval 12

9.1.7 CurrentIntervalChangedEvent 13

9.1.8 CurrentIntervalProperty 13

9.1.9 CurrentTime 13

9.1.10 CurrentTimeChangedEvent 13

9.1.11 CurrentTimeProperty 13

9.1.12 EndTime 14

9.1.13 EndTimeChangedEvent 14

9.1.14 EndTimeProperty 14

Approved for public release; distribution unlimited.
iv

9.1.15 EqualityComparer 14

9.1.16 EqualityComparerProperty 15

9.1.17 Events 15

9.1.18 EventsProperty 15

9.1.19 Intervals 15

9.1.20 IntervalsProperty 16

9.1.21 LineColor 16

9.1.22 LineColorProperty 16

9.1.23 MergedLineColor 17

9.1.24 MergedLineColorProperty 17

9.1.25 ShowMergedLines 17

9.1.26 ShowMergedLinesProperty 17

9.1.27 ShowTicks 18

9.1.28 ShowTicksProperty 18

9.1.29 SnapsToEvent 18

9.1.30 SnapsToEventProperty 18

9.1.31 StartTime 18

9.1.32 StartTimeChangedEvent 19

9.1.33 StartTimeProperty 19

9.1.34 TickColor 19

9.1.35 TickColorProperty 19

9.1.36 TickFontSize 19

9.1.37 TickFontSizeProperty 20

9.1.38 TimePath 20

9.1.39 TimePathProperty 21

9.1.40 ZoomInAtPointer 21

9.1.41 ZoomInAtPointerProperty 21

9.1.42 ZoomInCommand 21

9.1.43 ZoomOutCommand 22

10. Events 22

10.1 CurrentEventChanged 22

10.2 CurrentIntervalChanged 23

10.3 CurrentTimeChanged 23

10.4 EndTimeChanged 23

10.5 StartTimeChanged 24

Approved for public release; distribution unlimited.
v

11. Methods 24

11.1 BeginInit 24

11.2 EndInit 25

11.3 EventSlider 25

11.4 OnApplyTemplate 25

11.5 SetDefaultIntervals 25

11.6 UpdateEvents 26

12. Conclusion 26

Distribution List 27

Approved for public release; distribution unlimited.
vi

List of Figures

Fig. 1 Architecture diagram of a client application using the EventSlider2

Fig. 2 The EventSlider control showing random time data3

Fig. 3 Custom colors for certain events ..5

Fig. 4 Setting the CurrentEvent property ...12

Approved for public release; distribution unlimited.
1

1. Introduction

The EventSlider is a Windows Presentation Foundation (WPF) control developed
using the .NET framework in Microsoft Visual Studio. As a WPF control, it can be
used in any WPF application as a graphical visual element. The purpose of the
control is to visually display time-related events as vertical lines on a horizontal
timescale slider. These events can be of any nature as long as there is some property
indicating a time for the event. This gives the control great flexibility in the type of
data it can represent and how they can be used in an application.

All visual elements of the EventSlider are customizable by the developer
incorporating it into an application. Standard WPF styling practices can be applied.
Specific elements of the slider, such as the color of the lines and the appearance of
the scale and tick marks, can be set by the developer at design time and also changed
at runtime, if desired.

During runtime, the control allows a user to move the scale forward or backward in
time as well as zoom in and out of different-sized time windows (e.g., from a view
of 1 day to down to 1 s). These time windows and zoom intervals are completely
customizable by the developer. Behavior of the control during navigation
(zooming, sliding, and moving the thumb) can also be changed through properties
and events available to the developer.

The control is agnostic to the data presented: the events are presented to the control
in generic object form. Properties on the control are set to specify what property on
those event objects should be used for the time of that event. The event objects
could be straight DateTime structures or a more complex data class that has a
property defined on it that contains the relevant time.

The EventSlider has the notion of a current event, tracked visually by the position
of the thumb on the slider as well as in code with a property. Additionally, there is
a notion of a current time as well, as that is usually the time of the current event,
but it can be different than the current event’s time under certain conditions.

The control keeps constant track of the boundaries and size of the time window
being shown through appropriately named properties. User interaction with the
control at runtime will change these values, or they can be set directly in code,
which will result in appropriate visual changes to the control. The control overrides
the methods in the ISupportInitialize interface (defined on the FrameworkElement
parent class), which allows for efficient batch setting of these main properties
without changing the display until the initialization is complete.

Approved for public release; distribution unlimited.
2

Figure 1 shows an architectural diagram illustrating a typical scenario where the
EventSlider control is incorporated into an application. An application might wish
to show a series of time events collected and stored in some data store. These events
are retrieved from the store by the application and put into an array or some other
type of collection object and assigned to the EventSlider’s Events property. The
application can change other properties on the EventSlider to control its
appearance, which events to show, and how it shows these events. The EventSlider
notifies the application when the user interacts with the control.

Fig. 1 Architecture diagram of a client application using the EventSlider

2. Visual Elements of the EventSlider

Figure 2 shows the EventSlider with some randomly generated time events. These
events are shown as orange vertical lines. Across the slider is the current timescale,
shown in light gray with tick marks for typical gradations. Time labels are shown
at major ticks with smaller tick marks in between. In this example, each minor tick
represents 12 h, thus 6 minor ticks are shown between each major tick where a date
is shown, which is at 3-day increments. The dark red lines indicate that more than
one event is displayed in that area. This is a visual indicator to the user that it would
be useful to zoom in on those areas to see the time events more clearly if desired.
The thumb has been moved to an event on the date 8/4/16. This indicates that the
current event for the control is the one at that date. One could enhance the visual
representation of the control further in the user interface by displaying more detail

Approved for public release; distribution unlimited.
3

about the current event and its time in other visual elements external to the
EventSlider.

Fig. 2 The EventSlider control showing random time data

The EventSlider automatically chooses the best display for its tick marks and time
labels based on the current time window being shown and how much visual space
has been allotted for it in the user interface of the application. It recalculates and
redraws these ticks and labels each time the zoom is changed on the slider. It also
changes these values if the window containing it has been resized. Panning left and
right does not change these values but merely scrolls the time and changes the
events that are shown appropriately.

3. Manipulation

The EventSlider responds to both the mouse and touch, if a touch screen is
available, for manipulation.

To move the currently shown time window to include events in the past, click the
mouse or touch with a finger on the slider at any point except on the thumb and
drag to the right. This moves the data to the right, revealing more events on the left-
hand side of the slider. To show events in the future, drag to the left. This reveals
events on the right-hand side of the slider.

To zoom in, hold the mouse cursor over the EventSlider and roll the mouse wheel
forward. With touch, use a pinch and spread gesture. To zoom out, roll the mouse
wheel backward or use a pinch and narrow gesture. The EventSlider changes the
zoom based on preset time intervals. These intervals can be changed at development
and at runtime. Because of this, there is a maximum and a minimum zoom that can
be reached beyond which further zoom gestures have no effect. Each time the zoom
changes, the control redraws all events that are in the current time window along
with redrawing the tick marks and labels appropriately.

The current event can be changed by moving the thumb. This can be accomplished
with the mouse by left-clicking and dragging on the thumb to the new event. With
touch, this is accomplished with a long tap and then drag. By default, the thumb
will snap to the nearest event once the mouse or touch is released. This behavior
can be changed through a property setting. Because of this snapping behavior,

Approved for public release; distribution unlimited.
4

moving the thumb and setting the current event can also occur by the user doing a
single click, or a tap, near or on an event line.

4. Library and Namespace

The EventSlider control has been compiled into the following dynamic-link library
(DLL):

WPFControls.EventSlider.dll

It was built using the .NET Framework 4.0 and can be used in any application using
that framework version or higher. The control exists in the following namespace:

C#
using WPFControls.EventSlider;

XAML
xmlns:es="clr-
namespace:WPFControls.EventSlider;assembly=WPFControls.EventSlider"

Only a single class is exposed in this namespace, the EventSlider class. All
methods, properties, and events necessary to use the control reside on this class.

5. Event Data

The data displayed by the EventSlider can be of any type. The only requirement is
that they have some sort of property containing a DateTime structure or are in fact
DateTime objects themselves. To be as flexible and agnostic to the data type as
possible, event objects are passed to the EventSlider as an IEnumerable<object>.
This allows the collection of event objects to be of any type as long as it is
enumerable. It is assigned to the EventSlider either with a direct assignment or
through databinding to the Events property of the EventSlider.

If the event objects are not DateTime structures but are instead business model
objects, the more likely scenario, then the EventSlider needs to know which
property to reference for the time data. This is set through the TimePath property
on the EventSlider, where the name of the property on the event object is provided
as a string:

C#
MyEventSlider.TimePath = "MyTime";

XAML
<es:EventSlider x:Name="MyEventSlider" TimePath="MyTime"/>

Approved for public release; distribution unlimited.
5

The default line color for events is set on the EventSlider through the LineColor
property. This property is a WPF Brush object. As a WPF Brush object, one will
commonly use a SolidColorBrush, but gradient brushes, for example, could be used
for other visual effects. This brush is applied to all events that are visible on the
slider. However, if the lines drawn would be so close together as to be indiscernible
(usually because of a large zoom interval), the EventSlider draws a single line of a
different color that is set with the MergedLineColor property, which has the same
syntax as the LineColor property.

Individual events can override this behavior with their own colors. This would be
useful in scenarios where events might fall into categories, and a simple color
representation would indicate that on the EventSlider. In Fig. 3, some of the events
are shown as blue lines. This could indicate a higher importance, for example. The
merged line color behavior still overrides this custom color.

Fig. 3 Custom colors for certain events

To indicate that individual event colors should be used, set the ColorPath property
on the EventSlider, which is set in the same way as the TimePath property. This is
a string containing the name of the property on the event objects that contains a
Brush object. Note that once the ColorPath property is set, responsibility for an
event’s line color is wholly up to the event object. The value in the LineColor
property will no longer be used. Therefore, a null value would cause the line to have
no color at all and therefore not be visible. This side effect can be exploitable if the
application needs to hide event lines temporarily.

Additionally, an individual event’s line color can be changed at runtime and be
reflected as an immediate change to the EventSlider’s visual appearance. This is
accomplished by the EventSlider binding the line’s color to the event’s property
that contains the Brush indicated by the ColorPath property. For the databinding to
be notified of changes to the color, the event object should either use a
DependencyProperty for the property indicated by the ColorPath or implement
INotifyPropertyChanged and raise the appropriate event.

6. Initialization

All properties on the EventSlider are DependencyProperty types that participate in
databinding operations. As such, any change to a single property will immediately

Approved for public release; distribution unlimited.
6

propagate to a visual change in the control. In many cases, this also results in
changes to other properties on the control, some of which might not be expected.
For example, a change to the StartTime property will immediately cause the left-
hand value of the visual slider on the control to change to the new date and time.
This would cascade to a shift in the time window that is shown on the slider, which
results in a change to the EndTime property, as well. The current zoom interval is
preserved in this case, since only the StartTime was changed.

Alternatively, a change in the EndTime property does not affect the StartTime
property. That would remain the same. Instead, the zoom interval would
immediately change to fit in the new start and end times. This would cause a redraw
of all events and change which events are seen and not seen.

This cascading effect is purposeful and allows runtime changes to the control
external to the control’s own functioning. The application could change the
EventSlider’s properties directly and expect the control to update accordingly.
However, this effect is problematic for the control’s initialization. To address this
problem, the EventSlider supports the ISupportInitialize interface implemented on
the generic FrameworkElement object. Two methods are used in this interface. The
BeginInit method starts initialization and suspends all cascading effects on the
EventSlider. Once this call is made, all the properties on the slider can be set
without any subsequent effects. To end initialization and resume the normal
behavior of the control, call the EndInit method. This also causes an immediate
redraw of the control with the new values.

C#
List<MyObject> MyData = new List<MyData>();
EventSlider MyEventSlider = new EventSlider();
MyEventSlider.BeginInit();
MyEventSlider.TimePath = "MyTime";
MyEventSlider.ColorPath = "MyColor";
MyEventSlider.StartTime = DateTime.Now;
MyEventSlider.EndTime = start + new TimeSpan(30, 0, 0, 0);
MyEventSlider.Events = MyData;
MyEventSlider.EndInit();

In the previous example, a new EventSlider is created and initialized. The start time
is set to the current time and the end time is set to 30 days later. This defines the
zoom interval as 30 days. The MyData is a simple generic List<> defined to contain
a custom business object type MyObject. The List<> generic type implements the
IEnumerable<> interface. Generic collection interfaces in .NET are covariant,
implicitly converting the more derived type MyObject to the less derived type
object. Therefore, it is not necessary to do any explicit conversions when assigning
collections to the Events property on the EventSlider.

Approved for public release; distribution unlimited.
7

The MyObject business object should define 2 properties. The MyTime property
should contain a DateTime structure indicating the time of the event. The MyColor
property should contain a Brush object indicating what color the event should be
drawn with. The MyObject data should implement INotifyPropertyChanged if
changes to the color or time on the event object during runtime are expected.

7. Currency

The EventSlider has the notion of a current event in the CurrentEvent property and
time in the CurrentTime property. The current event is visually indicated on the
slider by the position of the thumb. The user can move this thumb to a new position
and it will snap to the nearest event when released. The SnapsToEvent property on
the EventSlider is a Boolean that can be set to turn off that behavior. It is on by
default to assist in keeping the CurrentEvent property more easily in sync with user
intentions when moving the thumb.

The CurrentEvent property points to a single object in the collection contained in
the Events property and this value can be changed at runtime through code as well
as by manipulation of the control by the user interface. Whenever the current event
is changed by either process, the CurrentTime property is set to the value of the
time of the CurrentEvent.

When the CurrentEvent property is changed through code, the thumb on the
EventSlider is moved to the correct line for that event. If the line is not currently
being displayed, then the EventSlider moves the time window, preserving the
current zoom interval, so that the event line is at the leftmost extent of the control.
This results in the StartTime being the same as the CurrentTime.

The CurrentTime property can also be set through code. When this occurs, the
CurrentEvent property remains unchanged. The EventSlider does not attempt to
find an event near to this new time, because it could often be ambiguous. If the new
current time is a value that is not in the currently displayed time window, then the
EventSlider moves the time window such that the new current time is exactly in the
center. The current zoom interval is preserved in this case, and the start and end
times will be changed to new values so that the current time is in the middle. If the
CurrentEvent is no longer visible in this new time window, then the thumb is merely
moved to the leftmost extent of the control and is usually no longer on an event
line. This may result in some confusion if there is an event line at that point, since
that line does not correspond to the CurrentEvent. Because of this, caution should
be used when changing the CurrentTime property in this manner.

Approved for public release; distribution unlimited.
8

8. Runtime Changes

As mentioned in the previous sections, changes to the start time, end time, current
time, and current event can be made at runtime that immediately affect the
EventSlider. Other properties similarly cause changes in the slider.

The ColorPath property can be changed at runtime, which will result in a redraw of
the control using the new path on the event objects. This could be useful to show
different views of the event data with different meanings for the colors.

The CurrentInterval property contains a TimeSpan indicating the current zoom
interval. The Intervals property on the EventSlider contains a number of TimeSpan
structures that are used by the slider when zooming. When the user zooms in or out,
the slider searches for the next largest or smallest interval from this list to change
the CurrentInterval property to this new value. When zooming and changing the
CurrentInterval property in code, the CurrentEvent line and the thumb are moved
to the center of the EventSlider display. Then the start and end times are adjusted
according to the new interval while keeping the current event centered. If there is
no current event, it will remain null, but the thumb and the EventSlider will still be
centered via the CurrentTime property. The CurrentTime property will always have
a valid time, usually set to the StartTime at initialization.

The Events property contains all the events that the EventSlider will display.
Changing the value of this property will force a redraw of the entire control. The
current time window will be preserved, but the CurrentEvent property will be set
to null. The CurrentTime property will be set to the StartTime and the thumb will
be set to the leftmost extent of the control. This can be an expensive operation if
the number of events is very high. If a small change to the Events list is desired,
then this can be accomplished through the UpdateEvents method. When this
method is called with a new list of events as a parameter, then the new list is
compared to the old list and appropriate additions and subtractions of events are
made.

The MergedLineColor property indicates what color to draw lines where individual
event lines are too close to be discernible. This property can be changed at runtime
to have an immediate change in colors in the control.

The ShowMergedLines property is a Boolean flag that indicates whether a different
color line should be drawn when event lines are drawn too close together to be seen
at the current zoom interval. Changing this property at runtime causes a redraw of
all events.

Approved for public release; distribution unlimited.
9

The ShowTicks property is a Boolean flag that indicates whether tick marks and
labels should be drawn. This can be changed at runtime to hide or show these visual
indicators.

The SnapsToEvent property is a Boolean flag that indicates whether the thumb
should attempt to snap to the nearest event line when moved. Changing this value
from false to true at runtime will cause the thumb to immediately attempt to find
the nearest event and snap to it.

The TickColor property indicates what color the tick marks and labels should be
drawn with. It is a Brush and changing it at runtime will cause these indicators to
be redrawn with the new color.

The TickFontSize property indicates what size the labels on the tick marks should
be. It can be changed at runtime and immediately be reflected on the control.

The TimePath property is a string indicating what property on the event objects to
look for the time to display as a line on the slider. This property can be changed at
runtime to a different property on the event objects causing a full redraw of the
control. This could be useful for events that have secondary time information.

The ZoomInAtPointer property is a Boolean flag that indicates whether a zoom
interval change should occur at the mouse pointer or at the center of the control. By
default, zooms occur at the center of the control. Zooming at the mouse pointer is
useful for a single zoom change at a certain point in time, but for more than one
zoom change, the time window may shift in an unexpected manner. This value can
be toggled at runtime for an immediate change to how zooming behaves.

The ZoomInCommand property contains a RoutedCommand that can be used to
execute a zoom-in operation through code as if the user had used the mouse-wheel
or touch to do a single zoom in.

The ZoomOutCommand property contains a RoutedCommand that can be used to
execute a zoom-out operation through code as if the user had used the mouse-wheel
or touch to do a single zoom out.

Approved for public release; distribution unlimited.
10

9. Application Programming Interface (API) Reference

9.1 Properties

9.1.1 ColorPath

Type: string

Default value: null

This property contains the name of the property that should be accessed on each
event object in the Events property to indicate what color to use when drawing the
line for that event. This allows the user to have individual events have different
colors if so desired. It is expected that the property specified by this property on the
Event object contains a Brush object. If the property path is invalid or points to a
property that is not a Brush, the line for this event will be drawn with no color,
resulting in it appearing invisible. If this property is not set, the default line color
behavior will occur.

This property can be changed at runtime to point to a new property on the Event
objects. Doing so will cause the EventSlider to update and draw the event lines
using the Brush indicated in the new property reference. The most typical brush
used would be a SolidColorBrush, but other brushes such as the GradientBrush
may be used for interesting effects. There is a useful collection of common
predefined solid-color brushes on the System.Windows.Media.Brushes static object.

C#
public class Data : INotifyPropertyChanged
{
 private object _Color = Brushes.Blue;
 public Brush Color
 {
 get { return this._Color; }
 set
 {
 if (this._Color != value)
 {
 this._Color = value;
 this.RaisePropertyChanged("Color");
 }
 }
 }
}

EventSlider MyEventSlider = new EventSlider();
MyEventSlider.ColorPath = "Color";

XAML
<es:EventSlider x:Name="MyEventSlider" ColorPath="Color"/>

Approved for public release; distribution unlimited.
11

As mentioned previously, the event objects should implement
INotifyPropertyChanged or be a DependencyProperty in order for changes to an
individual event’s color property to be reflected in the EventSlider at runtime. This
is shown in the previous example.

9.1.2 ColorPathProperty

Type: System.Windows.DependencyProperty

This is the static definition of the ColorPath property required by the WPF
framework.

9.1.3 CurrentEvent

Type: object

Default value: null

This property contains the current event object and can be null when there is no
current event selected. This property can be set by the user by clicking on the slider
near an event line or moving the slider thumb. When set by code, the visual thumb
is moved to the line indicating the event. If the event is not in the current time
window, the time window is moved so the current event is equal to the start time
and is at the leftmost edge of the slider window. This does not change the zoom
interval, but can change the StartTime and EndTime properties.

Any time the CurrentEvent property is changed, the CurrentTime property is also
changed to the time of the current event.

C#
 List<Data> MyData = new List<Data>();
 MyData.Add(new Data { Time = DateTime.Parse("4/1/16") });
 MyData.Add(new Data { Time = DateTime.Parse("5/1/16") });
 MyData.Add(new Data { Time = DateTime.Parse("6/1/16") });

 EventSlider es = new EventSlider();
 es.BeginInit();
 es.StartTime = DateTime.Parse("1/1/16");
 es.EndTime = DateTime.Parse("12/1/16");
 es.Events = MyData;
 es.CurrentEvent = MyData[1];
 es.EndInit();

The previous example creates a list of event data objects for the months of April,
May, and June. It then creates a new EventSlider and sets the start time to January
and the EndTime to December. This will result in a time window of 12 months,
which automatically sets the CurrentInterval to that value. The CurrentEvent

Approved for public release; distribution unlimited.
12

property is set to the event at May. The result of the example is shown in Fig. 4.
Note that because of the width of the window, the tick marks may not exactly be as
expected. In this example, the length of the year is used and because each month
has a different number of days, the labels did not always fall on the same day of
each month.

Fig. 4 Setting the CurrentEvent property

9.1.4 CurrentEventChangedEvent

Type: System.Windows.RoutedEvent

This is the static definition of the CurrentEventChanged event required by the WPF
framework.

9.1.5 CurrentEventProperty

Type: System.Windows.DependencyProperty

This is the static definition of the CurrentEvent property required by the WPF
framework.

9.1.6 CurrentInterval

Type: System.TimeSpan

Default value: TimeSpan.Zero

This property contains the current width of the visual window of the slider in units
of time. This is also known as the zoom interval. This property is set with user
interaction with the EventSlider control by zooming in or out with the mouse wheel
or touch pinches. This property can also be set through code via the
ZoomInCommand or ZoomOutCommand, or by changing the EndTime property.

When setting this property directly with code, the value of StartTime and EndTime
are changed appropriately with the new interval centered on the current time of the
current event.

When the EventSlider object is constructed, the CurrentInverval property has a
default value of TimeSpan.Zero. Once the StartTime and EndTime properties are
set, the CurrentInterval property is set as the difference between them. Also, when
the SetDefaultIntervals method is invoked, the CurrentInterval property is set to the
largest value in the Intervals property or 7 days.

Approved for public release; distribution unlimited.
13

9.1.7 CurrentIntervalChangedEvent

Type: System.Windows.RoutedEvent

This is the static definition of the CurrentIntervalChanged event required by the
WPF framework.

9.1.8 CurrentIntervalProperty

Type: System.Windows.DependencyProperty

This is the static definition of the CurrentInterval property required by the WPF
framework.

9.1.9 CurrentTime

Type: System.DateTime

Default value: default DateTime (1/1/0001 12:00 AM)

This property contains the current time, usually of the current event. If this property
is set directly in code, the value of the SnapsToEvents property is ignored, and the
current event’s time will no longer match the current time. This will move the
thumb to the new value of the CurrentTime property on the scale of the slider.

If the new time is not contained in the visual time window of the slider, the
StartTime and EndTime values will be changed such that the new time is centered
in the window with the CurrentInterval as its width.

9.1.10 CurrentTimeChangedEvent

Type: System.Windows.RoutedEvent

This is the static definition of the CurrentTimeChanged event required by the WPF
framework.

9.1.11 CurrentTimeProperty

Type: System.Windows.DependencyProperty

This is the static definition of the CurrentTime property required by the WPF
framework.

Approved for public release; distribution unlimited.
14

9.1.12 EndTime

Type: System.DateTime

Default value: default DateTime (1/1/0001 12:00 AM)

This property contains the rightmost value of the time window currently displayed
by the control. This value can be changed through user interaction with the control
or with code. When set through code, and the new EndTime value is larger than the
current value of the StartTime property, the StartTime is preserved and the
CurrentInterval is changed to the time between the new start and end time values.
This presents an alternative means of zooming in or out.

If the new EndTime is before or equal to the StartTime, the time window is simply
shifted with the CurrentInterval retained and the StartTime changed accordingly.

9.1.13 EndTimeChangedEvent

Type: System.Windows.RoutedEvent

This is the static definition of the EndTimeChanged event required by the WPF
framework.

9.1.14 EndTimeProperty

Type: System.Windows.DependencyProperty

This is the static definition of the EndTime property required by the WPF
framework.

9.1.15 EqualityComparer

Type: System.Collections.Generic.IEqualityComparer<object>

Default value: null

This property allows the setting of a custom equality comparer for use with the
UpdateEvents method. This comparer is used to determine if new events passed as
a parameter to that method are already in the list of events on the control. If this
property is null, the default object comparison between the events will be used.

Using a custom equality comparer may be useful for certain design models were
objects might be the same event because of their time, but not necessary be the
same objects by memory reference.

Approved for public release; distribution unlimited.
15

9.1.16 EqualityComparerProperty

Type: System.Windows.DependencyProperty

This is the static definition of the EqualityComparer property required by the WPF
framework.

9.1.17 Events

Type: System.Collections.Generic.IEnumerable<object>

Default value: null

This property contains the event objects displayed by the EventSlider. When this
property is set, all previous values are cleared and replaced in favor of the new
events and new lines are drawn on the slider control. This forces a complete redraw
of the EventSlider control.

This value can be set directly with code, or participate in property databinding.
However, because of its type, IEnumerable<object>, changes to the collection will
not result in changes to the lines already drawn. It is necessary to change the whole
value of the property to reflect an update. For finer control in how Events can be
updated in the collection, see the UpdateEvents method (Section 11.6).

9.1.18 EventsProperty

Type: System.Windows.DependencyProperty

This is the static definition of the Events property required by the WPF framework.

9.1.19 Intervals

Type: System.Collections.ObjectModel.ObservableCollection<TimeSpan>

Default value: ObservableCollection<TimeSpan> with values listed below

This property contains all the intervals that are used for zooming in and out. By
default, this collection is as follows:

1 s 5 min 6 h

5 s 10 min 12 h

10 s 30 min 1 day

30 s 1 h 3 days

1 min 3 h 7 days

Approved for public release; distribution unlimited.
16

This collection can be modified through code to contain custom intervals as
appropriate for the times reflected in the collection of events. The control will sort
the values each time a zoom is requested and pick the next larger or smaller entry
as appropriate. Therefore, it is possible to increase or decrease the amount of zoom
levels during runtime. Once the smallest zoom interval in this collection is reached,
the control can no longer be zoomed in any further. Likewise, once the largest zoom
interval in this collection is reached, the control can no longer be zoomed out any
further.

To reset this collection to the default values again, invoke the SetDefaultIntervals
method.

9.1.20 IntervalsProperty

Type: System.Windows.DependencyProperty

This is the static definition of the Intervals property required by the WPF
framework.

9.1.21 LineColor

Type: System.Windows.Media.Brush

Default value: System.Windows.Media.Brushes.Black

This property contains the Brush object that should be used to draw the vertical
event lines on the control. Any brush can be used, though the most common would
be a SolidColorBrush. There is a useful collection of common predefined solid-
color brushes on the System.Windows.Media.Brushes static object.

C#
EventSlider MyEventSlider = new EventSlider();
MyEventSlider.LineColor = Brushes.Orange;

XAML
<es:EventSlider x:Name="MyEventSlider" LineColor="Orange"/>

This property can be changed at runtime causing a redraw of the EventSlider event
lines using the new color.

9.1.22 LineColorProperty

Type: DependencyProperty

This is the static definition of the LineColor property required by the WPF
framework.

Approved for public release; distribution unlimited.
17

9.1.23 MergedLineColor

Type: System.Windows.Media.Brush

Default value: System.Windows.Media.Brushes.Red

This property contains the Brush object that should be used to draw the vertical
event lines when the lines are so close together as to be overlapping and
indiscernible at the current zoom interval. This is a visual cue that zooming in is
required to see the separate events. This property can be changed at runtime causing
a redraw of the event lines using the new color.

This behavior of changing colors can be turned off by changing the
ShowMergedLines property.

9.1.24 MergedLineColorProperty

Type: System.Windows.DependencyProperty

This is the static definition of the MergedLineColor property required by the WPF
framework.

9.1.25 ShowMergedLines

Type: Boolean

Default value: true

This property contains a flag indicating whether to change line colors when event
lines on the control are too close to be discerned individually. When true, if more
than one event line is drawn in the same space, the line changes to the color
indicated in the MergedLineColor to visually indicate that more than one event is
occurring at, or near to, this time. This property can be changed at runtime causing
a redraw of the EventSlider event lines as appropriate.

9.1.26 ShowMergedLinesProperty

Type: System.Windows.DependencyProperty

This is the static definition of the ShowMergedLines property required by the WPF
framework.

Approved for public release; distribution unlimited.
18

9.1.27 ShowTicks

Type: Boolean

Default value: true

This property contains a flag indicating whether to draw tick marks and time labels
on the EventSlider. This value can be changed at runtime to hide or show the tick
marks as specified.

9.1.28 ShowTicksProperty

Type: System.Windows.DependencyProperty

This is the static definition of the ShowTicks property required by the WPF
framework.

9.1.29 SnapsToEvent

Type: Boolean

Default value: true

This property contains a flag indicating whether the thumb should snap to the
nearest event when released or not. The user can move the thumb on the control to
change the current time and event. When released, if this value is true, the thumb
will attempt to snap to the closest event. When it does so, it sets the CurrentEvent
to this event and the CurrentTime to the time of the event.

When this value is false, the control will set the CurrentTime to where the thumb
was released. This value depends on the extent of the current time window being
shown. The CurrentEvent will remain as it last was set.

9.1.30 SnapsToEventProperty

Type: System.Windows.DependencyProperty

This is the static definition of the SnapsToEvent property required by the WPF
framework.

9.1.31 StartTime

Type: System.DateTime

Default value: default DateTime (1/1/0001 12:00 AM)

This property contains the leftmost value of the time window currently displayed
by the slider control. This value can be changed through user interaction with the

Approved for public release; distribution unlimited.
19

control by a variety of means. When panning left or right in the user interface, the
value of this property will be set. The time window can be zoomed in or out, which
can also change the StartTime property by virtue of centering the control on the
new value of the CurrentTime property.

When the StartTime property is set through code, the EndTime property is also
changed the amount of time equal to the value of the zoom interval indicated in the
CurrentInterval property. This presents a straightforward way of panning the time
window through code simply by changing this property.

9.1.32 StartTimeChangedEvent

Type: System.Windows.RoutedEvent

This is the static definition of the StartTimeChanged event required by the WPF
framework.

9.1.33 StartTimeProperty

Type: System.Windows.DependencyProperty

This is the static definition of the StartTime property required by the WPF
framework.

9.1.34 TickColor

Type: System.Windows.Media.Brush

Default value: System.Windows.Media.Brushes.DarkGray

This property contains the Brush object that should be used to draw the ticks when
the ShowTicks property is set true. This property can be changed at runtime
resulting in the tick marks and labels to be redrawn using the new brush.

9.1.35 TickColorProperty

Type: System.Windows.DependencyProperty

This is the static definition of the TickColor property required by the WPF
framework.

9.1.36 TickFontSize

Type: Double

Default value: 9.0

Approved for public release; distribution unlimited.
20

This property contains the value that should be used for the font size of the labels
displayed on the tick marks. This property can be changed at runtime resulting in a
redraw of the tick marks and labels using the new value.

9.1.37 TickFontSizeProperty

Type: System.Windows.DependencyProperty

This is the static definition of the TickFontSize property required by the WPF
framework.

9.1.38 TimePath

Type: String

Default value: null

This property contains the name of the property that should be accessed on each
event object in the Events property for the time to use for that event’s line. If this
property is not set, the control will assume the objects are DateTime structures. If
the property path is invalid or points to a property that is not a DateTime, no lines
will be drawn on the slider control.

This property can be changed at runtime to point to a new property on the Event
objects. Doing so will cause the EventSlider to update and draw the event lines
using the new time indicated in the new property reference.

C#
public class Data : INotifyPropertyChanged
{
 private object _Time;
 public DateTime Time
 {
 get { return this._Time; }
 set
 {
 if (this._Time != value)
 {
 this._Time = value;
 this.RaisePropertyChanged("Time");
 }
 }
 }
}

EventSlider MyEventSlider = new EventSlider();
MyEventSlider.TimePath = "Time";

XAML
<es:EventSlider x:Name="MyEventSlider" TimePath="Time"/>

Approved for public release; distribution unlimited.
21

As mentioned previously, the event objects should implement
INotifyPropertyChanged or be a DependencyProperty in order for changes to an
individual event’s time property to be reflected in the EventSlider at runtime. This
is shown in the previous example. This would allow, for instance, an event to move
itself to a new time on the slider, which could pose interesting scenarios.

9.1.39 TimePathProperty

Type: System.Windows.DependencyProperty

This is the static definition of the TimePath property required by the WPF
framework.

9.1.40 ZoomInAtPointer

Type: Boolean

Default value: false

If this property is set true, when the user zooms in on the control via the user
interface, such as a mouse wheel, the zoom will center on where the mouse pointer
is located.

If false, the default value, the slider control moves the current event to the center of
the visual window and then zooms, changing the size of the time window zoom
interval around it.

Setting this value true can have some unexpected behavior when multiple zooms
are initiated, which is often the case when using a mouse wheel. Caution should be
exercised.

9.1.41 ZoomInAtPointerProperty

Type: System.Windows.DependencyProperty

This is the static definition of the ZoomInAtPointer property required by the WPF
framework.

9.1.42 ZoomInCommand

Type: System.Windows.RoutedCommand

This is the static definition of the ZoomInCommand required by the WPF
framework.

Approved for public release; distribution unlimited.
22

The ZoomInCommand is executed each time a zoom in operation is requested by
the control. As a RoutedCommand, different input bindings may be assigned
allowing zooming in with different keyboard, touch, and mouse gestures.

Similarly, the command can be executed in code causing the control to zoom in one
zoom interval.

C#
EventSlider.ZoomInCommand.Execute(null, this.MyEventSlider);

9.1.43 ZoomOutCommand

Type: System.Windows.RoutedCommand

This is the static definition of the ZoomOutCommand required by the WPF
framework.

The ZoomOutCommand is executed each time a zoom out operation is requested
by the control. As a RoutedCommand, different input bindings may be assigned
allowing zooming out with different keyboard, touch, and mouse gestures.

Similarly, the command can be executed in code causing the control to zoom out
one zoom interval.

C#
EventSlider.ZoomOutCommand.Execute(null, this.MyEventSlider);

10. Events

10.1 CurrentEventChanged

Event argument type:

System.Windows.RoutedPropertyChangedEventArgs<object>

This event fires whenever the CurrentEvent property is changed. The oldvalue and
newvalues are passed to any event handlers subscribed.

Subscription to this event allows the developer to know when the currency of the
EventSlider control has been changed from one business model event object to
another. This event is raised when the property changes by any means, whether it
be by user manipulation on the user interface or through code.

Approved for public release; distribution unlimited.
23

During the ISupportInitialize process, when BeginInit is called, this event is
suppressed. When the EndInit method is invoked, if there is a change to the
CurrentEvent property as part of the initialization, this event is raised.

10.2 CurrentIntervalChanged

Event argument type:

System.Windows.RoutedPropertyChangedEventArgs<TimeSpan>

This event fires whenever the CurrentInterval property is changed. The oldvalue
and newvalues are passed to any event handlers subscribed.

Subscription to this event allows the developer to know when the EventSlider
control has been zoomed in or out. This event is raised when the property changes
by any means, whether it be by user manipulation on the user interface or through
code such as executing the ZoomInCommand or ZoomOutCommand, or changing
the CurrentInterval property directly.

During the ISupportInitialize process, when BeginInit is called, this event is
suppressed. When the EndInit method is invoked, if there is a change to the
CurrentInterval property as part of the initialization, this event is raised.

10.3 CurrentTimeChanged

Event argument type:

System.Windows.RoutedPropertyChangedEventArgs<DateTime>

This event fires whenever the CurrentTime property is changed. The oldvalue and
newvalues are passed to any event handlers subscribed.

Subscription to this event allows the developer to know when the thumb of the
EventSlider control has been changed to a different time. This event is raised when
the property changes by any means, whether it be by user manipulation on the user
interface or through code.

During the ISupportInitialize process, when BeginInit is called, this event is
suppressed. When the EndInit method is invoked, if there is a change to the
CurrentTime property as part of the initialization, this event is raised.

10.4 EndTimeChanged

Event argument type:

System.Windows.RoutedPropertyChangedEventArgs<DateTime>

Approved for public release; distribution unlimited.
24

This event fires whenever the EndTime property is changed. The oldvalue and
newvalues are passed to any event handlers subscribed.

Subscription to this event allows the developer to know when the time window of
the EventSlider control has been changed. This event is raised when the property
changes by any means, whether it be by user manipulation on the user interface or
through code.

During the ISupportInitialize process, when BeginInit is called, this event is
suppressed. When the EndInit method is invoked, if there is a change to the
EndTime property as part of the initialization, this event is raised.

10.5 StartTimeChanged

Event argument type:

System.Windows.RoutedPropertyChangedEventArgs<DateTime>

This event fires whenever the StartTime property is changed. The oldvalue and
newvalues are passed to any event handlers subscribed.

Subscription to this event allows the developer to know when the time window of
the EventSlider control has been changed. This event is raised when the property
changes by any means, whether it be by user manipulation on the user interface or
through code.

During the ISupportInitialize process, when BeginInit is called, this event is
suppressed. When the EndInit method is invoked, if there is a change to the
StartTime property as part of the initialization, this event is raised.

11. Methods

11.1 BeginInit

Parameters: none

This method is defined in the System.ComponentModel.ISupportInitialize
interface.

This method begins a batch initialization of properties on the slider. No events are
fired or property changes made to the slider control until the batch initialization is
completed with the EndInit method. This allows code to set a number of properties

Approved for public release; distribution unlimited.
25

together without them changing each other as during normal operation of the
control.

This is the preferred method for initializing the EventSlider through code.

11.2 EndInit

Parameters: none

This method is defined in the System.ComponentModel.ISupportInitialize
interface.

This method completes a batch initialization of properties on the slider. All changes
made to the properties of the control are applied, and any appropriate events are
fired to note changes.

This is the preferred method for initializing the EventSlider through code.

11.3 EventSlider

Parameters: none

This method is the public constructor of the EventSlider control and takes no
parameters.

11.4 OnApplyTemplate

Parameters: none

This method is a required override for custom controls. This method hooks up the
template with objects and events internal to the operation of the slider.

11.5 SetDefaultIntervals

Parameters: none

This method resets the intervals contained in the Intervals property back to the
defaults described in this document under the Intervals property. When this method
is called, the CurrentInterval property is set to the largest default interval, which is
7 days.

Approved for public release; distribution unlimited.
26

11.6 UpdateEvents

Parameters: System.Collections.Generic.IEnumerable<object>

This method allows for updating the list of events on the slider instead of replacing
them completely by setting the Events property. The IEqualityComparer set in the
EqualityComparer property is used to determine if the events in the new list of
events passed as a parameter has overlap with the existing list in the Events
property. New events from the list are added, and events not in the new list are
removed from the Events property so it matches the parameter. This should result
in faster updates to the slider for small changes in the events collection.

12. Conclusion

The EventSlider is a custom WPF control that displays vertical lines representing
events on a sliding time scale. With this control integrated into an application, one
can visualize any kind of time-related data in a sensible graphical manner. A user
is able to scroll through and select events in time in such a manner that the rest of
the application can do a more detailed presentation about these events.

The detailed instructions contained in this manual allow a developer to smoothly
integrate the control into any WPF application. The API reference fully described
all of the properties, events, and methods available on the control that may be
used to manipulate the events shown and select a single event or time that a user
is interested in.

Approved for public release; distribution unlimited.
27

 1 DEFENSE TECH INFO CTR
 (PDF) DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RSRCH LAB
 RDRL CIO L

IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRNTG OFC
 (PDF) A MALHOTRA

 4 US ARMY RSRCH LAB
 (PDF) RDRL CII B
 C SCHLESIGER
 A RAGLIN
 S RUSSELL
 RP WINKLER

Approved for public release; distribution unlimited.
28

INTENTIONALLY LEFT BLANK

	List of Figures
	1. Introduction
	2. Visual Elements of the EventSlider
	3. Manipulation
	4. Library and Namespace
	5. Event Data
	6. Initialization
	7. Currency
	8. Runtime Changes
	9. Application Programming Interface (API) Reference
	9.1 Properties
	9.1.1 ColorPath
	9.1.2 ColorPathProperty
	9.1.3 CurrentEvent
	9.1.4 CurrentEventChangedEvent
	9.1.5 CurrentEventProperty
	9.1.6 CurrentInterval
	9.1.7 CurrentIntervalChangedEvent
	9.1.8 CurrentIntervalProperty
	9.1.9 CurrentTime
	9.1.10 CurrentTimeChangedEvent
	9.1.11 CurrentTimeProperty
	9.1.12 EndTime
	9.1.13 EndTimeChangedEvent
	9.1.14 EndTimeProperty
	9.1.15 EqualityComparer
	9.1.16 EqualityComparerProperty
	9.1.17 Events
	9.1.18 EventsProperty
	9.1.19 Intervals
	9.1.20 IntervalsProperty
	9.1.21 LineColor
	9.1.22 LineColorProperty
	9.1.23 MergedLineColor
	9.1.24 MergedLineColorProperty
	9.1.25 ShowMergedLines
	9.1.26 ShowMergedLinesProperty
	9.1.27 ShowTicks
	9.1.28 ShowTicksProperty
	9.1.29 SnapsToEvent
	9.1.30 SnapsToEventProperty
	9.1.31 StartTime
	9.1.32 StartTimeChangedEvent
	9.1.33 StartTimeProperty
	9.1.34 TickColor
	9.1.35 TickColorProperty
	9.1.36 TickFontSize
	9.1.37 TickFontSizeProperty
	9.1.38 TimePath
	9.1.39 TimePathProperty
	9.1.40 ZoomInAtPointer
	9.1.41 ZoomInAtPointerProperty
	9.1.42 ZoomInCommand
	9.1.43 ZoomOutCommand

	10. Events
	10.1 CurrentEventChanged
	10.2 CurrentIntervalChanged
	10.3 CurrentTimeChanged
	10.4 EndTimeChanged
	10.5 StartTimeChanged

	11. Methods
	11.1 BeginInit
	11.2 EndInit
	11.3 EventSlider
	11.4 OnApplyTemplate
	11.5 SetDefaultIntervals
	11.6 UpdateEvents

	12. Conclusion

