
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

412TW-PA-16437 
 

Ridit Analysis for Cooper-Harper & other 

Ordinal Ratings for Sparse Data –  

A Distance-based Approach 

 

ARNON HURWITZ, PhD 
 
 

AIR FORCE TEST CENTER 
EDWARDS AFB, CA 

 
 

SEPTEMBER 2016 
 
 

 

4 
1 
2
T
W
C
m 

 
 
 
 
 

Approved for public release; distribution is unlimited. 
412TW-PA-16437 

 

412TH TEST WING 
EDWARDS AIR FORCE BASE, CALIFORNIA 

AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE  



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

09-19-2016 
2. REPORT TYPE 

TECHNICAL PAPER 
3. DATES COVERED (From - To) 

09-19-2016 

4. TITLE AND SUBTITLE 
 

RIDIT ANALYSIS FOR COOPER-HARPER & OTHER ORDINAL 

RATINGS FOR SPARSE DATA – A DISTANCE-BASED APPROACH 

 

 

 
 

 

 

 

5a. CONTRACT NUMBER 

 

5b. GRANT NUMBER 

 

5c. PROGRAM ELEMENT NUMBER 

 

6. AUTHOR(S) 
 

ARNON HURWITZ, PH.D.  

 

 

 

 

 

 

 

5d. PROJECT NUMBER 

 

5e. TASK NUMBER 

 

5f. WORK UNIT NUMBER 

 

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 

 
 

412th Test Wing 

307 East Popsun Ave 

Edwards AFB CA 93524-6630 
 

 

 

 

 

 

 

 

 

 

 

 

 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

412TW-PA-16437 
 

 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR’S ACRONYM(S) 

N/A 
 

11. SPONSOR/MONITOR’S REPORT  

      NUMBER(S) 

 

12. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release A: distribution is unlimited. 
 

 

 

13. SUPPLEMENTARY NOTES 

CA: Air Force Test Center Edwards AFB CA                     CC:  012100 

14. ABSTRACT 
Ordinal categorical data (OCD), such as opinion rankings, are common in many areas of application. In the Air Force, Cooper-

Harper ratings are used extensively for the assessment of Flying Qualities. OCD is not, however, a ratio-scale measurement and cannot be 

treated as ordinary numbers. Notwithstanding this, the ordinal scores are often regarded as ratio-scale and analyzed incorrectly using means 

and variances. A method of correct analysis of OCD leading to statistically valid hypothesis tests and based on a method of probability 

scoring or ‘Ridits,’ has found wide applicability for other large-data-set applications such as Epidemiology. This paper explains the use of 

Ridits and examines how we might effect a Ridit analysis on the often sparse data sets in many Flying Qualities applications. All flying 

qualities data in this paper is synthetic, and has been simulated to illustrate Ridit analysis. The method of this paper is to fit empirical Beta 

distributions to observed data, and then to use a randomization approach to make inferences on the difference between distributions based 

on a distance metric.  
 

15. SUBJECT TERMS Borg scale rating; Cooper-Harper; flying qualities; Hellinger distance; human factors; 

ordinal categorical data; Ridit; sparse data; statistical defensibility. 
 
16. SECURITY CLASSIFICATION OF: 

Unclassified 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 

412 TENG/EN (Tech Pubs) 

a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
c. THIS PAGE 

Unclassified None 19 
 

19b. TELEPHONE NUMBER (include area 

code) 

661-277-8615 
  Standard Form 298 (Rev. 8-98) 

Prescribed by ANSI Std. Z39.18 

 



1 
 

Ridit Analysis for Cooper-Harper & other Ordinal 

Ratings for Sparse Data – A Distance-based Approach 
 

 

Arnon Hurwitz, PhD 

 

Statistical Methods Office 

Edwards Air Force Base 

Building 1440, #115 

E. Popson Avenue 

Edwards, CA 93524 

 

Approved for public release; distribution unlimited. 412TW-PA-16437 

 

 

Abstract 

 

Ordinal categorical data (OCD), such as opinion rankings, are common in many areas of 

application. In the Air Force, Cooper-Harper ratings are used extensively for the assessment of 

Flying Qualities. OCD is not, however, a ratio-scale measurement and cannot be treated as 

ordinary numbers. Notwithstanding this, the ordinal scores are often regarded as ratio-scale and 

analyzed incorrectly using means and variances. A method of correct analysis of OCD leading to 

statistically valid hypothesis tests and based on a method of probability scoring or ‘Ridits,’ has 

found wide applicability for other large-data-set applications such as Epidemiology. This paper 

explains the use of Ridits and examines how we might effect a Ridit analysis on the often sparse 

data sets in many Flying Qualities applicationsi. The method of this paper is to fit empirical Beta 

distributions to observed data, and then to use a randomization approach to make inferences on 

the difference between distributions based on a distance metric.  

 

Key words: Borg scale rating; Cooper-Harper; flying qualities; Hellinger distance; human 

factors; ordinal categorical data; Ridit; sparse data; statistical defensibility. 

 

1 Introduction 

 

Ordinal categorical dataii, such as opinion rankings for categories of products or other 

items, are common in many fields where ratio-scale measurements are unavailableiii. In the Air 

Force, Cooper-Harper ratings (Cooper & Harper, 1969; Harper & Cooper, 1986) are used 

extensively for the assessment of Flying Qualities (Wilson & Riley, 1989, 1990). An often-made 

assumption (Agresti, 1984, pg. 2) is that there is a latent but unobserved continuous ratio scaleiv 

underlying the observed ordinal choices. However, such ordinal scores are often treated as ratio-

scale measurements, which they are not, and analyzed incorrectly using means and variances. A 
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method of correct analysis leading to statistically valid hypothesis tests and based on a method of 

probability scoring or ‘Ridits,’ was first proposed by Bross (1958). Bross named the Ridit after 

‘with Reference to an Identified Distribution.’ Ridit analysis was later formalized by Brockett 

and Levine (1977), grounding the concept of a Ridit on the basis of intuitively reasonable 

postulates. 

 

The following exposition explains the use of Ridit analysis and examines how we might 

analyze sparse data, common in many Cooper-Harper Flying Qualities applications, using Ridit 

and related analysis techniques.  Ridit analysis is simple to compute, and permits statistics such 

as hypothesis test power, necessary to determine if a proposed test plan is statistically defensible, 

to be estimated as well. We base our presentation on two examples:  

1. A college course evaluation by students. This introduces basic concepts and 

notation.v  

2. Fatigue scores by pilots flying several sorties at increasing levels of G-stress. 

In many applications where one is asked to compare OCD results taken under different 

conditions—for example, different flight configurations—one is faced with the problem of small 

sample sizes. The standard Ridit analysis, as found in the literature (for example, Selvin, 1977, 

2004) applies correctly to large sample sizes and it is thus necessary to discover a way to better 

treat the analysis in the case of small samples. It is the contribution of this paper to suggest an 

approach that does not depend on the large-sample Normal-distribution approximation.  

 

We introduce standard Ridit analysis in Example 1 below, and then apply it to a small 

sample case in Example 2. This second example will show how erroneous confidence intervals 

arise using the standard approach. In the last section of this paper, we derive an alternative 

analysis that does not require Normal-distribution assumptions, and apply it to the data of 

Example 2.  

 

2 Examples 

2.1 Example 1:  Evaluation of a course by students   

 

Consider the following data analysis (Croushore & Schmidt, 2010): Students were asked 

to enter scores to the question: ‘This course fulfilled my expectation’ on a questionnaire with 

their answers chosen from 5 ordered rankings from ‘Strongly Disagree’ through ’Strongly 

Agree.’ There were 5 in the #1 ‘Comparison’ category, 8 in the #2 category, etc. These 

cumulated scores were compared to the previous year’s score (the ‘Reference’ column) where 

there were 3 in the #1 category, 6 in the #2 category, etc. 
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Table 1   Student preference score frequencies in each of two years 

 

 
 

 

The important aspects of this type of data are: 

1. The score categories are ranked in some ascending (or descending) order 

2. The rankings are recognized as possibly quite different in ‘distance’ apart  

Let V and X denote independent discrete random variables taking values in the set {1, …, 

K}, drawn respectively from a Reference population V and a Comparison population X. In this 

example, K=5. Let  𝑞𝑘 = 𝑃(𝑉 = 𝑘), 𝑎𝑛𝑑 𝑝𝑘 = 𝑃(𝑋 = 𝑘), 𝑤𝑖𝑡ℎ 𝑘 𝑖𝑛 {1, … , 𝐾},   and denote the 

column vectors (𝑞1, … , 𝑞𝐾)′  and  (𝑝1, … , 𝑝𝐾)′  by q and p respectively. Vectors such as q and p 

form probability distributions over {1, …, K}.  

p is estimated by dividing the observed frequency, or count, in the comparison 

population’s cell entries by the total number of X counts (m) for that population; for example, 

�̂�1 =
5

27
= 0.185, where ‘^’ indicates an estimated value. Thus  �̂�′ = {�̂�1, … , �̂�𝐾}.   In what 

follows, we dispense with the ‘^’ notation and refer simply to p, mentioning the difference as a 

need arises.  �̂�  is defined similarly, with the total number of V counts being n. In the current 

example, both m and n equal 27. 

Definition:  

The k-th Ridit for the reference population V is 

𝑟𝑘 =  {

𝑞1

2
   𝑓𝑜𝑟 𝑘 = 1,

𝑞1 + ⋯ + 𝑞𝑘−1 +
1

2
𝑞𝑘    𝑓𝑜𝑟 𝑘 > 1

 

(1) 

The k-th Ridit for the comparison population X is  
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𝑡𝑘 =  {

𝑝1

2
   𝑓𝑜𝑟 𝑘 = 1,

𝑝1 + ⋯ + 𝑝𝑘−1 +
1

2
𝑝𝑘    𝑓𝑜𝑟 𝑘 > 1

  

(2) 

Intuitively, a Ridit is akin to the cumulated probability density function of its given 

population, with a splitting of the k-th category in half. All the quantities necessary for a Ridit 

analysis are easily computed in a spreadsheet program, as we see in Table 2, which shows Table 

1 expanded by estimated values for p, q, rp and rq. 

Table 2   Original data plus Ridit calculations for student scores 

 

 

The sum of column rp, which is the inner product of vectors r and p (that is, r’p in 

vector notation), equals 0.411. This sum is denoted R(p|q) and is called ‘the mean Ridit of the 

reference population with respect to the comparison population.’vi That is 

𝑅(𝒑|𝒒) =  ∑ 𝑟𝑘𝑝𝑘
𝐾
𝑘=1   =  0.411 

(3) 

This quantity is an estimate of the expectation of the Ridits of V (that is, the r) under the 

distribution (that is, the p) of the Comparison population X, or 𝐸𝑋(𝒓).  

For any k ≤ K, 𝑟𝑘 is the cumulated sum of the known or observed probabilities of the 

Reference population V (i.e. the   𝑞𝑗<𝑘) up to and including   
𝑞𝑘

2
; it is thus, intuitively, the 

probability that a response from the Reference population V is less than the ‘middle’ of the k-th 

category.vii It can be shownviii  that  

𝑅(𝒑|𝒒) = 𝑃(𝑉 < 𝑋) +  
1

2
𝑃(𝑉 = 𝑋) 

(4) 

Consider an interpretation of the mean Ridit R(p|q): By (4) it is clear that R(p|q)  is the 

probability that the reference distribution V lies to the left of the comparison distribution X, with 

the ‘break-even’ situation being R(p|q) = ½ . If R(p|q) > ½, (i.e. if the probability R(p|q) is 

higher than ½ ), then {𝑞𝑘}, the probability mass of  V will lie mostly to the left of {𝑝𝑘}, the 
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probability mass of X, as equation (1) implies. In Student Evaluation terms, this implies V is 

closer to the ‘Strongly Disagree’ end of the scale than X. The reverse is true of R(p|q) < ½, in 

which case X will be to the ‘left’ of V or, on average, closer to the  ‘Strongly Disagree’ end of 

the scale than V.  

𝑅(𝒑|𝒒) is thus a proxy for the probability that, on average, an individual drawn at 

random from the Reference population V is ‘to the left’ of a random individual from the 

Comparison population; in other words: 𝑅(𝒑|𝒒) ≈  P(�̅� < �̅�). The higher the value of 𝑅(𝒑|𝒒), 

the more likely a V-individual will be ‘to the left’ (that is, in this example, to score ‘#1=Strongly 

Disagree’) compared to an X-individual, and vice-versa.  

Since  𝑅(𝒒|𝒒) =  ∑ 𝑟𝑘𝑞𝑘 =𝐾
𝑘=1  𝒓′𝒒 =

1

2
∑ 𝑞𝑘

2𝐾
𝑘=1 + ∑ 𝑞𝑖𝑞𝑗𝑖≠𝑗 =

1

2
(𝑞1 + 𝑞2 + ⋯ + 𝑞𝐾)2, it 

follows that 𝑅(𝒒|𝒒)=  0.5 , and this holds for any q. That is, the mean Ridit of the Reference 

population V with respect to itself is the inner product 𝒓′𝒒, and always equals 
1

 2
.  

A one-sided null hypothesis of interest in comparing the mean Ridits of the two 

populations to test if {V is ‘to the left’ of X} is 

𝐻0: 𝑅(𝒑|𝒒) >
1

2
 

(5) 

If we reject this hypothesis, by observing that  𝑅(𝒑|𝒒)  is significantly less than ½, we 

may conclude that the probability that {V is to the left of X} is low, and therefore it is rather the 

X scores that are ‘to the left’ of V scores on average. A test of the null hypothesis can be 

executed by forming the statistic Z, where 

𝑍 =
�̿� −

1
2

√𝑉𝑎𝑟(�̿�)
 

(6) 

and where �̿� = 𝑅(�̂�|�̂�) , the estimate of r  given by entering the observed values of p and 

q into R(p|q) .  Z has an approximately Normal (0, 1) distribution for large enough m and n.ix  

The variance of �̿�  is sometimesx taken as 1/(12m); this assumes that q is known, which it 

seldom is and this variance estimate is better replaced by the more conservative estimate 

𝑉𝑎𝑟(�̿�) =  
1

12𝑚
+

1

12𝑛
 

(7) 

which is a variance formula given by Selvin (1977). Doing the Z-test for the Student Scores 

example with these formulas gives 
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𝑍 =
0.411 –  0.5

√ 1
12𝑥27 +

1
12𝑥27

 

(8) 

So Z = - 0.089/0.0785 = -1.132. The critical Normal (0, 1) left-tail Z value for a one-

sided hypothesis test at the 95% level, 𝑍0.05 = −1.645, so the test result is: ‘No significant 

difference detected’ between this year’s and last year’s student scores.xi That is, there is no 

evidence to suspect that X is ‘to the left’ of V.  

The example above served to introduce Ridit definitions and the usual mean-Ridit test for 

the factor ‘Student Year’ being presented at two levels, namely: Current year and Previous year. 

We now we examine an example where the input factor is given over several levels. In addition, 

we examine how we might construct confidence intervals for the Ridit means, and how the fact 

of small data samples may affect the confidence intervals for these means. 

 

2.2 Example 2: Analysis of Borg-scale Fatigue levels over several stages of G 

 

Five pilots were assigned to fly several repeated sorties at increasing G (gravitational 

stress) levels and their ‘Fatigue’ was measured by responses scored by an adjusted Borg-scale 

measure. The standard Borg scale measures physiological exertion expressed on a range of 6 to 

20, with 6 being ‘no exertion at all.’ The adjusted scale used in the present example went from 0 

through 10, with 0 being ‘no exertion at all.’  This adjusted scale is seen to be very similar to the 

Cooper-Harper scale.   These scores are plotted in Figure 1. Note that G1.5 was set at slightly 

above stationary, ground-level G. G85 and G95 refer to repeated maneuvers at G8 and G9 

respectively. No observed score exceeded level 5. 
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Figure 1   Adjusted Borg scores for ‘Fatigue’ vs. increasing G levels 

 

The counts of recorded Borg scores for each G level were entered into Table 3. For example, in 

column G1.5, there were 8 scores of ‘0’, one score of ‘1’, etc.   This layout enables the Ridit 

calculations to be easily done. 

Table 3   Adjusted Borg scores given by pilots flying at increasing G levels 

 

 

Taking G1.5 as a fixed baseline, and comparing the fatigue scores for increasing G levels, 

the 95% Bonferroni-adjusted t-value (lower-tail) percentile for k=6 comparisons against G1.5 as 

the reference distribution (d.f. =18, and using 1-α/2k) is 0.004; thus we see that by these t-tests 

that G6, G8, G85 and G95 are significantly different to G1.5.  The complete results are given in 

Table 4. 
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Table 4 Ridits for the Borg Fatigue scores vs. increasing G levels, and the probability that 

each value is greater than the G1.5 reference level by Bonferroni-adjusted t-value 

 

95% confidence intervals at each G-value might be constructed using these Ridit values 

and the adjusted t-value, as shown in Figure 2.  

 
 

Figure 2   Plot of Ridits and their 95% Bonferroni-adjusted confidence intervals for 

the Borg Fatigue scores vs. G  

 

 The figure bears out the conclusions of Table 4 except for an overlap of the 0.5 line at 

G7. As will also be noted, some of the confidence intervals overlap the endpoints of the (0, 1) 

interval to which Ridits are constrained, and the graph of this analysis should be taken as an 

approximate indication of significant fatigue-level differences.  

 

 3.1 A Distance-Based Approach 
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So far we have shown that standard Ridit analysis applies quite well to inferences on the 

differences of means even in the case of small samples. However, the problem of incorrect 

confidence intervals is a problem that needs be addressed. One solution to this problem is to take 

a transform of the Ridits that might better approximate a Normal distribution for the small-

sample case. Such an approach is discussed in Hurwitz (2015); the transform that was taken was 

the logistic transform, and an assumption was made that this gave a Normally-distributed 

situation that could be used in making inferences about Ridit means and their confidence 

intervals. This solved the problem of inappropriate confidence bounds as evinced in Figure 2 

above. However, it is not always certain that the logit transform—or any transform—will give an 

adequate approximation to Normality. In the following discussion we will take a different 

approach to the problem. 

 

Consider the problem of comparing the ‘distance’ between any two discrete probability 

distributions {𝑝𝑖 } and {𝑞𝑖 } defined over a common domain. One such measure is the discrete-

probability-distribution version of the (squared) ‘Hellinger Distance’ (Yang & Le Cam, 2000) 

 

 𝐻2(𝑝, 𝑞) = 1 − 𝐵𝐶(𝑝, 𝑞) 

(9) 

 where BC(p, q) is the ‘Bhattacharyya Coefficient’ (Bhattacharyya, 1943) 

 

BC(p, q) = ∑ √𝑝𝑖𝑞𝑖𝑎𝑙𝑙 𝑖  . 

(10) 

The maximum Hellinger distance 1 is achieved when 𝑝𝑖 assigns probability zero to every 

set to which 𝑞𝑖 assigns a positive probability, and vice versa. In Table 5 we show the 

consequence of using 𝐻2 to gauge the distance between discrete distributions of fatigue ratings. 

Table 5   Three Hypothetical Discrete OCD Fatigue Distributions 

 

It is clear what will happen to 𝐻2 when the ratings are turned into their corresponding 

probability values – column G1 vs. G2 will have  𝐻2 = 0, as we’d expect (as the distributions are 

‘far apart,’) but columns G1 vs. G3 will also have 𝐻2 = 0, as we do not expect between two 

distributions that are ‘quite close together.’  
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A solution here is to fit continuous distributions over the discrete ones we observe, and 

then to apply the continuous-distribution version of  𝐻2 to these instead. First, however, we need 

to decide on how to construct the ‘common domain’ of Ridits (𝑟𝑖) on which the definition of 𝐻2 

will depend. In our previous ‘standard’ Ridit treatment, as can be seen in Table 3 above, we took 

one column—namely G1.5—as the ‘reference distribution’ and compared the other columns to 

it. This has the advantage of carrying the idea of independent means through to our inferences. 

However, the ‘domain’ that we implicitly use is then restricted to those three rows of Table 3 

where the 𝑞𝑖 corresponding to G1.5 are non-zero, namely rows 1, 2, and 3. The remaining three 

rows then have Ridits equal to 1.0, as those are the cumulated value of the probabilities for the 

G1.5 observations. A more satisfactory construct for a domain would be to have Ridit values 

distributed more evenly across the [0, 1] range, and this can be achieved by making the marginal 

row sums the new reference distribution, as shown in Table 6. 

Table 6   Ridit Reference Distribution based on Row Sums  

 

Table 7 shows the corresponding probability computations for the seven columns of 

observed Fatigue scores. These will be the same as those computed for Table 3. The difference 

here is that the Ridit column ‘r’ is now based on the marginal row sums rather than just on the 

G1.5 column. The domain of our probabilities is now more evenly spread across [0, 1]. The 

mean Ridits are also shown; formula is the usual �̅� = rp =  ∑ 𝑟𝑖𝑝𝑖𝑖   , one mean for each column. 

Table 7   Prob. Distributions of Fatigue Scores, with Ridits (r) based on Row Sums. 

Probability means over ‘r’ are shown on last line. 

 

Figure 3 illustrates the shapes of the seven observed probability distributions, given as 

vertical lines across the domain of the r’s, with a line connecting the tops of each vertical line. 
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Figure 3   Observed Probability Distributions of Fatigue Scores 

 

The next step is to fit appropriate continuous distributions to the observed probabilities. A 

flexible choice for this is the Beta(α, β) family of distributions which have support (i.e. domain) 

over (0, 1) and shapes similar to those of the observed (discrete) distributions. We obtain 

estimates of the required seven (α, β) pairs via the method of moments formulas for the Beta 

distribution: 

∝ ̂ = �̅� ( 
�̅�(1−�̅�)

�̅�
− 1 ), if  �̅� < �̅�(1 − �̅�)   where the �̅�′𝑠 are given by the Σrp ’s in Table 7 

(11) 

𝛽 ̂ = (1 − �̅�) ( 
�̅�(1−�̅�)

�̅�
− 1 ), if  �̅� < �̅�(1 − �̅�), and �̅� is an estimated variance. 

(12) 
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We already have the estimates for the  �̅�’s. The estimates for the  �̅�′𝑠  are derived by 

following the formulas for a weighted variance (our observations are given in weighted form, the 

weights being the probabilities  𝑝𝑖). The weighted variance formula, with weights  𝑤𝑖, ∑ 𝑤𝑖 = 1, 

 �̅� = ∑ 𝑤𝑖(𝑥𝑖 − �̅�)2    

(13) 

This translates, in our case, to   

�̅� = ∑ 𝑝𝑖(𝑟𝑖 − �̅�)2.  

(14) 

�̅� is the ‘rp’ mean for that column as given in Table 7.` 

One variance is computed for each column of 𝑝𝑖
′𝑠.  The results are shown in Table 8. The 

first two rows are for the check that   �̅� < �̅�(1 − �̅�); all instances pass this check. 

Table 8   Variance, check, and Beta Distribution parameters by Method of Moments 

 

Now we are in a position to construct fitted Beta distributions—one for each column of 

the Fatigue scores—against the observed probability histogram.  Figure 4 shows cumulated 

distribution fits for all seven distributions.  
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Figure 4    Cumulated Beta (fitted) vs (observed) Cumulated Probabilities 

 

As can be seen, the fitted continuous Beta distributions are reasonable approximations to 

the observed discrete probability distributions. This will form the basis of our inferences.  

We now compute the squared Hellinger distance between the continuous G1.5 and G8 

distributions, and use it as our metric for ‘distance apart.’ The formula for 𝐻2 given for 

continuous distributions is 

𝐻2 = 1 −
𝐵(

∝1+∝2

2 ,
𝛽1 + 𝛽2

2 )

√𝐵(𝛼1, 𝛽1)𝐵(𝛼2, 𝛽2)
 

(15) 

where ‘B’ is the Beta function. 

Computing all the 𝐻2 distances gives a symmetric matrix with 0’s on the diagonal; the 

0’s show the distance of a distribution from itself, and the matrix is symmetric since the distance 

is symmetric either way. This is shown on Table 9. 
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Table 9   Squared Hellinger Distances between all seven Fatigue distributions 

 

The distance between distribution ‘1’ (G1.5), and distribution ‘2’ (G5) is shown as 0.16. 

Could this distance have happened by chance? If one were dealing with independent Normal 

distributions, one could use a t-test to answer this question. In our present case, we can answer 

the question using a randomization trial as follows:  

Set the null hypothesis as Ho: G1.5 = G5. The alternative is ‘G1.5 ≠ G5’. Assume the 

null to be true. Draw a random sample size 10 (recall, 10 was our original Fatigue sample size 

for G1.5). Draw a second random sample from G1.5 as well. Compute 𝐻2 for this sample pair. 

Repeat (say) 10,000 times and collect the 10,000 values of   𝐻2. Now ask: ‘What proportion of 

the 10,000 distances are greater than or equal to 0.16?’ This can be computed as a simple ratio 

from the 𝐻2 data, and gives the probability ‘p’ that the null hypothesis is true. Doing this, we 

obtain: p = 0.789. This is a high probability, so we conclude that Ho, the null hypothesis, is true. 

G1.5 and G5 are too close to tell apart, so we have no evidence that they are different 

distributions. Taking the first row of 𝐻2 distances and doing the same using two random 

samples, both from G1.5, gives the probabilities of Table 10. 

Table 10   𝑯𝟐 distances, and the probability that each distribution = G1.5 

 

The results in Table 10 are in general agreement with the standard Ridit results given in 

Table 4. G1.5 is can be taken as equivalent to G5 and G7, but the other distributions are different 

to G1.5.  

3.2 Confidence intervals for the differences in means 

 

We have, so far in Section 3, examined the probabilities that two observed distributions 

of OCD data are the same or different and we have done so using the squared Hellinger distance. 

We could continue and develop confidence intervals around the squared Hellinger distances, but 
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the results would not be easily interpretable in Engineering terms. We will, instead, take a more 

intuitive approach and compute confidence intervals around the Ridit (rp) means, and we do this 

by using the fitted Beta distributions. Our (randomization-based) method is:  

1. Draw two samples, each size n=10, at random from each of two Beta distributions 

2. Compute the difference between the means 

3. Do this 10,000 times 

4. Compute a 100(1-alpha/2KK) CI based on proportions where KK=number of 

comparisons we will make (and gives the Bonferroni correction). 

This method, comparing G1.5 mean to all other means, gives the Confidence intervals in 

Table 11.  

Table 11   Bonferroni-adjusted CI’s on mean differences: G1.5 vs other means 

 

 Figure 5 give a graphical example of what we have done for the case of the difference 

between the means for G1.5 and G95. 
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Figure 5   Fitted Beta distributions for G1.5 and G95; Mean, Differences & C.I.’s 

 

 Table 10 shows that, with reference to G1.5, the distributions of G5 and G7 are either no 

different or close to no different. Table 11 bears this out, with the Ridit confidence intervals for 

G5 and G7 either including zero or close to including zero. For the other Ridit means difference 

to G1.5, Table 11 gives, for example, a CI for the G6 difference of [0.343,  0.745] around a ridit 

mean of 0.561. The distribution of OCD scores (and fitted Beta distribution) for G6 lies to the 

right of that for G1.5, and these results indicate that the mean Ridit value for G6 is above that for 

G1.5 by, on average, 0.561. This says that we can state, at a 95% level of confidence, that the 

probability distribution based on the G6 OCD results has an average that is 0.561 higher than 

that for the OCD results taken at G1.5: G6 gives significantly greater Fatigue scores than G1.5.  
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Conclusion 

We have developed a new method for comparing the results of OCD data distributions 

that is not based on the standard large-sample Ridit analysis methods. We have used a distance-

based metric and randomization tests to give inferences on distributions, and for confidence 

intervals on mean differences. The method used in our construction induces some dependence 

between the means, and this item needs to be further investigated. However, the results presented 

here are in line with independent-mean results derived earlier and our new method, we believe, 

gives a path to a better analysis of small sample OCD especially as no Normal-distribution 

assumptions need be made, and the confidence intervals so derived do not violate the bounds of 

the probability limits. 

 

Appendix A 

A1:  

𝑹(𝒑|𝒒) = 𝑃(𝑉 < 𝑋) +  
1

2
𝑃(𝑉 = 𝑋). 

Proof of A1:  

If drawings from V and X are independent, and for any k ≤ K, then the proof follows from: 

𝑟𝑘𝑝𝑘 = (𝑞1 + ⋯ + 𝑞𝑘−1 +
1

2
𝑞𝑘 )𝑝𝑘 , that is 

𝑟𝑘𝑝𝑘 = P ({V=1}∩ {𝑋 = 𝑘}) + ⋯ + 𝑃({𝑉 = 𝑘 − 1} ∩ {𝑋 = 𝑘}) +
1

2
 𝑃({𝑉 = 𝑘} ∩ {𝑋 = 𝑘}). 
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Endnotes 

 
i All flying qualities data in this paper is synthetic, and has been simulated to illustrate Ridit 

analysis 
ii A general reference is Agresti, 1996 
iii For a discussion on measurement taxonomy, see 

http://en.wikipedia.org/wiki/Level_of_measurement 
iv Measurements which are comparable to each other in terms of size or distance apart. 
v The terminology and notation given in Beder & Heim (1990) is followed closely 
vi Beder & Heim, 1990, reverse this wording and give: ‘the mean Ridit of the comparison 

population with respect to the reference population’; our wording, however, is more in line with 

the actual construct of 𝑅(𝒑|𝒒). 
vii The ‘middle’ or the ‘median’ of a category is not an exact term as a category is ordinal, not 

ratio-scale 
viii See Appendix A, result A1 
ix Beder & Heim, 1990, formula (17). 
x Bross (1958) 
xi Note that in Croushore & Schmidt  (2010), the variance was taken as 1/(12m), so estimated 

standard error in that paper is 0.056 

                                                           

http://en.wikipedia.org/wiki/Level_of_measurement
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Overview

• Ridit method/example – Course Rating by Students 

– Basic Method & Notation

• Ridit example – Borg Scores for Fatigue Levels 

– Means & Confidence Intervals using standard method

– Distribution comparisons using a distance-based 

method

– Confidence Intervals using randomization
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Ridit Analysis

• Consider a simple example: 27 students are 

asked to answer ‘Course was good?’  from #1 

(Strongly Disagree) to #5 (Strongly Agree)

Good

Bad



Ridit Analysis – (continued)

• Proportions p and q (i.e. estimated probabilities) 

are computed from the data. E.g. 0.185 = 5/27, etc.

• A population (Last year’s) is set as the ‘Reference’

• The k-th ridit of the Ref. population is defined as:  

𝑟𝑘 =  

𝑞1

2
𝑓𝑜𝑟 𝑘 = 1,

𝑞1 +⋯+ 𝑞𝑘−1 +
1

2
𝑞𝑘 𝑓𝑜𝑟 𝑘 > 1

4



Ridit Analysis

• Form columns rp and rq, and sum (∑) each one

• ∑ rp = 0.411 is the probability that the Reference pop. will be ‘to the left’ of 

the Comparison pop. 

– If the p’s are ‘bunched’ to the right versus the q’s, then ∑ rq < ∑ rp

– that is, high ∑ rp ⟹ Reference pop. (q’s) is bunched ‘to the left’ of p’s

– that is, high ∑ rp ⟹ Reference pop. (last year) was worse than this year

• Our  HYPOTHESIS  is that  ∑ rp ≥ 0.5      What does this mean?

– If true, then last year’s (Reference) scores are worse than this year’s

– However, it’s obvious that ∑ rp = 0.411 ≤ 0.5 - So was last year better?

– Can only say this if experimental error = 0  We need a statistical test!
5

To 

the

left

To 

the

rt.



Ridit Analysis – Hypothesis Test

• ‘Experimental error’ means that, if the underlying situation stays the 

same, but we draw a new sample, the numbers (p’s and q’s) we see 

will be somewhat different. So conclusions might change

• To test Ho: ∑ rp ≥ ∑ rq = 0.5 , form t = (∑ rp – 0.5) / 
1

12𝑚
+

1

12𝑛
+

1

12𝑚𝑛

m = n = 27.  So t = (0.411- 0.5)/sqrt(0.0063)= -1.12, with d.f.= m+n-2 = 52

• Left-tail, critical t (at 95% confidence, d.f.=52) = -1.675, so do not reject Ho  

 We cannot say that this year’s scores are any better than last year’s

• NOTE: If we had another distribution (e.g. p-scores from another school, 

𝐩𝐨), we could test Ho: ∑ rp ≠∑ r𝐩𝐨 using q as ref., and var =
1

12𝑚
+

1

12𝑛

6



Borg-scale Fatigue Levels vs. G

7

• The Borg Scale measures physiological exertion and is 

given over a range of 6 through 20, with 6 being ‘No 

exertion at all’

• Five pilots flew several repeat sorties at different G levels 

and recorded ‘Fatigue’ on a modified Borg scale of 0 

through 10 – (very similar to a Cooper-Harper scale)

• The G levels were: G1, G2, … ,G6, G7 with G1 slightly 

above ground-level zero G as a ‘baseline,’ and G6 and 

G7 being repeated maneuvers at 8G and 9G respectively

• Is Fatigue at higher G levels significantly greater than 

Fatigue at G1 ? No observed Fatigue rating was > 5



Adjusted Borg scores for 

‘Fatigue’ vs. increasing G levels

8



Adjusted Borg scores given by pilots 

flying at increasing G levels

9



Ridit Analysis of the Borg scores

• Ridits for the Borg Fatigue scores vs. 

increasing G levels, and the probability that 

each value is less than the G1 reference level 

(by Bonferroni-adjusted t-value)

10



Ridit Plot + Confidence Intervals

• Plot of mean ridits and their 95% Bonferroni-adjusted 

confidence intervals for the Borg Fatigue scores vs. G

• Problem: Several CI’s show overlap of (0, 1). 

– This implies that our distribution theory is only approximate 
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COMPARING TWO DISTRIBUTIONS

• In OCD analysis, we really want to test if two score 

distributions—for example, G1 and G7 scores—differ

• Consider how we’d compare two distributions that we’ve 

turned into probabilities, like: G1 𝑝𝑖 ,G7 {𝑞𝑖}

• A ‘distance’ measure is 𝐻2 = 1 −  𝑝𝑖𝑞𝑖

• 𝐻2 is called the ‘Squared Hellinger Distance’, and is 1 if the 

𝑝𝑖 , 𝑞𝑖 , do not overlap, and in [0, 1) if they do. This seems 

OK as a ‘distance’, but there’s a problem: In the table below, 

Gx vs Gy has 𝐻2 = 0, which we’d expect, but so do Gx and Gz

12



FITTING BETA DISTRIBTIONS

• A solution to this problem is to fit continuous

distributions to the observed discrete probability data.

• A flexible distribution to fit, in the case of a discrete 

distribution lying in [0, 1], Is the Beta(α, β) distribution

• For any given discrete probability distribution, we need 

an estimate of α and β. These are given by the ‘Method 

of Moments’ formulas:

 ∝ =  𝑥 (
 𝑥 1−  𝑥

 𝑣
− 1 ), if   𝑣 <  𝑥(1 −  𝑥),  𝑥 is a mean

 𝛽 = (1 −  𝑥) (
 𝑥 1−  𝑥

 𝑣
− 1 ), if   𝑣 <  𝑥 1 −  𝑥 ,  𝑣 a variance

 𝑥 =  𝑟𝑖 𝑝𝑖 for each distribution,  𝑣 =  𝑝𝑖(𝑟𝑖 −  𝑥)2 .
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A Common Domain is Required

• Hellinger’s Distance requires that the distributions we are 

comparing be defined over a common domain

• Our reference-derived ridits will serve as the domain over 

[0,1] but, using G1 as the ref. basis, pushes us to the left

• A solution is to use the row sums of G1…G7 as reference:

• This spreads the domain out better, and gives new means 

14



Observed Probability ~’s for G1…G7
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Fitted Beta ~’s for G1…G7
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The 𝑯𝟐 Distances Computed

• Hellinger distances for the continuous Beta distributions 

can now be computed (B is the beta-function) as:

• Applying the above formulas, obtain {α, β} for all seven 

distributions and their H² distances from G1:

17



Use 𝑯𝟐 to test distribution differences  

18

• Now we have the distance from G1 (as a reference) to all 

the other six distributions, we can use the H²’s to run 

randomization tests to find the probability that a null 

hypothesis of the type Ho: G1=G2 is false:

1. Given: H²(G1, G2) = 0.016 

2. Take a random sample of size n=10 from G1, and another 

from G1 again. Compute H² between these two samples. Do 

this 10,000 times

3. Compute {number of times H² ≥ 0.016} / 10000. This is the 

estimated probability P that H² =0.016 will occur given Ho is true

4. P = 0.789, so Ho is likely to be true. All prob.’s shown below:



Use 𝑩𝒆𝒕𝒂 ~′𝒔 for confidence intervals on 

differences between means 

1. Draw two samples, each size n=10, at random from each 

of two Beta distributions

2. Compute the difference between the means. 

3. Do 1 & 2 10,000 times

4. Compute 100(1-alpha/2k) C.I. quantiles based on 

proportions where k=number of comparisons we will make 
(and gives the Bonferroni correction for a 95% overall confidence 

level; k=6; upper / lower quantile = 99.6% / 0.42%).

This method, comparing G1’s ridit mean to all other means, gives 

C.I.’s: So G3, (G5), G6 & G7 are all > G1: The probability that their 

OCD distributions are to the right of G1 is confirmed

19



Summary & Conclusions

• It is important to use ridits, or some other nonparametric method,  

when comparing different flight-test situations with ordinal categorical 

data (OCD) ratings such as Cooper-Harper, or the Borg scale

• RIDIT ANALYSIS is recommended as a simple technique to replace 

the incorrect use of ordinal categorical data as ratio-scale numbers. 

• We have demonstrated the use of ridit analysis in its standard form, 

and examined it for the case of student scores and Borg-scale ratings

• We have shown that ridit analysis applies to these cases, and that a 

new method –using fitted Beta distributions, a Distance-based 

method, along with randomization trials produce comparisons of mean 

values, and C.I.’s, that give valid probability results.
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