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1 Overview.
NOTE: The most important deliverable resulting from this award is
the Shadow Networks project. It is described in more detail in Sect.
2.

This award supported extensions to, and novel applications of, an increasingly useful machine
learning methodology known as symbolic regression. The PI of this award was involved in earlier
work that established this approach as a powerful method for discovering previously unknown
relationships within and among arbitrary data sets1.

Unlike more traditional linear and nonlinear regression methods, which attempt to find coef-
ficients (α) for equations with terms selected by the investigator, symbolic regression attempts to
make little to no assumptions about the form of the right-hand side of a set of equations. In other
words, the investigator does not need to select linear or nonlinear terms a priori. Symbolic regres-
sion is also preferred over other state-of-the-art machine learning methods such as deep learning
because symbolic regression is a white box modeling method: often, the models it produces may
be highly nonlinear yet compact, readable by any member from the domain of interest who is
mathematically literate.

For example, one result from this award was a model that can successfully predict the time
it takes for information to flow from individual i to individual j (Tij) as a function of structural
properties of the social network in which those individuals are embedded. One such property is
Lij , the shortest path in the network from i to j. Trained against social network ‘chatter’ (people
tweeting and retweeting information), symbolic regression constructed this model

Tij = Lij(1 + ln(Lij + ki + kj − cj +
N − k2i − k2j
LN
ij + kikj − ρ

)) (1)

which, even to a casual observer, can see that it takes longer for information to flow from individ-
ual i to j if they are more distant from one another in the social network. However, the additional
mathematical structure in this model indicates that there are more subtle influences between indi-
viduals’ location in a social network and how long it takes for information to flow between them.

Symbolic regression is useful in that it can often find relationships within a data set that are
missed by other regression methods because, in the latter case, the investigator may make the
wrong assumptions about what kinds of relationships may exist and thus include inappropriate
terms. Symbolic regression avoids this by allowing the investigator to make little or no assumptions
about what relationships may exist in a data set.

Over the course of this award, four projects were pursued: the first three involve applying
symbolic regression to novel domains such as social networks, brain imaging, and satellite imagery.
The fourth project involved theoretical work to improve symbolic regression itself. These four
projects are summarized as follows:

1. The Shadow Networks project. We have successfully adapted symbolic regression for
addressing the node prediction problem in social network data [2]: if a person, along with

1Bongard J. and Lipson H.(2007). Automated reverse engineering of nonlinear dynamical systems. Proceedings
of the National Academy of Sciences, 104(24): 9943-9948.

1
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all their messages, is deliberately ‘scrubbed’ from chatter collected from a social network,
how could one not only identify that such tampering had occurred, but where that missing
node may lie in the network (i.e. identify the friends of the erased person). More details are
provided in Sect. 2.

2. Symbolically regressing brain imaging data. Using functional Magnetic Resonance Imag-
ing (fMRI) data collected prior to this award, we have shown that applying symbolic re-
gression can find heretofore unknown relationships between brain regions, and that those
relationships can be used to predict behavioral tendencies of the participants. As example,
we found that a model produced by symbolic regression could be used to predict whether an
adolescent regularly consumed alcohol or not [1]. The model made successful predictions by
finding previously unknown relationships between regions of the brain implicated in reward,
emotion, and thirst. More details are provided in Sect. 3.

3. Symbolically regressing satellite imagery. In addition to large-scale data sets produced by
medical scans such as fMRI, environmental modeling from satellite data is another promis-
ing domain for symbolic regression. This award has enabled us to demonstrate a modeling
approach that intelligently balances requests for data for modeling against the differing costs
of data produced by less- or more-expensive sensors [9]. We have also adapted symbolic
regression for use with actual satellite data for predicting the amount of water contained in
the snows of the Hindu Kush [3, 6]. More details are provided in Sect. 4.

4. Improving symbolic regression. Much theoretical work has been accomplished as a result
of this award in order to improve symbolic regression. One pair of publications demonstrated
that symbolic regression can be hybridized with other gradient-descent regression methods
to produce a combined algorithm that outperforms either approach working alone [4, 5].
The heart of symbolic regression relies on stochastic modifications to existing models to
sometimes discover more accurate new models. In more recent work [7, 8] we have shown
that these modifications can be de-randomized somewhat to improve symbolic regression’s
ability to discover more accurate and more parsimonious models. More details about these
advances are provided in Sect. 5.

1.1 Human capital return on investment.
This award supported two postdoctoral associates: Ilknur Icke and Nicholas Allgaier.

Dr. Icke is now a senior engineer of scientific computing for Merck. There, she is developing
high throughput implementations for vaccine development and medical image registration. She
is also applying deep learning methods for automatically identifying the location of cardiac left
ventricles in medical scans.

Dr. Allgaier is now a postdoctoral associate in the University of Vermont Medical Center, work-
ing under the supervision of Hugh Garavan, one of the Principal Investigators of the Adolescent
Brain Cognitive Development (ABCD) Study, the largest long-term study of brain development
and child health in the United States, and the ENIGMA Study, an attempt to construct one of
the largest multi-site, data pooled, genetic and neuroimaging data sets. Dr. Allgaier is presently
applying some of the methods developed as part of this award to data from both of these studies.

2
Approved for public release; distribution is unlimited.



1.2 Other impacts from this award.
• Symbolic regression has become a common tool among the faculty, postdoctoral associates,

and graduate students who comprise the Vermont Complex Systems Center. We graduate
about a half dozen graduate students and postdoctoral associates a year who go on to take
up prominent positions in academia and industry. Most members are involved in analyzing
and synthesizing complex neural, biological, technological, and social networks. Common
application domains involve social network analysis, the smart grid, cyberinfrastructure, and
sociotechnical systems.

• PI Bongard has delivered a number of presentations on work drawn from this award:

May, 2016 Trusted autonomous systems. (ACFR, University of Sydney, Australia; Invited)
May, 2016 Trusted autonomous systems. (Intl. Symp. on Trusted Autonomous Systems, Australia; Keynote)
Mar, 2016 Philosophical implications of robotics. (UPitt HPS Annual Lecture Series; Invited)
Feb, 2016 Evo devo robo. (University of Toronto Cognitive Science Symposium; Invited)

Dec, 2015 ShanghAI lecture (simulcast to classrooms in Europe and Asia; Invited)
Dec, 2015 New Jersey Institute of Technology (host: Gal Haspel, biology; Invited)
May, 2015 Factory of Imagination lecture, Denmark (500 attendees; Keynote)
Feb, 2015 ShanghAI lecture (simulcast to classrooms in Europe and Asia; Invited)

Nov, 2014 Cornell Univeristy (host: Robert Shepherd, engineering; Invited)
Sept, 2014 University of Maryland workshop on soft robotics (Invited)
Aug, 2014 Scifoo (hosts: Nature, Google, O’Reilly Media, Digital Science; Invited)
July, 2014 Workshop on Artificial Life and the Web at ALife conference (Invited)
July, 2014 International Society for Artificial Life (ISAL) Summer School (Invited)
June, 2014 DARPA Biological Technologies Office (Invited)
June, 2014 Neural Systems & Behavior Summer School, Woods Hole Marine Biology Lab (Invited)
May, 2014 EPFL, Lausanne, Switzerland (host: Auke Ispeert; Invited)
Mar, 2014 National STEM Conference (Concept Schools), Cleveland, OH (Keynote)
Mar, 2014 Air Force Research Laboratories (AFRL), Rome, NY (Invited)

Dec, 2013 ShanghAI lecture (simulcast to 15 classrooms in Europe and Asia; Invited)
Nov, 2013 National Autonomous University of Mexico (host: Carlos Gershenson; Invited)
Oct, 2013 University of Iowa Delta Center (host: Mark Blumberg, psychology; Invited)

Sept, 2013 eSMC neuroscience/robotics graduate summer school (host: Andreas Engel; Invited)
Sept, 2013 Evolutionary Biology lecture, University of Zurich (host: Andreas Wagner; Invited)
Aug, 2013 Gordon Research Conference on Neuroethology (host: Heather Eisten, biology; Invited)
July, 2013 Soft Robotics Workshop at ETH, Zurich (host: Fumiya Iida, robotics; Keynote)
June, 2013 Evolution Meeting, SSE Presidential Symposium (host: Richard Lenski, biology; Invited)
June, 2013 Evolution Meeting, Education Symposium (host: George Gilchrist, NSF; Invited)
Mar, 2013 University of Texas at Austin (host: Dana Ballard, Computer Science; Invited)

Nov, 2012 Vassar College (host: John Long, biology; Invited)
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Nov, 2012 Harvard University (host: Radhika Nagpal, engineering; Invited)
June, 2012 Tufts University (host: Michael Levin, biology; Invited)
Apr, 2012 Tufts University (host: Barry Trimmer, biology; Invited)
Jan, 2012 University of Southern California (host: Francisco Valero-Cuevas, bioengineering; Invited)

1.3 Software deliverables.

• The source code for two versions of the enhanced symbolic regression method developed
throughout this award are available publicly. Either of these methods can be adapted to novel
data sets by anyone proficient in Python and machine learning methods:

– The github repository for forward semantic propagation in symbolic regression.

– The github repository for behavioral diversity in symbolic regression.

2 The shadow networks project.
The most important product produced by this award is the ‘Shadow Networks’ method. It is
summarized below, and a manuscript describing its technical details follows.

An important problem in analyzing data generated by people communicating over a social
network is identifying whether the communications have been deliberately tampered with. Such
challenges can be broken down into two classes of problems: link prediction and node prediction.
In the link prediction problem, it is assumed that edges have either been removed from a social
network (i.e., information about relationships between pairs of individuals have been erased) or
fictitious links have been added (i.e., fictitious relationships have been embedded in the network).

Several methods now exist for tackling the link prediction problem. However, before our work
in this award, there were no methods in existence for tackling the much harder node prediction
problem: a node and all of its edges are either deliberately erased (someone, along with all their
relationship information, is removed) or added (a fictitious actor is added to the network).

In a preliminary publication [2] we introduced a method for successfully addressing the node
prediction problem, albeit only for simulated social networks. (We are currently seeking relevant
real-world social network data for this project.) We have termed our particular approach to the
node prediction problem, which employs symbolic regression as a part, the Shadow Networks
approach.

A summary of the approach is as follows. Imagine one has access to several social networks. In
addition, one can observe not only the structural properties of that network—who is connected to
whom, and how—but also dynamic properties of that network—how information flows from one
person to another, and at what rate. Armed with this data, it is possible to train a model, using data
from these social networks, to successfully predict how long it generally takes for information to
flow from one person to another, given structural properties of the network. In essence the model
has the form

Tij = f(Si, Sj, Sij) (2)

4 
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where Tij represents the time (on average) it takes for information to flow from individual i to
individual j, Si is a set containing structural properties of i (i.e. how many friends he has in the
network, how close to a hub he is, etc.), Sj is a set containing structural properties of j, and Sij is
a set containing structural properties of the relationship between i and j (e.g. what is shortest path
linking i and j).

Once the model learns to make predictions of flow from structure, one can apply the model to
a new social network. The model then acts in a diagnostic fashion: it makes predictions for flow
between each pair of individuals in the network, and if its predictions systematically fail, it is likely
that that network has been tampered with in some way.

To develop an intuition for this idea, consider exposing a model to a series of pipes, each of
which is composed of k concrete segments. The model then observes water poured into one end
of the pipe, and measures how long it takes for the water to emerge from the other end of the
pipe. This model may learn, in this simple case, that the time for water to flow through the pipe is
proportional to the number of concrete segments making up the pipe. If the model is then exposed
to another pipe made up of three segments, but it takes water four units of time to traverse the pipe,
the model may predict that there is a fourth segment in the pipe that it was forbidden to see.

In the manuscript that follows, we demonstrate that our method can be used to detect whether
nodes have been removed (omission) or added (commission) to the network. Furthermore, in the
case of node removal, the model’s error tends to spike for individuals who are close to the hidden
node. This provides not only a signal that someone may be scrubbed from the network, but who
know about the scrubbing—the hidden actor’s colleagues, as evidenced by the network itself.

There are several limitations that currently exist with the method. To date it has only been
validated on synthetic data. We are currently seeking data from real social networks usable for
this method. Further, it assumes that the data on which the models are trained come from a fully
observable network, and that these training networks have not yet been tampered with. Future
work will address these limitations.

2.1 Relevance for U.S. defense and security.
The rapid rise of big data is posing novel challenges for security and defense, especially data
arising from social networks. It would be of great use to be able to automatically identify whether
data from social networks has been tampered with, and specifically whether information generated
by one or a few individuals have been deliberately erased.

The current method also does not make assumptions about what kind of information is flowing
across the network: it could be tweets flowing across a social network, packets flowing across a
computer network, or text messages flowing across a cellphone network.

Given this, it is possible that this method could be adapted for discovering trojan horses in
software and/or hardware systems, or cyberinfrastructure in general.

It is possible that the method could be adapted for other domains in which it is imperative to
find hidden individuals in a social network. One likely future domain of application is disease
modeling. If individuals suffering from the outbreak of a disease will not or cannot report to a
local clinic, data about those infected individuals is lost. However, if their friends and relatives do
report to the clinic, it may be possible to indentify a group of individuals who share social ties with
an individual who is not present award in the collected data. These peripheral individuals could
then be contacted to verify the existence of these missing individuals and how to contact them.

5 
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2.2 Bagrow et al. “Shadow Networks...” (2015).
A technical manuscript describing the shadow networks method in detail follows.
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Abstract

Complex, dynamic networks underlie many systems, and understanding these networks is the concern of a great

span of important scientific and engineering problems. Quantitative description is crucial for this understanding

yet, due to a range of measurement problems, many real network datasets are incomplete. Here we explore how

accidentally missing or deliberately hidden nodes may be detected in networks by the effect of their absence on

predictions of the speed with which information flows through the network. We use Symbolic Regression (SR) to

learn models relating information flow to network topology. These models show localized, systematic, and non-

random discrepancies when applied to test networks with intentionally masked nodes, demonstrating the ability to

detect the presence of missing nodes and where in the network those nodes are likely to reside.

∗james.bagrow@uvm.edu
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1 Introduction

The field of complex networks has emerged and matured over the last 15 years, heralded by small-world [1] and

scale-free networks [2], and principally enabled by the advent of readily available large-scale datasets. Much work

has been focused on simple descriptions of complex networks, leading to an evolving collection of structures, network

statistics [3, 4], and generative mechanisms [5, 6, 2].

All along, the problem of missing data has been both obvious and ubiquitous—few network datasets are complete

or nearly so—and yet this issue has largely been ignored. The body of work that does exist on missing data has mostly

focused on the problem of unrecorded edges or interactions [7, 8, 9, 10], while only some have explored the harder

problems of node and context omission [11, 12, 13] using various approaches such as inference based on maximum

likelihood estimation [14, 15].

While missing data is certainly understood to affect—sometimes dramatically—different kinds of static network

statistics in different ways [11], the effects of measurement error on dynamic, real social networks [16, 17, 18, 19]

remain largely unknown. This problem is especially challenging when the amount of data omission is not known

and can only be estimated from the observed data set. The implications for how to contend with a given network,

suspected to be corrupted in some fashion, are substantial. In the case of public health policy, for example, positive

evidence for the role of social contagion in the spreading of such disparate attributes as happiness [20], obesity [21],

and loneliness [22], have been challenged due to their reliance on under-sampled reconstructed social networks [23].

A systematic framework to accommodate missing data for static and dynamic networks remains elusive, and pro-

vides a great challenge to the network science community. Much success in the study of complex, dynamic networks

has come from approaches born out of statistical mechanics and dynamical systems, with the great example arguably

being Simon’s rich-get-richer model underlying scale-free networks [5, 6, 2]. Yet it is clear that many adaptive complex

systems are strongly algorithmic in nature, and are not well or completely described by integrodifferential equations.

Briefly, our approach to studying missing or hidden node detection is as follows. First, we construct a set of net-

work topologies (Sec. 2.1). We then use an idealized transaction model to simulate the flow of information “packets”

across these networks. These packets could represent IP packets flowing across a computer network, citations within

a scientific collaboration network, or messages passed among members of a social network such as Twitter (Sec. 2.2).

Next, the resulting transaction data is collected and fed to a stochastic optimization method. This goal of this step is

to generate a mathematical model that predicts the speed of information flow between pairs of nodes in the network,

given structural information about those nodes and the network they were drawn from (Sec. 2.3). Finally, the evolved

transaction model is presented with rates of information flow between nodes from a different network. If there are sys-

8 
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⋮ ⋮
76056 Tue 1:19pm

Tue 9:12am64639

43428 Mon 6:43pm

34675 Mon 3:09pm

18616 Mon 2:12pm

Packet Time

⋮ ⋮
82500 Tue 2:37pm

34675 Mon 3:01pm

12945 Mon 1:36pm

Packet Time

Figure 1: Illustration motivating the method. Nodes in this network pass information around (packets), and we monitor the arrival
times of these packets. The two blue nodes appear much farther apart topologically when the red node is hidden. Given the observed
information flows, the highlighted packet would appear to be arriving unusually quickly given the apparent long distance path it
likely took (red links). This unexpectedly rapid flow may be a clue that unseen network elements are present.

tematic errors or biases in the model’s prediction of information flow, this indicates that nodes may have been added

or removed from the network.

The intuition underlying our approach to node prediction may be clarified by considering the cartoon example

in Fig. 1. Two nodes are connected by a third node, making them two steps apart on the network topology. Due to

their close proximity, information should flow between them relatively quickly, on average. However, if the bridge

node is hidden from us, we may erroneously conclude these two nodes are actually quite far apart (illustrated in the

figure by the red path). We would then expect information flow should be slow between them, even for information

originating from other parties, and we would be surprised by the speed of flow we actually observe. If we consistently

overestimate the time it takes for information to appear at one node after it appears at the other, then this provides

evidence that a hidden presence in the network is facilitating the flow of information.

2 Methods

Here we describe the network topologies we will employ in this study, the details of how we simulate information flow

on these topologies, the predictive models we generate for the flow times, and the test procedure and measurements

we use to explore how well hidden nodes can be detected.
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2.1 Network model

To gauge the potential of our approach, we first developed it against simulated transactional networks. We used scale-

free networks generated according to the common preferential attachment model [5, 6, 2]. Each scale-free network

was grown to a size of N = 250 nodes by adding new nodes one at a time, and each new node attached to two existing

nodes preferentially according to their degree [2]. These undirected networks have a power-law degree distribution

Pr (k) ∼ k−3. The earlier a node is added to the network, the higher the degree it will tend to have. So hubs, highly

connected nodes, tend to be among the early nodes of the network.

2.2 Transaction dynamics

For each network that was constructed, we simulated transactions, the creation and movement of packets of content,

occurring between pairs of connected nodes. Each packet carries a unique identifier so that it can be tracked when it

appears at different nodes in the network, and each node maintains a growing, time-ordered list of the content packets

it has received. We simulated transactions as follows. At each time step, each node is activated with probability p = 1.

This may represent a member of an online social network logging into their account, or a node in a computer network

being turned on. For each node that is activated, it creates a new piece of content with probability pcreate = 1/9

or imports a piece of content from a neighbor with probability pimport = 2pcreate. In the former case, this may

correspond to a member of the social network Twitter creating a new tweet; in the latter case it may correspond to

them “retweeting” a tweet from someone they follow. The above probabilities were chosen to plausibly model the

relative frequencies of creating versus importing content; an experimenter may equally estimate their values from a

real dataset.

If a node i chooses to create a new packet, a new ID is generated and that packet is added to i’s list of content.

Neighbors of i may later choose to import this new packet into their own content lists, letting it spread throughout the

network. Importing works as follows. If node i chooses to import content, one of i’s neighboring nodes j is selected

at random (assuming it has neighbors). Once j is selected, the information packets in j’s list are scanned from most

recently generated (or imported) to earliest generated (or imported). The scan stops when an information packet is

found that is not contained in i’s list. If no such packet can be found, no action for node i is taken and the next activated

node is considered. If such a packet is found, it is copied from node j to node i.

This process is repeated for the next node that has been activated during the current time step. The simulation

of transactions halts when 3000 time steps elapse. With the chosen values of pcreate and pimport, each node will on

average participate in the transaction model 1000 times. To avoid any pathological effects the nodes are activated in
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randomized order for each time step.

Once the transactions have been simulated and we have a timeline of packets for each node, we then compute

the average time it takes for packets to flow between nodes. For every pair of nodes in a graph, we computed the

intersection between their respective sets of information packets. We thus obtained each packet that both nodes in a

pair either imported or created. We then computed the average time Ti j required for packets to travel between nodes i

and j

Ti j =

ni j∑

k=1

∣∣∣∣t(k)
i − t(k)

j

∣∣∣∣ , (1)

where ni j packets are shared by nodes i and j, and t(k)
i indicates the time step at which packet k was created (or arrived)

at node i. In order to remove noise resulting from small sample sizes, all Ti j for which ni j < 100 were discarded. Note

that we are not measuring a causal or directional relationship between the node pair; a shared packet could easily have

been created by a third node and then eventually reached both i and j through the importing process. The delay time

Ti j is a dynamical measure of closeness between the nodes.

2.3 Symbolic Regression

Given a network topology and the information flow times Ti j (Eq. (1)), we then constructed a matrix D to serve as the

dataset for training models to predict Ti j as a function of the structural properties of nodes i and j. Each pair of nodes is

allocated its own row. One column in D contains the Ti j values, while the remaining columns correspond to structural

network properties of node i, node j, or some metric relating them. An experimenter is free to choose which metrics

to use. The individual node properties we used were node degrees ki, k j; clustering coefficients ci, c j; eccentricities ei,

e j; node betweennesses Bi, B j; eigenvector centralities xi, x j, where xi is the i-th element of the leading eigenvector of

the network’s adjacency matrix; and closeness centralities Ci, C j. For node-pair properties we used the length Li j of

the shortest topological path between i and j. Finally, we included global network properties N, the number of nodes;

M, the number of edges; r, the degree-mixing assortativity coefficient [24]; and the graph’s diameter ∆ and radius ρ.

These global quantities were the same for all rows of D, but providing them gives the optimization method a set of

plausible constants to choose from.1

We then perform symbolic regression (SR) on this dataset to find functions f that predict Ti j as a function of the

1These can also become variables if one chooses to apply SR to a dataset containing multiple networks of different sizes.
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node pair’s structural properties:

Ti j = f
(
ki, ci, ei, Bi, xi,Ci, k j, c j, e j, B j, x j,C j,

Li j,N,M, r,∆, ρ
)
.

(2)

Symbolic regression performs model selection and parameter estimation simultaneously to determine the functional

form of Eq. (2). A commonly-employed method for instantiating symbolic regression is genetic programming [25], a

stochastic optimization method that simultaneously optimizes a population of equations to increasingly fit the supplied

data matrix D. As the name implies, this method is loosely based on Darwinian evolution. An initial population of

random equations are assessed against D: models with high error are discarded, while models with lower error are

retained. The now-vacant slots in the population are filled by repeatedly copying and mutating a single equation,

or producing two new equations by performing sexual recombination with a pair of surviving equations. Mutations

involve adding, removing, or altering a term in the equation.

The SR implementation we used in this study incorporates multiobjective optimization to perform search [26, 27].

The errors and sizes of the models in the population are computed. Size is defined as the total number of operators

and operands in the equation. The Pareto front of models with least error and smallest size is determined, and models

off this front are discarded. New models are generated by randomly choosing surviving models on the front. When

run against a dataset generated by a single scale-free network composed of N = 250 nodes, the best equation found2,

in terms of balancing complexity and accuracy, was

Ti j = Li j

1 + ln

Li j + ki + k j − c j +
N − k2

i − k2
j

LN
i j + kik j − ρ


 . (3)

This equation achieved a high correlation coefficient of R = 0.88 when compared with the simulated Ti j. We remark

that Eq. (3) seems plausible in nature: the dominant variable is the distance Li j between i and j, which is intuitive for

the transaction model. The degrees of i and j, the clustering of j and global network properties N and the network

radius then comprise a small, logarithmic correction to Li j. Other variables did not factor into this function.

2.4 Tampered networks

To test the ability of the SR model to indicate the presence of a hidden node, we need access to a ground truth test bed.

To create such a test using our model networks (Sec. 2.1), we generate a new scale-free network, simulate transactions

on it (Sec. 2.2), then choose one or more nodes to hide; they are removed before computing the network structural

2Note that SR was prevented from using numerical prefactors to enforce greater structural diversity in models along the Pareto front.
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metrics and the information flow times (Eq. (1)). In this way hidden nodes fully participate in the flow of packets,

but otherwise they are unknown to the symbolically regressed model. Comparing the SR model’s delay predictions

(Eq. (3)) to the simulated delay times, we can a posteriori search for systematic errors among the neighbors of the

hidden node or nodes.

To measure the effects of the hidden node we study three quantities. The first is the coefficient of determination

R2 between the Ti j’s measured for the non-hidden node-pairs from the transaction simulations and the predicted Ti j’s

from the SR model, where R is the Pearson correlation coefficient. If the value of R2 drops significantly compared to

R2 for the untampered network, then that supports the ability for us to detect missing or hidden nodes.

Beyond this global measure we also use two local measurements to assess the effect a hidden node has on a single

non-hidden node i:

RMSEi =

√
E j

[(
T pred

i j − T obs
i j

)2
]
, (4)

Biasi =E j

[
T pred

i j − T obs
i j

]
, (5)

where the expectation E j [·] runs over all (non-hidden) nodes j , i that are connected to i (Li j < ∞), and T pred
i j and T obs

i j

denote the flow time predicted by the SR model and the actual flow time observed from the simulations, respectively.

The RMSEi captures the magnitude of the SR model’s error for node i, while Biasi measures whether it consistently

over- or under-estimated Ti j. A positive bias indicates that information is traveling faster than expected by the SR

model.

3 Results

Our first experiment consisted of measuring the change in the coefficient of determination R2 for tampered scale-free

networks (Sec. 2.4). To do this we first generated an ensemble of 100 untampered scale-free networks (Sec. 2.1) and

simulated transactions on each (Sec. 2.2). We applied the SR model of Ti j to these networks (Eq. (3)) and computed

R2 for each. As shown in Fig. 2A, the distribution of R2 was sharply peaked around R2 ≈ 0.77, the value that the SR

model achieved on its training data (Sec. 2.3). The narrowness of this distribution indicates that the SR model has

useful predictive power.

Next we generated another ensemble of scale-free networks and simulated transactions, but now we tampered with

each network by hiding one random hub3. We see a significant drop in accuracy (lower R2) for the SR model on these

3We take a hub to be a randomly chosen node that was introduced in the first 20% of the network growth process, taking advantage of preferential
attachment’s early-mover-advantage.
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Figure 2: Detecting hidden nodes in scale-free networks. (A) The distribution of correlation coefficient comparing the simulated
transaction times and those predicted by the symbolically regressed model. We see for networks drawn from the same ensemble
as the training network (untampered) that R2 is sharply peaked around 0.78. The distribution of R2 changes significantly after a
single node removal (Mann-Whitney U test p < 10−10, Cohen’s d = −0.898). (inset) The median R2 decreases as more high-degree
nodes are removed. (B) The likelihood of detecting a single hidden node by the change in R2. Using the distribution of R2 for
the untampered network as the null model, we standardize the R2 distribution for networks with one hidden node. Looking at this
distribution we see that nearly 60% of the time we can successfully detect that a relatively high degree node is absent with 95%
confidence. If we consider lower degree hidden nodes, which are more challenging to discover as they tend to participate less in
information flow, this drops to approximately 25%. Distributions shown in panel A were computed using kernel density estimation;
each curve was truncated at the largest value observed in the ensemble data to indicate the empirical ranges of R2.

tampered networks (Mann-Whitney U test p < 10−10, Cohen’s d = −0.898), indicating that we are likely to see the

effect of a hidden node by a drop in the accuracy of the model. Hiding multiple hubs leads to even greater losses in

accuracy (Fig. 2A and inset).

However, the comparisons shown in Fig. 2A are for an ensemble of networks, while practically we seek to detect

the presence of a missing node in a single network. To determine if this is feasible we standardized the distribution of

R2 for the ensemble of networks with a single hidden hub relative to the untampered ensemble, giving a z-score z(R2)

for each tampered network. Large negative values of z indicate a statistically significant drop in R2. The cumulative

probability distribution shown in Fig. 2B tells us that nearly 60% of the tampered ensemble has z(R2) < −1.6449,

meaning that nearly 60% of the time we can determine with 95% confidence that a single network is missing a hub.

The 50% confidence limit, z < 0, corresponding to how well we can beat a coin-flip, is nearly 90%.

These results indicate that the presence of a single hidden node can often be detected. An important question,

however, is whether or not we can identify the location of this hidden node. To study this, we computed the errors

and biases (Eqs. (4) and (5)) of each node in a tampered network. If the neighbors of the hidden node show significant

error or bias, then that means we can determine the location of the hidden node. We show a network diagram of one
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tampered scale-free network in Fig. 3A. Node color and size is proportional to RMSE and the hidden node is indicated

with a diamond (�). We observe that many neighbors of the hidden node have far greater RMSE than other nodes in

the network. This is exactly the evidence needed to estimate the hidden node’s location within the network topology.

To determine if these results are significant, we computed, for the ensemble of scale-free networks with one hidden

hub, distributions of RMSE and Bias separately for neighbors of the missing hub, next-nearest neighbors, and other

nodes. The RMSE was significantly larger (Mann-Whitney U test p � 10−10, Cohen’s d = 4.69) for neighbors of

the hidden node across the entire ensemble (the median error for neighbors was ≈ 4.33 timesteps compared with 1.1

timesteps for other nodes). Next-nearest neighbors, those nodes two steps away from the hidden node in the original

topology, did not show a significant change in error relative to other nodes in the network (p = 0.052). However, a

number of outliers do overlap with the RMSE values for the nearest neighbors, indicating that longer-range network

effects are rare but do occur.

At the same time, the Bias was also positively skewed for neighbors of the hidden node (median Bias ≈ 2.1

timesteps), indicating that our intuition from Fig. 1 was correct. Next-nearest neighbors have no discernible bias

(median Bias ≈ 0.03), while other nodes actually have a slightly negative bias (median Bias ≈ −0.18), indicating the

information in the rest of the network actually travels slightly slower than expected due to the hidden node (however,

a zero bias cannot be ruled out for this group).

4 Discussion

We have shown that the presence of hidden nodes can be inferred by modeling how network topology influences a

dynamical process overlaying that network. We focused on an idealized information flow dynamics but there is great

potential for applying this to other model dynamics. For future work, we intend to use our methodology alongside

real world data on information cascades and other dynamical processes and to further study how different classes of

network topologies help or hinder the node discovery process. We also plan to better incorporate the directionality of

information flow, which was neglected here by the absolute value used in the equation for Ti j.

It is not particularly surprising that perturbing a network, which then leads to perturbed metrics such as those used

in Eq. 2, will lead to a reduction in the accuracy of an SR model (e.g., Eq. 3). This was shown in Fig. 2. However, we

have shown (Fig. 3) that the loss in accuracy is localized and correlates with the position of the defect, indicating that

we are extracting useful information and not merely randomizing the terms within the SR model’s functional form.

More generally, looking for discrepancies in the speed of information flow (or other quantities) can be used to

study not just missing nodes but other defects and errors, such as missing links or false links that incorrectly appear

15 
Approved for public release; distribution is unlimited.



 0

 2

 4

 6

 8

 10

 12

Neighbors of

missing node

Next-nearest

neighbors

Other nodes

No
de

 R
M

SE

-4

-2

 0

 2

 4

 6

 8

 10

Neighbors of

missing node

Next-nearest

neighbors

Other nodes

No
de

 B
ia

s

A B

Figure 3: Identifying the location of a missing node. (A) A scale-free network of 250 nodes with a single node hidden (�). The
neighbors of the hidden node are indicated with � while other nodes are ◦. The size and color of each node is proportional to
the rms error of the information transfer time from that node to every other node in the network. We see that the neighbors of
the missing node consistently have higher errors than the rest of the network. (B) The distributions of error and bias across the
ensemble of tampered networks for the hidden node’s neighbors, next-nearest neighbors, and non-neighbors. The median error
for neighbors is approximately 4.33 timesteps while for non-neighbors it is approximately 1.11 timesteps. The distributions are
significantly different (Mann-Whitney U test p � 10−10, Cohen’s d = 4.69). The next-nearest neighbors have errors comparable
to non-neighbors (p = 0.052) but we see a greater number of outliers skewing upward. This indicates that there are some network
effects in how errors propagate, but they are relatively rare. Likewise, we see positive bias for neighbor nodes, significantly higher
than for non-neighbors (Mann-Whitney U test p � 10−10, Cohen’s d = 3.37). This positive bias indicates that information spreads
faster from (or to) neighbors of the hidden node than the SR model expects, supporting the intuition behind Fig. 1 To control for
the centrality of the hidden node, in each realization the hidden node was the node with the fifth highest degree.

in the network, false nodes that do not actually exist, the splitting of a true node into multiple false nodes, or the

merging of multiple true nodes into a single false node. Some of these errors will likely prove more challenging to

detect than others, but the benchmarking procedure we have introduced here may offer some hope towards tackling

these problems.
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3 Symbolically regressing brain imaging data.
Note: All of the work on neuroimaging data conducted as part of this award used data collected by
a separate group—the IMAGEN consortium—before the award commenced. None of the members
of our group were involved in this data collection.

Brain dynamics are immensely complex across space and time and physiological subsystem.
Thus, it is extremely unlikely that any assumptions can be made a priori about the structure of
these dynamics. We thus have adapted symbolic regression for modeling data generated from
functional MRI data sets: we induced models that predict behavior as a function of brain dynamics.
In the manuscript that follows [1] we show that there are many previously unknown nonlinear
relationships between brain regions that can be predictive of behavior.

Furthermore, we show that such relationships can, at least in the specific conditions investigated
here, consistently predict behavioral tendencies. The method, in brief, was a hybrid method that
employs symbolic regression for feature construction (it finds nonlinear terms that are weakly
predictive of the outcome of interest) and more traditional regression methods for feature selection
(optimizing coefficients for those terms).

Many of the models found in this way concord with those discovered using orthogonal meth-
ods, providing some confidence in the other models found by our method. Most notably, symbolic
regression found that differences in the nonlinear relationships between brain regions implicated in
thist, reward, and emotion accurately predict whether the adolescent participants from whom the
data was drawn regularly consume alcohol or not.

Two additional manuscripts are in preparation. The first is an attempt to predict a different be-
havioral tendency (smoking or non-smoking) using the same method. The second is an attempt to
predict how an individual’s competence degrades with adversity. Predictions about both behavioral
traits is made directly from models trained against brain imaging data, again collected by groups
not associated with this award.

In future, such methods could be used to rapidly predict other behavioral traits. More impor-
tantly, it may be able to predict behavioral traits that have yet to manifest in the participants, thus
providing an opportunity for proactive treatment and/or counseling.

3.1 Relevance for U.S. defense and security.
Predicting the behavior of warfighters in the field is of extreme interest, especially before they
have been delivered into a theater of war. Similarly, it would be of extreme utility to assess the
mental state of warfighters during deployment without having to distract them with explicit re-
quests for updates. The method outlined in the manuscript below could be adapted for inferring
current behavior and/or future degradation in behavior directly from neuroimaging. Current MRI
technologies rule out real-time assessment, but advances in mobile MRI, tensor diffusion imaging,
and/or EEG may make such assessment tractable in the near future.

3.2 Allgaier et al. “Nonlinear functional mapping...” (2015).
A technical manuscript describing the symbolic regression of neuroimaging and behavioral data
sets follows.
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Abstract

The field of neuroimaging has truly become data rich, and novel analytical methods capable of gleaning meaning-
ful information from large stores of imaging data are in high demand. Those methods that might also be applicable
on the level of individual subjects, and thus potentially useful clinically, are of special interest. In the present study,
we introduce just such a method, called nonlinear functional mapping (NFM), and demonstrate its application in the
analysis of resting state fMRI (functional Magnetic Resonance Imaging) from a 242-subject subset of the IMAGEN
project, a European study of adolescents that includes longitudinal phenotypic, behavioral, genetic, and neuroimaging
data. NFM employs a computational technique inspired by biological evolution to discover and mathematically char-
acterize interactions among ROI (regions of interest), without making linear or univariate assumptions. We show that
statistics of the resulting interaction relationships comport with recent independent work, constituting a preliminary
cross-validation. Furthermore, nonlinear terms are ubiquitous in the models generated by NFM, suggesting that some
of the interactions characterized here are not discoverable by standard linear methods of analysis. We discuss one such
nonlinear interaction in the context of a direct comparison with a procedure involving pairwise correlation, designed to
be an analogous linear version of functional mapping. We find another such interaction that suggests a novel distinction
in brain function between drinking and non-drinking adolescents: a tighter coupling of ROI associated with emotion, re-
ward, and interoceptive processes such as thirst, among drinkers. Finally, we outline many improvements and extensions
of the methodology to reduce computational expense, complement other analytical tools like graph-theoretic analysis,
and allow for voxel level NFM to eliminate the necessity of ROI selection.

Keywords:
resting state fMRI, modeling, nonlinear, machine learning, genetic programming, symbolic regression
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1. Introduction

Many advances in our understanding of brain func-
tion have been achieved through analysis of fMRI data.
Though the BOLD (blood oxygen level dependent) signal
obtained from fMRI is a proxy, physiological confounds
such as breathing and heart rate are separable from neuronal-
induced signal, as demonstrated in Birn et al. (2009). Inter-
subject differences in vascular reactivity can be modeled
as shown in Murphy et al. (2011), and BOLD has been
directly shown to provide a reliable measure of neuronal
activity in specific circumstances, as in Mukamel et al.
(2005). The many years of successful research before and
since support that assessment. Accomplishments include
localization of regions responsible for particular tasks, such
as episodic memory in Nolde et al. (1998) and human face
recognition in Kanwisher et al. (1999), assessment of the
risk of postoperative motor defect in patients with tumors
in Mueller et al. (1996), analysis of the effects of acupunc-
ture in Hui et al. (2000), and recently, identification of
neural markers for both current and future alcohol use
among adolescents in Whelan et al. (2012) and Whelan
et al. (2014).

These examples, and indeed the majority of fMRI stud-
ies, make use of the GLM (general linear model) to deter-
mine neural correlates for various tasks and stimulus re-
sponses. Though typical analyses have been performed at
the group level with a univariate approach, other recent
work reported in Rio et al. (2013) has extended the capa-
bilities of the GLM to analyze multivariate signal in the
Fourier domain to reduce confounds from time-correlated
noise, thus improving the suitability of the GLM for sub-
ject level analysis. Despite these advances, however, the
GLM can only confirm hypothesized nonlinear models of
function, not discover them.

Group-level inferences from fMRI have also been per-
formed using linear ICA (independent component analy-
sis), as described in Calhoun et al. (2001). Though ICA
and the GLM can be used in conjunction, for example in
Liu et al. (2010) to investigate the neural effects of stimu-
lation of a particular acupoint, ICA is particularly useful
in circumstances that preclude the use of the GLM, such
as the analysis of resting-state data, for which there is no
task or stimulus regressor. Covarying networks have been
suggested by ICA of resting-state fMRI in Smith et al.
(2009), and functional, hierarchical classification of these
networks has been automated through HCA (hierarchical
cluster analysis) of aggregated experimental metadata in
Laird et al. (2011). However, it was determined early on,
for example in McKeown and Sejnowski (1998), that non-
linear interactions within the brain need to be addressed
in order to properly determine functional architecture.

Although ICA algorithms that employ nonlinear mix-
ing functions exist, severe restrictions on those functions

∗Corresponding author.
Email address: nicholas.allgaier@uvm.edu (Allgaier, N.A.)
URL: www.imagen-europe.com (IMAGEN Consortium)

are required to avoid non-uniqueness of solutions, as ex-
plained in Hyvärinen and Pajunen (1999). Due to this
failing, other methodologies have been employed in the
attempt to account for nonlinearity. Examples include
various forms of nonlinear regression, as in Kruggel et al.
(2000), and dynamic causal modelling, as described in Fris-
ton et al. (2003). In each of these, a particular nonlinear
form must be posited a priori, and thus the capability to
discover previously unknown nonlinear interactions within
the brain is diminished. As a result, a fuller picture of the
nature of intra- and inter-network functional connectivity
within the brain is missing from the literature.

Here we introduce a methodology designed to accom-
plish such a mathematical characterization, provide insight
at the group, subject, and ROI levels, and to avoid lin-
ear and univariate assumptions. With some modification,
analysis of higher dimensional data is likely attainable,
allowing for eventual application at the voxel scale and
eliminating the necessity of ROI selection. After stan-
dard preprocessing (slice-timing and motion correction,
normalization, smoothing, etc.), our procedure consists of
ROI selection, inter-ROI symbolic regression (a model-free
form of nonlinear regression), accomplished by an evolu-
tionary algorithm called genetic programming (GP; a form
of stochastic optimization), and statistical analysis of the
resulting models. We demonstrate our technique on a 242-
subject collection of resting-state data from the IMAGEN
project, though analysis of task or stimulus experiments
can be accomplished with little or no modification. The
IMAGEN project is described in detail in Schumann et al.
(2010).

We organize the paper as follows. In Section 2, we
discuss the data and selection of ROI, provide some back-
ground on GP, and describe the procedural details of NFM
by symbolic regression. In Section 3, we report results of
applying the technique to the IMAGEN data, including
statistical and hierarchical visualizations, comparison with
previous results for cross-validation, effects of nonlinearity,
and an example of group-level variation. We discuss the
results and potential applications of the technique in Sec-
tion 4, and conclude the paper in Section 5.

2. Materials and methods

In this section, we first briefly describe the source of
the data for our study, and then provide the details of
ROI selection that allow for comparison with recent work.
We then provide some background on the GP algorithm
in general and the specific implementation employed here,
along with the method by which it is applied to BOLD sig-
nal time series extracted from the selected ROI. Finally,
we describe the statistical technique used to interpret the
roughly quarter of a million mathematical models that re-
sult from the application of GP to all 52 ROI time series
extracted from each of the 242 subjects.
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2.1. Data

The data investigated here are a subset of the fMRI
scans from the IMAGEN study, a European research project
with the goal of better understanding teenage psychologi-
cal and neurobiological development. The project is longi-
tudinal, and utilizes several forms of high and low-tech ex-
perimental protocols including self-report questionnaires,
behavioral assessment, interviews, neuroimaging, and blood
sampling for genetic analyses. Each of the 2000 participat-
ing adolescents was 14 when entering the study, which it-
self commenced in late 2007, and data collection continues
today.

More specifically, the data for the present study are 6-
minute resting-state fMRI time series of 242 of the adoles-
cent subjects who were asked to keep their eyes open while
in the scanner, but were presented with no other task or
stimulus. To allow for comparison with previous work, lo-
cations of the ROI were chosen based on results from Laird
et al. (2011), in which statistical analysis across thousands
of previous imaging studies (both stimulus/task-based and
resting-state) was used to identify networks of brain re-
gions that tend to activate together, termed ICN (intrin-
sic connectivity networks). The ICN were determined by
ICA, from which z-statistic maps were derived. To select
ROI for this study, a z-statistic threshold was set for each
ICN to determine the number of regions in the network,
and ROI were defined as rough spheres with radii of 3 vox-
els (9mm) and centered at the location of peak z-statistic
in each region.

Figure 1: ROI Selection. (Red) ROI from within the default mode
network, with radii of 3 voxels and centers corresponding to the
highest z-statistics (green) in each region as determined in Laird
et al. (2011).

We provide a cut-out illustrating ROI selection for the
default mode network (ICN 13) in Figure 1, and Figure
2 contains axial cross sections showing many of the ROI
derived from the 18 non-artifactual ICN in Laird et al.

(2011). In Appendix A, Table A.1 we list all 52 ROI by
number, give their anatomical names, indicate the ICN
from within which they were defined, and provide visual
representations of their locations within the brain.

Subsequent to ROI definition, a gray matter mask was
applied to assure that only appropriate voxels were con-
tained within each ROI. In some cases this resulted in
a considerable reduction of ROI voxels, but the majority
maintained the full complement of about 100 voxels. For
each of the 242 subjects, time series were extracted from
each of the 52 resulting ROI by averaging the BOLD sig-
nal over all voxels within the ROI. These time series then
form the input to the GP algorithm.

Figure 2: Visualization of ROI. Axial cross sections showing many
of the ROI derived from the ICN in Laird et al. (2011).

2.2. Genetic programming

GP is a biologically inspired, population-based ma-
chine learning algorithm. It is most commonly employed
for symbolic regression: the algorithm searches for models
explaining some quantity of interest (e.g., average BOLD
signal from an ROI in the brain) as a function of some
other possibly related observable quantities, statistics, or
summary data (e.g., BOLD signals from other ROI). The
algorithm proceeds by evolving the functional forms of a
population of potential models, which are initially con-
structed at random from user-specified mathematical build-
ing blocks (available variables, arithmetic functions, pa-
rameter constants, etc.). In brief, the models that better
explain the data produce more offspring, leading to a grad-
ual reduction of error within the population. We show a
representative set of models produced by this approach in
Figure 3(a). A key advantage of the technique is that no
assumption (e.g., linearity) is imposed on the form of solu-
tions, other than the choice of building blocks from which
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Figure 3: Screen shot of the GP package Eureqa during a search for models of the activity in ROI 19 in a single subject, as a function of
activity in the other 51 regions. (a) The current set of models along the Pareto front of accuracy vs. parsimony, shown in (d) where each
point represents a model and the red point represents the highlighted model. (b) Data from ROI 19 (points) over the 6-minute time series
for this subject (x-axis in scans, 2 seconds each). The highlighted model is shown in red, and statistics for this model’s fit appear in (c).

they can be made (we use arithmetic operations in the
present work).

Typically, some measure of error (e.g., root mean square
error) constitutes a model’s explanatory fitness, and some
measure of its size (e.g., number of operators, constants,
and variables in the equation) represents its parsimony.
The next generation of potential models is obtained by
mutation (e.g., a single change of variable or operator)
and recombination (i.e., swapping of function components
between models) of the current set of non-dominated solu-
tions: those models for which no simpler model in the pop-
ulation has less error. This set of non-dominated models
is said to approach the ideal Pareto front of fitness versus
parsimony as the population evolves. An important aspect
of GP is that the result of a single search is this entire set
of potential models, providing a trove of information for
statistical analysis. Figure 3 is a screenshot of the off-the-
shelf GP package Eureqa from Schmidt and Lipson (2009)
performing a search (Eureqa version 0.97 Beta was used
to generate the results reported in this study).

To apply GP to the fMRI data, for each of the 242 sub-
jects we extract a single BOLD signal time series from each

of the 52 selected ROI by averaging over the voxels within
that ROI. Then the GP algorithm is run 52 times, one
for each ROI, using all other ROI as potential explanatory
variables. Note that the algorithm has no knowledge of
the hypothesized networks from which these regions were
chosen.

We describe the computational expense of the algo-
rithm in terms of core-hours, i.e., the number of hours re-
quired for a single processor core to perform the necessary
computation. Specifically, twelve core-hours of search were
performed for each region, amounting to 624 core-hours
per subject, and over 17 total core-years of computation
were required for the population of 242 subjects. This
yielded roughly 12 thousand Pareto fronts comprised of a
quarter million models for statistical analysis.

The results of this analysis characterize the entire pop-
ulation of 242 subjects. Alternatively, results can be ag-
gregated over phenotypic groups to produce group-level
characterizations, or many GP searches can be run for
a single individual to produce a subject-level characteri-
zation. We report results of population- and group-level
analyses in Section 3, and discuss an example subject-level
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Figure 4: Functional interaction map. (a) Interaction map across all 242 subjects, and (b) map of RSD (relative standard deviation) of the
interaction rates over 100 subsamples with 100 randomly selected subjects each. Solid outlines indicate ICN and dashed outlines indicate
functional groupings of ICN from Laird et al. (2011).

analysis in Appendix B.

2.3. Analysis

The output of the GP algorithm poses a challenge for
interpretation. Here we present a coarse statistical anal-
ysis of this rich mathematical characterization. For each
ROI, we count the number of models for that ROI, across
the Pareto fronts for all 242 subjects, that have a partic-
ular (other) region on the right-hand side of the equation.
We compute this count for each of the other 51 regions.

For example, consider the GP search for models of ROI
19 within a single subject illustrated in Figure 3. Upon
completion, all 20 of the models along the Pareto front
for this subject had at least one term containing ROI 9,
and 17 models had terms containing ROI 20. In the sub-
ject pool as a whole, the total counts are 2990 and 1984,
respectively. Specifically, of the roughly 5000 models for
ROI 19 across all subjects, about 60% have terms contain-
ing ROI 9, and about 40% have terms containing ROI 20.
Note that these frequencies are not properly normalized,
because most models contain several ROI. Thus we nor-
malize by the sum of the counts for all ROI. In the case of
ROI 19, this sum is 22016.

The result is a vector for each ROI that describes,
in a statistical sense, its relative dependence on each of
the other regions. We interpret this vector as a distri-
bution of likely interaction, and define the computed val-
ues to be relative interaction rates (IR). Note that both
linear and nonlinear interactions, as well as weakly and
strongly weighted basis functions, are counted equally. We
form an interaction map by stacking these IR row vectors

to visualize interaction across all 52 ROI, shown in Fig-
ure 4(a). The value in row 19 column 9, for example, is
2990/22016 ≈ 0.136, depicted as a yellow square.

Note that the IR map is not symmetric by construc-
tion (though it appears nearly so), and indeed the value
in row 9, column 19 is 0.148 6= 0.136. We interpret a row
of the IR map as a distribution of relative dependence of
the corresponding ROI on each of the other regions. We
interpret a column, on the other hand, as a measure of the
influence of the corresponding ROI on each of the other
regions. By averaging the IR map with its transpose, we
produce a symmetric, overall IR map (not shown) that can
be used in hierarchical analysis. We examine the interac-
tion map, and provide results of hierarchical analysis, in
the next section.

3. Results

Figure 4(a) shows the interaction map generated by
the normalized frequency analysis of the NFM procedure,
summarizing ROI interaction across all 242 subjects. To
test the robustness of the computed interaction map, we
form 100 random subsamples (with replacement) from the
pool of 242 subjects, each with 100 subjects. For each
sample, we perform the same counting procedure to pro-
duce the interaction map corresponding to that sample. A
heat map of relative standard deviation (RSD) of IR over
the 100 subsamples is shown in Figure 4(b).

The strong block-diagonal structure of the interaction
map corresponds directly to the grouping of ROI into ICN.
For example, regions 39-42, which form a partial block
in the figure, are the four ROI that make up the default
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mode network (ICN 13) in Laird et al. (2011). Robustness
(across subjects) of intra-network interaction is supported
by the matching block-diagonal structure of low subsam-
pling RSD (mean intra-network RSD < 20%), for all but
ICN 2 (ROI 3-4) and ICN 5 (ROI 10-18). In addition
to the strong primary block-diagonal structure, there is a
secondary structure of lighter blocks that group ICN to-
gether. For example, regions 32-38 are composed of the
strong blocks 32-33, 34-35, and 36-38 (corresponding to
ICN 10, 11 and 12 respectively). There is a lighter block
structure that suggests interaction among these three ICN
which are, in fact, together responsible for visual pro-
cessing. The secondary structure visible for regions 19-31
is comprised of ICN 6-8, which perform motor and visu-
ospatial tasks. Each of these examples shows a matching
secondary structure of moderate subsampling RSD (mean
inter-network RSD < 30%), indicating fairly robust inter-
network interaction as well.

3.1. Hierarchical analysis

To further illustrate and clarify the hierarchical organi-
zation suggested by the interaction map, we generate the
dendrogram in the top of Figure 5 by HCA (hierarchical
cluster analysis, implemented in MATLAB with the near-
est distance algorithm), using the reciprocal of the over-
all IR between each pair of ROI as the distance between
them. For example, ROI 1 and 2 have an approximate
overall IR of 0.2, and thus the distance between them is 5.
We emphasize that the organization of ROI into networks,
and clustering of those networks into functional groups de-
scribed in Laird et al. (2011), are both captured by NFM.
Some examples:

• The red group forms the visual cluster. ROI 32 and
33, the lateral occipital cortices, form one network
(ICN 10), while ROI 34-35, the occipital poles, and
ROI 36-38, the lingual gyrus, right cuneus and right
fusiform gyrus, respectively, form two other networks
(ICN 11 and 12) from within the visual cluster.

• Regions 39-42 (the orange group) form ICN 13, the
default mode network, and interact with ROI 4, the
ventromedial prefrontal cortex, from ICN 2.

• The green group to the far left includes all but one of
the ROI from the motor and visuospatial complex.
Interaction of this complex with the middle cingulate
cortex (mCC, ROI 9) and the network composed of
ROI 46 and 47, thought to be responsible for multiple
cognitive processes such as attention and inhibition,
is indicated as well, suggesting that this interaction
was common among many of the subjects.

• ICN 1 (ROI 1,2), 3 (ROI 5,6), the first two regions
from ICN 4 (ROI 7-9), ICN 14 (ROI 43-45), 16 (ROI
48,49), and 17 (ROI 50,51) are also indicated.

• Many of the regions from ICN 5 (ROI 10-18) interact
with ICN 1 (ROI 1-2), and also form a loose interac-
tion group with ICN 14 (ROI 43-45), the cerebellum,
the most robust connection of which appears to be
between ROI 16 and 43.

The robustness of each of the interactions discussed in this
list is supported by low interaction rate subsampling RSD,
shown in Figure 4(b).

3.2. Impact of nonlinearity

In this section we demonstrate that the NFM proce-
dure both captures the hierarchical structure of ROI in-
teraction indicated by linear analyses, and reveals nonlin-
ear interactions not discoverable by such methods. To ac-
complish this, we compare the population-level hierarchy
generated by NFM with the results of an analogous lin-
ear procedure involving pairwise correlation analysis. Fur-
thermore, we validate nonlinear relationships suggested by
NFM in a stepwise multiple regression, and an elastic net
regularized regression, the results of which we describe at
the end of this section.

3.2.1. Comparison with correlation analysis

For each of the 242 subjects, we compute the correla-
tion matrix for the 52 ROI time series. Squaring the ele-
ments of the correlation matrix and normalizing each row
(after setting the diagonal to zero) provides the relative
explained variance (relative R2) of the ROI corresponding
to that row by each of the other 51 ROI. The average of
the 242 normalized subject matrices is interpreted as the
linear version of the population-level IR map generated
by NFM. As with IR, the reciprocal of relative explained
variance can be considered a distance between ROI (higher
relative R2 means closer). The resulting hierarchy gener-
ated by HCA is shown in the bottom of Figure 5.

As expected, much of the large-scale structure revealed
by NFM is also indicated by the linear correlation analy-
sis. The similarity of the generated hierarchies supports
the validity of the models discovered by GP (i.e., the al-
gorithm is not excessively overfitting the data), and the
subtle differences between them suggest potentially inter-
esting interactions that are missed if linearity is assumed.
In the following we investigate one of these differences.

Interaction of the mCC (ROI 9) with the motor visu-
ospatial complex is evident in both hierarchies. However,
in the linear analysis it appears more closely connected
with its own ICN (ROI 7,8, the bilateral anterior insula),
and only with the posterior dorsomedial prefrontal cortex
(dmPFC, ROI 19) from ICN 6. In contrast, NFM reveals
that activity in the mCC is related to more components
of the motor system. The nonlinear models generated by
GP show a strong connection between the mCC, posterior
dmPFC, and the paracentral lobule (PL) of the primary
motor cortex (ROI 29 from ICN 8) shown in red, green,
and blue, respectively, in Figure 6. Specifically, about 20%
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Figure 5: Hierarchical cluster analysis (HCA) of interaction among ROI, generated with NFM (top) and correlation analysis (bottom).
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of all of the models generated for the activity in the poste-
rior dmPFC, across all subjects and levels of complexity,
contain both the mCC and the PL as explanatory vari-
ables.

For many of these models, the mCC and PL only show
up as linear terms, so it is reasonable to wonder why the
correlation analysis did not pick up this interaction. The
vast majority of models containing mCC and PL in only
linear terms also contain nonlinear terms in other ROI. It
is the posterior dmPFC along with these nonlinear terms
that is correlated with the mCC and PL. Thus the interac-
tion is hidden from linear analyses. Furthermore, many of
the models do contain nonlinear terms involving the mCC
and PL. In fact, the product of the activity in these two
regions shows up in 78 models for the posterior dmPFC
across 21 different subjects, and it is always additive. This
term is involved in models across the spectrum of complex-
ity, including instances where it is the only term.

Figure 6: NFM reveals a nonlinear interaction among these three
ROI: mCC (red), posterior dmPFC (green), and PL in the primary
motor cortex (blue).

3.2.2. Validation of nonlinear terms

To validate first order nonlinearity (pairwise product
and quotient terms, as well as reciprocals) suggested by
NFM, we first randomly assign 100 subjects to a train-
ing group, and 100 different subjects to a testing group.
NFM results are aggregated over the training group to pro-
duce an IR map and hierarchy (not shown) summarizing
ROI interaction within the training group as a whole. The
roughly 2000 specific models generated by NFM for each
region (approximately 20 models per training subject) are
then used to inform the modeling of ROI activity in that
region within the testing group, by stepwise regression.

For each ROI and each testing subject, we first per-
form a standard stepwise linear regression using the other

51 ROI as regressors. We then perform a stepwise regres-
sion including all first order nonlinear terms suggested by
NFM over the training group in addition to the 51 linear
regressors. Statistics of the linear and nonlinear models
are compared to determine the effect of including these
first order terms. To illustrate, we describe results of the
validation procedure for the posterior dmPFC (ROI 19)
here.

We show a histogram of increase in the percentage of
explained variance for the nonlinear versus linear regres-
sion models for the posterior dmPFC in Figure 7. The
inclusion of first order nonlinear terms suggested by NFM
over the training group increases the percentage of ex-
plained variance for every test subject, with a mean in-
crease of 12.5% and maximum increase of 42%. The non-
linear models contain more terms (mean 46, compared
with mean 19 for linear models), so a potential concern
is that the increase in R2 might simply be a result of the
additional degrees of freedom. However, for each test sub-
ject the nonlinear model F -statistic is also greater than
that of the linear model (mean increase of 83.5, maximum
increase of 1000), and comparisons of adjusted R2, which
account for differences in degrees of freedom, show only
slightly smaller increases for all test subjects. This sug-
gests that the increase in explained variance is due to ex-
planatory power of the nonlinear terms, and not simply
the additional degrees of freedom in the nonlinear models.
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Figure 7: Histogram of increase in explained variance. The inclusion
of first order nonlinear terms suggested by NFM over the training
group, in a stepwise regression analysis for the posterior dmPFC in
the testing group, increases the percentage of explained variance for
every test subject, with a mean increase of 12.5% and maximum
increase of 42%.

To further support the validity of the nonlinear terms
suggested by NFM, we apply a similar testing approach
using a machine learning algorithm called elastic net regu-
larized regression. In contrast to stepwise regression, reg-
ularization allows for the inclusion of highly correlated ex-
planatory variables, while simultaneously discounting re-
gressors with very small coefficients. Regularized mod-
els can have more explanatory power or fewer terms (or
both), with respect to those from stepwise regression. We
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see each of these scenarios in the present case. Using the
same training and testing groups, and modeling the same
ROI (the posterior dmPFC), elastic net regularization pro-
duces linear models with an average of 45 terms that ex-
plain roughly the same amount of variance (on average) as
the nonlinear models generated with stepwise regression,
improving upon the explanatory power of their stepwise
counterparts. However, the regularized nonlinear models
provide that same explanatory power with a mean of only
26 terms. Furthermore, the regularized nonlinear model is
preferable to the regularized linear model, as determined
by the Akaike information criterion, for every single test
subject.

3.3. Group-level variation

Variation among individuals (illustrated in Appendix
B) suggests that statistics of interaction rates among ROI
may differ between phenotypic groups. The hierarchical
organization of ROI induced by IR might illuminate, in
such cases, variation in functional dynamics associated
with demographic, behavioral, or genetic characteristics.
An example illustrating this potential is provided by the
contrast between drinking (D) and non-drinking (ND) ado-
lescents from the IMAGEN dataset. In Figure 8, we show
hierarchies for the top and bottom 100 subjects in terms
of lifetime drinking score, determined by self-report ques-
tionnaire, corresponding to those who have had 2 or more
lifetime drinks, and those who have had 1 or fewer, respec-
tively. The two hierarchies are similar to one another (and
comparable to the population level hierarchy), but sub-
tle differences between them suggest group-differentiating
factors.

• The ROI pair 3,18, the subgenual anterior cingulate
cortex (ACC) and fornix body, respectively, are cou-
pled in both the D and ND groups. However, their
arrangement in the hierarchies is different, as we’ll
describe in a moment, resulting from the following
two distinguishing interaction rates.

• For the ND group, there is a 22% lower IR between
ROI 6, the left globus pallidus, and the fornix body,
ROI 18. We note that this reduced interaction is
completely missed by pairwise correlation analysis,
(which indicates a slightly reduced interaction among
drinkers, see Appendix C), and thus appears to be
an entirely nonlinear effect.

• In contrast, there is a 33% higher intra-network IR
within ICN 2, comprised of ROI 3-4, the subgenual
ACC and the ventromedial prefrontal cortex (vmPFC),
respectively, among non-drinkers. Though this dif-
ference is also indicated by correlation analysis, only
about half of the effect is captured (a 16% elevation).

• These two differences in interaction cooperate to shuf-
fle the hierarchical arrangement of ROI in the D
versus ND group. The subgenual ACC and fornix

body are most closely associated with the default
mode network in non-drinkers, through the vmPFC.
Among drinkers, in contrast, they are grouped di-
rectly with the bilateral globus pallidus of ICN 3
(ROI 5-6). In other words, in drinkers there is a
tighter coupling among ROI most strongly linked to
reward and thirst tasks as reported in Laird et al.
(2011). The relevant ROI are shown in Figure 9.

Figure 9: Interaction between the subgenual ACC (top red) and
vmPFC (bottom red) is lower among drinkers, who also show ele-
vated interaction between the left globus pallidus (green) and fornix
body (blue), an apparently nonlinear effect.

• The largest single difference between the D and ND
groups is a 74% elevated IR between the right an-
gular gyrus (ROI 41 in the default mode network)
and ROI 11, the posterior cingulate cortex, among
drinkers. These ROI are shown in red and green, re-
spectively, in Figure 10. About half of this effect is
captured by correlation analysis.

4. Discussion

The large extent of ICN reproduction, and their hier-
archical organization into functional groups using an en-
tirely different approach than that described in Laird et al.
(2011), provides strong evidence for the analytical poten-
tial of NFM. Furthermore, the technique reveals nonlin-
ear interactions that are not discoverable with standard
linear techniques, or without prior hypotheses. Such rela-
tionships could provide a new window into brain function,
and this highlights the potential of the methodology as
a hypothesis generator. Of course proper care must be
taken (with regard to independence of observations, etc.)
in the ensuing investigations of such data-driven hypothe-
ses. Nonetheless, hypothesis generation is a powerful tool
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Figure 8: Hierarchies for groups with high (top) and low (bottom) alcohol consumption rates, defined by two or more lifetime drinks and one
or fewer lifetime drinks, respectively.
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Figure 10: Interaction between the right angular gyrus from the
default mode network (red), and posterior cingulate cortex (green)
is 74% higher among drinkers.

for scientific exploration, and has been used recently to
inform biomedical research, such as in Abedi et al. (2012)
and Spangler et al. (2014).

In addition to providing insight on its own, the NFM
procedure complements other modes of analysis. A po-
tentially promising extension, especially for a hybrid ver-
sion capable of voxel level analysis (discussed in Appendix
D), would be to use it in conjunction with graph-theoretic
analyses such as those described in Bassett and Bullmore
(2006), Stam and Reijneveld (2007), and van den Heuvel
et al. (2008). The general technique, as detailed in Bull-
more and Sporns (2009) and Rubinov and Sporns (2010),
is to compute pairwise correlations among all voxels, set
a threshold above which two voxels are considered con-
nected, and calculate various network summary measures
(e.g., degree distribution, assortativity, diameter, etc.). By
simply replacing correlations in these networks with inter-
action rates determined by NFM, the assumption of lin-
earity is left behind.

Finally, it is important to note that the specific forms
of the models in the output of the GP algorithm have been
analyzed simplistically in the present work. A major po-
tential benefit of NFM is the insight that might be gained
from precisely analyzing these mathematical descriptions
of the relationships among ROI in the brain. Of course,
ascribing meaning to any particular one of these models
would have to be done cautiously. However, given the re-
sults we describe here, obtained by a coarse treatment, the
collection of models determined by GP may offer a number
of as yet undiscovered insights. This seems a potentially

fruitful avenue for future theoretical research.

5. Conclusions

Results produced in our study suggest that there is po-
tential analytical power in the use of NFM, or some mod-
ification thereof, in the neuroimaging domain. The proce-
dure we investigated here utilizes commercially available,
out-of-the-box GP software, and preliminary statistical
analysis of its output. Many improvements and extensions
are possible, only some of which we have suggested in this
work. Reproduction of recent results constitutes a measure
of cross-validation, and the preliminary results presented
demonstrate the unique capability of NFM to discover non-
linear relationships among regions of the brain that hold
promise for illuminating differences in brain function be-
tween subject groups. Further, the mathematical char-
acterizations we have achieved, which are not limited by
linear or univariate assumptions, are ripe for future inves-
tigation.
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Appendix A. Table of ROI

In Table A.1 we list all 52 ROI investigated in this
study by number, give their anatomical names, indicate
the ICN from within which they were defined, and provide
visual representations of their locations within the brain.
Due to its length, the table appears after the References.

Appendix B. Subject-level variation

Figure B.11 contains individual subject interaction hi-
erarchies for two different (randomly selected) subjects,
generated by 100 random restarts of the GP algorithm
and subsequent normalized frequency analysis. Though
the two hierarchies are quite different from one another,
they do show some network organization similar to that
illustrated in the population level hierarchy (top of Figure
5).

• Portions of the visual cluster (ROI 32-38) are intact
in each case.
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• Many of the two-region networks remain together,
e.g. ICN 1 (ROI 1,2), ICN 16 (ROI 48,49), and
though associated with other ROI, also ICN 3 (ROI
5,6) and ICN 17 (ROI 50,51)

• The default mode network (ROI 39-42) is mostly in-
tact in each subject.

The interaction profile of the default mode network
illustrates an interesting distinction between the two sub-
jects. For the top subject, the network is fully intact, in-
teracting with ROI 4 (consistent with the population level
hierarchy), and also interacting with ROI 26 from the mo-
tor visuospatial complex. For the bottom subject, three of
the four ROI in the network remain together, but interact
instead with several other ROI from the emotional intero-
ceptive class instead of ROI 4, specifically ROI 10, 12, and
16, and a different ROI from the motor visuospatial com-
plex as well (ROI 29 instead of 26). By themselves, these
dendrogram comparisons offer no conclusive evidence re-
garding connections between cognitive processes. How-
ever, an experiment could be designed to test if any infer-
ences can be made from such distinctions. For example,
the administration of post-scan surveys might grant some
interpretability to the specifics of these single-subject in-
teraction hierarchies.

Appendix C. Linear HCA of alcohol consumption

Here we demonstrate that the shuffling of the interac-
tion hierarchy in drinking (D) versus non-drinking (ND)
adolescents discovered by NFM is not uncovered by linear
correlation analysis. To perform group-level correlation
analysis, the normalized relative R2 matrices for each sub-
ject (described in Section 3.2) are averaged over the 100
subjects in each group. Recall that these matrices are gen-
erated for each subject by computing the correlation ma-
trix for the 52 ROI time series, squaring the elements, and
normalizing each row (after setting the diagonal to zero).
The reciprocal of relative explained variance can be con-
sidered a distance between ROI (higher relative R2 means
closer), and the resulting D and ND hierarchies generated
by HCA are shown in the top and bottom, respectively, of
Figure C.12.

Comparison with Figure 8 suggests that this linear
analysis partially uncovers a distinguishing difference in
interaction between drinking and non-drinking adolescents.
Specifically, among non-drinkers, a higher intra-network
interaction within ICN 2, comprised of the subgenual ACC
and the vmPFC (ROI 3 and 4, respectively) is detected
here. The result is an indirect coupling, within non-drinkers,
of the default mode network (ROI 39-42) and the complex
comprised of ROI 3,18,5,6, through the vmPFC.

The results of NFM provide further insight in two im-
portant ways. First, the elevated interaction within ICN
2 among non-drinkers is detected at twice the strength.
Second, the main interaction responsible for grouping the

complex of ROI 3,18,5,6, specifically the interaction be-
tween the left globus pallidus (ROI 6) and fornix body
(ROI 18), is lower among non-drinkers. This second effect
is entirely missed by correlation analysis, suggesting that
it is nonlinear in nature. The result of capturing these
effects together, as shown in Figure 8, is a breakup of
the complex in non-drinkers, for whom ROI 3,18 are sep-
arated from the bilateral globus pallidus of ICN 3 (ROI
5-6). This breakup is suggestive, as each of these ROI is
associated with emotion, reward, and interoceptive pro-
cesses such as thirst, and experiments reporting activity
in ICN 5, including the fornix body (ROI 18), predomi-
nantly involved interoceptive stimulation, as reported in
Laird et al. (2011).

Appendix D. Improvements and modifications

The GP implementation we used for this study is the
commercially available package Eureqa from Nutonian, as
described in Schmidt and Lipson (2009). Though much
of its behavior can be controlled through the interface or
command line, it is proprietary code and thus somewhat
of a black box. There are many reasons why a dedicated,
open source implementation of GP would be more desir-
able.

A major challenge for this method of analysis is the
computational expense of running a large number of GP
searches. Generating the IR map for a single subject re-
quires a large number of random restarts for each ROI. For
example, running 100 restarts for each of the 52 ROI in
this study, allowing 1 core-hour for each search, requires
over 10 hours with access to 500 dedicated processors. The
procedure as described here is likely computationally pro-
hibitive for running analyses on large numbers of subjects,
or for larger collections of ROI. Intelligent stopping crite-
ria, and many other approaches to the mitigation of com-
putational expense, have been reported at length in the
GP literature, an example of which is the use of graph-
ics processors reported in Harding and Banzhaf (2007). It
may also be possible to determine an ideal (and smaller)
number of restarts that balances computation time with
the statistical power of the resulting IR map.

It should also be noted that for collections of ROI much
larger than that considered here, in addition to the com-
putational expense resulting from more required searches,
each search will take much longer to produce meaningful
models due to the larger number of possible explanatory
variables. A hybrid method of symbolic regression employ-
ing a machine learning algorithm called FFX (Fast Func-
tion Extraction) described in McConaghy (2011) as a first
pass, and then GP, has great potential for the treatment
of higher dimensional data, e.g., large numbers of ROI.
A prototype of this method was reported in Icke et al.
(2014). FFX is a deterministic algorithm that builds up
models with nonlinear terms (e.g., products of ROI signal)
in a prescribed fashion and evaluates explanatory power at
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Figure B.11: Example hierarchies for two different individual subjects. Note the large degree of variation between the two.
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Figure C.12: Linear hierarchies for groups with high (top) and low (bottom) alcohol consumption rates, defined by two or more lifetime drinks
and one or fewer lifetime drinks, respectively.
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each stage. By ruling out ROI that are likely not explana-
tory at each stage, the algorithm reduces the dimension-
ality of the search. In other words, at the cost of reduced
breadth in the search space, the algorithm provides huge
reductions in computation time in addition to reducing the
number of variables that will eventually be injected into
the GP algorithm. Implemented effectively, this hybrid
algorithm could eliminate the necessity of ROI selection
completely by allowing direct regression over voxel signals.

An ever-present concern in the analysis of fMRI is the
level of noise in the data. Particularly in the case of re-
gressing over voxel signals, low signal-to-noise ratio is a
major challenge, and indeed GP efficacy is diminished in
such circumstances. However, there has been some work
on modifying the GP algorithm to better manage noisy
data, an example of which is the inclusion of noise genera-
tors called stochastic elements with user-defined distribu-
tions (e.g., Gaussian or uniform) as potential explanatory
“variables”. These generators can themselves end up in-
side complex functions within the models, providing those
models the capability of reproducing realistic noise distri-
butions more likely to be at play than the typical Gaussian.
There is no guarantee that this modification will prove
beneficial in the case of fMRI, but it has been shown, in
Schmidt and Lipson (2007), to effectively identify exact
underlying analytical models in the presence of nonlinear,
non-Gaussian and nonuniform noise.
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Table A.1: Table of ROI

ROI ICN ROI Description Visualization

1 1 left anterior hippocampus

2 1 right anterior hippocampus

3 2
subgenual anterior cingulate cortex, anterior

caudate

4 2
ventromedial prefrontal cortex, medial

frontal gyrus

5 3 right globus pallidus

6 3 left globus pallidus

7 4 right anterior insula

8 4 left anterior insula

9 4
middle cingulate cortex, dorsomedial

prefrontal cortex
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ROI ICN ROI Description Visualization

10 5 inferior cerebellum

11 5 posterior cingulate cortex

12 5 inferior vermis

13 5 inferior vermis

14 5 anterolateral cerebellum

15 5 anterolateral cerebellum

16 5 posterior cerebellum

17 5 inferior colliculus, anterior vermis

18 5 fornix (body)

19 6 posterior dorsomedial prefrontal cortex

20 6 left superior precentral gyrus

21 6 right posterior superior parietal cortex
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ROI ICN ROI Description Visualization

22 7 left superior parietal cortex

23 7 right precuneus

24 7 left superior parietal cortex

25 7 right superior parietal cortex

26 7 left posterior dorsolateral prefrontal cortex

27 7 right posterior dorsolateral prefrontal cortex

28 8 left postcentral gyrus

29 8 paracentral lobule

30 8 anterior inferior parietal cortex

31 8 right postcentral gyrus

32 10 right lateral occipital cortex

33 10 left lateral occipital cortex

34 11 left occipital pole

35 11 right occipital pole

36 12 lingual gyrus

37 12 right cuneus

38 12 right fusiform gyrus
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ROI ICN ROI Description Visualization

39 13 posterior cingulate cortex

40 13 left angular gyrus

41 13 right angular gyrus

42 13 anterior dorsomedial prefrontal cortex

43 14 right superior cerebellum

44 14 vermis

45 14 left superior cerebellum

46 15 right middle frontal gyrus

47 15 right supramarginal gyrus

48 16 left superior temporal gyrus

49 16 right superior temporal gyrus
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ROI ICN ROI Description Visualization

50 17 right inferior pre and post central gyrus

51 17 left inferior pre and post central gyrus

52 18 left inferior frontal gyrus
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4 Symbolically regressing satellite imagery.
Large-scale imaging of large-scale regions of the Earth’s surface presents many opportunities for
advances in understanding. In a series of manuscripts we have shown that symbolic regression is
particularly useful in this domain.

In [9] we demonstrated that symbolic regression could be adapted such that it draws intelli-
gently on sensors that are more or less costly to query. The resulting model can successfully adapt
its prediction as the cost and/or availability of different sensing systems fluctuate over time.

In [3] we demonstrated that symbolic regression is particularly useful for predicting an envi-
ronmental variable of interest—in this case, the amount of water contained in snow pack—across
a wide region.

Finally, in [6] we have demonstrated that symbolic regression can act as a form of compressed
sensing: it can be successfully trained even if the data set is underdetermined (more features than
observations). This works by enabling symbolic regression not just to optimize the structure of
the model, but also to optimize the structure of sub-regions across the surface of the Earth to
be modeled within which observations are averaged (compressed). This produces particularly
intuitive models, because a lay observer can gain intuition into the model by observing what regions
it draws averages from for prediction.

4.1 Relevance for U.S. defense and security.
It would be useful for military personnel or stakeholders to not only obtain predictions about en-
vironmental variables that change over time—snow, vegetation, rainfall—but to easily understand
how a model predictions those variables may change in the near future. The methods presented in
the three manuscripts that follow provide one such method to do so.

4.2 Yousefi et al. “A Genetic Programming Approach...” (2015).
A technical manuscript describing how symbolic regression can balance prediction and cost effec-
tiveness follows.
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ABSTRACT
Resource constrained sensor systems are an increasingly attractive
option in a variety of environmental monitoring domains, due to
continued improvements in sensor technology. However, sensors
for the same measurement application can differ in terms of cost
and accuracy, while fluctuations in environmental conditions can
impact both application requirements and available energy. This
raises the problem of automatically controlling heterogeneous sen-
sor suites in resource constrained sensor system applications, in a
manner that balances cost and accuracy of available sensors. We
present a method that employs a hierarchy of model ensembles
trained by genetic programming (GP): if model ensembles that poll
low-cost sensors exhibit too much prediction uncertainty, they au-
tomatically transfer the burden of prediction to other GP-trained
model ensembles that poll more expensive and accurate sensors.
We show that, for increasingly challenging datasets, this hierarchi-
cal approach makes predictions with equivalent accuracy yet lower
cost than a similar yet non-hierarchical method in which a sin-
gle GP-generated model determines which sensors to poll at any
given time. Our results thus show that a hierarchy of GP-trained
ensembles can serve as a control algorithm for heterogeneous sen-
sor suites in resource constrained sensor system applications that
balances cost and accuracy.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

Keywords
Genetic Programming, Resource Constrained Sensor Systems, Cost-
Sensitive Control, Sensor Fusion

1. INTRODUCTION
Resource constrained sensor systems (RCSS) such as Wireless

Sensor Networks have revolutionized environmental monitoring by
combining low cost with flexibility in sensor capabilities [29]. They
have been used in diverse environmental monitoring applications
and continue to be adapted in new fields. Because RCSS are often,
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even typically, deployed in remote locations, and thus rely on com-
binations of battery power and energy harvesting, a major challenge
in RCSS design is to minimize system power consumption.

Minimizing power consumption can be accomplished in a vari-
ety of ways, in particular by adapting sensor control strategies that
optimize the balance between measurement accuracy and the cost
of powering sensors [28]. In this paper, we propose new sensor con-
trol algorithms for RCSS with heterogeneous sensor suites that bal-
ance cost and accuracy, obtained using genetic programming (GP)
techniques.

By “heterogeneous sensor suite”, we mean RCSS equipped with
multiple types of sensors for prediction of the same phenomena.
Each of these sensors is characterized by its accuracy in relation
to the phenomena, and a cost of use which is often measured by
its power consumption. Such systems support multi-modal sensor
fusion, a well-studied technique where data from multiple sensor
modalities (types) is combined to predict a single variable [28]. The
contribution of our work is a consideration of cost in multi-modal
sensor fusion, and the development and testing of associated con-
trol algorithms. These algorithms will call upon particular sensors
only when needed, and otherwise rely on the cheapest available
sensors at any given time. Our problem is distinguished from adap-
tive sampling [28], in that the latter is concerned with optimally
modulating sampling frequency of a given sensor, not choosing be-
tween a suite of possible sensors.

While various multi-modal sensor fusion applications exist, we
are especially interested in the Snowcloud system which combines
snow density telemetry with snow depth and air temperature sen-
sors to predict areal snow water equivalent (SWE) [22]. We envi-
sion extending Snowcloud to incorporate ground based light detec-
tion and ranging (LIDAR) scanning [4] to be used for SWE esti-
mation as part of its sensor suite. However, while LIDAR yields
more accurate data than existing Snowcloud telemetry, it does so
at significant additional power cost. Thus, the challenge is to com-
mit these resources only at optimal times. It is also a refinement
of multi-modal sensor fusion, since we are mainly interested in set-
tings where available data gathering techniques differ in accuracy,
with less accurate sensors being cheaper than more accurate ones.

A fundamental component of our approach is the use of pre-
diction uncertainty to drive sensor usage. We propose a scheme
whereby predictions are attempted using lower-cost sensors at first.
If uncertainty is below an acceptable threshold, then the predic-
tion is used. Otherwise we switch to higher-cost sensors, make a
new prediction based on those inputs, evaluate uncertainty again,
and continue to move the burden of prediction to more accurate
and costly sensors as needed. This scheme is discussed in detail in
Section 3.4 and described graphically in Figure 2. Note that while
the Snowcloud system is an intended application of this scheme, it
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can be generalized to any RCSS application using heterogeneous
sensor suites comprising sensors with varying cost and accuracy.

To quantify uncertainty we are aided by machine learning en-
semble methods– we use entropy in ensemble predictions as a proxy
for uncertainty [21]. To obtain predictive models themselves, in
this work we use genetic programming (GP). This is largely due
to characteristics of our intended application space. Previous work
has demonstrated that the relationships between snow cover and
the topographic and meteorological factors that influence it include
nonlinearities [24], while the spatial distribution of SWE is non-
linear because it is influenced simultaneously by various forcing
effects [25]. Nonlinear predictors are therefore desirable. Further-
more, recent results [6] show that GP has advantages over other ap-
proaches (such as C4.5) due to associated techniques for preventing
overfitting, e.g. treating model size minimization as an objective
[11]. Although C4.5 only supports classification, sufficiently fine
classification granularity can achieve competitive performance on
regression problems, and this approach is popular in the environ-
mental science community [6]. Finally, GP is appealing due to its
white-box nature: it can potentially provide physical insights into
modeled phenomena.

An alternative approach to our problem is to not rely on external
measures of entropy to switch between sensors, but to treat cost as
an additional objective in a multi-objective optimization problem.
We explore this option in our work, in direct comparison to the hier-
archical approach. However, due to the “curse of dimensionality”,
adding another optimization dimension may have deleterious ef-
fects on prediction performance, especially since selection for size
to avoid overfitting already imposes a multi-objective optimization
regime [5]. We therefore hypothesize that a hierarchical approach
will outperform a non-hierarchical approach in settings where mul-
tiple sensors with differing predictive abilities, and we explore this
comparison in our experiments.

2. RELATED WORK
Previous work on adaptive sampling [28] has aimed to reduce

sampling rates in RCSS applications to balance sensor cost and ac-
curacy. In particular, Alippi et al. [3] have tried to find the optimal
adaptive frequency of sampling for avalanche monitoring. It has
further been claimed that compressed sensing — sending aggre-
gated data instead of raw data — performs better in conjunction
with reducing sampling rates, rather than just reducing the sam-
pling rate alone [15]. A variety of methods for compressed sensing
[8] have been proposed. Although these methods have achieved
cost reduction in monitoring, they are not applicable to our problem
since we intend not to change the rate of sampling one sensor type,
but rather to reduce sampling cost by switching between available
sensors of different type and accuracy.

Another line of work focuses on finding the optimal location for
sensors in distributed deployments, in order to maximize accuracy
while minimizing deployment densities. Krause et al. [13] have
used a probabilistic method to predict the communication cost for
a given deployment topology. Papadimitriou et al. [17] have em-
ployed GP and a Bayesian statistical method to minimize entropy
over a set of sensor locations. In contrast, our work is concerned
with reducing the cost of sampling from an available set of sensors
at any given time, not with reducing the densities of sensor topolo-
gies.

In work on so-called multi-modal sensor fusion, data from mul-
tiple sensors in a potentially heterogeneous suite are aggregated to
monitor a specific measurement application [26, 9]. This method
has been widely used, for example in visual monitoring [16, 18]
and target tracking [19, 23]. Data-fusion focuses on sensor appli-

cations that need to compute the correlation between multiple sen-
sor modules and cannot be measured by a single sensor. However,
these works do not consider the cost of using different sensors, or
minimizing cost.

Cost sensitive multi-modal sensor fusion methods have been de-
veloped to balance cost against accuracy, with an eye towards pro-
viding fault tolerance [12]. However, we are not concerned with
fault tolerance, but strictly between selecting sensors from hetero-
geneous suites. Willett et al. [28] use a small number of sensors to
send their readings to a fusion center, and based on the correlation
among the sensed data, the fusion center decides which additional
sensors should be activated. The same concept has also been tried
in a distributed fashion [14]. However, sensing costs in these cases
are a function of the number of sensors sampled, not their type.

Perhaps most related to our work is that of Wang et al. [27].
They propose a method to find the optimal set of sensors to be
polled, using a hybrid tree, where non-leaf nodes act as a deci-
sion tree and leaves are standard regression models using a subset
of sensors. However, these trees support decision making based on
external constraints, i.e. which sensors to use depending on an orga-
nization’s goals and resources. In contrast, our models are intended
to support sensor control in RCSS during deployments.

Outside of the adaptive sampling and sensor fusion fields, multi-
objective optimization has been used for cost-sensitive modeling.
For example Kim [11] set error as one objective and tree size as
another, as we do here. Zhao [30] sets the false negative rate and
false positive rate as the two objectives. However, these works do
not consider the hierarchical approach that we do.

3. METHODS
This section provides a formalization of the problem, how ge-

netic programming is applied to solve it, and the two variants of
genetic programming that we compare in this work. All of the ma-
terial for replicating the work described here is available online [1].

3.1 Problem Formalization
Let us assume that t values of some environmental phenomenon

g (the ground truth) are known at time steps 1, . . . t. These values
are stored in g = g1, . . . gt. Let us further assume there are k
sensors s1, . . . sk available that can be used to predict g. Let r(t)i

denote the reading of sensor i taken at time t. Moreover, let s(t)

and r(t) denote a subset of sensors, and readings taken from them,
at time t. We denote the amount of variance of g explained by
sensor i as v(g)ri . This value is determined by linearly regressing
only ri against g. Finally, let ei = 100(1− v(g)ri ) and ci represent
the prediction error and cost of using sensor i respectively. Using
this formulation, ei represents the percentage of prediction error
incurred by just using sensor i to predict g.

The cost of a sensor ci is usually inversely proportional to its er-
ror ei, so for the work reported below, we set ci = v

(g)
ri for each

sensor. In certain sensor deployments there may be other factors
that affect ci such as power consumption, market price, effort re-
quired to collect a sensor’s reading, proprietary issues, and so on.

We suppose that an ordering of sensors exists such that s1 is the
least expensive sensor with the highest error and sk is the most
expensive sensor with the lowest error. Formally,

∀i, j . 1 ≤ i < j ≤ k → ei > ej ∧ ci < cj .

Let us denote the prediction of a model using a subset of sensors
at time t by p(t), i.e., p(t) is a function on r(t). Then, the error of
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each sampling e(t) would be

e(t) , |p(t) − g(t)|.

The cost of each sampling, c(t) is the cumulated cost of all sen-
sors si ∈ s(t) that were polled for that sampling:

c(t) ,
∑

j∈{i|si∈s(t)}

cj .

It is desired that each sampling s(t) entails low error and cost.
That is, the following equality is desirable:

argmin
s(t)

e(t) = argmin
s(t)

c(t).

Our goal is to design models which combine and transform sen-
sor readings to accurately predict the outcome measure, but can
also intelligently determine which sensors to poll when cheap, less
accurate sensors exhibit uncertainty about the current prediction.

3.2 General Genetic Programming approach
Genetic programming has widely been employed for regression

tasks in which the functional form of the equations relating inputs
to outputs is unknown. Here, inputs are sensor values and output is
a prediction for a given outcome measurement.

Although many recent improvements have been proposed for GP,
here we have kept the genetic programming algorithm simple and
instead focused on comparing GP-generated hierarchical and non-
hierarchical models. Thus, GP is restricted to the four simple al-
gebraic operators, and each evolutionary trial is initialized with a
fixed-sized population of randomly-generated solutions containing
three nodes. Maximum tree depth is not set since the tree size is
considered as an objective in multi-objective optimization. The
crossover rate is set to 0.2 and no fitness stall is considered. If the
number of non-dominated solutions reaches 50% of the population
size, the training restarts. At the conclusion of each generation,
four values are computed for each solution: (1) error on training
data as defined below, (2) the combined cost of the sensors used to
make the prediction, (3) the size of the solution, and (4) the age of
the solution. We now discuss each in turn.

Error: Let n be the population size and j range over {1, · · · , n}.
Let tj be some solution tree. We represent the error of sampling at
time t using solution tj with e(t)tj

. Moreover, dtrain and dtest denote
the training dataset and testing dataset, respectively. Then, we de-
fine the error on training data using solution tj by etrain

tj and as the

average of e(t)tj
on all samples in dtrain, i.e.,

etrain
tj ,

∑

g(t)∈dtrain

e
(t)
tj

|dtrain| .

Each solution tj was allowed to use a subset (possibly empty) of
available sensors. The cost of each solution depends on the sensors
that are employed and the sampling.

Cost: As described in the following sub-sections, the current
readings of the sensors may trigger readings from additional sen-
sors. Thus, different r(t)i may cause tj to need different s(t). The
average cost of a tree on training data ctrain

tj is thus defined as the
cost of all of the sensors that have been used to predict the out-
come for each training instance, averaged over all instances in the
training data set:

ctrain
tj ,

∑

r(t)∈dtrain

∑

l∈{i|si∈s(t)}

cl
|dtrain| .

If a solution uses a sensor more than once, no extra cost is incurred:
because the sensor has already been polled, its output is already
available and can thus be re-used as often as required.

Size: To avoid bloat, solution size was incorporated into the fit-
ness objectives during the optimization process [7].

Age: We employed the Age-Fitness Pareto Optimization (AFPO)
method [20], which injects a new randomly-generated solution into
the population at each generation and compares the solutions with
same age in an effort to guard against convergence. Each solution’s
age is defined as the number of generations since its oldest ances-
tor was injected into the population. A new solution produced by
mutating an existing solution inherits the same age as its parent. If
two existing parents are crossed to produce two new offspring, the
offspring inherit the age of the older of the two parents. AFPO is
an multiobjective optimization method as solution age is used as an
additional fitness objective during optimization.

Optimization. At the end of each generation, the Pareto front
is computed according to the objectives used, and the dominated
solutions are discarded. Multi-objective optimization with all four
objectives described above could easily lead to population collapse
in the sense that all members of the population could become non-
dominated. To guard against this eventuality, one possibility is to
restart the evolutionary run with new solutions if no dominated so-
lutions are detected in the population at the end of a given genera-
tion. Alternatively, a very large population size can be employed.
However, both of these solutions greatly increase the computational
effort required to obtain satisfactory solutions to the given prob-
lem. To avoid this situation, different multi-objective optimization
approaches has been proposed. One of the simplest non-parametric
approaches is to reduce the number of objectives by multiplying
objectives together and using the result in the optimization process
[10]. In this experiment, since error is the most important outcome,
error is used for the primary objective and the second objective is
the result of multiplying cost, size and age together.

Once the dominated solutions are deleted, the empty slots in the
population are then filled by mutating and crossing copies of the
non-dominated solutions. Tournament selection is used to select
parents from the front for these operations. After the last genera-
tion, age is discarded when computing members of the Pareto front,
since the goal is to use only small, accurate and cost-effective solu-
tions for prediction, regardless of their age.

3.3 Non-hierarchical GP
A naive approach to cost-sensitive modeling using GP would be

to evolve individual trees that add conditional and comparative op-
erators to the base set of operators, and allow the tree to poll the val-
ues of all sensors if desired, as shown in Figure 1.A. In this way, dif-
ferent parts of the solution tree will be visited depending on the cur-
rent values of the sensors. Successful solutions may evolve which
only visit nodes containing references to expensive sensors—which
are then polled—if less expensive sensors report certain combina-
tions of values that signal these sensors are unlikely to predict well
given the current circumstances. etrain

tj and ctrain
tj ∗ age ∗ size are em-

ployed as the two main objectives in the optimization process.
Figure 1.B shows an hypothetical example of a GP solution tj

that has evolved to encode a useful conditional. In this example,
an inexpensive sensor s1 is first polled. If its reported value r(t)1

is below some threshold, the reading of a more expensive sensor
s2 is going to be used. It is assumed here that s1 tends to make
poor predictions of the outcome if its reading is below 1.43. If this
threshold is exceeded, r(t)1 is then used to predict the outcome.

Conditional operators should, indirectly, encode the differential
effects on the available sensors, and the relative costs of those sen-
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Figure 1:A)Non-hierarchical framework.B)A non-hierarchical
sample solution.

Figure 2: Hierarchical framework.

sors. Note that this is possible even if GP does not have direct
access to these differential effects and costs, as they are indirectly
reflected in the errors and costs incurred when each solution is
evaluated. This issue is worth mentioning in that these effects are
complex, non-linear and noisy, and even field experts cannot define
them precisely.

3.4 Hierarchical GP
An alternative approach to reconciling prediction error and pre-

diction cost is to build a hierarchy of models: models in the lower
layers only have access to inexpensive sensors, while models in the
upper layers have access to a greater subset of the sensors, includ-
ing more expensive ones. When deployed, the overall model re-
turns a prediction from a lower layer if the inexpensive sensors are
confident of their combined prediction. If they are not, predictions
are drawn from a higher layer.

Briefly, constructing such a model proceeds in two phases:

1. First, build a set of k layers, one for each sensor modal-
ity. For each layer i, run GP to find a set of accurate and
low-cost solutions that use one or more sensors from the set
s1, s2, . . . si.

2. Define conditions which determine which layer should be al-
lowed to provide the prediction, given the current environ-
mental conditions.

Figure 2 illustrates what such a hierarchical model looks like.
At the outset of attempting to provide a prediction for the current
environmental conditions, the models stored in the lowest layer are
evaluated, which only have access to the least expensive sensor s1.

If the certainty of their combined predictions is acceptable, return
the combined prediction of these models. Otherwise, evaluate the
models at the next layer, which have access to s1 and the next least
expensive sensor s2. If these models are acceptably confident in the
prediction, return their combined prediction; otherwise, evaluate
the solutions at the next layer, and so on. If the top layer is reached,
the combined predictions of the models found there are returned
as the overall prediction, regardless of their level of certainty. The
incremental construction of these models is described next.

Starting with the least expensive sensor s1, GP is used to find
the best models for converting r(t)1 to g(t). When GP terminates,
the final non-dominated solutions are then organized as a group
named layer L1. The same process is repeated for s2, except for
the fact that since s1 is already polled in L1, it may be incorporated
into models during evolution without incurring an extra cost for the
solution tree that makes use of it. Similarly, for each sensor si,
a separate GP run is performed with sensors s1 to si available as
input to construct layer Li. These layers are then organized in a
hierarchical fashion. The order of layers is based on the cost of
the most expensive sensor they are representing, from L1 to Lk.
Suppose each layer Li consists of ni solutions and the jth solution
tj in Li is denoted as ti,j . Let p(t)ti,j

denote the prediction of g(t)

that ti,j provides. Then, the final prediction of layer Li for g(t) is

p
(t)
Li

,
ni∑

j=1

p
(t)
ti,j

ni
.

The error that corresponds to p(t)Li
is

e
(t)
Li

, |p(t)Li
− g(t)|.

In the second phase, a conditional must be formulated to de-
termine whether the current layer should return its prediction, or
whether the burden of prediction should be passed up to the next
layer. One common method for measuring how confident an en-
semble of models is, is to compute the variance in their predictions
[21]: if variance is low, and those models are sufficiently indepen-
dent of one another, there is a greater likelihood that their combined
predictions can be trusted. If variance is high, this is likely the re-
sult of differing assumptions encoded in the models, which cannot
all be true reflections of the hidden relationship being modeled.
Note the assumption here that the models are relatively indepen-
dent: a set of identical models will never exhibit a variance in their
predictions, regardless of how accurate the individual models are.
We can be somewhat confident of the independence of our models,
as they are produced by the AFPO algorithm: models with differing
ages are likely to arrive on the final Pareto front used to build each
layer, and such differently-aged genomes are likely to be somewhat
independent because of their different genetic origins.

Formally: Let ptrain(t)
Li

and etrain(t)
Li

denote p(t)Li
and e(t)Li

using r(t) on
dtrain, respectively. Similarly, ptest(t)

Li
and etest(t)

Li
respectively denote

p
(t)
Li

and e(t)Li
using r(t) on dtest. Moreover, assume vtrain(t)

i and vtest(t)
i

are the variances of all p(t)ti,j
s on dtrain and dtest. Also, vtrain

i denotes

vtrain(t)
i averaged over all the samplings in dtrain.
To determine whether the burden of prediction should remain

with the current layer or passed off to a higher layer, we measure
the difference in prediction variance between the models when pre-
sented with the training data (vtrain

i ) or with the testing data, i.e. the
current environmental conditions (vtest(t)

i ). When vtest(t)
i is almost

the same as vtrain
i , there is a high probability that etest(t)

Li
is an ap-

proximation of etrain(t)
Li

, and we can be relatively confident that these
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Figure 3: Using the difference between training data prediction
variance and test data prediction variance as the condition for
switching between model layers.

models will yield a good collective prediction of g(t). When the
variance of test data prediction is significantly higher than predic-
tion on the training data, this signals that the solutions in that layer
are exhibiting increased disagreement regarding the current envi-
ronmental conditions. This could be due to the fact that a specific
sensor is not physically able to predict under the current conditions,
or the solutions have not been trained for the current situation. In
such an eventuality it would be advantageous to switch to the next
layer, in the hope that its models will exhibit more confidence in
their ability to predict the current conditions. In this paper, the
variance is considered as a proxy for entropy, but any other entropy
related metric could be used instead. Figure 3 illustrates how this
intuition is encoded into the switching condition in the hierarchy of
layers.

By considering the amount of difference between prediction vari-
ance on training and testing data, we can dynamically tune how
conservative or liberal the overall hierarchical model is: if little dif-
ference is tolerated, the burden of prediction will often be passed
to higher layers, resulting in expensive yet accurate predictions;
if much difference is tolerated, lower levels will tend to predict,
resulting in less expensive and less accurate predictions. The ad-
vantage of this approach is that the amount of tolerance could be
dynamically tuned based on the current available budget for sens-
ing.

For example, for larger budgets, more cost could be expended in
order to obtain more accurate results. In this regard, the tolerance of
the difference between variances could be decreased, transferring
the burden of prediction to higher layers. Similarly for small bud-
gets, the tolerance would be increased. Through this adjustment,
more disagreement would be tolerated and less accurate predictions
would be obtained for lower cost. To implement this dynamic tun-
ing given a fluctuating budget, a tolerance parameter τ ∈ [0, 1] is
defined, reflecting the tolerance of disagreement between the so-
lutions of a given layer. Equation (1) demonstrates how this pa-
rameter is used to determine which level should be activated for
prediction.

p(t) =

{
p
(t)
Li

if vtrain
i < |1− τ | · vtest(t)

i

p
(t)
Li+1

otherwise
(1)

It should be noted that in the present work, the same value for τ is
used at the interstices between each pair of layers. However, dif-
ferent values for τ could be employed between different layers to
enable the model to respond better to changes in the overall avail-
able budget. The extreme cases occur when τ = 0 or τ = 1.
The former ensures that the conditional is only true when the pre-
diction variance on the testing data is greater than the prediction
variance on the training data which has a high probability of oc-
curring. Thus, the method tends to extract the predictions from the
solutions on the uppermost layer. The latter ensures that the condi-
tional is only true whenever the variance on the testing data is finite,
which is always true. In this case, the first layer always provides the

Table 1: Available sensors and their features.
Name Equation Template of r(t)i Cost
s3 g(t) 3
s2 b2,1g

(t) + b2,2 2
s1 b1,1(g

(t))
2
+ b1,2g

(t) + b1,3 1

prediction. Values greater than τ = 1 are not investigated in this
work, but are possible. Greater τ value increases the probability of
the conditional to be true. τ =∞ causes the conditional to always
be true, thus the method always collects predictions from the last
layer.

4. RESULTS
The proposed methods are evaluated over two set of experiments,

using a synthesized dataset and ten actual datasets. This section
summarizes these datasets, experimental setups, and quantitative
results.

4.1 Synthesized Data
In these experiment, the proposed methods have been evaluated

on a synthetic system monitored by three different sensors. Table
1 shows these three sensors, their readings in relation to g(t), and
their cost.

To create the training and testing datasets, at first coefficients
in the equations of the sensor relations, i.e., bi,js, were randomly
selected in the range [0, 1]. Then, random numbers were generated
for g(t), and used to calculate the sensor readings based on the
given template and selected coefficients. The training and testing
dataset sizes were 150 and 50, respectively, and each experiment
were repeated 40 times.

Non-hierarchical setup. The population size is 100 and is trained
for 300 generations. The optimization process during the last gen-
eration does not consider age as an objective and Pareto front is
selected using error and cost× size as two separate objectives. Af-
ter training, the knee of the non-dominated solutions is selected and
tested using the testing dataset.

Hierarchical setup. The population size for each layer is 100
and each layer was trained for 100 generations, for the sake of
fairness in comparisons. Similarly to the non-hierarchical setup,
during the last generation, age is not considered in the Pareto opti-
mization process, and non-dominated solutions are selected based
on error and cost× size as two separate objectives. After training,
for each layer Li, the variance of the solutions output on train-
ing data vtrain

i is computed and stored as the threshold of switch-
ing to the next layer Li+1. This variance is not computed for the
layer corresponding to the most expensive sensor, i.e., L3, since
there are no more sensors to be called. The experiment was re-
peated 40 times for each of the different tolerance parameters τ =
0.0, 0.1, 0.2, 0.4, 0.6, 0.8.

4.1.1 Results on Synthesized Data
Average error. The average error of the non-hierarchical method

is etest
tj , where tj is the final selected solution. The average error

of the hierarchical method is the average of etest
Li

, where Li is the
last layer reached in the hierarchy, during the sampling. As can be
seen in Figure 4, the largest difference in error occurs at maximum
tolerance i.e. τ = 0.8 where the error of the hierarchical method is
1.34% higher than the non-hierarchical method. The hierarchical
method tends to achieve lower average error when the tolerance
parameter is τ < 0.4. P -values obtained for different tolerance
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Figure 4:. Average error on the test data for the non-hierarchical
and the hierarchical methods with different tolerance parame-
ters. Statistical significance of these results are represented in
Table 2.A)

Table 2: A) P -values considering error of the non-hierarchical
and the hierarchical methods with different tolerance parame-
ters. B) P -values considering cost of the non-hierarchical and
the hierarchical methods with different tolerance parameters.

A P -values B P -values
τ = 0.8 0.013414 τ = 0.8 � 0.001
τ = 0.6 0.046626 τ = 0.6 � 0.001
τ = 0.4 0.635566 τ = 0.4 � 0.001
τ = 0.2 0.001309 τ = 0.2 � 0.001
τ = 0.1 � 0.001 τ = 0.1 � 0.001
τ = 0.0 � 0.001 τ = 0.0 � 0.001

parameters are represented in Table 2.A) and show that τ = 0.4 is
the boundary where the hierarchical method begins to outperform
the non-hierarchical method.

Average cost. By considering tj as the final selected solution
in the non-hierarchical method, the average cost is ctest

tj . The aver-
age cost of the hierarchical method is the average of ctest

Li
, when the

last layer reached during the sampling is Li. In order to compare
both methods and understand how much of the potential cost each
method uses, the cost of each method is represented as the percent-
age of cost of using all available sensors. Figure 5 shows that the
average cost of the hierarchical method is significantly lower than
the non-hierarchical method (at most 54.88% and at least 33.81%
lower cost). Table 2.B) summarizes the p-values to show how sig-
nificantly the cost of the hierarchical method is lower than the non-
hierarchical method.

4.2 Actual Data
In this experiment, ten datasets are selected from the UCI database

repository [2] based on the number of instances and features from
the regression section. Table 3 summarizes these datasets and their
features. For these datasets, we treat the individual features as in-
dividual sensors. Each experiment in this section were repeated 30
times.

In order to determine the accuracy of each sensor si in predicting

Figure 5:The average cost on the test data for the non-
hierarchical and the hierarchical methods with different tol-
erance parameters. Statistical significance of these results are
represented in Table 2.B)

Table 3: Used UCI datasets.
DS No. DS Name No. of Instances No. of sensors g(t) Average
DS1 Auto MPG 398 7 23.51457
DS2 Housing 506 13 22.53281
DS3 Forest Fires 517 12 0.031663
DS4 Energy Efficiency 768 8 22.3072
DS5 Concrete Compressive Strength 1030 8 35.81796
DS6 Solar Flare 1389 9 0.300188
DS7 Airfoil Self-Noise 1503 5 124.8359
DS8 SkilCraft1 Master Table Dataset 3395 19 4.184094
DS9 Wine Quality 4898 11 5.877909
DS10 Parkinson’s Telemonitoring 5875 17 29.01894

Table 4: Value of v(g)ri for all the sensors of Auto MPG dataset.
DS No. s1 s2 s3 s4 s5 s6 s7

Auto MPG 0.1766 0.3175 0.3356 0.5951 0.6012 0.6467 0.6918

Table 5: Minimum and maximum amount of variance a sensor
accounts for, in each dataset.

DS No. min v
(g)
ri max v

(g)
ri

DS1 0.1766 0.6918
DS2 0.0307 0.5441
DS3 0.0002 0.2578
DS4 0.0076 0.7911
DS5 0.0112 0.2478
DS6 0.000 0.096
DS7 0.0157 0.1527
DS8 0.0005 0.4542
DS9 0.0001 0.1897
DS10 0.0037 0.0263

g(t), the value of v(g)ri is calculated for each available sensor of each
dataset, using linear regression. The greater v(g)ri is, the better that
sensor can predict g(t).Table 4 summarizes the values of v(g)ri for all
of the sensors of the Auto MPG dataset, as an exampl. We define
the cost of each sensor in these datasets as v(g)ri .
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Table 6: Average error percentages and the corresponding P -
values for the hierarchical and the non-hierarchical methods.

DS No. NH: error % H: error % P -value
DS1 20.85 25.81 � 0.001
DS2 25.90 28.93 � 0.001
DS3 126.49 202.12 0.565
DS4 29.19 36.70 � 0.001
DS5 35.29 39.68 0.393
DS6 110.63 111.08 0.223
DS7 0.00 0.00 0.082
DS8 37.59 28.65 0.194
DS9 10.79 10.67 0.197
DS10 32.11 29.88 0.423

Table 7: Average cost percentages and the corresponding P -
values for the hierarchical and the non-hierarchical methods.

DS No. NH: cost % H: cost % P -value
DS1 38.89 12.33 0.022
DS2 23.18 1.26 � 0.001
DS3 6.83 15.81 � 0.001
DS4 32.90 4.18 � 0.001
DS5 53.63 28.63 0.004
DS6 0.00 0.98 0.040
DS7 11.58 7.35 0.005
DS8 2.55 0.00 � 0.001
DS9 0.02 0.00 � 0.001
DS10 20.62 3.88 0.009

Non-hierarchical setup. The population size is 200 and for each
dataset with k features, it is trained for 200 ∗ k generations.

Hierarchical setup. The population size for each layer is 200.
Similar to synthesized data experiments, In order to equalize search
effort in both methods, each layer was trained for 200 generation.
After training, a subset of the non-dominated solutions with least
error are selected and organized in the corresponding layer. The
cardinality of this subset is 2% of the population size. This experi-
ment was conductedof for tolerance parameter τ = 0.1. This value
is selected based on the results in 4.1 and will be discussed in more
detail in Section 5.1.

4.2.1 Results on Actual Data
Average error. The average error for the non-hierarchical and

the hierarchical methods are etest
tj and etest

Li
respectively, where tj

is the final selected solution in the non-hierarchical method and
Li is the last layer reached during the sampling in the hierarchical
method. Table 6 summarizes the average error of both methods on
all the datasets as a percentage of error. It can be seen that for some
datasets, the average error of the hierarchical method is higher than
the average error of the non-hierarchical method. However, the P -
value for the two-tailed t-test shows that generally, this difference
is not significant. There are three cases where the difference is
significant i.e., DS1, DS2 and DS4.

Average cost. Similar to 4.1.1, the average cost is represented as
the percentage of the maximum possible cost. Table 7 summarizes
the percentage of the average cost each method uses for predic-
tion. The cost of the hierarchical method is significantly lower in
all cases except for DS3 and DS6.

5. DISCUSSION
Our results in all experiments suggest that the hierarchical method

is better at balancing cost and accuracy than the non-hierarchical
approach. We believe this is because meaningful sensor control
conditions for managing cost are complex and require consider-
able computational effort to be discovered. Using hand-tuned pre-
diction uncertainty to drive sensor control is more effective. Fur-
thermore, our results show that the latter approach better supports
dynamic adaptation to changes in available energy, through modu-
lation of tolerance. The non-hierarchical approach cannot adapt to
such changes without retraining from scratch, or aggressive online
learning. As mentioned in Section 3.2, in these experiments a basic
genetic programming approach was deployed. We anticipate that if
we were to use a more powerful underlying GP approach, the error
of both hierarchical and non-hierarchical models would be reduced.

In the remainder of this Section we discuss results as they pertain
specifically to experiments with synthesized and actual data.

5.1 Synthesized Data
Average error. As can be seen in Figure 4, the hierarchical

method achieved significantly better accuracy than the non-hierarchical
method for τ < 0.4. In general, results show that higher tolerance
allows the algorithm to accept more uncertainty in the prediction
and rely on less expensive sensors which are less accurate. This
avoids the use of more expensive sensors, but causes average error
to rise. A tolerance of τ < 0.4 is apparently the threshold where
average error in the hierarchical method exceeds that of the non-
hierarchical method.

Average cost. Results reported in Figure 5 show that the hi-
erarchical method significantly outperforms the non-hierarchical
method with regard to cost on this dataset, even when tolerance is
low. This suggests that the use of variance in ensemble predictions
to serve as a proxy for prediction uncertainty is not easy to learn,
and serves as a good mechanism for control. Results in Figures 4
and 5 suggest that τ = 0.1 is a “sweet spot” for balancing cost
and accuracy, though the value could be increased or decreased if
greater frugality or accuracy were needed, respectively.

5.2 Actual Data
For testing on actual data, we fixed τ = 0.1 due to results on

synthetic data demonstrating a nice balance between cost and ac-
curacy with this tolerance level.

Average error. Table 6 shows that the average error of the hi-
erarchical and the non-hierarchical methods were not significantly
different, except for datasets DS1, DS2 and DS4 where the latter
method achieves better prediction accuracy. This is probably due to
the characteristics of these datasets, where the difference between
the least prediction variances v(g)ri s and the greatest ones is large.
The majority of sensors in these datasets are not informative but
have low costs and the remaining sensors are informative enough
but come with very higher costs. Thus, lower levels of the hierarchy
“struggle” compared to upper ones in terms of accuracy. Neverthe-
less, accuracy rate with the hierarchical method is still competitive
even in these cases, and cost reduction is significant. Also, it can be
seen that as the size of the datasets grows, the difference between
the error rate of the non-hierarchical and the hierarchical methods
decreases, and in the three largest datasets the hierarchical method
also achieves lower error rates.

Average cost. The hierarchical method achieved significantly
lower cost than the non-hierarchical method on all the real world
datasets, as shown in Table 7, except for DS3 and DS6. As rep-
resented in Table 5, in these two datasets, just a small subset of
sensors are relatively informative. Since the tolerance parameter
for the hierarchical method is low, the hierarchical method employs
more informative sensors. Taken together, results shown in Tables
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6 and 7 clearly indicate an advantage of the hierarchical method for
balancing cost and accuracy.

6. CONCLUSION AND FUTURE WORK
All resource constrained sensor systems have to face a trade-off

between measurement accuracy and the cost of sensor sampling. In
networks supporting multiple sensor types, it is therefore desirable
to develop cost-sensitive control algorithms that sample more ex-
pensive sensors only when necessary. In this paper, a hierarchical
method is proposed where GP solutions are sorted in a hierarchy of
layers based on the cost of the sensors they use. Switching to the
next more expensive layer takes place only if the prediction vari-
ance indicates uncertainty at lower layers. We compare this method
to a non-hierarchical GP method where cost is treated as an addi-
tional optimization objective in fitness selection. In experiments
using a synthesized dataset and ten real datasets, the hierarchical
method is shown to have significantly lower prediction costs than
the non-hierarchical method. As the datasets grow bigger and more
complex, competitive and sometimes lower error rates are achieved
by the hierarchical method. Future work includes consideration of
how to dynamically tune the balance of cost and accuracy based on
available energy and budget. Other directions for future work in-
clude methods for online learning to support adaptation of control
algorithms to particular deployments, and application of hierarchi-
cal control algorithms in real resource constrained sensor system
deployments.

Acknowledgements
This work was supported in part by the NSF awards PECASE-
0953837 and INSPIRE-1344227.

7. REFERENCES
[1] github code public repository. http://git.io/vfmGB. Accessed:

2015-04-18.
[2] UCI machine learning repository.

http://archive.ics.uci.edu/ml/datasets.html. Accessed: 2015-02-03.
[3] C. Alippi, G. Anastasi, C. Galperti, F. Mancini, and M. Roveri.

Adaptive sampling for energy conservation in wireless sensor
networks for snow monitoring applications. In IEEE 4th
International Conference on Mobile Adhoc and Sensor Systems,
MASS 2007, 8-11 October 2007, Pisa, Italy, pages 1–6, 2007.

[4] E. H. Bair, R. E. Davis, D. C. Finnegan, A. L. LeWinter,
E. Guttmann, and J. Dozier. Can we estimate precipitation rate
during snowfall using a scanning terrestrial lidar? In International
Snow Science Workshop, pages 923–929, Anchorage, AK, 2012.

[5] Brockhoff, Dimo, Zitzler, and Eckart. Are all objectives necessary?
On dimensionality reduction in evolutionary multiobjective
optimization. In Parallel Problem Solving from Nature-PPSN IX,
pages 533–542. Springer, 2006.

[6] D. Buckingham, C. Skalka, and J. Bongard. Inductive learning of
snowpack distribution models for improved estimation of areal snow
water equivalent. Journal of Hydrology, 2015. Accepted for
Publication.

[7] E. D. de Jong and J. B. Pollack. Multi-objective methods for tree size
control. Genetic Programming and Evolvable Machines,
4(3):211–233, 2003.

[8] D. L. Donoho. Compressed sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.

[9] D. Hall and J. Llinas. Multisensor data fusion. CRC press, 2001.
[10] G. Hornby. ALPS: the age-layered population structure for reducing

the problem of premature convergence. In Genetic and Evolutionary
Computation Conference, GECCO 2006, Proceedings, Seattle,
Washington, USA, July 8-12, 2006, pages 815–822, 2006.

[11] D. Kim. Structural risk minimization on decision trees using an
evolutionary multiobjective optimization. In Genetic Programming,
pages 338–348. Springer, 2004.

[12] F. Koushanfar, S. Slijepcevic, M. Potkonjak, and
A. Sangiovanni-Vincentelli. Error-tolerant multimodal sensor fusion.
In IEEE CAS Workshop on Wireless Communication and
Networking, pages 5–6, 2002.

[13] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal
sensor placements: Maximizing information while minimizing
communication cost. In Proceedings of the 5th international
conference on Information processing in sensor networks, pages
2–10. ACM, 2006.

[14] S. Maleki, A. Pandharipande, and G. Leus. Two-stage spectrum
sensing for cognitive radios. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal
Processing, ICASSP 2010, 14-19 March 2010, Sheraton Dallas
Hotel, Dallas, Texas, USA, pages 2946–2949, 2010.

[15] M. L. Malloy and R. D. Nowak. Near-optimal adaptive compressed
sensing. IEEE Transactions on Information Theory,
60(7):4001–4012, 2014.

[16] A. Martinelli. Vision and IMU data fusion: Closed-form solutions for
attitude, speed, absolute scale, and bias determination. IEEE
Transactions on Robotics, 28(1):44–60, 2012.

[17] C. Papadimitriou, J. L. Beck, and S.-K. Au. Entropy-based optimal
sensor location for structural model updating. Journal of Vibration
and Control, 6(5):781–800, 2000.

[18] C. Pohl and J. V. Genderen. Review article multisensor image fusion
in remote sensing: concepts, methods and applications. International
Journal of Remote Sensing, 19(5):823–854, 1998.

[19] H. Ren, D. Rank, M. Merdes, J. Stallkamp, and P. Kazanzides.
Multisensor data fusion in an integrated tracking system for
endoscopic surgery. IEEE Transactions on Information Technology in
Biomedicine, 16(1):106–111, 2012.

[20] M. Schmidt and H. Lipson. Age-fitness pareto optimization. In
R. Riolo, T. McConaghy, and E. Vladislavleva, editors, Genetic
Programming Theory and Practice VIII, volume 8 of Genetic and
Evolutionary Computation, pages 129–146. Springer New York,
2011.

[21] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In
Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, COLT ’92, pages 287–294, New York, NY, USA,
1992. ACM.

[22] C. Skalka and J. Frolik. Snowcloud: A complete data gathering
system for snow hydrology research. In Real-World Wireless Sensor
Networks, pages 3–14. Springer, 2014.

[23] D. Smith and S. Singh. Approaches to multisensor data fusion in
target tracking: A survey. IEEE Trans. Knowl. Data Eng.,
18(12):1696–1710, 2006.

[24] H. Tabari, S. Marofi, H. Z. Abyaneh, and M. R. Sharifi. Comparison
of artificial neural network and combined models in estimating
spatial distribution of snow depth and snow water equivalent in
Samsami basin of Iran. Neural Comput. Appl., 19(4):625–635, 2010.

[25] U. Tappeiner, G. Tappeiner, J. Aschenwald, E. Tasser, and
B. Ostendorf. GIS-based modelling of spatial pattern of snow cover
duration in an alpine area. Ecol. Model., 138:265–275, 2001.

[26] E. L. Waltz and D. M. Buede. Data fusion and decision support for
command and control. IEEE Transactions on Systems, Man, and
Cybernetics, 16(6):865–879, 1986.

[27] D. Wang, H. Ahmadi, T. F. Abdelzaher, H. Chenji, R. Stoleru, and
C. C. Aggarwal. Optimizing quality-of-information in cost-sensitive
sensor data fusion. In Distributed Computing in Sensor Systems, 7th
IEEE International Conference and Workshops, DCOSS 2011,
Barcelona, Spain, 27-29 June, 2011, Proceedings, pages 1–8, 2011.

[28] R. Willett, A. Martin, and R. Nowak. Backcasting: adaptive sampling
for sensor networks. In Proceedings of the Third International
Symposium on Information Processing in Sensor Networks, IPSN
2004, Berkeley, California, USA, April 26-27, 2004, pages 124–133,
2004.

[29] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network
survey. Comput. Netw., 52(12):2292–2330, 2008.

[30] H. Zhao. A multi-objective genetic programming approach to
developing pareto optimal decision trees. Decision Support Systems,
43(3):809–826, 2007.

49 
Approved for public release; distribution is unlimited.



4.3 Buckingham et al. “Inductive machine learning...” (2015).
A technical manuscript describing how symbolic regression can be employed to predict environ-
mental variables over large areas follows.
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s u m m a r y

Infrastructure for the automatic collection of single-point measurements of snow water equivalent (SWE)
is well-established. However, because SWE varies significantly over space, the estimation of SWE at the
catchment scale based on a single-point measurement is error-prone. We propose low-cost, lightweight
methods for near-real-time estimation of mean catchment-wide SWE using existing infrastructure, wire-
less sensor networks, and machine learning algorithms. Because snowpack distribution is highly nonlin-
ear, we focus on Genetic Programming (GP), a nonlinear, white-box, inductive machine learning
algorithm. Because we did not have access to near-real-time catchment-scale SWE data, we used avail-
able data as ground truth for machine learning in a set of experiments that are successive approximations
of our goal of catchment-wide SWE estimation. First, we used a history of maritime snowpack data col-
lected by manual snow courses. Second, we used distributed snow depth (HS) data collected automatical-
ly by wireless sensor networks. We compared the performance of GP against linear regression (LR), binary
regression trees (BT), and a widely used basic method (BM) that naively assumes non-variable snowpack.
In the first experiment set, GP and LR models predicted SWE with lower error than BM. In the second
experiment set, GP had lower error than LR, but outperformed BT only when we applied a technique that
specifically mitigated the possibility of over-fitting.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

There has been extensive research on techniques for measuring
and modeling snow because it affects many hydrological, atmo-
spheric, and biological processes (Tappeiner et al., 2001). The accu-
rate estimation of snow water equivalent at the catchment scale is
useful in many applications, including agricultural planning,
metropolitan use, flood risk evaluation, planning of hydropower
production potential, weather forecasting, and climate monitoring
(Marofi et al., 2011; Schmucki et al., 2014). More than 1/6 of people
globally depend on seasonal snow or glaciers for water supplies
(Bales et al., 2006), and in the western United States the majority
of surface water resources is derived from snowmelt (Serreze
et al., 1999). However, snow has declined across much of the US over
the last half-century (Pierce et al., 2008). The current severe drought
in California, with record low snowpack measurements over three
years, threatens water supplies throughout the state (Boxalla,
2014) and highlights the importance of snowpack research. Snow
both influences climate and responds directly to climate change

(Engeset et al., 2004). While climate change warrants increased
snowpack monitoring, existing techniques perform poorly under
extreme climatic conditions (Molotch et al., 2005; Balk and Elder,
2000), and it has been argued that the stationarity of hydrological
processes can no longer be assumed (Milly et al., 2008).
Furthermore, high costs of data gathering constrain the temporal
and spatial granularity of estimation methods. New techniques
are needed.

We propose new low-cost techniques for estimating catch-
ment-wide snow water equivalent using machine learning algo-
rithms, especially genetic programming. These algorithms use
data gathered from existing sensor infrastructure, and possibly
short-term deployments of wireless sensor networks. The
manipulation of large data sets in order to gain insight into snow
accumulation, melt, and runoff has been highlighted as a necessary
next step in mountain hydrology (Dozier, 2011). The long-term,
overarching goal of our research project is to achieve better near-
real-time (NRT), estimation of SWE at the catchment scale. By
NRT, we mean automated reporting at fine-grained timescales,
for example hourly. By better, we mean more accurate estimation
without significantly increased infrastructure cost. Our strategy is
to generate snow telemetry datasets using short-term, low-cost
field campaigns that can be used by machine learning algorithms

http://dx.doi.org/10.1016/j.jhydrol.2015.02.042
0022-1694/� 2015 Elsevier B.V. All rights reserved.
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to generate snowpack models. Following field campaigns and the
termination of associated measurement techniques, these models
can be used for NRT SWE estimations with no new instrumentation
overhead.

The key idea behind our approach is that machine learning
models are able to induce relationships between input parameters
and an output value, if such exist, on the basis of the ground truth
data if provided. The machine learning method we emphasize is
genetic programming (GP), which generates equations relating a
dependent variable to a set of independent variables.

In our case, we argue that if we obtain multiple years of ‘‘true’’
average SWE for a catchment, machine learning will be able to
induce a meaningful mathematical relation between telemetry,
such as proximal snow pillow reading(s), and true average SWE.
Then, in years when true average SWE is not available, inputs such
as snow pillow readings can be translated into average SWE esti-
mates for the catchment. This approach assumes interannual conti-
nuity in snow distributions over a catchment, which has been
demonstrated by previous research (Scipión et al., 2013; Tappeiner
et al., 2001; Schirmer et al., 2011). Because accurate measurements
of mean catchment SWE are generally unavailable at this time, we
use snow course and wireless sensor network data as proxies for true
average SWE to serve as ground truth for machine learning.

Thus, the ideal we aim for is a generally applicable technique for
inducing models that take as input parameters existing infrastruc-
ture NRT telemetry, such as snow pillow readings, meteorological
data, and date/time information, and output measurements of
SWE at those locations. This would allow more accurate SWE esti-
mation to be provided without additional cost beyond that of the
initial field campaign for obtaining a ground truth dataset (Fig. 1).

Several theoretical and practical challenges exist on the way to
achieving this goal. The purpose of this paper is to address them
and make progress in three particular ways.

First, we explore the issue of what sort of machine learning
approaches are best in this context. In general, we argue that tech-
niques that are able to model nonlinear relationships are needed
due to the known nonlinear nature of snow distribution in alpine
environments (Tappeiner et al., 2001; Marofi et al., 2011). We also
argue that so-called white-box tools are best, since these can pro-
vide physical insights for scientists (Schmidt et al., 2011).
Furthermore, we emphasize resiliency against over-fitting, which
is especially important given that the datasets available for
machine learning may be relatively small.

Second, we investigate what sort of input parameters should be
used by SWE estimation models, especially in light of practical con-
cerns, i.e. available telemetry and datasets. In fact, availability of
data is a key issue in this effort, and defines what is possible. We
acknowledge the importance of terrain effects in determining
snowpack distribution, influencing both accumulation and abla-
tion patterns (Winstral et al., 2013; Fassnacht et al., 2003; Marks

et al., 1999). However, because all snow sensors and courses are
on flat or nearly flat ground, we did not include topographic data
as explicit inputs to our models. We emphasize the flexibility of
inductive machine learning, which can accommodate arbitrary
new input modalities. Only those that are predictive of the depen-
dent variable of interest will be significantly incorporated into the
generated models. In this paper we focus on several potential snow
telemetry and meteorological inputs in order to demonstrate the
applicability of our techniques to catchment-scale SWE estimation,
while considering the potential for future work to explore other
inputs such as topographic data.

Third, we grapple with the issue of ground-truth for catchment-
scale SWE and usable datasets. Constraints on our goal were
imposed by the availability of snowpack data. We are not aware
of catchment-wide SWE datasets with sufficiently fine time granu-
larity to support our ideal scenario. Although datasets such as
those provided by the Cold Land Processes Field Experiment
(National Snow & Ice Data Center, 2014) and numerous others pro-
vide catchment-scale snowpack measurements, their time granu-
larity is on the order of several months at least. Airborne
techniques in general are cost-prohibitive for real-time reporting
(Bühler et al., 2011). Although satellites are used to measure
snow-covered area and albedo (Dozier and Painter, 2004), satellite
retrievals of SWE are not feasible. Manual snow courses provide
better temporal resolution than airborne methods (e.g. biweekly)
but at low spatial resolution: snow courses measure SWE at a sin-
gle location. We highlight the Snowcloud wireless sensor network,
which measures HS (an effective predictor of SWE) in NRT (e.g.
hourly) at multiple locations distributed over an area of interest.
However, this technology is new, and available data collected by
Snowcloud deployments is limited.

2. Background and contributions

Here we briefly define and summarize the machine learning
methods used in this work. These techniques are described in more
detail, with special emphasis on GP, in Section 4. The basic method
(BM) assumes the spatial homogeneity of SWE. It naively estimates
mean catchment-wide SWE to be the same as the single-point SWE
measurement taken at a snow pillow. Linear regression (LR) fits a
least-squares linear model to training data (Hastie et al., 2009).
The prediction is a weighted linear combination of the input vari-
ables. Binary regression trees (BT) are nonlinear models which are
generated using training data (Hastie et al., 2009). A BT model par-
titions a set of predictions according to the input variables such
that a given set of input values results in a specific prediction.
Genetic Programming (GP) is a symbolic regression algorithm that
uses training data to iteratively improve a population of nonlinear
models through a combination of stochastic variation and perfor-
mance-based selection (Koza, 1992).

Fig. 1. First, the Snowcloud WSN is deployed in an area near a snow pillow. Next, data generated by Snowcloud, by the pillow, and potentially other sources, are used by
machine learning to generate a model of snowpack distribution. Finally, after Snowcloud has been removed, the model is used to estimate snow levels in the area where
Snowcloud had been deployed.
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In our ideal situation we would use a large set of accurate mea-
surements of mean catchment SWE as ground truth to train and
evaluate models that predict mean catchment SWE in NRT.
However, the only SWE measurements available at this spatial
scale are generated by airborne techniques with time resolutions
that are insufficient for machine learning (e.g. twice per year).
Because machine learning needs a large number of samples for
model training and because we want to predict SWE in near-real-
time, we required much more frequent measurements. We there-
fore developed a series of experiments using available snowpack
data in lieu of NRT catchment-scale SWE measurements to explore
successive approximations of our ideal scenario. Approximations
of average catchment SWE, obtained via snow courses and dis-
tributed ground-based sensor readings, serve as ground truth for
machine learning in our experiments. Implicit in our work is the
importance of new methods for obtaining NRT catchment-scale
SWE ground-truthing via low-cost distributed sensor networks.
As data from NASA’s Airborne Snow Observatory (NASA Airborne
Snow Observatory, 2015) become available for a range of years,
they will provide an ideal data set for our approach.

First, we used snow course measurements, which involve the
manual collection of SWE and/or HS at a single location, as a proxy
for catchment-wide SWE. Although snow courses do not directly
measure snowpack distribution at the catchment scale, they are
likely to provide measurements that are closer to mean catchment
SWE than snow pillows measurements are. Snow courses take mul-
tiple measurements over approximately 200 m, so they involve a
much larger sample size than the single-point measurements of
snow pillows. Furthermore, pillow under-measurement or over-
measurement errors may occur when the base of the snow cover
is at melting temperature (Johnson and Marks, 2004). Thus, we
used snow course data as a first approximation of mean catchment
SWE to provide ground-truth data for machine learning. We gener-
ated models that use readily available information such as
meteorological telemetry and snow pillow measurements as input
variables. This approach, which is explored in Experiment Set I,
would allow for shorter or less frequent snow courses or for their
discontinuation and, because it uses previously collected data,
incurs no data gathering costs.

Second, we used HS data collected by the Snowcloud (Skalka
and Frolik, 2014) wireless sensor network (WSN) at sites in
Norway and California, each for only one snow season, as a proxy
for catchment-wide SWE data. Snowcloud is a WSN-based data
gathering system for snow hydrology, notable for its low-cost
and ease of deployment, developed and operated by the
University of Vermont. A network of light-weight sensor towers
(nodes) is deployed over an area of interest for a short-term
field campaign to collect spatially distributed measurements of
relevant meteorological processes (Fig. 3). In addition to HS,
Snowcloud measures air temperature, soil temperature, and solar
radiation. Mesh wireless communication allows data from the
entire network to be collected wirelessly by communication with
a single node.

We used measurements collected from Snowcloud over the
course of a single snow season to generate ground-truth estimates
for model-training. Note that it could be desirable to collect data
over multiple seasons as models trained on multi-year data may
be more robust against internal-annual variations in snowpack
distribution. Once a model has been obtained, the WSN may be
recovered for re-deployment at another site. Unlike pillows and
snow courses, Snowcloud collects NRT data from multiple
locations, potentially capturing more of the variability of snowpack
distribution than is possible with single-location measurements.
Thus, we use Snowcloud data as a second approximation of
catchment mean SWE to provide ground-truth data for machine
learning. This technique is explored in Experiment Set II.

Recent research by Kerkez et al. (2012) and Welch et al. (2013)
has developed new sensor placement strategies for monitoring
snow. Although these methods were not employed in the experi-
ments discussed in this paper, they should be considered in future
applications of our techniques.

2.1. Suitability of machine learning

Snow pillows are large, expensive, permanent installations
that measure SWE at a single location. The infrastructure for the
automatic collection of single-point SWE is well established. For
example, there are 830 Snowpack Telemetry (SNOTEL) sites in
the United States (Surveyor, 2014) and another 124 snow pillows
operated by the California Department of Water Resources.
However, the extrapolation from single-point measurements to
surrounding areas is error prone. The spatial distribution of alpine
snow cover is highly variable (Balk and Elder, 2000; Elder et al.,
1991; Jost et al., 2007), due to a variety of environmental forcing
effects, such as topography (Anderton et al., 2004), canopy cover
(Moeser, 2010), and wind and solar exposure (Moeser, 2010;
Moeser et al., 2011).

Meromy et al. (2013) studied 15 snow stations across the west-
ern United States and found that snow station biases were fre-
quently greater than 10% of the surrounding mean observed
snow depth. The flat-field areas where snow pillows are commonly
located are usually not typical of more complex nearby terrain,
causing the majority of such stations to overestimate snow depth
in their vicinity (Grünewald et al., 2013). Molotch and Bales
(2005) studied the areas surrounding six SNOTEL stations in the
Rio Grande headwaters. They found that only a small fraction of
grid elements were representative of mean grid SWE during accu-
mulation, and that no elements were representative of mean grid
SWE during both accumulation and ablation. SNOTEL stations in
the Rio Grande headwaters preferentially represent densely forest-
ed areas and experience snow cover persistence that is 14% greater
than the mean persistence of the watershed (Molotch and Bales,
2006). Rittger (2012) found that errors based on statistical rela-
tionships between point measurements of snow and streamflow
in the Sierra Nevada can reach 25–70% in one out of five years.

The relative importance of separate processes which govern
snow distribution varies over the course of a snow season. Elder
et al. (1991) summarize the various processes and explain how
their influence changes over time. During the winter, accumulation
and redistribution processes dominate. Precipitation is determined
by regional climate and latitude as well as by local orographic
effects, and redistribution by wind, avalanches, and sloughs are
the primary causes of spatial heterogeneity. In the spring, however,
snow distribution is controlled mainly by ablation. Of the many
energy sources, solar and longwave radiation dominate. This ener-
gy decreases water in a basin through sublimation and when run-
off leaves the basin. It also redistributes SWE, affecting spatial
variability. These dynamics highlight the need for NRT modeling
of snowpack, as the forcing effects that establish snow distribution
vary drastically over the course of a snow season.

However, the significant consistency of snowpack between years
encourages investment into the development of reusable statistical
models. Strong inter-annual consistency in the spatial distribution
of snow (Scipión et al., 2013), in SCA (Tappeiner et al., 2001), and in
the snow depth patterns of maximum accumulation (Schirmer
et al., 2011), have been observed in the Swiss and Italian Alps. In
the western United States, consistent wind directions can produce
stable snow accumulation patterns from year-to-year (Winstral
and Marks, 2014). These findings suggest a strong link between
accumulation patterns and geophysical terrain and indicate that
site-specific snow distribution models may be able to accurately
characterize snowpack distribution over multiple years.
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Nevertheless, long-term changes in the patterns of snow distri-
bution may be caused by factors such as changes in vegetation or
climate change. Therefore, it may occasionally be necessary to
rerun GP and generate a new model. Techniques such as retroac-
tive SWE calculation (Rittger et al., 2011) could be used to detect
when previous models begin to perform poorly, indicating that
secular variability in the dynamics of snow distribution warrants
the development of a new model.

It may be desirable to produce non-site-specific models. Trained
at catchments where ground truth data is available, and making
use of predictor variables that vary between catchments, such as
topography, such models could then be applied to catchments
where no independent measurement of mean catchment SWE
exists. However, we did not incorporate topography because the
snow pillows are all on flat or nearly flat ground. Our work focuses
on site-specific models and use model inputs that vary over time at
a given catchment.

2.2. Why GP?

It has been demonstrated that the relationships between snow
distribution and the topographic and meteorological forcing effects
include nonlinearities (Tappeiner et al., 2001), and the spatial dis-
tribution of SWE is nonlinear because it is influenced simultane-
ously by numerous processes including accumulation, ablation,
and snow drifting (Marofi et al., 2011). GP can produce both linear
and nonlinear models. If the data used to train GP contain only lin-
ear relationships, the resulting models will be linear, and the per-
formance of GP will be similar to that of LR.

White-box models, such as those produced by GP, can be inter-
preted by human analysis, potentially yielding new information
about the modeled data (Schmidt et al., 2011). Some nonlinear
regressors, such as artificial neural networks, produce models that
are difficult or impossible to interpret. GP trees, however, can be
expressed as mathematical equations (Fig. 2). It is possible that
by examining these equations domain experts could gain novel
insight into the processes governing snow distribution.

Unlike regression techniques that constrain the form of the
regressor, GP can combine operators, variables, and constants into
arbitrary arrangements. GP does not require any assumptions
about the form that a model should take: it is left open to inductive
search. By generating models that use predictor variables in
unexpected ways, GP may help discover previously unknown
relationships among variables.

Finally, as we will discuss further, GP may be augmented with
multi-objective optimization, which constrains GP to produce par-
simonious models. This mitigates against over-fitting, a significant
concern in the case that relatively small datasets are available for
machine learning.

While many regression techniques possess one or more of these
desirable qualities, GP possesses all of them, making it an ideal
candidate for snowpack modeling.

2.3. The primacy of snow depth

While SWE is a product of HS and density (q), it has been shown
that HS is the essential determining metric for SWE estimation.
Models have been developed to derive q estimates from HS mea-
surements (Logan, 1973; Sturm et al., 2010), and measurements
of HS are highly predictive of SWE (Adams, 1976). Analysis of the
spatial variability of HS and q has revealed that the variability of
HS is significantly greater than that of q (López-Moreno et al.,

Fig. 2. These example GP trees were manually selected from the final populations of GP runs conducted for Experiment Set II. The leftmost tree represents a simple linear
model. The middle tree is a nonlinear model. The rightmost tree is a more complex nonlinear model.

Fig. 3. Snowcloud WSN sensor tower. A complete sensor stand with solar-
recharged battery power, wireless mesh communication, and multiple sensor
modalities. October 2011, Mammoth Lake, CA.
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2012). Variation of SWE is therefore overwhelmingly a product of
HS variation (Moeser et al., 2011; Molotch et al., 2005; Sturm
et al., 2010; Elder et al., 1991, 1998). The effect of q variation on
SWE is small by comparison, and estimates of areal SWE derived
from one or several SWE measurements can be greatly improved
by incorporating a larger number of HS measurements (Elder
et al., 1998; Moeser et al., 2011), which are much less labor inten-
sive than manual SWE measurements (Sturm et al., 2010).
Snowcloud, which provides ground-truth data Experiment Set II,
measures HS. Therefore, as has been done elsewhere, we use HS
as a ‘‘surrogate for SWE’’ (Winstral et al., 2002).

2.4. Related work

Moeser et al. (2011) explored three models for estimating SWE
in the area around a meteorological station using ground based
measurements. The first model used meteorological data such as
air temperature and solar radiation, tree canopy cover measure-
ments, and HS measurements collected by the Snowcloud WSN,
as well as a single-point SWE measurement. The second model
used multiple HS measurements and single-point SWE measure-
ments, but no meteorological or tree canopy data. The third model
used meteorological and tree canopy data, along with multiple HS
measurements, but no single-point SWE measurement. It was
found that increasing the number of HS measurements can
improve areal SWE measurements because HS varies more than
snow density. While this work used linear modeling; our work
expands upon it by developing nonlinear models.

Marofi et al. (2011) compared three methods for modeling SWE:
multivariate nonlinear regression (MNLR), artificial neural net-
works (ANN), and a neural network-genetic algorithm (NNGA),
where genetic algorithms were used to parameterize ANNs and
the learning process. ANN performed better than MNLR, suggesting
that computational intelligence approaches may outperform MNLR
for modeling SWE. NNGA performed better than ANN, suggesting
that evolution-inspired genetic algorithms can be used to develop
effective models of SWE. Tabari et al. (2010) estimated HS and SWE
using multiple methods and also found that NNGA provided the
best results. Unlike neural networks, GP produces white box models.

Tappeiner et al. (2001) compared the performance of LR-based
and ANN-based snowpack models, which used topographic and
meteorological data to estimate SWE. The authors compared the

results of LR with ANN to estimate the degree of necessary nonlin-
earity in SWE modeling. The ANN performed significantly better
than LR, demonstrating nonlinearity in the relationships between
topographic and meteorological variables and SWE.

Several studies have used binary regression trees to model
snowpack. Winstral et al. (2002) derived terrain-based parameters
from digital elevation models (DEM) which were used as input
variables to binary regression trees. One parameter was based on
maximum upwind slopes relative to seasonally averaged winds.
Another measured upwind breaks in slope from a given location.
Binary tree models based on these terrain-based parameters as
well as elevation, solar radiation, and slope performed better than
models based only on elevation, solar radiation, and slope. Elder
et al. (1998) modeled the distribution of SWE by merging remotely
sensed snow-covered area data with binary tree models applied to
field measurements of HS and SWE. Balk and Elder (2000) com-
bined binary regression trees with kriging of manual snow survey
measurements and snow-covered area determined by aerial pho-
tographs, to estimate SWE. Anderton et al. (2004) used binary
regression trees to relate HS and disappearance date to terrain
indices. They found that the topographic effects on snow redistri-
bution by wind primarily determined SWE distribution at the start
of the melt season which, more than melt rates, determined the
patterns of snow disappearance. Molotch et al. (2005) compared
binary regression tree models using various sources of DEMs and
found that using DEMs from different sources leads to significant
differences in modeled snowpack distribution. The most significant
differences were on ridge-tops, where the elevation values differed
across DEMs.

In Experiment Set II we compare the performance of BT to GP.
Unlike this previous work which used binary regression trees to
produce spatially distributed models of snowpack, our models pre-
dict a single value: mean HS measured by a wireless sensor
network.

Marks et al. (1999) also developed spatially distributed models.
They used topographic data to determine estimates of radiation,
temperature, humidity, wind, and precipitation for use in a coupled
energy and mass-balance model called ISNOBAL.

Recent research has made significant advances in simulating
the effects of wind on snow distribution. Winstral et al. (2009)
developed a simplified wind model that uses upwind topography
to accurately predict wind speeds. Winstral et al. (2013) developed

Fig. 4. Genetic programming algorithm. The figure on the left demonstrates the iterative process through which GP modifies a population of solutions. On the right, a
population of four models evolves as each iteration of the GP cycle produces a new generation.
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a snow distribution algorithm that uses terrain structure, vegeta-
tion, wind, and precipitation data to simulate wind-affected snow
accumulation. It accurately predicted disparate snow distribution
caused by inhomogeneous precipitation and redistribution by
wind. Winstral and Marks (2014) analyzed the effects of wind on
snow distribution. They found that high wind speeds increased
snow depth variability, that forested sites decreased variability
by moderating wind effects, and that consistent wind directions
produced accumulation patterns that were stable between years.

Sturm et al. (2010) used HS, day of the year, and climate classes,
such as Alpine, Maritime, and Tundra, to estimate snowpack densi-
ty. Estimated snowpack density was used to convert HS measure-
ments into SWE estimates.

Guan et al. (2010) found that atmospheric rivers (ARs), are asso-
ciated with intense storms that contribute a large percentage of
snow during most years. Because AR storms are relatively warm,
the participation of AR participation into snowfall versus rainfall
is sensitive to minor variation in surface air temperature.

Rittger et al. (2011) combined satellite-based measurements of
snow-covered area with energy balance calculations to retroactive-
ly calculate distributed SWE at the date of maximum accumula-
tion, using the ‘‘reconstruction’’ technique originally developed
by Martinec and Rango (1981). This calculation was then used to
evaluate the accuracy of two real-time models. They found that
at elevations below 1500 m, the real-time models overestimated
SWE because of early season melt, and at elevations above
3000 m, the real-time models underestimated SWE because they
do not sample these higher elevations. It is possible that this tech-
nique could be used to evaluate the effectiveness of the inductive
learning methods that we describe in this work.

3. Training data and model inputs

Inductive machine learning requires substantial datasets for
developing and evaluating models, and we acquired extensive
hydrological and meteorological data for use in our experiments.
We focused on two types of available datasets that are approxima-
tions of mean catchment SWE. First, we consider a record of CDEC
snow courses from the Sierra Nevada. We observe that CDEC snow
courses are intended to provide an estimation of SWE at a par-
ticular elevation (USDA, 2014), though in fact they are linear tran-
sects of SWE samples. Second, we consider a record of Snowcloud
sensor network readings from Norway and California. Snowcloud
provides distributed coverage of snow depth readings for the
deployment area, as well as fine time granularity, and can support
better estimations of mean catchment SWE than periodic snow
courses.

3.1. Experiment Set I data

Experiment Set I used data collected from eight sites across
California. There were three main types of data: SWE from manual
snow courses, SWE measurements from snow pillows, and air tem-
perature data.

The California Data Exchange Center (CDEC) provided an exten-
sive database of snow data. The snow courses that we used, which
are described in Table 1, were performed monthly, were about 200
meters long, and consisted of 10 measurements, the mean of which
was recorded. CDEC also maintains single-point SWE measurement
data from snow pillows at sites throughout California. Of the 404
snow course sites, 59 are co-located with snow pillows.

The National Climate Data Center (NCDC) maintains meteoro-
logical data, such as air temperature, wind speed, and solar radia-
tion measurements, collected at weather stations across the United
States. We used data from the four NCDC stations which are locat-
ed within 30 km of CDEC snow courses. We arbitrarily chose a
30 km cutoff because we suspected that meteorological activity
within that distance might be predictive of measurements at the
snow course. The models generated by machine learning will not
make significant use of input data that is not predictive.

Significant gaps exist in the NCDC database, and of the various
sensor modalities, air temperature data is the most complete.
Using more meteorological inputs and necessarily fewer data sam-
ples, we had previously been unable to generate effective models
of SWE. For Experiment Set I, therefore, air temperature was the
only meteorological input. Air temperature is known to be a highly
effective predictor of melt rate because it is correlated with long-
wave atmospheric radiation, the most important energy source
for snowmelt (Ohmura, 2001). Air temperature is made accessible
to the models by three variables: minTemp7, maxTemp7, and
meanTemp7, which aggregate daily values over the seven days
inclusively preceding the day for which SWE is estimated.

We used the temporal and spatial intersection of available data
from these three sources (CDEC snow courses, CDEC snow pillows,
NCDC air temperature data) to construct eight datasets, based on
eight snow course sites. These snow courses were selected because
they are coincident with either snow pillow data, NCDC air tem-
perature data, or both, over a range of time that includes a large
number of samples points (greater than 100 except for one site).
The constructed datasets are summarized in Table 2.

3.2. Experiment Set II data

Experiment Set II used HS data collected by four Snowcloud
sensor nodes in Sulitjelma, Norway between January and April,
2013. Each node sampled HS every six hours. We averaged HS

Table 1
CDEC snow course site descriptions.

ID EL (m) Name Asp. Exposure

CAP 2438 Caples Lake SW open meadow, low brush
GRZ 2103 Grizzly Ridge N meadow in scattered timber
KTL 2225 Kettle Rock S sloping, open meadow
MSH 2408 Mount Shasta SE grassy and rocky meadow
NTH 2835 North Lake SE grassy meadow
SPD 1585 Lake Spaulding level grassy meadow
HIG 1838 Highland Lakes NW medium sized meadow in dense timber
HYS 2012 Huysink W open meadow on one leg, opening in timber on second leg

Table 2
Experiment Set I data summary by CDEC site.

ID Pillow NCDC base Dist (Mi) Samples Years

CAP YES N/A N/A 177 1970–2011
GRZ YES N/A N/A 207 1970–2011
KTL YES N/A N/A 159 1979–2011
MSH NO Mount Shasta 5.98 137 1973–2011
NTH NO Bishop Airport 18.27 147 1973–2011
SPD NO Blue Canyon Nyack 4.56 174 1977–2011
HIG YES Mount Shasta 18.31 75 1980–2012
HYS YES Blue Canyon Nyack 9.79 111 1984–2011
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measurements from the four nodes (Table 3) and then over each
day to produce 93 estimates of mean catchment HS. These values
served as ground-truth HS for experiments at Sulitjelma.

Approximately 16 km away from the Sulitjelma Snowcloud
deployment site is Storstilla nedanför Balvatn in Nordland
County, station number 164.12.0 (Balvatn). The Balvatn station
records both HS and SWE. Daily HS measurements collected at
Balvatn compose the HS input variable to models developed for
Sulitjelma in Experiment Set II.

Six Snowcloud wireless sensor network sensor nodes were
deployed within the Sagehen Creek Field Station, near Truckee,
California, from January to May, 2010. Each node reported daily
HS measurements, which we averaged to generated 99 estimates
of mean catchment SWE. These values served as ground-truth HS
for experiments at Sagehen. Note that the same WSN data were
used by Moeser (2010).

In order to assess the significance of the source of single-point HS
input variables, we developed models for estimating mean HS at the
Sagehen Snowcloud deployment using inputs from two different
CDEC sites, Independence Camp ðIDCÞ and Huysink ðHYSÞ. IDC is
approximately 5.5 km away from the Snowcloud deployment and,
like Sagehen, is on the Eastern side of the Sierra crest. HYS is
approximately 30 km away, on the Western side of the crest.

3.3. Time of year

Because the dynamics underlying snowpack distribution vary
over the course of a snow season, for example between periods
dominated by deposition and periods dominated by ablation, we
introduce time of year (TOY) as an independent variable for both
experiment sets. This allows models to distinguish parts of the
snow season. Time of year is an integer value expressing the num-
ber of days since January 1.

3.4. Preparation of datasets

We define a dataset, D, for each experiment (each row of Table 6
and each location in each row of Table 5). Elements of a dataset D

take the form of a 3-tuple, hT; h;~pi, where T , time, specifies a calen-
dar date, h is an estimate of the true value of the independent vari-
able, and ~p is a vector of predictor variables. Although T is used to
generate predictor variables such as TOY and air temperature
statistics, it is not itself a predictor variable and is therefore not
included in ~p. T is unique in D so that no two data samples in D
have the same T:

8hT1; h1;~p1i; hT1; h2;~p2i 2 D h1 ¼ h2 and ~p1 ¼~p2 ð1Þ

In Experiment Set I, h is an approximation of mean catchment SWE
derived by manual snow course. In Experiment Set II, h is an
approximation of mean catchment HS derived from Snowcloud
WSN measurements.

Depending on the experiment, ~p includes some combination of
HS measured at a snow pillow, SWE measured at a snow pillow,
TOY (an integer value derived from T), and air temperature, (which
is composed of three variables: minTemp7, maxTemp7, and
meanTemp7). The Model inputs columns of Table 5 and Table 6 spe-
cify the contents of ~p for each experiment.

In order that a model developed from D may be evaluated on
new, unseen data, D is divided into training, ., and testing, s, sub-
sets. The training set is twice as large as the testing set. However,
GP and BT require that . be further divided into grow, g, and selec-
tion, s, subsets:

. ¼ g [ s and g \ s ¼ ; and jgj ¼ jsj ð2Þ

In all experiments, D is first divided into g; s, and s:

D¼ g[ s[s and g\ s\s¼; and jgj ¼ jsj ¼ jsj ð3Þ

For BM and LR, g and s are simply combined into . and used as
training data. As discussed in more detail in Section 4, in the case of
GP and BT g is used to generate a set of models and s is used to
determine which one should be kept and evaluated on s. In any
case, . is used to obtain a single model, which is then exposed to
s to evaluate its ability to predict unseen data.

We explored several methods for dividing D into g; s, and s.
In Experiment Set I and in the first part of Experiment Set II
(Experiment Set II: Random Division), the chronologically
ordered D is randomly shuffled and then divided into thirds,
as illustrated by Fig. 5a. This method has the effect that a large
portion of the training data is likely to be temporally proximal
to testing data.

As discussed further in Section 5, we found in Experiment Set II
that the temporal proximity between . and s caused machine
learning to map TOY values to estimates of HS. The models memor-
ized the data rather than capturing the relationships among the
data. We therefore conducted Experiment Set II: 4 Bins. Instead
of shuffling D, we maintained its ordering and divided it into four

Table 3
Snowcloud deployment coordinates.

Sulitjelma, Norway Sagehen, CA

Tower Lat. Long. Tower Lat. Long.

1 67.0981 16.0488 1 39.43161 �120.23975
2 67.0983 16.0497 2 39.43155 �120.23936
3 67.0983 16.0482 3 39.43140 �120.23976
4 67.0987 16.0487 4 39.43173 �120.23882

5 39.43173 �120.23864
6 39.43204 �120.23872

Fig. 5. Techniques for dividing a chronologically ordered dataset into g; s, and s (white, light gray, and dark gray respectively).

D. Buckingham et al. / Journal of Hydrology 524 (2015) 311–325 317

57 
Approved for public release; distribution is unlimited.



chronologically contiguous bins. Each bin is then subdivided into
three chronologically contiguous subsets which are assigned to
g; s, and s. This method is illustrated by Fig. 5b. We also conducted
Experiment Set II: 3 Bins and Experiment Set II: 2 Bins, as illustrated
in Fig. 5c and d. As we move from Experiment Set II: Random
Division to Experiment Set II: 2 Bins, the division of D transitions
from finer to coarser temporal granularity. As this granularity
becomes coarser, it becomes more difficult for machine learning
to use TOY to simply memorize data. However, it also becomes
more difficult for models to capture the variation of the dynamics
of snowpack distribution over the course of a snow season.

In order to introduce stochasticity into the division D and thus
allow the repetition of experiments to produce a distributed sam-
ple of results, a randomly generated offset shifts the starting point
of the division. Fig. 5e illustrates the effect of this offset in the case
of three bins.

4. Calculation

In this section we first describe how we compared the perfor-
mance of different snowpack modeling techniques. We then
describe the various modeling techniques that we used, with spe-
cial emphasis on GP.

4.1. Comparing estimation methods

In order to compare the performance of two machine learning
techniques, M and M0, on a dataset D;D is divided into complemen-
tary subsets . and s. Methods M and M0 are applied to . to produce
estimators ĥ and ĥ0. This process may be deterministic or nondeter-
ministic. In Experiment Set I and Experiment Set II: Random
Division, nondeterminism is introduced by the random division of
D. GP introduces further nondeterminism by the stochasticity of
the GP algorithm. The BT algorithm is deterministic when a single
input variable is used, but nondeterministic when applied to mul-
tiple input variables. Estimators ĥ and ĥ0 are applied to s to deter-
mine the mean absolute errors of the estimators MAEðĥÞ and
MAEðĥ0Þ, as we will discuss in Section 4.2.

This process of randomly dividing D and applying M and M0 to
obtain MAEðĥÞ and MAEðĥ0Þ is repeated 30 times, resulting in vec-
tors of estimator errors ~eM and ~eM0 each with cardinality 30. We
consider~eM and~eM0 to be statistical samples of errors drawn from
the population of errors that method M and M0 could produce given
D. We chose to collect 30 samples because a sample size of at least
30 allows the Central Limit Theorem to be safely applied without
assuming a normal population distribution, permitting the applica-
tion of the one-sample t-test to calculate confidence intervals and
the paired two-sample t test to test hypotheses.

The means of ~eM and ~eM0 are unbiased estimates of the true
population means lM and l0M . To find out if M0 outperforms M on
dataset D we pose the hypotheses:

H0 : l0M ¼ lM ðNull hypothesisÞ
Ha : l0M < lM ðalternative hypothesisÞ

and apply the Student’s t-test for paired samples to~eM and~eM0 . If the
Null hypothesis is rejected, we say that method M0 produces lower
error (performs better) on dataset D than does M. We report the p-
value, the probability that we have performed a Type I error by
rejecting a true Null hypothesis.

4.2. Evaluating estimator error

Recall that an element d of dataset D takes the form hT; h;~pi and
that D has been divided into . and s. An estimation method M is

applied to . � D to generate an estimator ĥ, which is a function
from predictor variables ~p to dependent variable y, an estimate
of h.

ĥ :~p! y y � h

The error of ĥ on an input vector is the difference between the
estimate it produces and ground truth.

Eĥð~pÞ ¼ ĥð~pÞ � h ð4Þ

The error is calculated on each sample in s to determine the mean
absolute error of the estimator:

MAEðĥÞ ¼
Pk

i¼1jEĥð~piÞj
k

ð5Þ

where

s ¼ ðd1; . . . ;dkÞ and ~pi 2 di 2 s � D

4.3. Basic method

The basic method (BM) assumes that SWE as measured at a snow
pillow is representative of catchment-wide SWE. It naively esti-
mates ground truth (snow course-derived) SWE to be the same
as the independent variable (snow pillow-derived) SWE measure-
ment. Error in the predictive power of BM expresses the difference
between snow pillow measurements and snow course SWE mea-
surements. If x represent SWE measured at the snow pillow, then

x 2~p and ĥð~pÞ ¼ x ð6Þ

Unlike the more sophisticated machine learning techniques, BM
does not make use of training data to generate a model.

4.4. Linear regression

Linear regression (LR) fits a least-squares linear model to train-
ing data which is then evaluated on test data (Hastie et al.,
2009). LR expresses the linear relationships between independent
and dependent variables. We used the gsl_multifit_linear function
from the GNU Scientific Library (GSL, 2014) to perform LR. We
include LR in order to gain insight into the data we are using. LR
will perform less well than nonlinear techniques only if the mod-
eled data contain nonlinear relationships.

4.5. Genetic programming

GP is an evolutionary algorithm, inspired by biological evolu-
tion, that iteratively evolves populations of parse trees to perform
symbolic regression (Koza, 1992) (see Fig. 4). In this work, the trees
are snowpack models, estimator functions, that use available inde-
pendent variables to estimate mean SWE (Experiment Set I) or HS
(Experiment Set II) at the catchment scale. Tree terminals are input
variables and constants, while internal nodes are arithmetic opera-
tors. The operators we used are listed in Table 4.

Table 4
GP parameters.

Parameter Value

population size 1000 (Experiment Set I), 2000 (Set II)
number of generations 3000 (Experiment Set I), 10,000 (Set II)
max tree size 30
mutation operators crossover (60%), mutation (40%)
binary operators addition, subtraction, mult., division, power
unary operators log, exponential, sine, cosine,
terminals independent variables, constants values
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We used the lil-gp Genetic Programming System (System,
2013), an open source implementation of GP, in order that we
might make any needed modifications. We modified lil-gp to
implement multi-objective Pareto optimization.

GP begins by generating a starting population of randomly con-
structed trees. Each tree in the population is evaluated on training
data to determine its fitness, defined as the inverse of mean error.
Trees are selected according to their size and fitness to produce the
population for the next generation. Genetic operators make
stochastic modifications to the new trees, randomly perturbing
their fitness values. The genetic operators we used were mutation
and crossover. Mutation, which is applied to 40% of new trees,
selects a subtree at random and replaces it with new, randomly
generated subtree. In crossover, which is applied instead of muta-
tion 60% of the time, two parent trees exchange subtrees, resulting
in two novel offspring. Crossover allows recombination of subtrees
from existing models while mutation introduces new subtrees to
the population, maintaining genetic diversity. Because it is likely
that subtrees taken from existing, partially evolved models will
be more useful than new, randomly generated subtrees, crossover
is applied more frequently than mutation. This process is iterated
over many evolutionary generations, each time replacing the
population with a new population of altered trees. Over time, this
produces populations of increasing fitness.

The average wall-clock time for one experiment using the
Vermont Advanced Computing Core (VACC) supercomputer was
333 s for Experiment Set I (3000 generations) and 1207 s for
Experiment Set II (10,000 generations). The total wall-clock time
for all of Experiment Set I was approximately 89 h. The total
wall-clock time for all of Experiment Set II was approximately
321 h. Because GP is a stochastic optimization method, its compu-
tation complexity is unclear. However, recent work has begun to
address this problem (Neumann et al., 2011; Durrett et al., 2010).

One challenge facing GP, like all techniques for deriving a model
from training data, is over-fitting. An over-fit model performs well
on training data but does not generalize well and fails on unseen
data. It memorizes values instead of capturing the mathematical
relationships among the data.

The size of a GP model (number of nodes in a tree) constrains its
complexity and fitness. Trees that are too small are too simple to
accurately model the data and are under-fit. They perform poorly
on both training and testing data. Trees that become too large per-
form extremely well on training data but, due to over-fitting, per-
form poorly on unseen data. Somewhere between these extremes
lies the best, non-over-fit model.

In order to explore the gradient from small, under-fit models to
large, over-fit models, we added multi-objective Pareto optimiza-
tion to lil-gp. Pareto optimization applies evolutionary pressure
toward multiple simultaneous goals, in this case low error and
small model size, by producing a population (front) of non-
dominated models. A tree is dominated by another tree if it is infe-
rior by all objectives, i.e. it is both larger and has lower fitness. A
Pareto front (non-dominated front) consists of a set of trees such
that no tree is dominated by any other tree on the front. The
non-dominated trees are selected at each GP generation so that
each population is a non-dominated front, including the final
population. The result of GP is therefore a set of trees of various
sizes. We set an absolute upper bound at size 30 because we had
observed that models with size larger than 30 were consistently
over-fit. Arranged from smallest to largest, the error of these trees
on the training data decreases monotonically. Error on unseen
data, however, will decrease only to a point, and will then increase
beyond some tree size as the models become over-fitted.

At this point is the tree size that will maximize performance on
. without over-fitting. Models no bigger than this can express

features common to both training and testing data but cannot
express features that are unique to the training data. However, this
size threshold is not known while generating models because test
data are not available. It must remain unseen for model testing. We
therefore developed a novel selection set method for selecting a sin-
gle model from the Pareto front. In the selection set method, the
training data are further divided into two subsets of equal size, a
growth set, g, and a selection set, s (Eq. 2). GP is applied to g to
obtain a Pareto front. Each model on the front is then evaluated
on s. GP returns the model that performs best (lowest error) on s.
We used the election set method in all experiments.

4.6. Binary regression trees

We include BT in Experiment Set II in order to compare GP to
another nonlinear, less computationally demanding, modeling
technique. Erxleben et al. (2002) compared the performances of
four spatial interpolation methods to estimate SWE and found that
a method combining binary regression trees with geostatistical
methods was more accurate than other methods. We used the
DecisionTreeRegressor class of the Scikit-learn machine learning
module for Python (Pedregosa et al., 2011). This software imple-
ments the Classification and Regression Trees (CART) algorithm,
which is similar to C4.5 (Hastie et al., 2009). BT is parameterized
by the maximum tree depth; we used default options for other
parameters. As with GP, the data for BT was divided into g, s, and
s. For each experiment, a set of trees was trained on g such that
the nth tree had a maximum depth of n. The maximum value of
n was determined by incrementing n until further increase did
not result in larger trees. The maximum value of n varied between
7 and 13.

Like the Pareto front produced by GP with multi-objective opti-
mization, this methods results in a gradient of models ranging
from very small models with high error on g to very large models
with low error on g. Each is evaluated on s and the one with the
lowest error is returned by BT to be evaluated on s in order to
determine model error. Thus, we applied the same selection set
method to BT as to GP in order to discourage over-fitting and to
provide similar exposure to the data so that the performance of
the techniques may be compared. Note, however, that in the case
of GP, multi-objective optimization applies pressure toward model
parsimony continuously over the course of the evolution of a
population of models. In the case of BT, the selection set method
was applied once to a set of models after they have been generated.

5. Experiments: descriptions and results

In this section we describe the experiments we conducted and
report the results.

5.1. Experiment Set I

In Experiment Set I measurements from snow courses provided
ground-truth SWE data. We developed models to predict snow
course SWE at eight different sites in California where snow cours-
es had been conducted (Table 1). Three sites ðCAP;GRZ;KTLÞ are
located at snow pillows but are not near any NCDC weather sta-
tions. Three sites ðNTH;SPD;MSHÞ are near NCDC stations but
are not at snow pillows. Two of the snow course sites
ðHYS and HIGÞ are located at snow pillows and are also near
NCDC stations.

First, we conducted experiments at sites with snow pillows but
without weather stations ðCAP;GRZ;KTLÞ. These experiments
explored how well linear and nonlinear models predict snow
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course-derived ground truth SWE using only snow pillow measure-
ments. Inputs to the models were pillow SWE and TOY. At each site
we developed models with three combinations of input variables:
TOY alone, pillow SWE alone, and TOY combined with pillow SWE.
In each case, we compared the performance of GP, LR, and BM.

Second, we conducted experiments at sites near weather sta-
tions but without snow pillows ðKTL;MSH;NTHÞ. These experi-
ments explored how well linear and nonlinear models predict
snow course-derived ground truth SWE using air temperature data
without access to snow pillow SWE measurements. Inputs to the
models were air temperature and TOY. At each site we develop
models with three combinations of input variables: temperature
alone, TOY alone, and temperature combined with TOY. In each
case, we compare the performance of GP to LR.

Third, we conducted experiments at sites that are near weather
stations and have snow pillows (HIG, HYS). These experiments
explored how well linear and nonlinear models predict snow
course-derived ground truth SWE using both pillow SWE measure-
ments and air temperature data. Inputs to the models were SWE,
air temperature, and TOY. At each site we develop models with sev-
en unique combinations of input variables: temperature alone, TOY
alone, pillow SWE alone, temperature and TOY together, tem-
perature and pillow SWE together, TOY and pillow SWE together,
and, finally, temperature, TOY, and pillow SWE together.

Table 5 summarizes Experiment Set I. Each experiment was
repeated 30 times to generate error samples for each method.
Figs. 6–9 plot the mean values of the samples. Error bars indicate
95% confidence intervals, i.e. sample mean �ðSEM� 1:96Þ. GP
and LR had similar error, but both had lower error than BM with
p-value less than 0:001 in all cases.

The mean ground truth SWE value in mm at each site was:
CAP : 1145;GRZ : 1256;KTL : 687;MSH : 1747;NTH : 337;SPD :

697;HIG : 594;HYS : 1065:.

5.2. Experiment Set II

In Experiment Set II models predicted HS instead of SWE. While
research on the influence of meteorological factors on snowpack
distribution is extensive (Logan, 1973; Elder et al., 1991;

Table 5
Experiment Set I summary.

Experiment Model inputs Locations

a air temp. MSH;NTH;SPD;HIG;HYS
b TOY all
c pillow CAP;GRZ;KTL;HIG;HYS
d air temp., TOY MSH;NTH;SPD;HIG;HYS
e air temp., pillow HIG;HYS
f TOY, pillow CAP;GRZ;KTL;HIG;HYS
g air temp., TOY, pillow HIG;HYS
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Fig. 6. Experiment Set I results: CAP;GRZ; andKTL.
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Fig. 7. Experiment Set I results: MSH;NTH; andSPD.
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Schmucki et al., 2014; Hock and Noetzli, 1997), the inclusion of
meteorological inputs does not always improve snowpack model
performance (Moeser, 2010), and the inclusion of air temperature
data did not improve model performance in Experiment Set I.
Therefore, in Experiment Set II we focus on TOY and single-point
HS measurements as predictors of mean catchment HS. Instead of
manual snow course data as in Experiment Set I, ground-truth data
are derived from HS measurements collected by the Snowcloud
WSN. We compared the performance of three machine learning
techniques: LR, BT, and GP.

We developed estimators to predict HS at two sites: Sulitjelma,
Norway and the Sagehen Experimental Forest, California. At
Sulitjelma, model inputs were combinations of HS at Balvatn and
TOY. At Sagehen, model inputs were combinations of HS at HYS,
HS at IDC, and TOY. Table 6 summarizes Experiment Set II. We
repeated each experiment four times (Random Division, 4 Bins, 3
Bins, 2 Bins) and each of these 30 times to generate error samples.

Figs. 10–13 plot the mean values of the samples, i.e. the error of
the modeling techniques on testing data. Error bars indicate 95%
confidence intervals, i.e. sample mean �ðSEM� 1:96Þ. Stars indi-
cate p-values for the Student’s paired t-test with the hypothesis

the GP does not have lower error than BT, i.e. the probability that
GP does not outperform BT. One star, ⁄, indicates that p is less than
0.05, ⁄⁄ indicates that p is less than 0.01, and ⁄⁄⁄ indicates that p is
less than 0.001. Similarly, plus signs indicate p-values for the
hypothesis that GP does not have lower error than LR, i.e. the prob-
ability that GP does not outperform LR. One plus sign, +, indicates
that p is less than 0.05, and ++ indicates that p is less than 0.01. The
mean ground truth HS value at Sulitjelma was 1.1900 m. The mean
ground truth HS value at Sagehen was 0.728 m.

Figs. 14–17 plot the mean sizes of the models whose perfor-
mance is reported in Figs. 10–13. In the case of GP and BT, these
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Table 6
Experiment Set II summary.

Experiment Location Model inputs

a Sulitjelma, Norway TOY
b Sulitjelma, Norway HS at Balvatn
c Sulitjelma, Norway HS at Balvatn, TOY
d Sagehen, California TOY
e Sagehen, California HS at HYS
f Sagehen, California HS at IDC
g Sagehen, California HS at HYS, TOY
h Sagehen, California HS at IDC, TOY
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Fig. 8. Experiment Set I results: HIG.
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are the models selected using the selection set method. For GP,
model size is the number of nodes in the GP tree. For BT, model size
is the number of nodes in the binary tree. For LR, model size is the
number of operators and values, specifically 5 in the case of a sin-
gle independent variable and 9 in the case of two independent
variables. Stars indicate p-values for the Student’s paired t-test
with the hypothesis the GP models are not smaller than BT models.
One star, ⁄, indicates that p is less than 0.05, ⁄⁄ indicates that p is
less than 0.01, and ⁄⁄⁄ indicates that p is less than 0.001.

6. Discussion

In this section we discuss the results of our experiments, offer
some hypotheses to explain our findings, and suggest possible next
steps for continued research.

6.1. Experiment Set I

In Experiment Set I GP performed at least as well as other meth-
ods in all experiments. This result was expected because GP is cap-
able of generating the same models as LR and BM. We did not
perform hypothesis tests comparing GP with LR because visual
inspection of error means and 95% confidence intervals (Figs. 6–
9) suggests that the methods performed similarly. At the sites
where a snow pillow was present, the performance of BM was
evaluated. At all of these sites, in all of the experiments where pil-
low SWE was an input variable (b, c, f), both LR and GP performed
better (p-value less than 0.001) than BM.

These results suggest that machine learning techniques can be
used to develop models that predict mean catchment SWE more
accurately than BM. In general, models performed better when

snow pillow data were included. However, GP did not outperform
LR.

Because LR performed as well as GP in Experiment Set I, we sus-
pected strict linearity among the explanatory relationships in the
data. We hypothesize that because snow courses measure SWE
only at a single location, they failed to capture existing nonlin-
earities, and that even though the relationships underlying snow-
pack distribution are nonlinear, our Experiment Set 1 data is
linear. We therefore did not further pursue nonlinear modeling,
such as BT, in Experiment Set 1.

6.2. Experiment Set II

First we conducted Experiment Set II: Random Division. GP out-
performed LR in every experiment except in Norway when the only
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model input was HS at Balvatn. In every experiment in California
where TOY was an input, BT has much lower error than either GP
or LR. In all experiments where TOY was an input, the resulting
BT models were very large. GP also had lower error and larger
model sizes when TOY was used then when TOY was not used.
We had originally introduced the TOY variable to allow models to
distinguish different parts of the season. However, we hypothe-
sized the BT, and to a lesser extent GP, were abusing the TOY vari-
able to memorize snow data by mapping TOY data to ground truth
HS. Even though training and testing data were technically distinct,
many of the samples in the testing data were temporally or spatial-
ly proximal to samples in the training data. The testing data were
not truly unseen with respect to the TOY variable. Even though
models generalized well to the testing data, they were over-fitting
to the TOY variable and would likely not generalize to truly unseen
data, e.g. from another snow season.

To test this hypothesis and address the possible problem of
over-fitting to the TOY variable, we repeated Experiment Set II
three more times. In Experiment Set II: 4 Bins, 3 Bins, and 2 Bins,
we successively decreased the temporal overlap between training
and testing data and increase the coarseness of the temporal gran-
ularity of the division into training and testing data. Proceeding
through this sequence, it became more difficult for machine learn-
ing to memorize HS data by over-fitting to the TOY variable. At the
same time, BT error increased and the performance of GP with
respect to BT improved. These results suggest that GP is more resi-
lient against over-fitting than BT, possible as a result of multi-ob-
jective optimization. Furthermore, when the ability of machine
learning to exploit the TOY variable by memorizing HS the data
were minimized, GP significantly outperformed both LR and BT.

6.3. Future work

We believe that the preliminary results discussed in this work
are promising and warrant further research into of the applicability
of GP to snowpack modeling.

This work should be expanded into a multi-year study.
Although Experiment I used snow course data collected over sever-
al years, Snowcloud data used in Experiment II was limited to sin-
gle snow season. A multi-year study would allow models trained
on Snowcloud data during one or several years to be evaluated
on unseen data from another year. Models trained on multi-year
data may be more robust to application in future years than are
models trained on single-year data. Even without collecting more
data, Experiment Set I could be modified so that models are trained
on data from earlier years and tested on data from later years.

Beyond those discussed here, there are many machine learning
techniques that should be applied to the problem of catchment-s-
cale SWE estimation. GP possesses a unique combination of desir-
able qualities, but its performance should be compared against
other methods such as ANNs, nonlinear multiple regression, and
FFX (McConaghy, 2011), a non-evolutionary symbolic regression
technology.

The only meteorological input to our models was air tem-
perature. However, meteorological data involving wind, solar
radiation, humidity, etc. are available for many locations and have
been shown to influence snow distribution (Logan, 1973; Elder
et al., 1991; Schmucki et al., 2014; Hock and Noetzli, 1997).
Future work should incorporate more potential meteorological
predictors of SWE and HS.

Topographic features significantly shape snow distribution, and
models of this relationship have been developed and used exten-
sively (Winstral et al., 2013; Marofi et al., 2011; Chang and Li,
2000; Tabari et al., 2010; Anderton et al., 2004; Grünewald et al.,
2013; Molotch et al., 2005; Elder et al., 1998). Although topograph-
ic data was not an explicit input in our experiments, models

developed with our techniques that use input variables to predict
distributed snow measurements likely express some of the rela-
tionship between topography and snowpack distribution.
Previous efforts to model snowpack using topographic data have
derived explicit model inputs from DEMs. The possibility that GP
could play an active role in determining which topographical fea-
tures to use should be explored. GP might discover new methods
for extracting information from DEMs that is predictive of snow-
pack distribution. It is possible that machine learning could use
topographic and other data to produce non-cite-specific models,
which are trained on data from one or more site and then applied
to other sites.

Schwaerzel and Bylander (2006) developed high-order statisti-
cal functions for GP to model financial data. These allowed GP
models to dynamically select and aggregate a slice of time series
data. Future work should apply these techniques to allow GP to
determine how to select and aggregate meteorological and topo-
graphic data. We made air temperature available to GP by means
of functions that aggregate daily measurements over an arbitrary
seven day window. Instead, GP could inductively discover how
models should dynamically select and aggregate a section of time
series data according to changing circumstances.

7. Conclusion

In this paper we have described novel, low-cost methods for
catchment-scale SWE estimation using machine learning algo-
rithms. The commonly used method of estimating catchment-scale
SWE from a single point measurement is error-prone because of
the spatial heterogeneity of snowpack distribution. We envision
an approach wherein short-term field campaigns collect ground-
truth data for generating snowpack models which can subsequent-
ly augment existing NRT snow telemetry. Toward this end, we
explored a suite of machine learning techniques to extrapolate
estimates of mean catchment SWE from single point SWE measure-
ments and other available data and pursued three key research
directions. First, we addressed the question of which machine
learning approaches are best for this problem. Second, we dis-
cussed and pursued the use of a range of possible input para-
meters. Finally, we grappled with the issue of ground-truthing
given limited datasets.

We compared the performance of a basic method (BM) which
assumes no spatial variability of SWE, linear regression (LR),
Genetic Programming (GP), and binary regression trees (BT). We
emphasize GP because it produces nonlinear, white-box models
without requiring assumptions about model form. GP can be aug-
mented with multi-objective optimization to constrain model
complexity and mitigate over-fitting. We found that machine
learning techniques generally outperformed BM, demonstrating
the spatial variability of SWE. Nonlinear techniques outperformed
linear models in Experiment Set II, but not in Experiment Set I, sug-
gesting that there are nonlinear relationships among the modeled
data used in Experiment Set II. Snowpack distribution at the catch-
ment scale has been shown to be highly nonlinear. It is possible
that the spatially distributed sampling technique (Snowcloud
wireless sensor network) used for ground-truthing in Experiment
Set II captured some of the nonlinearity of snowpack distribution,
while the single-location sampling (manual snow courses) used for
Experiment Set I did not.

When we naively divided our data at random to generate train-
ing and testing data, BT had much lower error than GP in experi-
ments where time of year (TOY) was an input variable. In these
cases, BT models were much larger than PG models and we sus-
pected that they were memorizing data by mapping TOY to snow
depth. When we instead divided the data into more temporally
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contiguous training and testing data in order to prevent this behav-
ior, BT model size decreased and GP outperformed BT.

We emphasize that GP can flexibly incorporate new predictors
of catchment-scale SWE into the models generated, augmenting
its capacity to extrapolate estimates of mean catchment-wide
SWE from a single point measurement. Genetic programming will
make use of input data that helps explain the dependent variable
while ignoring data that does not. Our choice of independent vari-
ables was a result of intuitive guesses combined with constraints
on available data. Topographic information was ruled out because
we were unable to determine the precise locations of snow pillows.
Multiple forms of meteorological data were available, but air tem-
perature was the most complete, allowing us to compose datasets
large enough for effective machine learning. However, the inclu-
sion of air temperature did not have a significant impact on model
performance in our first experiment set, and so we did not use any
meteorological data in our second experiment set.

Because it has been shown that the forcing effects underlying
snowpack distribution change over the course of a snow season,
we introduced time of year (TOY) as an independent variable so
that models can distinguish seasonal differences. However, we
found that nonlinear models used TOY to memorize the data by
mapping TOY to ground truth measurements instead of expressing
the underlying relationships of snowpack distribution. The ideal
solution to this problem would be a multi-year study using spatial-
ly distributed data collected by Snowcloud. However, given the
limitation of a one year dataset, we modified how data was divided
to constrain the temporal proximity of training and testing data.

We conducted two sets of experiments, using available data, as
successive approximations of our goal of near-real-time catch-
ment-scale SWE estimation. When ground truth was obtained from
distributed sampling techniques and when we were careful to
mitigate overfitting to the TOY variable, GP outperformed other
techniques.
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4.4 Kriegman et al. “Evolving spatially aggregated...” (2016).
A technical manuscript describing how symbolic regression of environmental data can produce
models interpretable by laypersons follows.
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Abstract. Satellite imagery and remote sensing provide explanatory
variables at relatively high resolutions for modeling geospatial phenom-
ena, yet regional summaries are often desirable for analysis and action-
able insight. In this paper, we propose a novel method of inducing spatial
aggregations as a component of the machine learning process, yielding
regional model features whose construction is driven by model predic-
tion performance rather than prior assumptions. Our results demonstrate
that Genetic Programming is particularly well suited to this type of fea-
ture construction because it can automatically synthesize appropriate
aggregations, as well as better incorporate them into predictive models
compared to other regression methods we tested. In our experiments we
consider a specific problem instance and real-world dataset relevant to
predicting snow properties in high-mountain Asia.

Keywords: spatial aggregation, feature construction, genetic program-
ming, symbolic regression

1 Introduction

Regional modeling focuses on explaining phenomena occurring at a regional, as
opposed to site-specific or global scales [11]. Regional models are of interest in
many remote sensing applications, as they provide meaningful units for analysis
and actionable insight to policymakers. Yet satellite imagery and remote sens-
ing provide variables at relatively high resolutions. Consequently, studies often
involve decisions concerning how to integrate this information in order to model
regional processes. Considering measurements at each individual spatial unit as
a separate model feature can result in a high dimensional problem in which high
variance and overfitting are major concerns. For this reason, spatial aggregation
is often applied in this setting to uniformly up-sample variables to be consistent
with the response. Although in averaging variables across all spatial units in the
region, we discard information which could in turn diminish prediction accuracy
and our understanding of underlying phenomena.

Rather than strictly incorporating individual spatial units or uniformly up-
sampling, it might instead be beneficial to construct features of a regional model
using particularly important subsets of geographical space. In this paper, we
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move away from uniform up-sampling aggregations towards more flexible and in-
teresting aggregation operations predicated on their subsequent use as features
of a regional model. We propose a novel method of inducing spatial aggrega-
tions as a component of the machine learning process, yielding features whose
construction is driven by model performance rather than prior assumptions.

In experiments designed to explore these techniques, we consider a specific
problem and real dataset: estimating regional Snow Water Equivalent (SWE)
in high-mountain Asia with satellite imagery. Improved estimation of SWE in
mountainous regions is critical [3] but is difficult due in part to complex charac-
teristics of snow distribution [2].

2 Methods

We take a comparative approach to the SWE problem, considering ridge regres-
sion, lasso, and GP-based symbolic regression1. For each regression model, we
consider a filter-based method of feature construction in addition to a second,
more dynamic method. For linear regression, we incorporate a wrapper approach
in which constructed features and the regression model are induced in separate
learning processes, with feedback between the two. For symbolic regression, we
use an embedded approach where constructed features and the regression model
are induced simultaneously over the course of an evolutionary run.

The Dataset. The SWE dataset2 is derived from data collected by NASA’s Ad-
vanced Microwave Scanning Radiometer (AMSR2/E) and Moderate Resolution
Imaging Spectroradiometer (MODIS) for March 1 - September 30, in 2003 - 2011,
over an area that spans most of the high mountain Asia. We have three explana-
tory variables measured daily across a 113× 113 regular grid for 1935 days: (1)
mean and (2) standard deviation of sub-pixel Snow Covered Area [4,10], as well
as (3) an estimate of SWE derived from passive microwaves [15]. Our response
variable is regional SWE, an attribute of the entire study region, represented
as a single value for each of the 1935 days. The response was “reconstructed”
by combining snow cover depletion record with a calculation of the melt rate to
retroactively estimate how much snow had existed in the region [9].

2.1 Regression Models

Ridge regression [5] is similar to ordinary least squares (OLS) but subject to a
bound on the L2-norm of the coefficients. Because of the nature of its quadratic
constraint, ridge regression cannot produce coefficients exactly equal to zero
and keeps all of the features in its model. Lasso (Least Absolute Shrinkage and

1 The source code necessary for reproducing our results is available at
https://github.com/skriegman/ppsn_2016.

2 Raw satellite data was pre-processed by Dr. Jeff Dozier (UCSB) using previously
reported techniques and is available upon request.
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Selection Operator, [16]) modifies the ridge penalty and is subject to a bound
on the L1-norm of the coefficients. The geometry of this L1-penalty has a strong
tendency to produce sparse solutions with coefficients exactly equal to zero. In
many high dimensional settings, lasso is the state-of-the-art regression method
given its ability to produce parsimonious models with excellent generalization
performance. For both lasso and ridge regression, the parameter constraining
the coefficients is set through cross-validation.

Genetic Programming (GP, [7]) is a very flexible heuristic technique which
can conveniently represent free-form mathematical equations (candidate regres-
sion models) as parse trees. GP’s inherent flexibility is well-suited for our particu-
lar problem because it can efficiently express spatial aggregations and seamlessly
combine them into the learning process with minimal assumptions. Furthermore,
the “white box” nature of GP may provide physical insights about this complex
problem that is currently lacking, as in other domains [1, 13].

To search the space of possible GP trees we use a variant of Age-Fitness
Pareto Optimization (AFPO, [12]). AFPO is a multiobjective method that re-
lies on the concept of genotypic age, an attribute intended to preserve diversity.
We extend AFPO to include an additional objective of model size, defined as the
syntactic length of an individual tree. The size attribute protects parsimonious
models which are less prone to overfitting the training data. The GP algorithm
therefore identifies the Pareto front using three objectives (all minimized): age,
error (fitness), and size. For the fitness objective, we use a correlation-based
function rather than pure error, and define fCOR = 1− |φ(ŝ, s)|, where φ(ŝ− s)
denotes Pearson correlation between model predictions (ŝ) and actual values of
our response (s), regional SWE. Correlation has recently been shown to outper-
form error-based search drivers given that if a model makes a systematic error it
could be easily eliminated by linearly scaling the output and therefore should be
protected [14]. Accordingly, for all GP implementations, we apply a linear trans-
formation after fCOR -driven evolution has concluded, by using an individual
program (model) output as the single input of OLS on the training data.

Our implemented GP experiments used ramped half-and-half initialization
with a height range of 2−6 and an instruction set including unary ({sin, cos, log,
exp}) and binary functions ({×,+,−, /}). One thousand individuals in the pop-
ulation are subject to crossover (with probability 0.75) and mutation (with prob-
ability 0.01) over the course of 1000 generations. There is a static limit on the
tree height (17) as well as the tree size (300 nodes). Each experiment consists
of 30 evolutionary runs, from which the best model (lowest training fCOR) is
selected. The selected model is then transformed using OLS, and subsequently
validated using unseen test data.

Standard Methods. Ridge regression, lasso, and GP may be performed on
the raw data using each variable at each individual spatial unit as a separate
feature. We denote these methods as Standard Ridge (SR), Standard Lasso (SL)
and Standard GP (SGP). SR, SL and SGP each have access to 113× 113× 3 =
38307 features, but only 1720 observations in each fold of data.

69 
Approved for public release; distribution is unlimited.



2.2 Feature Construction Methods

Feature construction is a well studied problem and the utility of genetic program-
ming for feature construction has been recognized in many previous studies [8].
The key difference in our work from this past work is the nature of the data
being modeled. We presume that there exist spatial autocorrelations of varying
size and shape that, if aggregated to improve the signal to noise ratio, yield
features supporting more accurate predictions.

In a regional model, we can construct features by aggregating higher di-
mensional variables across space. However, it is not entirely clear what kind of
aggregations are useful as features of a predictive model. Grouping variables
based on similarity or dissimilarity does not necessarily produce useful regional
features. In this paper, we make an assumption about the importance of distance
and continuity in effective spatial aggregations, based on Tobler’s first law of ge-
ography [17] which states that “everything is related to everything else, but near
things are more related than distant things.” Accordingly, we limit the space of
possible spatial aggregations to be an average of values within a circular spatial
area defined by its centerpoint and radius. However, where to aggregate, how
many aggregations to perform, and how to combine the aggregates must still be
determined manually or decided during model optimization. We view filters and
wrappers as intermediary steps in relaxing assumptions towards our embedded
approach, which automates all three of these aspects.

The Filter Method. Filter-based feature construction methods transform or
“filter” the original variables as a preprocessing step, prior to modeling. Our fil-
ter for the SWE problem represents a static up-sampling transformation of the
original variables. Each variable is decomposed in space by a grid of overlapping
circles3 of equal radii centered on a square lattice pattern of points (see Figure
1a,c,e for example). Each constructed feature corresponds to the average (arith-
metic mean) of a particular variable sampled within a particular circle of space.
Units that reside in an overlapping region of two separate circles are included in
the calculation of both features. Since there are three explanatory variables in
the SWE dataset, an R × R grid corresponds to p = 3R2 constructed features.
The constructed features are then used as inputs for ridge regression, lasso, and
GP, which we will refer to as Filtered Ridge (FR), Filtered Lasso (FL), and Fil-
tered GP (FGP). We will also specify the value of R used in a particular model
instance as a subscript, e.g. FR15 denotes Filtered Ridge with R=15. We con-
sider filters with R ∈ {1, 2, . . . , 20}, however note that the standard methods are
essentially filters with R = 113, albeit with the non-overlapping square pixels.

The Wrapper Method. Wrapper-based feature construction methods incor-
porate feedback from the fit of the model. We implement wrappers around both

3 The shape of circles are in reality so-called “small circles,” as they lie on the surface
of earth.
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ridge regression and lasso in order to enable the circular sampling regions to de-
fine their own center and radius. The circles are no longer fixed on a grid with a
predetermined size. Instead, each constructed feature is uniquely parameterized
by the coordinates of a center unit (x, y), as a latitude and longitude tuple, and
a radius r, as a single value floating point number in km. The center can be any
spatial unit in the region, including one at the edge of the raster. The radius is
restricted to be within 0 and 1000 km, which is flexible enough to contain only
a single unit or span the entire region (see Figure 1b,d for example).

Wrapped Ridge (WR) and Wrapped Lasso (WL) separately use a ridge/lasso-
driven hill climbing algorithm to construct features that minimize Mean Absolute
Error (MAE), i.e. 1

n

∑n
i=1 |ŝi − si|, where si is the actual value of our response

(regional SWE) and ŝi is output predicted by the model over n observations.
The algorithm uses the same number of circles for each of the three variables,
initializing their parameters (x, y, r) randomly. For 1000 iterations, a single con-
structed feature (circle) is randomly selected and subject to a Gaussian mutation
on one of its parameters with standard deviation equal to 25% of the radius and
centered at zero. A new ridge/lasso model is then refit on the mutated set of
features using a random subset of data sampled without replacement. If the mu-
tation lowered model error on the complementing set of training data left out,
then the change is accepted. Otherwise, the mutation is undone. If a proposed
mutation to the radius would take it outside the restricted range of 0−1000 km,
then it is “bounced-back” the distance it would have exceeded the boundary. For
example, a random mutation that would result in a radius of 1200 km, becomes
1000 − (1200 − 1000) = 800 km. Thirty restarts are used from which the best
model based on training data is selected. We consider R ∈ {1, 2, 3, 4} for wrap-
pers corresponding to 3×R2 features which really means 3× 3×R2 modifiable
parameters.

The Embedded Method. By using GP, we can allow for flexibility with
respect to the placement and number of aggregations as well as the way in
which they are combined to form a model. However, stochastic optimization
methods like GP cannot be easily “refit” in the same manner as deterministic
algorithms like ridge regression or lasso. Therefore using wrapper approach for
GP is computationally infeasible. Instead, modifications to aggregated features
are implemented through mutation-based operators.

In Genetic Programming with Embedded Spatial Aggregation (GPESA) in-
troduced here, our constructed features are represented as parameterized tree
terminals, with parameters (x, y, r). Constructed features are randomly initial-
ized in the same manner as the wrapper method, but separately for each terminal
of each individual in the population. Greedy Gaussian mutations to the param-
eters (x, y, r) of a randomly selected constructed feature occur in the population
with 20% probability, each generation. Mutations to r have mean zero and a
standard deviation of 25%, subject to the bounce-back rule. Similarly, muta-
tions to (x, y) have mean distance zero and a standard deviation of 0.25r. For
25 iterations, greedy mutations modify the parameterized terminals within a
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particular GP tree. A modification is accepted if it successfully reduces aver-
age error (fCOR) on random subsets of training data sampled with replacement.
Aside from the stochastic application, another key difference between the wrap-
per method’s hill climbing algorithm and the GPESA’s greedy mutations is that
the overall regression model stays the same between mutations rather than being
“refit” after each mutation.

Validation. In order to validate the generalization of models we partition the
dataset into nine overlapping folds. Each fold corresponds to leaving out one
year for testing and training on the remaining eight (using years 2003 - 2011).
We use MAE on the unseen test data as a metric to assess model performance.
To account for a difference in scale across any set of features, all input model
features are standardized over time by removing the mean and scaling to unit
variance. This means that as wrapper and embedded methods construct new
aggregations, the sampled data is scaled over time prior to being averaged over
space. Since our goal is near-real-time estimation for a future day, the training
values of a feature’s mean and variance are reapplied when scaling the same
feature in validation.

3 Results

Table 1 displays the test error of each valid regression and feature construction
method combination. For filters and wrappers, only the best performing model
is displayed and we indicate the particular value of parameter R as a subscript.
Since the ultimate goal of our paper is to synthesize a method better than
existing approaches, we must statistically compare GPESA to SL, the state-of-
the-art linear regression / variable selection algorithm. The null hypothesis of
interest here is that of no difference between GPESA and a SL. Therefore we
perform yearly Wilcoxon signed rank tests [6] comparing GPESA to SL with
Bonferroni correction across the nine years. For five out of the nine test years,
GPESA is significantly better than SL, while for the other four years there is no
significant difference with SL.

Through displaying only the best testing filters and wrappers, we aim to
focus speculation about GPESA performance through a conservative lens. Yet
we ultimately view filters and wrappers as intermediary steps “working up” to
GPESA. Accordingly, the best test error better represents a bound on the po-
tential performance of a particular intermediary method even though it may not
be possible to achieve such performance through a parameter sweep based on
the training data. And indeed, across all methods tested, GPESA reported the
lowest recorded median mean-absolute error within all but two years (7 of 9)
where it has the second lowest.
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Year SR SL SGP FR4 FL19 FGP19 WR2 WL3 GPESA

2003 0.86 0.51 0.35 (0.14) 0.50 0.46 0.44 (0.08) 0.43 (0.10) 0.49 (0.09) 0.29 (0.09)
2004 0.47 0.30 0.32 (0.10) 0.34 0.29 0.26 (0.05) 0.37 (0.16) 0.35 (0.16) 0.17 (0.05)
2005 0.95 0.44 0.50 (0.13) 0.61 0.40 0.52 (0.06) 0.58 (0.11) 0.63 (0.09) 0.32 (0.07)
2006 0.66 0.27 0.41 (0.29) 0.57 0.52 0.36 (0.06) 0.53 (0.11) 0.54 (0.11) 0.27 (0.05)

2007 0.72 0.33 0.44 (0.10) 0.42 0.38 0.34 (0.05) 0.52 (0.13) 0.50 (0.11) 0.24 (0.06)
2008 1.46 0.46 0.60 (0.13) 0.71 0.64 0.58 (0.11) 0.70 (0.31) 0.54 (0.26) 0.52 (0.18)

2009 0.81 0.41 0.65 (0.08) 0.90 0.61 0.56 (0.08) 0.98 (0.10) 1.03 (0.09) 0.41 (0.10)

2010 0.62 0.48 0.44 (0.12) 0.43 0.47 0.41 (0.06) 0.43 (0.11) 0.52 (0.11) 0.32 (0.07)
2011 0.87 0.48 0.61 (0.17) 0.77 0.60 0.53 (0.10) 0.82 (0.20) 0.93 (0.16) 0.45 (0.12)

Mean 0.82 0.41 0.48 0.58 0.49 0.44 0.58 0.61 0.33

Table 1. Median mean-absolute error with corresponding standard errors in parenthe-
ses. Only the best testing filter- and wrapper-based results (choice of R) are displayed.
We explicitly compare GPESA with the state-of-art, SL. Bold values indicate signifi-
cance (at 0.05 level with Bonferroni correction) under a Wilcoxon singed rank test in
which the null hypothesis asserts that distribution of the differences between GPESA
and SL is symmetrically distributed about 0.

4 Discussion

Our results show that incorporating dynamic aggregations of higher resolution
variables into a regional model is beneficial in our particular problem setting, as
compared to both uniform up-sampling of variables and a state-of-the-art linear
regression technique (SL) that incorporates individual spatial units. SL achieves
competitive prediction performance through a sparse linear combination of the
individual spatial units, on par with SGP which is not linearly constrained.
Ultimately, GPESA performed significantly better (lower median test error) than
SL on a majority (5 of 9) of cross validation folds. Moreover, whenever GPESA
was not significantly better than SL it was not significantly worse.

A main reason why GPESA has an advantage in this application is the dif-
ficulty of knowing a priori what the most important spatial datapoints are, and
how to best aggregate them. Additionally, the structure of the model itself is
unknown and it depends on the resulting aggregations. Therefore this is not a
fixed length optimization problem, which makes it well-suited for GPESA, which
can search over different numbers and non-linear combinations of spatial aggre-
gations. While SL can theoretically perform the same aggregation as a GPESA
terminal (mean within a radius of a geographical point), SL is restricted to a
single linear solution while GPESA is not.

However, it’s important to emphasize that the computational cost of GPESA
is higher than that of traditional GP and much higher than that of linear regres-
sion. In particular, the most expensive operation is the “on the fly” aggregation
component of GPESA which makes the fitness evaluation require 500% more
time than in SGP. Part of the incurred cost is due to inefficiencies of our imple-
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mentation that necessitated a copy with all spatial aggregation operations. In
future work we will look at reducing this overhead through more efficient data
structures (e.g. k-d trees).

Importance of Spatial Data. To better understand the relevance of partic-
ular spatial locations, we define the importance of a spatial unit for both linear
and symbolic methods, separately. For ridge regression and lasso, we can define
importance by exploiting the disposition of coefficients to be larger for variables
with a stronger correlation to the response, relative to a particular feature set.
We define linear regression importance of a particular spatial unit as the aver-
age absolute coefficient of features that incorporate the unit into a regression
model. While we cannot as easily determine relative importance within nonlin-
ear models, we can instead define importance by exploiting the multiple candi-
date solutions provided from stochastic multiobjective optimization. We define
GP importance of a particular spatial unit as the average absolute correlation
(1− fCOR) of nondominated solutions that incorporate the unit.

To visualize the importance of spatial information, we generated a series of
heatmaps (Figure 1). In Figures 1a, 1c, and 1e we show regional importance
values of filter methods for each R ∈ {1, ..., 20}, with the relevant value of R
annotated in the upper left corner of each box. Note that in lasso- and GP-
based approaches, some variables are unused (white), while ridge cannot perform
variable selection and uses all. Figures 1b and 1d plot WR and WL for R ∈
{1, 2, 3, 4}. Finally, Figures 1e and 1f plot the importance of spatial information
in the GP sense, for FGP and GPESA, respectively. Overall, this visualization
indicates an agreement among all methods on the relatively higher importance
of information in the lower center/right region of the image.

5 Conclusion

In this work we developed a novel method to address the problem of modeling
a regional response with high resolution satellite imagery. We moved away from
uniform up-sampling aggregations towards more flexible and interesting aggre-
gation operations predicated on their subsequent use as features of a regional
model. Our proposed technique, GPESA, is general and intended to apply to a
variety of modeling problems on spatially organized data. But as an application
example, and as a setting in which to evaluate our techniques, we considered
the problem of estimating snow water equivalent in high mountain Asia using
satellite imagery. Our results showed that using GP to evolve spatial aggrega-
tions outperforms lasso, the state-of-the-art method for directly incorporating
individual spatial units into a sparse linear model.

In future work we plan to explore more flexible spatial and temporal aggre-
gations for more predictive modeling in real earth science applications.

Acknowledgements: Thanks to Dr. Jeff Dozier (UCSB) for posing the high-
mountain Asia SWE problem and providing associated datasets.
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Fig. 1. Importance (defined in Section 4) of spatial units. For filters a.) FR, c.) FL,
and e.) FGP, importance is displayed at each resolution R ∈ {1, 2, . . . 20} and each
individual filter subplot is annotated with the corresponding R. For wrappers b.) WR
and d.) WL, R ∈ {1, 2, 3, 4}. Finally, f.) GPESA, which has no R parameter. White
areas indicate spatial units unused in feature construction across all three exploratory
variables.
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5 Improving symbolic regression.
A large portion of the work conducted under this award involved purely theoretical progress on
improving symbolic regression. At the outset of the award, work was completed on hybridizing
symbolic- and more traditional regression methods to produce one that is superior to either method
working alone [4, 5].

Most recently, we have addressed a major limitation of symbolic regression, which is its scala-
bility. At its heart, symbolic regression uses population-based stochastic optimization: models are
randomly modified, and if the modification reduces prediction error, the model is retained; other-
wise, it is likely to be discarded. This leads to vast computational waste, as most models produced
by these random perturbations perform worse that the originating model.

In [8], we demonstrate that the semantics of different parts of a model can be employed to
reduce the randomness of model modification and thus increase the likelihood that a change to a
model is beneficial, even for non-convex problems. This is accomplished by removing part of a
model, and looking for a complementary part from another model. Connecting these two model
parts together keeps the semantics of the resulting model close to the semantics of the contributing
models, thus increasingly the likelihood of model improvement.

In [7] we demonstrate how to overcome a major challenge in the field of symbolic regression.
In order to stocastically optimization a population of models, it is imperative to maintain diversity
in the model population. This is usually done by ‘pushing’ models away from one another. This
however antagonizes the reduction of model error, which ‘pulls’ the models toward the desired pre-
dictions an optimal model should make. In this particular work we show that instead of ‘pushing’
models away from one another, we incentivize models to spread out, as much as possible, around
the desired output of the optimal models. This reduces the antogonism between low error and
model population diversity, and leads to significant improvements in the accuracy and parsimony
of the final models.

5.1 Relevance for U.S. defense and security.
While the theoretical advances achieved in this part of the project cannot be immediately be ap-
plied to defense and security areas of interest, it would be relatively straightforward to incorporate
these advances into the three application-specific projects outlined above or incorporated into other
applications of symbolic regression of military interest.

5.2 Icke et al. “Improving genetic programming...” (2013).
A technical manuscript describing how to hybridize symbolic- and linear regression methods fol-
lows.
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Abstract—Symbolic regression (SR) is a well studied method in
genetic programming (GP) for discovering free-form mathemat-
ical models from observed data. However, it has not been widely
accepted as a standard data science tool. The reluctance is in part
due to the hard to analyze random nature of GP and scalability
issues. On the other hand, most popular deterministic regression
algorithms were designed to generate linear models and therefore
lack the flexibility of GP based SR (GP-SR). Our hypothesis
is that hybridizing these two techniques will create a synergy
between the GP-SR and deterministic approaches to machine
learning, which might help bring the GP based techniques closer
to the realm of big learning. In this paper, we show that a hybrid
deterministic/GP-SR algorithm outperforms GP-SR alone and
the state-of-the-art deterministic regression technique alone on a
set of multivariate polynomial symbolic regression tasks as the
system to be modeled becomes more multivariate.

Index Terms—symbolic regression, hybrid algorithms, elastic
net, regularization

I. INTRODUCTION

Symbolic regression is one the most popular applications of
genetic programming and an attractive alternative to standard
regression approaches due to its flexibility in generating free-
form mathematical models from observed data without any do-
main knowledge. Indeed, user-friendly genetic programming
based symbolic regression (GP-SR) tools such as Eureqa [1]
have started to gain more attention from the scientific com-
munity over the last couple years. Despite various success
stories ( [2], [3], [4]) and claims that they will one day
‘replace scientists’, GP-SR applications (or any evolutionary
computation based approach in general) have not yet been
widely accepted as standard tools for the data scientists.
Although many stochastic optimization algorithms such as
stochastic gradient descent (SGD) [5] and metaheuristics such
as simulated annealing [6] are well established in the main-
stream ML, evolutionary computation methods are generally
overlooked. GP suffers from various issues [7] that hinder
its applicability to many real-world data science tasks. The
theoretical foundations of GP are not as well understood
as many of the standard machine learning (ML) algorithms
due to the hard to analyze random nature of the technique.
Scalability is also a very challenging problem. Efforts to

increase scalability of GP via GPUs and cloud computing have
been reported (such as in [8], [9]). It is our belief that, if GP-
SR is to be a trustable big learning [10] tool, it needs to take
advantage of the developments in the general ML as well as
the parallel and distributed computing techniques.

The idea of studying evolutionary computation techniques
from the standard ML perspective is not new. The behavior
of GP has been studied in terms of the learning theory
in [11] and [12] amongst others. The learnable evolution model
(LEM) proposed in [13] is a technique to guide evolutionary
processes with standard ML algorithms by creating hypotheses
characterizing the differences between high performing and
low performing individuals in the population.

Recently, it has been suggested that GP might not be the
best option for SR and that stochasticity was not necessarily
a virtue. In [14], a deterministic basis function expansion
method used in conjunction with a state-of-the-art ML regres-
sion algorithm was proposed as an alternative to GP-SR. This
algorithm that is known as the Fast Function Extraction (FFX)
has been reported to outperform GP-SR on a number of real-
world regression problems with dimensionality ranging from
13 to 1468. Our paper shares the same basic ideology, that is,
SR should not stray away from the well-established techniques
of ML. However, we argue that abandoning the GP approach
might not be the best way for SR. Instead, we propose to
hybridize the two approaches.

This paper explores one way to incorporate a deterministic
ML regression technique into GP-SR in order to improve GP-
SR. We report results on a suite of synthetic datasets that were
generated to analyze performance as the problem difficulty
increases. We believe that analyzing algorithm performance
in this manner helps us understand the strengths/weaknesses
of the approach before tackling more challenging real-world
problems for which the ground truth is hardly ever available.

The organization of this paper is as follows: sections II
and III discuss the background and related work. Our pro-
posed algorithm to hybridize the GP-SR and deterministic
ML approaches is detailed in section IV. Experimental results
are presented and discussed in section V. Finally, section VI
discusses conclusions and future work.
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Fig. 1: Feature extraction as a sequential process of creating
features from the input variables and then selecting the most
informative features.

II. BACKGROUND

Data dimensionality poses a great challenge for the numer-
ical and symbolic regression algorithms alike. As the number
of predictors increases, it becomes more difficult to identify
the informative predictors and to build accurate models. This
problem has been well-studied in ML. The task of seeking the
best representation for a given dataset in order to optimize
the performance of a ML algorithm is known as feature
extraction [15]. Feature extraction can be seen as a sequential
process where new features are first constructed from the input
variables and then the most informative ones are selected
amongst the constructed features (Fig. 1). Feature construction
may or may not increase data dimensionality. If the input
variables are suspected to have interactions, it is generally the
practice to create additional features via non-linear expansion
(such as x1 ∗ x2).

As for feature selection, the simplest approach is to rank
the features with respect to how well they correlate with the
predicted variable. This method has the risk of eliminating
such features that might not be informative by themselves but
might as well be very informative together. Subset selection
methods aim to address this issue by considering a subset of
features together. These techniques are divided into three main
groups: filters, wrappers and embedded methods. Filters are
pre-processing techniques that, independent from the learning
algorithm, select a subset of variables with respect to some
criteria such as mutual information. The wrapper techniques
consider the learning algorithm as a black-box and select the
set of features that optimize the performance of the learner.
The feature subsets are generated by either forward selection,
that gradually adds features or backward elimination, that
starts with the whole set of features and eliminates least
informative ones. The wrapper approach is computationally
expensive as the learning algorithm needs to be executed many
times. The embedded methods incorporate feature selection
within the learning algorithm itself. The decision tree algo-
rithms are the earliest examples of embedded methods. More
recent embedded methods utilize the regularization technique.

Within the context of the linear regression problem, reg-
ularization refers to imposing additional constraints on the
coefficients in order to reduce overfitting. In linear regression,
given a multivariate dataset X[M×N ] = { ~x1, ~x2, ..., ~xN}, a
matrix of observations, the response variable Y is defined as:

Y = f(X) = β0 +
N∑

j=1

βj ∗ ~xj

The coefficients are computed via the least squares estimation
by minimizing the residual sum of squares over the dataset X:

RSS = minβ(
M∑

i=1

yi − β0 −
N∑

j=1

βj ∗ xij)2

Since the parameters are computed on the training data,
overfitting occurs manifesting itself as large coefficient values.
Therefore, an additional constraint on the coefficients is im-
posed in order to tame the coefficients (

∑N
j=1 ||βj ||1 ≤ t). This

algorithm that is known as lasso (least absolute shrinkage and
selection operator) shrinks the coefficients and also performs
feature elimination since the l1-norm promotes sparsity. There-
fore, the coefficients of uninformative features will be close
to 0. An l2-norm constraint is also possible and it is called
ridge regression. Ridge regression has the effect of grouping
the correlated variables so that they are included in the model
together [16], [17]. The elastic net approach [18], [19] is a
hybrid of lasso and ridge regression and formulated as:

Y = f(X) = β0 +
N∑

j=1

βj ∗ ~xj + λ2||β||22 + λ1||β||1

Generally, λ1, λ2 are balanced by defining one single pa-
rameter (0 ≤ α ≤ 1) that is called the mixing parameter. At
the extreme values of α, elastic net behaves like purely lasso
or purely ridge regression. A very large value of λ forces
all βs to be 0. As λ is relaxed, the coefficients start to take
nonzero values. This sweep of λ values can be visualized as
a regularization path (Fig. 2). The algorithm is named elastic
net since the “regularization path is like a stretchable net that
retains all the big fish”[18].

Fig. 2: Regularization path for elastic net on a 10-dimensional
dataset. For each λ, the l1-norm of the coefficients vector
versus individual coefficient values are shown. Each line traces
the change of coefficient values for one variable. At the
beginning, no features are selected. Gradually, more features
are added into the models as the coefficients become non-zero.
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This basic linear regression algorithm applies to the gener-
alized linear models (GLM) of the form:

Y = f(X) = β0 +
N∑

j=1

βj ∗ bj(X)

where bj(X) are nonlinear basis functions applied to the input
variables in order to construct new features.

III. RELATED WORK

GP-SR inherently performs feature selection when it finds
sufficiently accurate data models; any feature that does not
appear on the evolved expression can be considered redundant.
However, when data dimensionality is high, the search space
grows exponentially, making it difficult for GP-SR to find good
solutions. The issue of feature selection in GP-SR algorithms
have been studied by various researchers. Koza’s automati-
cally defined functions (ADF) [20] can be seen as a feature
extraction method within the context of SR. A Pareto-GP
based variable selection scheme was proposed in [21]. In [22],
permutation tests were introduced in GP-SR to discriminate
between informative and uninformative variables. In [23],
feature selection capabilities of GP-SR and random forests
were compared. The authors report that when it finds an
accurate model, GP-SR captures the important features that
are missed by the random forests algorithm.

The regularization approach has been applied to GP-SR
in [24] for polynomial functional form discovery. The au-
thors incorporate a function smoothness term into the fitness
function as a way to decrease overfitting. The Fast Function
Extraction (FFX) algorithm reported in [14] employs a nonlin-
ear basis function expansion method that creates new features
via unary and binary interactions of the input variables. The
algorithm does not employ GP-SR to construct the features or
the models. The new features are created in a deterministic
manner and passed to the elastic net algorithm for model
building. The algorithm generates multiple models for the
λs on the regularization path. The non-dominated set of
these models with respect to accuracy versus complexity are
identified as the final models.

The difference of our proposed technique is that we per-
form feature extraction using an efficient deterministic ML
algorithm and pass the features to GP-SR for model building.
By taking advantage of the state-of-the-art ML, our algorithm
aims to ease the burden of GP-SR in feature extraction and
help it excel in model building.

IV. IMPROVING GP-SR USING DETERMINISTIC ML

The technique we propose in this paper has been largely
inspired by the FFX algorithm [14]. However, the author had
proposed to eliminate the GP for the symbolic regression
problem in favor of a deterministic way to augment the
dataset with polynomial features and then use a state-of-
the-art machine learning algorithm (elastic net) for model
building. In this paper, we propose to hybridize GP with the
deterministic ML techniques so as to take advantage of the
strengths of both approaches to solve symbolic regression

problems more accurately and efficiently in comparison to
either technique alone. The outline of the general idea behind
FFX is presented in algorithm 1 (for a detailed description
of the FFX algorithm, see[14]). The algorithm consists of
three stages: feature construction, model building and model
selection. The feature construction stage creates new features
by applying binary nonlinear interactions (basis functions) and
augmenting the original dataset (algorithm 2). It is possible
to go beyond the binary interactions; however, this would
increase the number of constructed features exponentially. In
this paper, we considered only unary and binary features as in
[14]).

Algorithm 1: The basic FFX algorithm
Input: V={v1,v2, ..., vN}
Output: The set of non-dominated evolved models based on

validation data error-model complexity (number of
bases) trade-off

1 [ bases, expandedTrainingDataset] =
basisFunctionExtraction(trainingDataset)

2 models={}
3 foreach α ∈ (0, 0.05, 0.1, ..., 1) do
4 models = models

⋃
glmnetfit(variables,trainingDataset)

5 nonDominatedModels =
6 extractParetoFrontier(models,expandedValidationDataset)
7 models=nonDominatedModels

8 models = models
⋃

glmnetfit(bases,expandedTrainingDataset)
9 nonDominatedModels =

10 extractParetoFrontier(models,expandedValidationDataset)
models=nonDominatedModels

11 end

The model building stage utilizes the coordinate descent
elastic net algorithm (glmnet, line 4 of algorithm 1) that was
proposed in [19]. As it is shown in Fig. 2, for each value of
λ, one can build an expression using the corresponding coef-
ficients. Therefore, the model building stage returns multiple
expressions containing different numbers of basis functions.

Algorithm 2: basisFunctionExtraction : Polynomial basis
function generation as new features form the observed data

Input: V={v1,v2, ..., vN}
Output: Expanded Dataset: Ve={ve1,ve2, ..., veM }

1 //Generate unary bases
2 foreach v1,v2, ..., vN do
3 unaryBases = unaryBases

⋃
vi

4 foreach expj do
5 unaryBases = unaryBases

⋃
vi

expj

6 end
7 foreach unaryOperatork do
8 unaryBases = unaryBases

⋃
unaryOperatork(vi)

9 end
10 end
11 //Generate binary bases
12 foreach ui ∈ unaryBases do
13 foreach uj ∈ unaryBases do
14 binaryBases= binaryBases

⋃
ui*uj

15 end
16 end
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Note that the models are built on the training data. At
the model selection stage, the non-dominated set of models
with respect to error on validation data versus expression
complexity (the number of basis functions or bases for short)
are identified.

Our proposed method to hybridize FFX/GP-SR is presented
in algorithm 3. The process starts with a variant of FFX that
was outlined in algorithm 1. From the set of all non-dominated
models generated by FFX, all unique features (unary and
binary) are extracted (line 2). These are the features that were
found by FFX to be the most informative features for the
given regression problem. Fig. 3 summarizes the process of
identifying these features from the FFX output. Across all the
models on the non-dominated set, each base is extracted and
the coefficients are eliminated. The identified list of unique
unary and binary basis functions are then utilized to create
the new dataset with corresponding feature labels. The new
dataset is then passed onto the GP-SR for model building.

Algorithm 3: The hybrid FFX/GP-SR algorithm
Input: V={v1,v2, ..., vN}
Output: One best model with respect to the validation data

error and complexity
1 nonDominatedModels = ffx(trainingDataset)
2 bases = extractBasisFunctions (nonDominatedModels,
3 validationDataset)
4 newDataset=createNewDataset(bases)
5 bestModel = GP-SR(newDataset)

We hypothesized that for higher dimensional problems, pre-
processing the dataset using a fast algorithm such as FFX
would increase the chances of the GP-SR to succeed as
opposed to expecting the GP-SR to perform feature extraction
and model building simultaneously. The algorithm shown
above may extract many basis functions for high dimensional
datasets. In that case, further filtering of the uninformative
features created by those basis functions can be done before
passing the features to the GP-SR.

Fig. 3: Generation of the new dataset based on FFX-generated
expressions (extractBasisFunctions, line 2 of algorithm 3).
Most frequent bases are extracted from the Pareto frontier and
used as features for the new dataset.

V. EXPERIMENTAL RESULTS

We implemented our GP-based Symbolic Regression ap-
plication using the GPTIPS Matlab package downloaded
from [25]. Our version of the FFX algorithm and FFX/GP-SR
algorithms were also implemented in Matlab using the glmnet
package downloaded from [26] and the GPTIPS package. All
experiments were run on a cluster computing environment.

A. Synthetic Benchmark Data Suite and Evaluation Procedure

We tested our algorithms on a systemically generated suite
of multivariate polynomial functions in order to analyze the
performance as the difficulty of the problem is increased
in terms of the number of variables(1-3, 10), order of the
polynomial (1-4) and the number of basis functions each
polynomial contains (1-4). Examples of such functions are
presented in the following sections. For each polynomial, 2500
data points were generated as training points and separate sets
of 1250 data points were held aside as validation and test data.
All input variables were randomly sampled within the range
[0,1].

The evaluation procedure is as follows: for each type of
polynomial (such as order 2 with 2 bases), there are 30 differ-
ent datasets generated by the 30 different polynomials of that
type. For each such polynomial, we perform 30 independent
GP-SR and FFX/GP-SR runs with 1 minute runtime budget.
Since FFX is deterministic it runs only once. For FFX, the
final set of non-dominated models are recorded. For GP-SR
and FFX/GP-SR the best model with respect to the validation
dataset is recorded for each run. In summary, for each type
of polynomial, 900 runs of GP and 900 runs of FFX/GP-SR
runs are performed.

Unlike the general approach where a close approxima-
tion with respect to the prediction error is satisfactory for
evaluation of the success, in this paper, we also assess the
outcomes in terms of how close the functional form of the
hidden target expression is matched. For instance, if the hidden
target expression is α1 ∗ x1 + α2 ∗ x2 + β, where αi, β
are real valued coefficients, we consider each evolved model
with low prediction error that matches this functional form
as a successful outcome regardless of the actual values of
the coefficients. Namely, the degree of similarity between the
hidden ground truth and the evolved polynomials is defined in
terms of syntactic similarity.

For FFX, the evaluation is performed based on the whole
set of non-dominated models (Fig. 4). If a model with the
correct syntactic form exists in this set, then the FFX run is
considered a success. For GP and FFX/GP, all 30 runs per
unique polynomial are examined. If a model with the correct
syntactic form exists in this set, the algorithm is considered
successful on discovering that polynomial. We also record
the syntactic similarity to the correct polynomial form. The
similarity values range between 0 and 1; 1 meaning a perfect
match to the true syntactic form and 0 meaning no match at all.
For each unique polynomial, the model with best validation
error is identified and its syntactic similarity and test error
values are recorded as the outcomes for each algorithm.
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Fig. 4: Result of an FFX run on a second order 1D problem
with two basis functions. The final model shown here is
selected from the Pareto frontier as the one with lowest
validation error.

In the following sections, we present the results separately
for five sets of data organized with respect to dimensionality.
We start from the simplest case: one variable and various
polynomials ranging from linear with a single term to fourth
order with four terms. We increase the number of variables
to 2,3,10 then to 25 and repeat the same set of experiments.
Finally, statistical significance tests are utilized in order to
check if hybridizing the GP-SR with FFX helps improve the
performance of GP-SR given the data dimensionality.

B. Results on the benchmark problems
Unless otherwise specified, all GP-SR and FFX runs were

performed using the following default parameters:

TABLE I: Default GP-SR parameters
Parameter Value

Representation GPTIPS [25] Multigene syntax tree
Number of genes: 1

Maximum tree depth: 7
Population Size 500
Runtime Budget 1 minute

Selection Lexicographic tournament selection
Tournament Size 7

Crossover Operator Sub-tree crossover
Crossover Probability 0.85

Mutation Operator Sub-tree mutation
Mutation Probability 0.1

Reproduction Probability 0.05
Building Blocks Operators: {+,−, ∗, protected/}

Terminal Symbols: {x1, ..., xN}
Fitness 1

N

√∑
(y − ŷ)2

Elitism Keep 1 best individual

1-dimensional polynomials: The following polynomials are
examples of the 1-dimensional hidden target expressions
(ground truth) used in our experiments. The polynomials are
grouped with respect to the highest order variable interaction.
Within each group, the syntactic complexity of the expressions
increase as more basis functions are included gradually. For
each expression, the number in the paranthesis on the left-
hand side indicates how many types of nonlinear interactions
(i.e unary, binary,...) are included in that expression.

TABLE II: Default FFX parameters
Parameter Value

Basis Function Expansion Exponents : 1
Interactions : Unary, Binary
Operators : { }

Elastic Net α : {0, 0.05, 0.1, ..., 1}
λ : 100 λ values calculated by
glmfit based on α
Maximum basis functions allowed
: 250

Model Selection Non-dominated models with re-
spect to validation data error versus
number of bases

• order 1 polynomial:
(1) y =0.288 ∗ x1 + 0.8446

• order 2 polynomials:
(1) y =0.14 ∗ x21 + 0.629

(2) y =0.12 ∗ x1 + 0.03 ∗ x21 + 0.29

• order 3 polynomials:
(1) y =− 0.31 ∗ x31 − 0.11

(2) y =1.35 ∗ x21 − 0.83 ∗ x31 + 0.139

(3) y =0.13 ∗ x1 + 0.44 ∗ x21 + 0.34 ∗ x31 + 0.39

• order 4 polynomials:
(1) y =0.20 ∗ x41 + 0.13

(2) y =0.24 ∗ x31 + 0.23 ∗ x41 + 0.39

(3) y =0.75 ∗ x21 + 0.30 ∗ x31 + 0.35 ∗ x41 + 0.334

(4) y =0.02 ∗ x1 + 0.13 ∗ x21 + 0.301 ∗ x31+
0.32 ∗ x41 + 0.91

Tables III, IV and V show the number of successful runs
for each algorithm for each type of polynomial. As the results
of the GP-SR runs indicate, even the 1-dimensional hidden
target expressions become more challenging as the number of
basis functions increases. Out of the 30 runs, the proportion
of successful discovery of the correct functional form declines
as the syntactic complexity of the target expressions increase.

TABLE III: Standalone GP-SR runs on 1D datasets (1 minute).
Bases

1 2 3 4

Order of the Polynomial

1 30 - - -
2 30 29 - -
3 30 27 19 -
4 30 27 11 16

TABLE IV: FFX runs on 1D datasets with unary (xi) and
binary interactions (xi ∗ xj) (average run time: 7 seconds)

Bases
1 2 3 4

Order of the Polynomial

1 30 - - -
2 30 30 - -
3 0 0 0 -
4 0 0 0 0

TABLE V: FFX/GP-SR runs on 1D datasets (1 minute GP run
on FFX-generated dataset)

Bases
1 2 3 4

Order of the Polynomial

1 30 - - -
2 30 27 - -
3 30 26 19 -
4 30 28 16 17
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It is not surprising that FFX did not succeed at all when the
target polynomials were cubic and fourth order, as we have
only allowed for unary and binary basis functions. Our goal
was to test how much FFX might help GP-SR discover 3rd
and 4th order polynomials utilizing binary bases only. Fig. 5
shows that the hybrid did not outperform the plain GP-SR
even on the quadratic polynomials as the problem was easy
for GP-SR to handle within the given runtime budget.

Fig. 5: Summary of runs on second order 1D polynomials
with 2 basis functions. According to Wilcoxon rank sum tests,
FFX/GP-SR does not outperform GP-SR in 1 minute runtime

2-dimensional polynomials: We repeated the experiments
using a set of 30 polynomials for each listed form below:

• order 1 polynomial:
(1) y =0.62 ∗ x2 − 0.854

• order 2 polynomials:
(1) y =0.22 ∗ x21 + 0.05

(2) y =0.12 ∗ x1 − 0.25 ∗ x1 ∗ x2 + 0.4

• order 3 polynomials:

(1) y =1.67 ∗ x21 ∗ x2 + 0.46

(2) y =0.17 ∗ x1 ∗ x2 + 0.369 ∗ x32 − 0.3

(3) y =0.03 ∗ x2 − 0.36 ∗ x21 + 0.22 ∗ x32 + 0.42

• order 4 polynomials:

(1) y =2.88 ∗ x21 ∗ x22 + 0.15

(3) y =0.4978 ∗ x1 ∗ x32 − 0.08 ∗ x41 + 0.36

(3) y =2.19 ∗ x1 ∗ x22 − 0.87 ∗ x32 + 0.87 ∗ x21 ∗ x22 + 0.39

(4) y =0.13 ∗ x2 − 1.313 ∗ x1 ∗ x2 − 0.1 ∗ x31
0.4926 ∗ x21 ∗ x22 + 0.19

TABLE VI: Standalone GP-SR runs on 2D datasets (1 minute).
Bases

1 2 3 4

Order of the Polynomial

1 30 - - -
2 30 29 - -
3 30 22 15 -
4 30 20 10 2

TABLE VII: FFX runs on 2D datasets with unary (xi) and
binary interactions (xi ∗ xj) (average run time: 9 seconds)

Bases
1 2 3 4

Order of the Polynomial

1 30 - - -
2 30 16 - -
3 0 0 0 -
4 0 0 0 0

Similar to the 1-dimensional case, we found that FFX/GP-
SR did not outperform GP-SR on 2-dimensional polynomial
dataset (Fig. 6).

TABLE VIII: FFX/GP-SR runs on 2D datasets (1 minute GP
run on FFX-generated dataset)

Bases
1 2 3 4

Order of the Polynomial

1 30 - - -
2 30 30 - -
3 30 19 14 -
4 30 20 11 3

Fig. 6: Summary of runs on second order 2D polynomials
with 2 basis functions. According to Wilcoxon rank sum tests,
FFX/GP-SR does not outperform GP-SR in 1 minute runtime

3-dimensional polynomials: We repeated the experiments
using a set of 30 polynomials for each listed form below::

• order 1 polynomial:
(1) y =0.746 ∗ x3 + 0.8268

• order 2 polynomials:

(1) y =0.54 ∗ x23 + 0.4

(2) y =0.8651 ∗ x1 − 0.61 ∗ x22 − 0.30

• order 3 polynomials:
(1) y =0.84 ∗ x1 ∗ x2 ∗ x3 − 0.86

(2) y =0.93 ∗ x1 ∗ x2 − 0.46 ∗ x33 + 0.88

(3) y =0.04 ∗ x2 − 0.18 ∗ x2 ∗ x3 − 0.01 ∗ x1 ∗ x22 + 0.3

• order 4 polynomials:

(1) y =0.20 ∗ x1 ∗ x32 + 0.91

(2) y =0.73 ∗ x21 ∗ x2 − 0.07 ∗ x21 ∗ x2 ∗ x3 + 0.39

(3) y =1.2 ∗ x1 ∗ x2 + 0.68 ∗ x21 ∗ x2+
0.48 ∗ x21 ∗ x2 ∗ x3 + 0.41

(4) y =0.35 ∗ x3 − 0.32 ∗ x2 ∗ x3 − 0.35 ∗ x1 ∗ x22−
0.39 ∗ x43 + 0.24

TABLE IX: Standalone GP runs on 3D datasets (1 minute)
Bases

1 2 3 4

Order of the Polynomial

1 30 - - -
2 30 25 - -
3 30 25 9 -
4 30 13 12 3

TABLE X: FFX runs on 3D datasets with unary (xi) and
binary interactions (xi ∗ xj) (average run time: 12 seconds)

Bases
1 2 3 4

Order of the Polynomial

1 30 - - -
2 29 16 - -
3 0 0 0 -
4 0 0 0 0
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TABLE XI: FFX/GP-SR runs on 3D datasets (1 minute GP
run on FFX-generated dataset)

Bases
1 2 3 4

Order of the Polynomial

1 30 - - -
2 30 26 - -
3 30 28 14 -
4 30 17 12 6

Fig. 7: Summary of runs on second order 3D polynomials
with 2 basis functions. According to Wilcoxon rank sum tests,
FFX/GP-SR does not outperform GP-SR in 1 minute runtime

Second Order Polynomials from 10 & 25-dimensional
Datasets: In order to test our intuition that the FFX/GP-SR
would perform better for higher dimensional data, we raised
the dimensionality of synthetic data to 10 and 25. In this
section, we present results of GP-SR and FFX/GP-SR runs on
30 second order polynomial functions with 2 basis functions
such as the following: y = 0.7∗x3−0.23∗x9 ∗x7+0.2 where
xi ∈ x1, ..., x10 and xi ∈ x1, ..., x25 respectively.

Since we only allowed unary and binary interactions in
our FFX implementation, FFX/GP-SR did not significantly
do better than GP-SR alone in terms of finding the correct
functional form of the hidden polynomials with orders greater
than 2. This was evident in 1:3-dimensional polynomial ex-
periments reported in the previous section. Therefore, we only
performed runs on the second order polynomials for the 10 and
25-dimensional data. As in the previous sections, the results
reported here are aggregated over the runs on 30 different
polynomials for a runtime budget of 1 minute..

On the 10-dimensional dataset, the FFX algorithm found
the correct syntactic form (identified the correct variables and
linear form) for 10 out of the 30 polynomials. The GP-SR
algorithm by itself found 14 out of the 30 and the FFX/GP-
SR hybrid found 22 out of the 30 target polynomial forms
correctly. On the 25-dimensional dataset, the number of times
each algorithm found the correct functional form was 18,1 and
26 out of the 30 target polynomials for the FFX, GP-SR and
FF/GP-SR respectively.

Fig. 8 and Fig. 9 summarize the comparisons of GP and
FFX/GP-SR algorithms based on the similarity to the correct
polynomial form and prediction errors. As the dimensionality
increases from 10 to 25, the performance of the GP-SR
declines sharply in terms of recovering the correct functional
form within the given runtime budget of 1 minute. The
FFX/GP-SR hybrid, on the other hand, continues to succeed
as the dimensionality increases. In summary, the utility of the

hybrid algorithm becomes more significant as the number of
variables increases. The hybrid algorithm discovers expres-
sions that are significantly more similar to the ground truth
and significantly more predictive.

Fig. 8: Summary of runs on second order 10D polynomi-
als with 2 basis functions. The final expressions found by
FFX/GP-SR are significantly more similar to the ground truth
as opposed to GP-SR alone (Wilcoxon rank sum right-tailed
test, α = 0.05, p-value:0.0198) and more predictive (Wilcoxon
rank sum left-tailed test, α = 0.05, p-value:0.005)

Fig. 9: Summary of runs on second order 25D polynomi-
als with 2 basis functions. The final expressions found by
FFX/GP-SR are significantly more similar to the ground
truth as opposed to GP-SR alone (Wilcoxon rank sum right-
tailed test, α = 0.001, p-value << 0.001) and more pre-
dictive (Wilcoxon rank sum left-tailed test, α = 0.01, p-
value<<0.01)

C. Discussion

Even though the hybrid algorithm did not provide additional
advantage over plain GP-SR on low dimensional datasets, our
results indicated that, as the data dimensionality increased (10
and then to 25, in this case), the FFX/GP-SR hybrid performed
significantly better in finding more predictive expressions that
are more similar to the hidden ground truth in comparison
to GP-SR alone. By similar, we mean the success at which
the algorithm captures the informative variables and their
nonlinear interactions.

Based on our experiment results, we note that even though
the FFX algorithm might not always find the correct func-
tional form for the target expressions itself, the rich set of
building blocks it provides to the GP-SR has the potential
to boost the performance of the GP-SR. Since the GP-SR
search space grows exponentially as the number of variables
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increases, eliminating the uninformative variables beforehand
using a deterministic ML algorithm helps ease the burden
of discovering the informative variables and constructing the
useful nonlinear interactions for model building.

VI. CONCLUSION

Although GP-SR has been known for a couple of decades,
only recently that tools such as Eureqa have started to attract
a larger number of scientists due to almost zero-maintenance
and user-friendly application interfaces along with various
improvements on the metaheuristics and options for parallel
and distributed computing. However, GP-SR is yet to be
accepted as a standard data analysis tool. In this paper, we
argued that the resistance from the ML community is not
totally unfounded. First of all, theoretical underpinnings of the
GP-SR such as converge proofs are not as well established as
standard deterministic algorithms. GP-SR is computationally
more expensive compared to most standard ML algorithms
and even though many intuitive strategies might be built into
the algorithm, there is no guarantee that optimal data models
will emerge at the end of the run. More importantly, despite
all the success stories, GP-SR techniques do not necessarily
outperform the state of the art in ML, especially on high
dimensional problems. On the other hand, the strength of GP-
SR is in its model-free nature which makes it possible that the
algorithm might discover optimal and more intelligible, novel
models for the observed data. In summary, it is our belief that
stochasticity can be a virtue for SR if it is directed intelligently.

In this paper, we showed that it would be possible to create
synergy between the deterministic ML and GP-SR approaches
by hybridizing them. The technique presented in this paper is
just one way out of many possible options to combine the
GP-SR and standard ML for regression problems. Here, we
incorporated building blocks extracted by the deterministic
regression algorithm into the GP-SR algorithm by means of re-
creating the input dataset. Another option is to seed the GP-SR
runs with the candidate solutions found by the deterministic
approach. Genetic programming can also be used to evolve
features (via the generation of the basis functions) that can
be fed to the deterministic algorithm for model generation.
Our current work focuses on investigating other possible ways
to hybridize GP-SR and deterministic ML based approaches
in order to address high dimensional real-world regression
problems.
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5.3 Icke et al. “Modeling hierarchy...” (2013).
A technical manuscript describing how symbolic regression can find hidden hierarchy in data fol-
lows.
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Abstract—Symbolic Regression is an attractive modeling ap-
proach because it can capture and present, mathematically,
relationships between variables of interest. However, given n
variables to model, symbolic regression returns a flat list of
n equations. As the number of state variables to be modeled
scales, interpretation of such a list becomes difficult. Here we
present a symbolic regression method that detects and captures
hidden hierarchy in a given system. The method returns the
equations in a hierarchical dependency graph, which increases
the interpretability of the results. We demonstrate that two
variations of this hierarchical modeling approach outperform
non-hierarchical symbolic regression on a synthetic data suite.

Index Terms—hierarchy, dependency graph, data mining

I. INTRODUCTION

Hierarchical relationships abound in natural and man-made
systems. Hierarchy is thought to be a fundamental characteris-
tic of many complex systems such as biological organisms [1],
ecological systems [2], the Internet, and traffic networks [3]
and, arguably, social organizations [4]. The human visual
system is known to be organized hierarchically [5], where
the lower level components process the sensory stimuli and
the higher levels process the output of the lower level com-
ponents. Many artificial neural network architectures used
for pattern recognition tasks were also designed based on
this principle [6]. More recently, deep belief networks [7]
attempt to discover the hierarchical structure hidden in large
data sets by learning several layers of hierarchically organized
features. These natural/artificial hierarchical systems have been
evolved/trained to be able to respond to a wide variety of
stimuli. In this scheme, each component is specialized in
processing a subset of the inputs coming from the lower level.

Our goal is to be able to automatically reverse engineer
hierarchical systems in order to understand which inputs each
component is processing and uncover the nature of the process
(i.e how each component is computing its output from its
inputs). In this paper, we focus on systems where the inputs of
the individual components are not overlapping (Fig. 1) such as
the non-overlapping perceptron or biological neural networks
with non-overlapping receptive fields [8], [9].

Here we show that if traditional symbolic regression is
applied (in which each variable is modeled separately but
allowed to be described as a function of every other variable)
little progress is made on increasingly large yet hierarchical

Fig. 1: Dependency graph for a hierarchical system with non-
overlapping inputs. The leaf nodes are the stimuli (controlled)
and internal nodes are the state variables whose behaviors are
observed. The direction of the arrows indicate dependency that
is opposite to the information flow in the system.

target systems. This is because as the number of variables
increases, more independent runs must be performed (one
for each variable), and each run is more difficult because
there are more variables to make use of. In contrast we
present two variations of symbolic regression adapted for
hierarchical systems: the variables that are directly influenced
by variables at the lowest level of the hierarchy are identified
and modeled first, followed by the variables at the next-highest
level but which are restricted to using the variables on the layer
below them. We find that hierarchical approach significantly
outperforms the traditional symbolic regression paradigm on
a number of synthetic datasets that vary in difficulty.

This paper is organized as follows: section II presents the
problem in terms of a motivating example and section III
discusses the related work. Our proposed approaches for au-
tomatic identification of hierarchy are presented in section IV.
Experimental results are presented in section V. Finally, con-
clusions and future work are discussed in section VI.

II. IDENTIFYING HIERARCHY

Many systems are made up of multiple components that
interact with each other by receiving inputs from and/or
transmitting outputs to other components. In some cases,
these components are hierarchically organized where the in-
formation flows in a bottom up manner. In a hierarchical
organization, the output of each component depends on the
inputs it receives from the components at the lower levels.
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Fig. 1 shows a very simple hierarchical system that receives
4 stimuli (s1, s2, s3, s4). The stimuli are then processed by the
two components (v1 and v2) and their outputs are passed on to
the top component v3. In this system, the stimuli are provided
by the environment (or controlled by an experimenter) and
the behavior of v1, v2 and v3 are observed. It is important to
note that, only the stimuli are known and the responses of
v1, v2 and v3 to these external inputs are observed, but the
actual connectivity between the components are not known.
The goal is to identify which components are connected and
how they are connected.

In order to understand the nature of the relationships be-
tween the inputs and outputs of each component (the functions
f, g and h in Fig. 1), one would employ a regression approach.
In this regard, being a free-form modeling technique, symbolic
regression can be seen as a more flexible approach as opposed
to the mainstream linear regression techniques.

The algorithms we present in this paper are built around
a genetic programming based implementation of symbolic
regression (SR) in order to model the relationships between
the components of an hierarchical system. In symbolic regres-
sion, the most predictive variables will appear in the evolved
expressions eliminating the non-informative variables. In the
context of this paper, if a variable is predictive of another, we
say that the predicted variable depends on it. The nature of this
dependency can be further examined by looking at the evolved
expression relating the predicted variable to its predictors.

III. RELATED WORK

A genetic programming based method for modeling the
ODEs for gene regulatory networks was presented in [10]. The
algorithm independently evolves expressions to explain each
state variable on the observed time series data and does not
explicitly model hierarchy. This work was followed by several
other papers that produced flat lists of ODEs when exposed to
multivariate datasets [11], [12]. A linear genetic programming
based reverse engineering algorithm for neuronal networks
was presented in [13]. Starting from the observed data, the
algorithm tries to infer the structure and parameters of the
system. Each state variable is evolved with respect to the
neuroscience domain knowledge that is built into the algorithm
which limits the use of the algorithm beyond that specific
problem domain.

The idea of building variable interaction networks from
multivariate data was explored in several papers. An algorithm
that extracts a linear dependency structure from multivari-
ate data without explicitly modeling hierarchy was reported
in [14]. The limitation of the algorithm is that it uses linear
regression in order to construct a linear dependency tree or
forest of the variables. Linear models are easier to build and
they are intuitive, however there is no guarantee that the
phenomenon under study is governed by linear relationships.
In [15], multiple genetic programming based symbolic re-
gression runs are executed for each variable separately and
a variable interaction network is built by identifying the most
relevant variables for a given target variable in terms of a

Fig. 2: The workflow of the NSR algorithm

measure of relative frequencies of variable appearances in the
expressions modeling that target variable. The algorithm does
not assume any specific network topology such as hierarchy.

IV. SYMBOLIC REGRESSION APPROACH TO MODEL
HIERARCHY IN MULTIVARIATE DATA

In this section, we present three approaches to automatically
extract the hierarchical relationships in multivariate data. The
Naive SR algorithm models each state (non-stimuli) variable
separately using symbolic regression. After the run is com-
pleted, the hierarchy is extracted by examining the expressions
and identifying which variables depend on each other. The
other two approaches are iterative that aim to enforce hierarchy
during the search for the optimal symbolic expressions.

A. The Naive SR

In identifying the relationships between multiple variables, a
straight-forward approach is to model each variable separately
in terms of all other variables using symbolic regression. In
doing this, one would expect that the best models would reveal
the most informative (highly predictive) variables for each
modeled variable. After the symbolic regression phase is done,
constructing the hierarchy is just a matter of post-processing.
Because each variable is modeled independently, the algorithm
does not impose any constraints on the connectivity. The
workflow of the Naive SR is presented in Fig. 2 and the steps
of the method are outlined in algorithm 1.

After each non-stimulus variable is modeled separately on
the training dataset using symbolic regression (the evolve
phase), the post-processing phase begins. At this stage, the set
of all non-dominated models for each variable are evaluated on
the validation dataset. Then, the best model for each variable
is chosen (line 8 of algorithm 1) as the model with the lowest
error on the validation dataset. The ties are broken in favor
of the simplest model. Following the selection of the best
models, the variables appearing in these models are identified
as the predictors for each respective modeled variable (line
10). An adjacency matrix is then built (line 13) based on
these identified predicted variable-predictor mappings. Finally,
the algorithm returns the adjacency matrix representing the
connectivity between the variables along with the set of best
models evolved for each non-stimulus variable.
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Algorithm 1: Naive SR (NSR) Algorithm
Input: V={v1,v2, ..., vN}
Output: Dependency graph/forest G and a set of

expressions E={vi=fi(v − {vi})}
1 while time budget not exceeded do
2 foreach vi do
3 Evolve vi = fi(V- {vi}) on training set
4 end
5 end
6 E={}, D={ }
7 foreach vi do
8 gi=FindBestOnParetoFront(fi) on validation set
9 E=E ∪ {gi}

10 di =ExtractPredictorSet(gi)
11 D = D ∪ {di}
12 end
13 G=BuildGraph(V,D)

B. Hierarchical SR version 1 (h1)

In this method, we enforce hierarchical extraction of the
dependencies in an iterative manner. At each iteration, de-
pendencies for one non-stimulus variable are discovered. The
algorithm starts with only the stimuli as the set of available
independent variables. After first iteration, the variable (vi)
that is best explained by a subset of these inputs is determined.
Then, all predictors for variable (vi) are removed from the
set of available independent variables in accordance with our
constraint that inputs can not overlap. Next, vi is added to
the list of independent variables. The algorithm stops after
each (non-stimulus) variable has been modeled using symbolic
regression. The method is outlined in algorithm 2.

As opposed to the naive algorithm, the HSR version 1
works in epochs. At the end of each epoch, one variable that
is modeled the best is selected and eliminated from the set
of dependent variables. This selection is done by identifying
one best model across all models for all variables (line 12
of algorithm 2). For N dependent variables, there are N non-
dominated sets at the end of each epoch. A combined non-
dominated set is then generated in terms of validation set error
and the expression complexity (Fig. 3). Throughout this paper,
expression complexity is computed as the number of nodes in
the expression tree.

Once the best model on the combined non-dominated set
is selected (the model with the lowest validation data error),
the corresponding dependent variable and its predictors are
identified. Since these predictors can only be used to model
the identified dependent variable due to our non-overlapping
inputs assumption, they are removed from the list of possible
inputs for modeling other variables. The identified dependent
variable is added to the list of possible predictors for other
variables that are waiting to be modeled. This process actively
enforces the extraction of hierarchical relationships and gen-
erates a set of easily interpretable expressions instead of a flat
list of unstructured expressions.

Algorithm 2: Hierarchical SR (HSR) Algorithm v.1
Input: V={v1,v2, ..., vN}
Output: Dependency graph G and a set of expressions

E={vi=fi(v − {vi})}
1 E={}
2 I={s1,s2,...sN}
3 C=V, D={ }
4 NumEpochs=#Dependent Variables
5 timeBudget = totalTimeBudget/NumEpochs
6 while not all dependent variables are modeled do
7 while time budget not exceeded do
8 foreach vi do
9 Evolve vi = fi(V- {vi}) on training set

10 end
11 end
12 gi=FindBestModel(fi) on validation set
13 E=E ∪ {gi}
14 di =ExtractPredictorSet(gi)
15 D = D ∪ {di}
16 C = C - {vi}
17 I= I - {di }
18 I =I ∪ {vi}
19 end
20 G=BuildGraph(V,D)

Reconsidering the motivating example in Fig. 1, it is easy
to see that the top-level component v3 can also be modeled as
v3 = h′(s1, s2, s3, s4). However, such an expression will be
dominated by the less complex but equally fit expressions for
v1 and v2 upon combining all non-dominated sets as in Fig. 3.

Fig. 3: Selection of the best model on the combined non-
dominated set in HSR version 1

C. Hierarchical SR version 2 (h2)

The first version of the hierarchical SR algorithm pools all
evolved model in an epoch and makes the selection based on
the best model on the validation data set. In the second version
of the hierarchical algorithm, we modify this selection strategy.
Instead of identifying one best model across all variables

89 
Approved for public release; distribution is unlimited.



and then extracting the predictors, we try rather the opposite
approach. We first identify the best non-dominated set and
then find the set of most frequently occurring predictors across
all non-dominated models for the corresponding modeled
variable. An additional evolve step is performed in order
to find the best expression based on the identified predictor
variables only.

The reasoning behind this strategy is that making use of
the statistics about how the current set of dependent variables
are used across the Pareto front, rather than just how those
variables are used in the model with lowest error, might
improve its performance compared to h1. The method is
outlined in algorithm 3. Similar to the h1 algorithm, the h2
algorithm also runs in epochs. The only difference is in the
selection of the best model and the predictor variables at the
end of each epoch.

Algorithm 3: Hierarchical SR (HSR) Algorithm v.2
Input: V={v1,v2, ..., vN}
Output: Dependency graph G and a set of expressions

E={vi=fi(v − {vi})}
1 E={}
2 I={s1,s2,...sN}
3 C=V, D={ }
4 NumEpochs=#Dependent Variables
5 timeBudget = totalTimeBudget/NumEpochs
6 while not all dependent variables are modeled do
7 while time budget not exceeded do
8 foreach vi do
9 vi =Evolve( fi(V- {vi}) ) on training set

10 end
11 end
12 bi=FindBestModeledVariable(vi) on validation set
13 di =ExtractPredictorSet(bi)
14 bi= Evolve( fi({di}) ) on training set
15 gi=FindBestModel(fi) on validation set
16 E=E ∪ {gi}
17 D = D ∪ {di}
18 C = C - {bi}
19 I= I - {di }
20 I =I ∪ {bi}
21 end
22 G=BuildGraph(V,D)

The selection process is summarized in Fig. 4. For each
modeled variable, all non-dominated models are evaluated on
the validation dataset and new non-dominated sets based on
the validation dataset error versus expression complexity are
built (line 12 of algorithm 3). For each non-dominated set (ns),
the fitness is computed as the weighted sum of the error on
validation dataset:

fitness(ns) =
M∑

i=1

error ∗ complexity

The non-dominated set with lowest weighted error is se-
lected for further processing. Ties are broken in favor of the
smallest total expression complexity. Again, reconsidering the
motivating example in Fig. 1, where v3 can also be modeled as
v3 = h′(s1, s2, s3, s4), the weighted error fitness will penalize
v3 because of the higher total complexity of the expressions.

The next step considers the models that are in the non-
dominated set for the selected variable only. A histogram
of unique occurrences of each predictor is generated and
the set of most frequently occurring predictors are selected
by identifying the cut-off point on the histogram. The final
model is then generated via symbolic regression using only
the selected predictors as the terminal symbols (lines 14-15).

Fig. 4: Selection of the best variable in HSR version 2 (line
12 of algorithm 3). Selection of the best non-dominated set
(step 1), building the predictor-frequency histogram (step 2),
selecting the most frequently occurring predictors (step 3).

V. EXPERIMENTAL RESULTS

In this section, we first discuss the conceptual differences
between the naive way of modeling hierarchical relationships
in multivariate data versus actively enforcing hierarchical
modeling on an example dataset. Then, we outline our exper-
imental procedures in generating a large benchmark synthetic
data suite with varying levels of difficulty and comparing the
three algorithms. As it is stated in [16], challenging benchmark
datasets are needed for genetic programming research. Ideally,
applying algorithms to real-world data is preferable. However,
especially in the case of testing new algorithms, we believe
that it is very important to have control over the data genera-
tion process so that analysis of the strengths and weaknesses
of the algorithms can be easier. Finally, we present and discuss
our findings on these synthetic benchmark datasets.

A. An example 16-Input Binary Tree System

A simple 16-input synthetic system has been generated
using the following expressions representing the relationships
between the variables:
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layer1 :

v1 = s1 + s2

v2 = s3 − s4
v3 = s5 + s6

v4 = s7 + s8

v5 = s9 + s10

v6 = s11 + s12

v7 = s13 + s14

v8 = s15 + s16

layer2 :

v9 = v1/v2

v10 = v3 ∗ v4
vv11 = v5 − v6
vv12 = v7 + v8

layer3 :

v13 = v9/v10

vv14 = v11 − v12
layer4 :

v15 = v14 + v13

The resulting dependency graph is shown in Fig. 5. The
binary tree (arity=2) consists of 4 layers, 16 stimuli and 15
internal nodes which are the variables to be modeled. The total
number of edges in the tree is arity ∗ internal nodes = 30.

Fig. 5: True dependency graph for the synthetic 16-input
binary tree system

Fig. 6 shows the best dependency graph generated by the
naive SR algorithm in terms of the error on the test dataset.
The test error is calculated as the average error across all
modeled variables. Despite the low error, the constructed
dependency graph is very dissimilar to the original graph
shown in Fig. 5. A closer look at the constructed graph and the
generated models for the variables reveals many redundant and

cyclic dependencies as well as a number of ignored stimuli.
This example shows that even though the given dataset is
perfectly hierarchical, the NSR algorithm might fail to capture
this hierarchy. Therefore, solely minimizing the prediction
error without any constraints on the connectivity might be
deceptive for the purposes of modeling hierarchical systems.
On the other hand, when multiple runs are performed, it was
possible for the algorithm to find the correct dependency graph
structure in some of the runs along with the lowest possible
test dataset error. However, for this algorithm, a low test error
does not always mean that the hierarchy in the underlying
system is captured.

Fig. 6: Dependency graph with lowest test set error (rmse:
0.025) generated by NSR

Fig. 7 shows the dependency graph with the highest test set
error generated using the HSR version 1 (h1) algorithm. In
terms of the prediction accuracy, this system is worse than the
one discovered using the naive approach (Fig. 6). However, the
constructed graph almost perfectly captures the true system.
The high prediction error was caused by just one misplaced
edge (s15 is erroneously tied to v6 instead of v8). Therefore,
for h1 and h2 algorithms, a high test set error does not always
mean failure in terms of how close the hierarchy is captured.

Fig. 7: Dependency graph with highest test set error (rmse:
1.662) generated by HSR version 1
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B. Synthetic Benchmark Problems

In order to study the behavior of the algorithms across
multiple datasets with varying difficulty, we generated 30
synthetic datasets for each combination of arity=2,3,4,5 and
layers=3,4,5,6. A total of 480 datasets were generated with
random stimuli as inputs to the systems and randomly gen-
erated expressions to represent the functions of the state
variables. For the sake of simplicity, the expressions included
only {+,-,* and protected / } operators without any constant
values. We also kept the degree of nonlinearity constant across
all datasets by enforcing that only binary nonlinear interactions
were allowed in the randomly generated expressions for the
state variables. For instance, for an arity-5 system, the hidden
expression for a state variable can be v1 = s1+s2−s4∗s5−s3,
but not v1 = s1 ∗ s2/s4 ∗ s5 − s3. By design, the difficulty
of the dataset increases as the data dimensionality increases
(between 4 - 3125 inputs).

TABLE I: Number of inputs, variables to be modeled and
number of edges for the generated synthetic benchmark trees

Layers
3 4 5 6

Arity

2 4, 3, 6 8, 7, 14 16, 15, 30 32, 31 ,62
3 9, 4, 12 27, 13, 39 81, 40, 120 243, 121, 363
4 16, 5, 20 64, 21, 84 256, 85, 340 1024, 341, 1364
5 25, 6, 30 125, 31, 155 625, 156,789 3125, 781, 3905

Each dataset was divided into training, validation and test
partitions as follows: for each n-arity tree system, all ex-
pressions for the state variables (internal nodes of the tree)
were evaluated for 5000 randomly generated stimuli creating
a 5000x((aritylayers − 1)/(arity − 1)) dataset. For every 4
rows, the first two rows were included in the training set, while
the third and fourth rows are included in the validation and test
sets respectively. The training,validation and testing partitions
consisted of 2500, 1250 and 1250 rows each.

C. Results on Benchmark Problems

We ran each algorithm 30 times on all 480 datasets for a
run time budget of 10 minutes per run for a total of 43200
runs on a cluster computing environment. All algorithms
were implemented in C++. The baseline symbolic regression
implementation that is used by all three algorithms utilizes
the standard tree based representation with sub-tree crossover
and mutation operators. Fixed values for population size (500),
crossover probability (0.9) and mutation probability (0.1) were
used across all experiments. Root mean squared error (rmse)
versus expression complexity trade-off along with the age
of the individuals were used as the multi-objective fitness
function. Similar to the AFPO algorithm [17], a new random
individual is added to the population at the beginning of each
generation. For n state variables to be modeled, the population
included n sub-populations, each of which were set up to
evolve expressions for one state variable.

We report the results for each tree structure separately in
Fig. 8. For each arity-layer pair, the results are pooled over 30
different trees and 30 runs for each tree resulting in a total of
900 runs per algorithm. In each case, the results are presented

from three perspectives: the percentage of the edges that were
correctly discovered, the prediction error of the generated tree
on the test set, the distribution of test set error versus the
percentage of the edges correctly discovered.

The statistical significance of the results are reported as
follows: for the percentage of correct edges, we compare each
pair of algorithms using the left-tailed Wilcoxon rank sum test
with Bonferroni correction and unequal variances assumption.
In those cases where the h1 and h2 algorithms are significantly
better than the naive algorithm, and when the h2 algorithm
is significantly better than the h1 algorithm, the significance
is presented using ∗ sign (∗ ∗ ∗:α = 0.001, ∗∗:α = 0.01,
∗:α = 0.05). A similar comparison is performed on the test
error results, the only difference being the Wilcoxon rank sum
test to be a right-tailed test since lower test error indicates
better performance in this case.

The top row shows the results for 2-arity tree systems with
varying numbers of layers. In terms of capturing the hierarchy,
h1 and h2 almost always discover the correct connectivity
matrix and consistently outperform the naive algorithm. As far
as the test error is concerned, h1 and h2 clearly outperform
the naive algorithm only when the ratio of the total nodes to
the stimuli gets too large for the naive algorithm to deal with.
This happens when the height of the tree increases to 5. The
heatmaps show that the naive algorithm mostly finds low-error
models at the expense of missing many edges.

As the arity of the trees increase, the trees get broader, as
a result, the number of leaves (stimuli) increases. Since this
will increase the number of possible predictors, the search
becomes more and more difficult for all three algorithms.
Accordingly, the h1 and h2 algorithms start to lose their
advantage in faithfully modeling the hierarchy as the arity
increases. Another source of difficulty for all algorithms is
the increase in tree height. As the trees get taller, the number
of leaves (stimuli) also increases. Except for 2-arity systems
(top row in Fig. 8), h1 and h2 failed to complete within the
assigned run time budget in the case of the tallest trees.

D. Discussion

Our results on the synthetic benchmark datasets clearly
show that for binary input problems (arity 2), the hierarchical
SR algorithms consistently outperform the naive SR as the
problem difficulty increases (more tree layers). However, the
lack of scaling to much higher arity problems is due to a
number of reasons. High data dimensionality is a big challenge
for symbolic regression. In additional experiments (not shown
here), increasing the time budget from 10 minutes to 1 hour
did not significantly increase the performance of h1 and
h2. Therefore, efficient feature selection schemes for high
dimensional data within symbolic regression is definitely an
area for improvement.

Specifically, the results indicate that as the trees get broader
and taller, the initial h1 and h2 algorithms do not, in their
current form, continue to outperform the naive approach.
This is due to the fact that in these cases, the number of
epochs significantly increases, which will in turn decrease the
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Fig. 8: Comparison of the algorithms across varying data dimensionality and hierarchical organization given 10 minutes run-
time budget. Problem difficulty increases from left-right and top-bottom. For each problem type, the plots show the percentage
of the edges that were correctly discovered (top), the prediction error of the generated tree on the test set (middle), the
distribution of test set error versus the percentage of the edges correctly discovered (bottom). The naive approach mostly fails
to recover the hierarchical network topology. The hierarchical approach outperforms the naive approach for easier problems
(small arity and/or short trees). All three algorithms perform poorly for more difficult problems (larger arity and taller trees).
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amount of time for each individual epoch. This increases the
risk that h1 or h2 will select the wrong predictors. Indeed
h2 was initially devised to reduce the risk of selecting the
wrong dependent variables during an epoch. It was thought
that providing h2 with statistics about how the current set of
dependent variables are used across the Pareto front, rather
than just how those variables are used in the model with
lowest error, would improve its performance compared to
h1. However this was not found to be the case: instead,
h1 significantly outperformed the naive algorithm on seven
of the tree structures (Fig. 8) while h2 only significantly
outperformed the naive algorithm on five of them.

We hypothesize that h2 may be further improved by incor-
porating diversity maintaining measures that increase the size
of the membership on the Pareto front. This should improve
the reliability of the statistics computed across the front and
thus improve the probability of selecting the correct set of
dependent variables. We also plan to explore alternative meth-
ods for selecting the cutoff point in the predictor-frequency
histogram. Additionally, in h2, predictor-frequency histograms
constructed from previous epochs are discarded; in future work
we will investigate ways to re-use information from previous
histograms to produce more accurate histograms in the current
epoch. Also, for both h1 and h2, selecting more than one
accurately modeled variable in each epoch will speed up the
algorithms by reducing the number of epochs.

Finally, we note that our initial implementations did not
utilize any parallel and distributed techniques. Our algorithms
have the potential to scale to real-world problems upon utiliz-
ing GPUs [18] and/or cloud computing [19].

VI. CONCLUSION

Extracting and visualizing the relationships in a hierarchical
system as a dependency graph improves the intelligibility of
the overall model, compared to the flat list of equations pro-
duced by traditional symbolic regression. Our results clearly
show that in order to find hierarchy, one needs to explicitly
search for it rather than waiting for the hierarchical models to
emerge in an unconstrained search such as in the naive SR.
Moreover, it was found that explicitly seeking hierarchy in a
data set leads to more accurate models compared to traditional
symbolic regression. These algorithms were tested against a
large number of synthetic datasets with increasing difficulty
in terms of data dimensionality and hierarchical organization.
Even though the intuition suggests that the HSR version 2 (h2)
algorithm would be more robust since it considers multiple
models in making the selection for the best modeled variable,
our experimental results on 480 synthetic datasets showed no
clear advantage over the HSR version 1 (h1) which makes the
selections based on one best model at each stage.

The focus of our current work is to further explore more
efficient ways for the selection process at each stage and to ex-
tend the algorithm to model more general systems that exhibit
mixtures of hierarchy and network connectivity. Ultimately,
our goal is to apply our algorithms to real-world problems such
as functional brain connectivity and gene expression networks.
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5.4 Szubert et al. “Reducing antagonism between...” (2016).
A technical manuscript describing how to reduce antagonism between model diversity and accu-
racy follows.
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ABSTRACT
Maintaining population diversity has long been considered
fundamental to the effectiveness of evolutionary algorithms.
Recently, with the advent of novelty search, there has been
an increasing interest in sustaining behavioral diversity by
using both fitness and behavioral novelty as separate search
objectives. However, since the novelty objective explicitly
rewards diverging from other individuals, it can antagonize
the original fitness objective that rewards convergence to-
ward the solution(s). As a result, fostering behavioral diver-
sity may prevent proper exploitation of the most interest-
ing regions of the behavioral space, and thus adversely af-
fect the overall search performance. In this paper, we argue
that an antagonism between behavioral diversity and fitness
can indeed exist in semantic genetic programming applied
to symbolic regression. Minimizing error draws individuals
toward the target semantics but promoting novelty, defined
as a distance in the semantic space, scatters them away from
it. We introduce a less conflicting novelty metric, defined as
an angular distance between two program semantics with re-
spect to the target semantics. The experimental results show
that this metric, in contrast to the other considered diver-
sity promoting objectives, allows to consistently improve the
performance of genetic programming regardless of whether
it employs a syntactic or a semantic search operator.

Keywords
genetic programming; program semantics; novelty search;
diversity; geometric crossover; symbolic regression

1. INTRODUCTION
In analogy to the importance of genetic diversity in natu-

ral evolution, preserving population diversity has long been
perceived as being crucial to the performance of evolutionary
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algorithms. Intuitively, maintaining a diverse pool of candi-
date solutions provides better exploration of the search space
and thus gives more opportunities to discover novel, poten-
tially fitter individuals. On the other hand, losing diversity
can lead to the well-known problem of premature conver-
gence, where a population stagnates at local optima and is
unlikely to make any further progress.

A number of diversity maintenance techniques have been
proposed to mitigate the problem of premature convergence
[10, 26]. Most of these methods modify the selection process
by promoting the individuals that are most different from
the rest of the population. One particular approach relies
on multiobjective evaluation of individuals with two objec-
tives: the original fitness of the solution and some measure of
its novelty designed to promote diversity. Although earlier
studies measured novelty by comparing genotypes [6], recent
work has successfully employed novelty metrics based on the
distance between behaviors [16, 17, 23].

However, since behavioral novelty promotes increasing dis-
tance between behaviors while the fitness function typically
rewards minimizing distance to the target behavior, we hy-
pothesize that in some cases these two objectives can be
overly antagonistic with each other. Consequently, promot-
ing diversity can result in spreading individuals over the
behavioral space and slowing down the convergence of the
search process. In other words, under certain conditions,
employing such conflicting objectives may result in exces-
sive exploration of the entire behavioral space and insuffi-
cient exploitation of its most promising regions.

In this paper, we investigate the relationship between be-
havioral diversity and fitness of evolved individuals in the
context of genetic programming (GP), where behavior of an
individual can be identified with program semantics. In par-
ticular, we attempt to determine whether and under what
conditions promoting behavioral diversity can adversely af-
fect the search effectiveness. To this end, we consider four di-
versity promoting objectives and examine how each of them,
used along with the fitness objective, affects the performance
of tree-based GP. Moreover, we compare the fitness of pro-
grams evolved with two types of search operators: tradi-
tional subtree-swapping crossover and locally geometric se-
mantic crossover. Since fitness landscapes induced by the
latter are supposedly smoother and easier to search with
the fitness objective alone, we expect to observe different
effects of promoting diversity.
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The results obtained on a set of symbolic regression prob-
lems demonstrate that some diversity objectives can be in-
deed detrimental to the search performance, supposedly be-
cause of being overly antagonistic with the fitness objective.
In particular, we show that using straightforward Euclidean
semantic novelty metric can lead to reduced performance
with respect to the conventional genetic programming. By
contrast, the introduced angular semantic novelty metric,
designed to be less antagonistic with the fitness objective, al-
lows to consistently improve both fitness and generalization
performance, regardless of the employed search operator.

The remainder of this paper is structured as follows. The
next section describes the paradigm of semantic genetic pro-
gramming and presents geometric semantic operators. Sec-
tion 3 gives a brief overview of diversity maintenance meth-
ods applied in GP and introduces the two aforementioned
semantic novelty metrics. Sections 4 and 5 describe experi-
mental setup and present the results. Finally, sections 6 and
7 provide discussion and concluding remarks.

2. SEMANTIC GENETIC PROGRAMMING
Standard tree-based GP searches the space of programs

using traditional operators of subtree-swapping crossover
and subtree-replacing mutation. These operators are de-
signed to be generic and produce syntactically correct off-
spring regardless of the problem domain. However, their
actual effects on the behavior of the program, and thus its
fitness, are generally hard to predict. Because of the complex
genotype-phenotype mapping characterized by low locality,
even a minimal change at the syntax level may diametrically
alter program semantics. Such large phenotypic changes are
often considered problematic because, according to Fisher’s
geometric model [7], the probability of the mutation being
beneficial is inversely proportional to its magnitude.

Recently, many alternative search operators have been
proposed that take into account the effect of syntactic mod-
ifications on program semantics [1, 3, 15, 22, 30]. In order
to control the scope of behavioral change, most of these
methods adopt common definition of program semantics,
known as sampling semantics [30], which is identified with
the vector of outputs produced by a program for a sam-
ple of possible inputs. For instance, in supervised learning,
where n input-output pairs are given as a training set T =
{(x1, y1), . . . , (xn, yn)}, semantics of a program p is equal
to vector s(p) = [p(x1), . . . , p(xn)], where p(x) is a result
obtained by running program p on input x. Consequently,
each program p corresponds to a point in n-dimensional se-
mantic space and a metric d can be adopted to measure
semantic distance between two programs. Furthermore, fit-
ness of a program p can be calculated as a distance between
its semantics s(p) and the target semantics t = [y1, . . . , yn]
defined by the training set, i.e., f(p) = d(s(p), t).

Importantly, the information about program semantics
can be exploited not only at the level of search operators
but also for other purposes, e.g, to maintain semantic di-
versity [11], to initialize the population [2] or to drive the
selection process [18]. All such semantic-aware methods are
collectively captured by the umbrella term of semantic ge-
netic programming [31]. Recently, a paradigm of behavioral
program synthesis [13] has been proposed, which extends
semantic GP by using information not only about final pro-
gram results but also about behavioral characteristics of pro-
gram execution.

2.1 Geometric Semantic Operators
One particularly interesting class of semantic-aware search

operators are geometric semantic operators introduced by
Moraglio et al. [22]. These operators not only incorpo-
rate knowledge about program semantics but also exploit
geometric structure of the semantic space endowed by a
metric-based fitness function. As a result, fitness landscapes
seen by these operators are smooth conic landscapes, which
are in principle easy to search. In particular, a geomet-
ric semantic crossover under the metric d guarantees that
semantics of each offspring p′ is located in the d-metric seg-
ment connecting semantics of its parents p1 and p2, i.e.,
d(s(p1), s(p2)) = d(s(p1), s(p′)) + d(s(p′), s(p2))

Although exact geometric crossover has been proposed
[22], its practical applicability is limited because it leads
to exponential growth of the program size. For this reason,
alternative operators exist that employ heuristic methods
to produce an approximately geometric offspring [14, 15].
Previous studies demonstrate that such approximately geo-
metric operators can be still effective while producing much
shorter offspring programs than exactly geometric ones.

2.2 Locally Geometric Crossover
In this paper we use Locally Geometric Crossover (LGX)

proposed by Krawiec and Pawlak [15]. This operator is ar-
guably the easiest to implement among existing approxi-
mately geometric crossover operators. Before applying a
crossover, a library of short programs (procedures) must
be created. Typically, a static library is generated by enu-
merating all possible trees lower than a predefined height.
Alternatively, a dynamic library could be created at each
generation from all subtrees existing in the population.

Given two parents p1 and p2, the operator starts by iden-
tifying their structurally common region, i.e., the largest
region where the parent trees have the same topology. Two
crossover points are selected by drawing a pair of corre-
sponding nodes from the common region. Then, for the
subtrees p′1 and p′2 rooted at the crossover points, semantics
of the midpoint between them (i.e., semantically interme-
diate subprogram) is calculated as sm = (s(p′1) + s(p′2)) / 2.
The library is searched for programs that are semantically
closest to sm according to adopted metric d. From a set of k
closest programs found in a library, a random one is selected
and used to replace subtrees p′1 and p′2 in both parents, pro-
ducing two offspring. In a rare situation when both subtrees
p′1 and p′2 are semantically equivalent, a random procedure
is drawn from a library.

3. PROMOTING DIVERSITY IN GP
Diversity maintenance has been a long-standing issue in

GP and a number of methods have been proposed to pre-
serve diversity in a population [4]. Most of the early stud-
ies in this area focus on genotypic diversity, which refers
to structural differences between programs in a population
[6, 21]. In recent years, with the advent of semantic GP,
more attention has been paid to semantic or behavioral di-
versity [2, 9, 11, 19]. The notion of semantic diversity is
particularly important in GP, because the mapping between
programs and their semantics is usually a complex, non-
injective function. In particular, since many syntactically
different programs may exhibit the same behavior, geno-
typic diversity does not necessarily imply semantic diversity
while the converse is often true.
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Despite the assumed importance of semantic diversity [31],
there have been few empirical investigations into effects of
promoting behavioral diversity on the effectiveness of genetic
programming. Moreover, almost all of the studied methods
are limited to ensuring that the genetic operators do not
produce offspring that is semantically equivalent to their
parents [1, 30, 11, 9]. To the best of our knowledge, the
only exception is the work of Nguyen et al. [24]. The authors
apply both syntactic and semantic distance metrics in the
fitness sharing mechanism and demonstrate that only using
the latter improves GP performance on selected symbolic
regression problems.

Here, rather than fitness sharing we adopt multiobjective
approach treating diversity as a separate objective. In the
following we describe four considered variants of multiobjec-
tive GP, which differ only with respect to the objective used
to encourage diversity. In particular, two of the objectives
(age and structural density) have already proved success-
ful in improving GP performance. Additionally, we propose
two other objectives which are essentially behavioral novelty
metrics designed to promote semantic diversity.

3.1 Age-Fitness Pareto Optimization
Age-Fitness Pareto Optimization (AFPO, [27]) is a mul-

tiobjective method that relies on the concept of genotypic
age of an individual, defined as the number of generations
its genetic material has been in the population [10]. The age
attribute is intended to protect young individuals before be-
ing dominated by older already optimized solutions. Each
randomly initialized individual starts with age of one which
is then incremented by one every generation. An offspring
inherits age of the older parent.

The AFPO algorithm is based on the ParetoGP method
which was originally proposed to address the issue of bloat
in GP [28]. The algorithm starts with a population of n ran-
domly initialized individuals. In each generation, it proceeds
by selecting random parents from the population and apply-
ing crossover and mutation operators (with certain probabil-
ity) to produce n− 1 offspring. The offspring, together with
a single randomly initialized individual, are added to the
population extending its size to 2n. Then, Pareto tourna-
ment selection is iteratively applied by randomly selecting
a subset of individuals and removing the dominated ones
until the size of the population is reduced back to n. To
determine which individuals are dominated, the algorithm
identifies the Pareto front using two objectives (both mini-
mized): age and fitness (distance to the target semantics).

3.2 Density-Fitness Pareto Optimization
Recently, Burks and Punch [5] proposed an alternative

variant of the AFPO algorithm called Density-Fitness Pareto
Optimization (DFPO). This method relies on the idea of a
genetic marker, which refers to concatenated fragments of a
program tree. The authors used markers based on the top-
most part of a tree and calculated structural density of each
individual as a fraction of individuals in the population that
share the same marker. Employing such a density measure
as a minimized objective is intended to maintain a specific
form of structural diversity focused on the rooted portions
of the trees. According to the reported results obtained on
three different problems (including symbolic regression), us-
ing density instead of age allows DFPO to further improve
the performance achieved by AFPO.
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s(p3)

s(p1 ⇥ p2)

s(p1 ⇥ p3)

~r(p3)

~r(p2)~r(p1)

Figure 1: Residual vectors in two-dimensional se-
mantic space where fitness is expressed using Eu-
clidean distance.

3.3 Novelty-Fitness Pareto Optimization
Inspired by novelty search [16], we propose two behavioral

novelty metrics that can be used as search objectives. Since
both objectives refer to the distribution of programs in the
semantic space, maximizing them is intended to promote
some form of behavioral diversity. The bi-objective algo-
rithm employing fitness and a behavioral novelty objective
is termed Novelty-Fitness Pareto Optimization.

Euclidean Semantic Novelty. Since in this work we
focus on real-valued symbolic regression problems, the se-
mantic space is n-dimensional real space. Consequently,
we can calculate behavioral distance between programs as
a Euclidean distance between their semantics. We define
Euclidean semantic novelty of a program p as a mean Eu-
clidean distance between its semantics s(p) and semantics of
its k nearest neighbors in the semantic space:

ρ(p) =
1

k

k∑

i=1

d(s(p), s(µi)),

where k is user-defined parameter and µi is i-th nearest pro-
gram with respect to the semantic distance.

Angular Semantic Novelty. The second proposed nov-
elty metric focuses on angles in the semantic space (see Fig.
1). Measuring angular distance between program seman-
tics has been recently applied in GP [25] but not for the
purpose of maintaining diversity. For each program p, we
define residual vector r(p) as a difference between target se-
mantics and the program semantics, i.e., r(p) = t−s(p). We
define angular semantic novelty of a program p as a mean
angle between its residual vector r(p) and residual vectors of
its k nearest neighbors with respect to the angular distance:

ρ(p) =
1

k

k∑

i=1

arccos
r(p) · r(µi)

‖r(p)‖‖r(µi)‖
.
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Table 1: Symbolic regression benchmarks.

Problem Objective function

Quartic 4x4 + 3x3 + 2x2 + x

Nonic
∑9

1 x
i

R1 (x+ 1)3/(x2 − x+ 1)

R2 (x5 − 3x3 + 1)/(x2 + 1)

Keijzer-4 x3e−x cos(x) sin(x)(sin2(x) cos(x)− 1)

We expect that using this novelty metric as an additional
search objective can be beneficial for two reasons. First, this
objective is less conflicting with fitness than Euclidean se-
mantic novelty — a population of very fit individuals can at
the same time exhibit high angular semantic diversity. Sec-
ond, promoting large angles between residual vectors makes
it more likely that the parents occupy the opposite slopes of
the fitness landscape, which is advantageous for geometric
semantic crossover. For instance, consider three programs
illustrated in Fig. 1. Let us assume that p1 is the first parent
and we need to pick the second parent among programs p2
and p3, which are equally fit (have the same distance to the
target semantics). By considering possible offspring p1 × p3
and p1 × p2, it can be observed that fitness of the geomet-
ric offspring is inversely proportional to the angle between
residual vectors of its parents.

4. EXPERIMENTAL SETUP
The main goal of the experiments is to investigate whether

and how promoting particular forms of diversity affect the
fitness of programs evolved with tree-based GP. For this pur-
pose, we analyze the performance of multiobjective diver-
sity promoting methods described in Section 3 and compare
them to the standard GP driven by the fitness objective
alone. All the considered algorithms were implemented as
an extension1 of the Distributed Evolutionary Algorithms in
Python (DEAP) framework [8].

4.1 Symbolic Regression Problems
We consider five univariate symbolic regression problems

that are adopted from previous studies [5, 20]. Selected
benchmarks (see Table 1) include polynomial, rational and
trigonometric functions. For each problem, fitness was cal-
culated as Euclidean distance to the target semantics on 20
training cases distributed equidistantly in the [−1, 1] inter-
val. The only exception is Keijzer-4, for which the training
cases were sampled from the range [0, 10].

4.2 Genetic Programming Variants
We compare the performance of the following five vari-

ants of tree-based GP. Four of them rely on multiobjective
fitness evaluation where one of the objectives actively pro-
motes some form of diversity. These setups differ only with
respect this objective. All the other settings remain un-
changed and they are summarized in Table 2.

GP. To observe the relative impact of promoting diver-
sity, as a baseline method we use standard generational tree-
based GP with single-objective tournament selection.

1The source code necessary for reproducing our results is
available at https://github.com/mszubert/gecco 2016.

Table 2: Genetic programming settings

Parameter Value

population size 256
generations 1000

initialization
ramped half-and-half
height range 2− 6

instruction set {+,−,×, /, exp, log, sin, cos}
tournament size 7
crossover probability 0.9
reproduction probability 0.1
mutation probability 0.0

node selection
90% internal nodes
10% leaves

maximum tree height 17
maximum tree size 300
number of runs 100

AFPO. Age-Fitness Pareto Optimization algorithm de-
scribed in Section 3.1.

DFPO. Density-Fitness Pareto Optimization algorithm
(see Section 3.2). To calculate the density objective, genetic
markers were constructed using first three levels of each tree.

ESNFPO. Novelty-Fitness Pareto Optimization (see Sec-
tion 3.3) with Euclidean semantic novelty objective using
k = 15 nearest neighbors to calculate novelty score.

ASNFPO. Novelty-Fitness Pareto Optimization (see Sec-
tion 3.3) with angular semantic novelty objective using k =
15 nearest neighbors to calculate novelty score.

4.3 Search Operators
To gain deeper understanding about usefulness of diver-

sity under different conditions, we combine each of the con-
sidered GP variants with the following search operators.

Standard syntactic crossover. Traditional subtree-
swapping crossover operator with Koza-style node selection:
0.9 probability of choosing an internal node [12].

Geometric semantic crossover. Locally geometric se-
mantic crossover (LGX, see Section 2.2) based on a static
precomputed library of procedures. The library is generated
by enumerating all possible trees of height at most 3, built
from the given instruction set. When queried with a desired
semantics, library returns a random program among k = 8
with closest semantics.

4.4 Diversity Measures
To analyze the relationship between behavioral diversity

of a population and fitness of evolved programs, the follow-
ing diversity measures were calculated for each generation.

Median Euclidean Semantic Distance. To assess Eu-
clidean semantic diversity we calculate median of semantic
distances between each pair of programs in the population.

Mean Angular Semantic Distance. Angular seman-
tic diversity is measured as a mean angle between residual
vectors of each pair of programs in the population.

5. RESULTS
In order to conduct an accurate analysis of the relation-

ship between diversity and performance, we conducted 100
independent runs (with different random seeds) of each of
10 considered configurations (5 GP variants × 2 crossover
operators) on each of 5 symbolic regression problems.
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5.1 Search Performance
Figure 2 shows the average best-of-generation fitness (cal-

culated as a Euclidean distance to the target) achieved by
particular methods on different benchmark problems, with
95% confidence intervals marked as semi-transparent bands.
The left part of the figure illustrates the results obtained
with traditional subtree-swapping crossover. Clearly, each of
the considered diversity promoting methods significantly im-
proves the performance of the standard GP algorithm. The
best performance is achieved either by DFPO or ASNFPO,
depending on the problem. The impact of promoting diver-
sity on the fitness of evolved solutions is much less clear in
the case of LGX crossover (right part of Figure 2). The only
method that consistently improves the results of the baseline
GP algorithm on all considered problems is ASNFPO. All
the other diversity preserving approaches are detrimental to
the search performance at least on some benchmarks.

Further observations can be made by comparing the re-
sults achieved by the same algorithm but equipped with
different crossover operators. The largest performance im-
provement is observed for the standard GP algorithm, which
when equipped with the LGX operator, achieves signifi-
cantly higher convergence speed and final performance. As
a matter of fact, it converges so quickly, that if the runs
were stopped after 100 generations, it would be the best of
the considered setups. Besides GP, the only other method
that regularly benefits from replacing traditional syntactic
crossover with geometric semantic crossover is ASNFPO.
Importantly, the synergistic interplay of LGX crossover and
the angular semantic novelty objective leads to the best over-
all results in terms of the ultimate achieved fitness.

5.2 Diversity Analysis
To analyze the relationship between behavioral diversity

and fitness, we assessed diversity of populations evolved by
particular methods using measures listed in Section 4.4. Ta-
ble 3 shows Spearman correlation coefficients calculated be-
tween behavioral diversity measured at selected generations
and best fitness in the last generation of each run.

In the context of the Euclidean semantic distance mea-
sure (left part of Table 3), correlation is stronger for seman-
tic crossover than for standard syntactic crossover. More
importantly, at the end of runs correlation is positive —
large Euclidean semantic diversity is seen with high (bad)
fitness values. This observation is consistent with relatively
weak performance achieved by ESNFPO method which uses
Euclidean semantic novelty objective to promote behavioral
diversity. Taken together, these results suggest that high
levels of Euclidean semantic diversity can not be considered
as being generally beneficial to the search performance.

Moreover, it can be noticed that at the beginning of runs
correlation coefficients are much lower (sometimes even neg-
ative) and only later start to increase. Therefore, behav-
ioral diversity may play different role at different evolution-
ary times. Indeed, further analysis revealed that in the most
successful runs, Euclidean semantic diversity stays relatively
high in the early, exploratory phase of evolution but then
gradually decreases which corresponds to exploitation of the
most promising parts of the behavioral space. Thus, high di-
versity at the beginning of the evolution may be not only less
harmful but even advantageous. On the other hand, keep-
ing diversity high throughout entire runs typically leads to
inferior performance.

 standard crossover  geometric crossover 

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

 Q
U

A
R

T
IC

 
 N

O
N

IC
 

 K
E

IJZ
E

R
−

4 
 R

1 
 R

2 

0 250 500 750 1000 0 250 500 750 1000
Generation

F
itn

es
s

GP AFPO DFPO ESNFPO ASNFPO 

Figure 2: Average best fitness achieved by different
variants of multiobjective GP equipped with either
standard syntactic crossover (left column) or locally
geometric semantic crossover (right column).
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Table 3: Correlation between best fitness (lowest error) in the last generation and behavioral diversity mea-
sured at selected generations as: 1) median euclidean semantic distance 2) mean angular semantic distance.

Median Euclidean Semantic Distance Mean Angular Semantic Distance

Standard syntactic crossover Geometric semantic crossover Standard syntactic crossover Geometric semantic crossover

qua non kei r1 r2 qua non kei r1 r2 qua non kei r1 r2 qua non kei r1 r2

0 −.017 −.034 −.003 −.003 +.031 +.002 +.044 −.012 −.066 +.003 +.010 −.002 +.042 −.010 +.041 −.031 +.061 −.015 −.101 +.001

10 +.010 −.003 −.283 −.227 −.353 −.119 −.203 +.004 −.127 −.131 +.153 +.173 −.427 −.009 −.220 −.464 −.533 −.115 −.499 −.421

25 −.072 −.082 −.250 −.222 −.201 −.109 −.272 +.036 +.026 −.196 −.263 −.187 −.375 −.300 −.547 −.585 −.642 −.324 −.610 −.570

50 +.021 +.071 −.261 −.037 −.078 −.065 −.222 −.227 +.232 −.300 −.392 −.358 −.477 −.448 −.609 −.651 −.675 −.607 −.680 −.624

100 +.018 +.109 −.242 +.015 −.002 +.119 +.027 −.233 +.334 −.080 −.457 −.450 −.600 −.515 −.649 −.654 −.647 −.610 −.677 −.599

250 +.087 +.204 −.121 +.134 +.134 +.393 +.381 +.000 +.502 +.214 −.519 −.441 −.639 −.533 −.650 −.630 −.560 −.599 −.607 −.578

500 +.123 +.265 −.031 +.204 +.180 +.489 +.567 +.177 +.558 +.257 −.587 −.463 −.663 −.478 −.635 −.533 −.456 −.513 −.506 −.530

g
e
n
e
ra

ti
o
n

1000 +.175 +.296 +.020 +.243 +.229 +.630 +.694 +.251 +.567 +.380 −.549 −.411 −.658 −.376 −.607 −.284 −.251 −.266 −.301 −.324

The second form of behavioral diversity we investigate is
angular semantic diversity. The right part of Table 3 il-
lustrates relatively strong negative correlation between this
diversity measure and final fitness of evolved programs, re-
gardless of the type of employed crossover operator. Since
high levels of angular semantic diversity are frequently seen
with low (good) fitness, we can hypothesize that this form
of diversity facilitates genetic programming. Together with
high performance of the ASNFPO method, these results
provide empirical evidence that angular semantic diversity
tends to be more useful than Euclidean semantic diversity.

5.3 Generalization Performance
In order to assess generalization performance of evolved

programs, we calculated the root-mean-square error com-
mitted by the best-of-run individuals on 1 000 tests drawn
uniformly from the same range as for the training set. Table
4 shows median training error, test error and size (number
of nodes) of the individuals evolved by particular methods.
To confirm statistically significant differences between the
results obtained by the five compared GP variants, for each
problem and crossover operator we conducted the Kruskal-
Wallis test followed by a post-hoc analysis using pairwise
Mann-Whitney tests (with sequential Bonferroni correction).
We set the level of significance at p ≤ 0.05. Table 4 shows
with an underline the results that were found significantly
better than those achieved by every other GP variant.

On most problems, the significantly lowest test error is
obtained by either DFPO or ASNFPO. Interestingly, while
DFPO achieves the highest generalization performance in
the context of standard crossover, ASNFPO is the winner
among methods paired with the LGX operator. These re-
sults suggest that there is a synergy between particular vari-
ation operators and diversity promoting methods. Tradi-
tional syntactic crossover is able to exploit structural di-
versity maintained by DFPO, whereas semantic crossover
benefits from angular semantic diversity. Another impor-
tant observation is that ASNFPO is the only method that
achieves higher generalization performance than standard
GP on all problems, regardless of the crossover operator.

Finally, by comparing training and test errors achieved
on particular benchmarks, we can observe that AFPO and
DFPO methods overfit less than the other methods. One
reason explaining less severe overfitting is that these two
methods tend to produce shorter programs than the other
methods (especially when equipped with the LGX opera-
tor). In particular, AFPO usually produces the significantly
smallest trees among the considered methods.

6. DISCUSSION
One of the most interesting findings from experiments

is the discrepancy between results obtained with different
crossover operators (see left vs. right part of Fig. 2 and up-
per vs. lower part of Table 4). With traditional crossover,
all the considered diversity promoting methods improve the
performance of standard GP. On the other hand, with geo-
metric crossover, ASNFPO is the only algorithm that consis-
tently outperforms standard GP on all five symbolic regres-
sion problems. These findings raise the following questions:
Why is angular semantic novelty so effective in the context
of geometric crossover? Why are other diversity objectives
beneficial with one crossover operator while being detrimen-
tal with another? We attempt to answer these questions by
referring to the notion of fitness-diversity antagonism.

For the purpose of this discussion, let us say that there is
an antagonism between fitness and diversity in a given pop-
ulation if improving fitness of any single individual is im-
possible without reducing population diversity. Under this
definition, angular semantic diversity is never antagonistic
with fitness. Indeed, by moving program semantics straight
in the direction of the target (along residual vectors), angu-
lar semantic diversity does not change while fitness of any
solution can be arbitrarily improved. In contrast, Euclidean
semantic diversity is at least sometimes antagonistic with
fitness — there are populations which can not be optimized
without reducing their diversity. Indeed, minimizing error
pulls individuals toward the target semantics but maximiz-
ing Euclidean diversity scatters them away from it.

Intuitively, one could expect that antagonistic diversity
objectives would be detrimental to the search performance.
However, this may not be the case in deceptive fitness land-
scapes, where local fitness gradient is misleading. In such a
situation, increasing semantic distance to the target (fitness)
can in fact reduce the distance to the target measured in
the search space seen by specific operators. We hypothesize
that semantically-blind standard crossover induces relatively
rugged and deceptive landscape. This hypothesis would to
some extent explain why any type of diversity objective, re-
gardless of its antagonism, improves the search performance
in the context of this crossover operator.

On the other hand, according to Moraglio et al. [22], ge-
ometric semantic operators see cone landscapes which are
easy to search by fitness objective alone as they are not
deceptive at all. Even though we employ approximately ge-
ometric crossover, we expect that the corresponding fitness
landscape is still much smoother than the one induced by
traditional crossover. In such landscapes fitness-diversity
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Table 4: Median training error, test error and size of best-of-run individuals. For each problem and crossover
operator the best results are shown in bold. Underline indicates statistically significant superiority.

quartic nonic keijzer-4 r1 r2

train test size train test size train test size train test size train test size

GP 0.071 0.088 124 0.059 0.062 94 0.057 0.284 229 0.040 0.059 92 0.060 0.064 75
AFPO 0.031 0.034 72 0.022 0.027 84 0.024 0.111 121 0.019 0.019 69 0.016 0.016 77
DFPO 0.008 0.009 123 0.009 0.013 138 0.015 0.089 161 0.009 0.009 100 0.008 0.008 135
ESNFPO 0.026 0.050 128 0.029 0.052 125 0.015 0.210 143 0.018 0.030 111 0.016 0.022 87

s
t
a
n
d
a
r
d

ASNFPO 0.019 0.059 136 0.011 0.043 137 0.012 0.169 166 0.009 0.023 127 0.007 0.015 125

GP 0.011 0.033 284 0.010 0.029 295 0.012 0.415 300 0.010 0.019 257 0.005 0.005 183
AFPO 0.033 0.032 78 0.034 0.032 63 0.020 0.198 144 0.023 0.021 66 0.010 0.009 61
DFPO 0.016 0.016 89 0.019 0.018 86 0.010 0.340 248 0.011 0.011 83 0.005 0.005 80
ESNFPO 0.023 0.028 185 0.018 0.023 188 0.010 0.508 287 0.017 0.018 149 0.006 0.007 153
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ASNFPO 0.005 0.008 186 0.005 0.011 226 0.005 0.379 293 0.005 0.007 202 0.002 0.002 192

antagonism is much more likely to be detrimental. This
would explain weak performance achieved by using antago-
nistic Euclidean semantic novelty objective. Since angular
semantic novelty, by contrast, is the only diversity objective
known to be non-antagonistic, it proves successful in the
context of the geometric crossover operator.

Finally, let us discuss two other reasons that could ex-
plain aforementioned discrepancy in results. First, by ana-
lyzing how fitness of perfectly geometric offspring depends
on the angular distance between its parents (cf. Fig. 1),
we expect that geometric crossover operator is able to effec-
tively exploit angular semantic diversity. Another synergis-
tic combination involves structural diversity (promoted by
the DFPO algorithm) and traditional syntactic crossover op-
erator. Both combinations of diversity objective and search
operator result in superior performance when compared to
other considered methods. Second, the reason why diversity
maintenance plays such an important (and beneficial) role
in GP equipped with traditional crossover is that in our ex-
periments we do not employ any mutation operator which
could supply new genetic material and explicitly sustain ge-
netic diversity in a population. In absence of mutation, we
expect that standard GP with subtree-swapping crossover
is particularly vulnerable to the problem of premature con-
vergence. This problem is less severe with locally geometric
crossover because it relies on a large library of procedures
which provides the population with new subtrees acting as
a simple diversity preserving mechanism.

7. CONCLUSIONS
In recent years, the issue of behavioral diversity and its

impact on the performance of evolutionary algorithms has
been studied in many different contexts [17, 23, 29]. To the
best of our knowledge, this is the first study that investi-
gates the role of behavioral diversity in genetic programming
equipped with semantic search operators. The main goal of
this work was to determine whether and under what con-
ditions promoting behavioral diversity can adversely affect
the performance of GP applied to symbolic regression.

The most important finding is that using an additional
diversity promoting objective can be indeed detrimental to
the search performance. However, such a situation was ob-
served only when both of the following conditions were met.
First, a specific search operator was employed, which sup-
posedly induced a smooth, non-deceptive fitness landscape.
Second, the behavioral diversity objective was inherently an-

tagonistic with the fitness objective. On the other hand, by
introducing a non-antagonistic angular semantic novelty ob-
jective, we were able to improve the results regardless of the
employed search operator. Importantly, this objective was
the only one that proved successful in the context of locally
geometric crossover operator.

The major limitation of this study is that our experimen-
tal investigations were conducted using a small set of five
univariate symbolic regression benchmarks. Although pro-
moting angular semantic diversity proved useful in this con-
text, further work is needed to verify whether these results
could be extended to more complex real-world problems.
In particular, it would be interesting to analyze how much
dimensionality of both feature space and semantic space
impacts the performance of particular diversity promoting
methods. Another direction of future research would be to
investigate the importance of behavioral diversity for other
semantic search operators.

In a broader perspective, our investigation indicates that a
diversity objective needs to be carefully chosen with respect
to the problem at hand and employed search algorithm. As
demonstrated by this study, using objectives that are an-
tagonistic with fitness was detrimental to the performance
of semantic GP. However, we expect that with increasing de-
ceptiveness in the fitness landscape, the consequences of us-
ing antagonistic objectives become more difficult to predict.
In particular, one could hypothesize that in highly decep-
tive fitness landscapes antagonistic diversity objectives are
more likely to be beneficial. This would be consistent with
previous studies demonstrating that in extremely deceptive
cases a successful way to increase search effectiveness is to
ignore fitness and use a novelty objective alone [16].
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5.5 Szubert et al. “Semantic forward propagation...” (2016).
A technical manuscript describing how to de-randomize model perturbations to improve optimiza-
tion follows.
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Abstract. In recent years, a number of methods have been proposed
that attempt to improve the performance of genetic programming by ex-
ploiting information about program semantics. One of the most impor-
tant developments in this area is semantic backpropagation. The key idea
of this method is to decompose a program into two parts — a subprogram
and a context — and calculate the desired semantics of the subprogram
that would make the entire program correct, assuming that the context
remains unchanged. In this paper we introduce Forward Propagation
Mutation, a novel operator that relies on the opposite assumption — in-
stead of preserving the context, it retains the subprogram and attempts
to place it in the semantically right context. We empirically compare
the performance of semantic backpropagation and forward propagation
operators on a set of symbolic regression benchmarks. The experimental
results demonstrate that semantic forward propagation produces smaller
programs that achieve significantly higher generalization performance.

Keywords: genetic programming, program semantics, semantic back-
propagation, problem decomposition, symbolic regression

1 Introduction

Standard tree-based genetic programming (GP) searches the space of programs
using traditional operators of subtree-swapping crossover and subtree-replacing
mutation [4]. These operators are designed to be generic and produce syntacti-
cally correct offspring regardless of the problem domain. However, their actual
effects on the behavior of the program, and thus its fitness, are generally hard to
predict. For this reason, many alternative search operators have been recently
proposed that take into account the influence of syntactic modifications on pro-
gram semantics [1,11,10,13].

Semantic backpropagation [12,15] is arguably one of the most powerful tech-
niques employed by such semantic-aware GP operators. The two operators based
on semantic backpropagation — Random Desired Operator (RDO) and Approx-
imately Geometric Crossover (AGX) have proved to be successful on a number
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of symbolic regression and boolean program synthesis problems [11,12]. Both op-
erators rely on semantic decomposition of an existing program into two parts —
a subprogram and its context. Given a subprogram, both operators attempt to
calculate its desired semantics, i.e., the values that it should return to make the
entire program produce the desired output, assuming that the context remains
unchanged. The desired semantics can be then used to find a replacement for
the subprogram that improves the overall program behavior.

Despite their superior performance when compared to other GP search oper-
ators [15,12,11], backpropagation-based RDO and AGX face a few major chal-
lenges that can limit their practical applicability. First of all, they are much
more computationally expensive than traditional syntactic operators. Indeed,
in order to calculate desired semantics, the target program output needs to be
backpropagated by traversing the tree and inverting the execution of particular
instructions. The computational cost of this operation is similar to the cost of
a single fitness evaluation (which is typically the most expensive component of
GP). Moreover, using desired semantics to find a subprogram replacement usu-
ally requires even more computational effort. Finally, the results reported so far
demonstrate that RDO and AGX tend to produce relatively large programs that
are difficult to interpret and may suffer from overfitting.

In this paper, we introduce Forward Propagation Mutation (FPM), a novel
semantic-aware operator that also relies on program decomposition but works
in the opposite manner to semantic backpropagation. Instead of preserving the
context and replacing the subprogram, forward propagation retains the subpro-
gram and attempts to place it in the semantically right context. In contrast to
semantic backpropagation, the FPM operator does not require an additional tree
traversal and thus it incurs less computational overhead. Moreover, the experi-
mental results obtained on a set of univariate and bivariate symbolic regression
problems demonstrate that it achieves competitive performance in terms of the
training error while producing much smaller programs that usually perform sig-
nificantly better on the unseen test cases.

2 Semantic Genetic Programming

In order to incorporate semantic-awareness into genetic programming, most of
the recently proposed methods adopt a common definition of program semantics,
known as sampling semantics [13], which is identified with the vector of outputs
produced by a program for a sample of possible inputs. In supervised learning
problems considered here, where n input-output pairs are given as a training set
T = {(x1, y1), . . . , (xn, yn)}, semantics of a program p is equal to vector s(p) =
[p(x1), . . . , p(xn)], where p(x) is a result obtained by running program p on
input x. Consequently, each program p corresponds to a point in n-dimensional
semantic space and a metric d can be adopted to measure semantic distance
between two programs. Furthermore, fitness of a program p can be calculated as
a distance between its semantics s(p) and the target semantics t = [y1, . . . , yn]
defined by the training set, i.e., f(p) = d(s(p), t).
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The information about program semantics and the structure of the semantic
space endowed by a metric-based fitness function can be exploited in many
ways to facilitate the search process carried out by GP. Apart from numerous
semantic search operators [1,13,10,11], the knowledge about semantics can be
used to maintain population diversity [3], to initialize the population [2] or to
drive the selection process [7]. All such semantic-aware methods are collectively
captured by the umbrella term of semantic genetic programming [14]. Recently, a
paradigm of behavioral program synthesis [5] has been proposed, which extends
semantic GP by using information not only about final program results but also
about behavioral characteristics of program execution.

3 Semantic Backpropagation

One of the most important methods in semantic GP is semantic backpropagation
[12]. The key concept behind this method is program decomposition: a program
p is treated as a function (i.e., it is deterministic and has no side effects) that can
be decomposed into two constituent functions (subprograms) p1 and p2 such that
p(x) = p2(p1(x),x)). In particular, if a program is represented as a tree, such
decomposition can be made at each node — the inner function p1 is expressed
by the subtree rooted at the given node, while the outer function p2 corresponds
to the rest of the tree (also termed context [9], see left part of Fig. 1).

Semantic backpropagation assumes that the desired program output p∗(x)
can be produced by retaining the outer function and replacing just the inner one
by another subprogram ps, i.e., p∗(x) = p2(ps(x),x)). Starting from the desired
program output p∗(x), the backpropagation algorithm heuristically inverts the
program execution to calculate the desired semantics of the subprogram ps, i.e.,
the values it should produce to make the entire program correct. This idea has
been employed to design two operators, AGX and RDO, which differ with respect
to what they use as the desired program output p∗(x). In this study, we focus on
RDO, a mutation operator that assumes that target semantics t = [y1, . . . , yn]
is given a priori and thus values p∗(xi) = yi can be used as an input for the
backpropagation algorithm.

An example of a mutation performed by RDO is illustrated in Fig. 1 and
proceeds as follows. First, a random mutation node is selected in the parent
program (denoted as a circle with a double border in Fig. 1). The subtree p1
rooted at this node is removed from the tree and the backpropagation algorithm
is applied to calculate the desired semantics of the replacement ps that would
make the offspring program return desired values. The algorithm starts from
the root of the tree, where desired semantics is given by t, and follows the path
to the removed subtree. For each node it calculates the desired semantics of its
child by invoking the Invert function (a detailed description of this function
and the RDO operator in general can be found in [12]).

For instance, let us assume that a training set contains just two cases with
inputs x = [1, 2] and desired outputs t = [0, 2]. As shown in Fig. 1, in the
first step the algorithm finds out that to produce desired semantics at the root,
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Fig. 1. A mutation performed by Random Desired Operator using semantic backprop-
agation. Desired semantics are denoted in italics.

knowing that outputs of its right child are equal to [1, 1], the desired semantics of
the left child must be equal to [1, 3]. This result is used in the subsequent step to
calculate desired semantics for the next node. Finally, given desired semantics at
the mutation node, the RDO operator attempts to replace the removed subtree
with a subprogram that would produce such values. To this end, it employs a
precomputed library of programs (procedures) that allows to efficiently retrieve
a program p∗l that has the smallest semantic distance to the desired semantics.
Additionally, RDO also checks if a single constant real value would provide a
better match to the desired semantics than p∗l .

Importantly, in the process of semantic backpropagation, inverting certain
functions can be ambiguous (if the function is not injective) or impossible (if
the function is not surjective). As a result, the desired semantics may contain
several values for each training case or special inconsistent elements. The library
must be able to handle such queries efficiently [12,15].

4 Semantic Forward Propagation

Inspired by semantic backpropagation and RDO we propose an alternative muta-
tion operator based on the complementary idea, which we term semantic forward
propagation. Similarly to RDO, Forward Propagation Mutation (FPM) relies on
decomposability of a program p into a subtree p1 and a context p2. However,
while RDO assumes that a context can be preserved and attempts to replace
the subtree, FPM makes the opposite assumption preserving the subtree and
building a matching context for it.

The FPM operator starts by choosing a random mutation node in the parent
program. The subtree p1 rooted at this node is extracted from the tree and used
as a starting point for creating an offspring. In order to build a new context for
this subtree, we assume a fixed structure of the context pc containing 4 new nodes
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Fig. 2. An operation performed by Forward Propagation Mutation.

and a matching library procedure (see Fig. 2). We apply an exhaustive search
to identify a context p∗c of the assumed structure, that minimizes fitness of the
entire offspring program p∗c = arg minpc

f(pc ◦ p1). To this end, we consider all
pairwise combinations of the available unary (e.g., {sin, cos, log, exp}) and binary
functions (e.g., {×,+,−, /}) that could be placed directly above the selected
subtree, as nodes u and b, respectively (cf. Fig. 2). Importantly, we extend the
unary function set with the identity function id(x) = x. If the best found context
p∗c uses this function we skip adding the node u to the tree. For each pair of
functions (u, b) placed above the subtree p1, we forward propagate the semantics
of the subtree up to the root of the new tree. Then, we apply just a single
backpropagation step, using the same Invert function as in RDO, to calculate
desired semantics d of the other child of the node b, given the the target semantics
t and the forward-propagated semantics s(u ◦ p1).

Since in this case the desired semantics is usually unambiguous, we can use a
different method of searching the library, which could not be easily applied within
the RDO operator. Here, we search for the library procedure which achieves high-
est cosine similarity. In other words, if we treat semantics as an n-dimensional
vector, we return library procedure p∗l that makes the smallest angle with the
desired semantics d, i.e.:

p∗l = arg min
pl∈L

arccos
s(pl) · d
‖s(pl)‖‖d‖

.

Finally, we add a constant node c to scale the semantics of the library procedure
making it closer to the desired semantics, i.e., c = (s(p∗l ) · d) / ‖s(p∗l )‖2. An
alternative, more computationally expensive approach, would be to run simple
linear regression for each candidate program in the library, using its semantics
as a single explanatory variable and desired semantics d as a response. This
approach would require extending the context structure to accommodate both
an intercept and a slope coefficient.
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5 Experimental setup

The main goal of the experiments is to compare the performance of RDO and
FPM mutation operators on a suite of symbolic regression benchmarks. Addi-
tionally, as a control setup we employ traditional subtree-replacing mutation
(SRM). All three mutation operators are used along with conventional subtree-
swapping crossover in a standard generational tree-based GP algorithm with
tournament selection. Each mutation operator is employed in five setups with
different values of mutation and crossover probabilities (the source code of our
experiments is available at https://github.com/mszubert/ppsn_2016).

Most of the GP parameters (summarized in Table 1) are adopted from the
recent work on semantic backpropagation [12]. In particular, whenever a random
mutation/crossover node needs to be selected, a uniform depth node selector is
used. Given a program p, it first calculates program’s height h, then draws
uniformly an integer d from the interval [0, h] and finally selects a random node
from all nodes at depth d in program p. This technique has been recently shown
to reduce bloat when compared to conventional Koza-I node selectors [6,12].

Moreover, both RDO and FPM use population-based library which is con-
structed at each generation from all semantically unique subtrees (subprograms)
in the current population. Since we impose an upper limit on the tree height (17),
when searching the library we ignore all the procedures that would violate this
constraint when inserted into the parent program.

We investigate training error, generalization performance (error on 1 000 un-
seen test cases) and the size of programs produced by using particular muta-
tion operators on 11 symbolic regression benchmarks. We consider six univari-
ate and five bivariate problems that are adopted from previous studies [4,8,12].
Selected benchmarks (see Table 2) include polynomial, rational and trigono-
metric functions. For each problem, fitness was calculated as root-mean-square
error on a number of training cases. The univariate problems use 20 cases dis-
tributed equidistantly in the [−1, 1] range, while the bivariate ones use a grid of
10× 10 = 100 points spaced evenly in the [−1, 1]× [−1, 1] square.

Table 1. Genetic programming parameters

Parameter Value

population size 256
generations 100

initialization
ramped half-and-half with height range 2− 6
100 retries until accepting a syntactic duplicate

instruction set {+,−,×, /, exp, log, sin, cos} (log and / are protected)
tournament size 7
fitness function root-mean-square error (RMSE)
node selection uniform depth node selector
maximum tree height 17
number of runs 30
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Table 2. Symbolic regression benchmarks.

Benchmark name Objective function Variables Training cases

P4 (Quartic) x4 + x3 + x2 + x 1 20

P7 (Septic) x7 − 2x6 + x5 − x4 + x3 − 2x2 + x 1 20

P9 (Nonic)
∑9

1 x
i 1 20

R1 (x + 1)3/(x2 − x + 1) 1 20

R2 (x5 − 3x3 + 1)/(x2 + 1) 1 20

R3 (x6 + x5)/(x4 + x3 + x2 + x + 1) 1 20

K11 (Keijzer-11) xy + sin((x− 1)(y − 1)) 2 100

K12 (Keijzer-12) x4 − x3 + y2

2
− y 2 100

K13 (Keijzer-13) 6 sin(x) cos(y) 2 100

K14 (Keijzer-14) 8
2+x2+y2 2 100

K15 (Keijzer-15) x3

5
+ y3

2
− x− y 2 100

6 Results and Discussion

Table 3 presents detailed characteristics of the best-of-run individuals evolved
with particular mutation operators. Each row of the table corresponds to a sin-
gle combination of one of the five GP setups (with different crossover (X) and
mutation (M) probabilities) and one of the three considered mutation opera-
tors (either FPM, RDO or SRM). We performed 30 independent GP runs for
each of such 15 combinations on each of the 11 symbolic regression problems.
To confirm statistically significant differences between the results obtained with
particular mutation operators, for each problem and parameters setup we con-
ducted the Kruskal-Wallis test followed by a post-hoc analysis using pairwise
Mann-Whitney tests (with sequential Bonferroni correction). We set the level of
significance at p ≤ 0.05. Table 3 shows with an underline the results that were
found significantly better than those achieved with the other operators.

The first part of Table 3 shows the average training errors. Although RDO
achieves the best overall results for most univariate problems, for the bivari-
ate ones FPM produces more competitive results. Regardless of the parameter
settings, the traditional SRM operator leads to the highest training error. Note-
worthy, the RDO and FPM operators obtain their best results under different
crossover and mutation settings. While both of them benefit from using tradi-
tional crossover as an additional variation operator, the performance of FPM de-
creases when mutation is performed too frequently (i.e., if M = 1.0). To explain
this phenomenon let us note that for a given subprogram, the FPM operator
builds a context in a deterministic way. As a result, if two semantically equiva-
lent subprograms are selected in the same generation, they will result in identical
offspring. Consequently, FPM can lead to creating too many duplicated programs
and thus losing diversity in the population. Importantly, although RDO is also
deterministic, it is less susceptible to this problem because typically the number
of distinct contexts is much larger than that of distinct subtrees.
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In order to assess generalization performance of evolved programs, we cal-
culate the root-mean-square error on 1 000 test cases drawn uniformly from the
same range as for the training cases. The median test errors committed by the
best-of-run individuals are presented in the second part of Table 3. In most cases,
the RDO operator (especially for setups that achieve the lowest training error)
suffers from substantial overfitting resulting in large test error. Although the
FPM operator is also vulnerable to overfitting (in particular on problem P9)
it is not as severe as in the case of RDO. With a few exceptions, for each of
the considered problems and parameter setups, the FPM operator obtains the
highest generalization performance.

Finally, we investigate the average size of best-of-run individuals which is
presented in the last part of Table 3. Not surprisingly RDO is the most bloating
operator and this is one of the reasons for its poor performance on the unseen
test data. On the other hand, in preliminary experiments with imposed program
size limit of 300 nodes, we also observed overfitting of the RDO operator. The
programs produced by FPM tend to be much smaller. In particular, on two rel-
atively simple problems, P4 and K13, the FPM operator finds short programs
that obtain zero test error. Apparently, employing FPM allows to discover so-
lutions that are very close to the original function underlying the training data.
However, on all the other problems, the programs produced by RDO and FPM
are significantly larger than those created by the traditional SRM operator.

7 Conclusions

Semantic GP operators have proved to be effective on a number of symbolic
regression problems [14,13,11]. In this study, we confirmed these observations by
analyzing the performance of the RDO operator based on semantic backpropa-
gation [12] and the FPM operator that employs a novel idea of semantic forward
propagation. When applied to a suite of symbolic regression benchmarks, both
operators significantly outperformed the subtree-replacing mutation operator
conventionally applied in GP. However, while both considered semantic opera-
tors achieved competitive performance on the training data, the RDO operator
was found much more susceptible to overfitting. The proposed FPM operator,
on the other hand, consistently produced shorter programs that obtained signif-
icantly lower error on the unseen test data.

Despite achieving superior predictive accuracy and producing shorter pro-
grams than RDO, the programs constructed with the FPM operator are still too
large to be easily understood. This is unfortunate since finding comprehensible
solutions has been always considered as one of the primary benefits of using GP
instead of black-box machine learning methods. As most semantic-aware oper-
ators tend to produce large or very large programs [10], the problem of bloat
remains the major challenge that can limit the practical applicability of such
methods. Therefore, one of the most important directions of future work is to
investigate the performance of RDO and FPM operators combined with parsi-
mony pressure mechanisms that control the complexity of evolved programs.
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Table 3. Detailed characteristics of best-of-run individuals produced by particular
mutation operators (FPM, RDO, SRM), aggregated over 30 GP runs. Each operator
was employed in 5 GP setups with different crossover (X) and mutation (M) proba-
bilites. Bold marks the best results achieved under certain X/M settings on particular
problems. Underline indicates statistically significant superiority.

Average training error

X M P4 P7 P9 R1 R2 R3 K11 K12 K13 K14 K15

0.0 1.0 0.0011 0.0072 0.0153 0.0064 0.0049 0.0024 0.0626 0.0418 0.0000 0.0031 0.0061
0.5 0.5 0.0001 0.0018 0.0025 0.0012 0.0018 0.0006 0.0299 0.0111 0.0000 0.0012 0.0007
0.5 1.0 0.0001 0.0025 0.0037 0.0020 0.0025 0.0007 0.0358 0.0154 0.0000 0.0021 0.0007
1.0 0.5 0.0000 0.0015 0.0022 0.0012 0.0013 0.0004 0.0283 0.0086 0.0000 0.0012 0.0004F

P
M

1.0 1.0 0.0001 0.0026 0.0029 0.0018 0.0019 0.0006 0.0334 0.0116 0.0000 0.0017 0.0007

0.0 1.0 0.0030 0.0034 0.0147 0.0071 0.0043 0.0030 0.0709 0.0444 0.0440 0.0587 0.0302
0.5 0.5 0.0004 0.0017 0.0029 0.0023 0.0014 0.0018 0.0455 0.0090 0.0038 0.0132 0.0024
0.5 1.0 0.0001 0.0008 0.0004 0.0006 0.0004 0.0002 0.0294 0.0029 0.0007 0.0044 0.0015
1.0 0.5 0.0003 0.0020 0.0008 0.0014 0.0015 0.0004 0.0504 0.0063 0.0015 0.0087 0.0041R

D
O

1.0 1.0 0.0001 0.0003 0.0003 0.0008 0.0004 0.0004 0.0294 0.0047 0.0011 0.0033 0.0008

0.0 1.0 0.0518 0.0742 0.0758 0.0744 0.0811 0.0097 0.2025 0.3049 0.1552 0.2145 0.0723
0.5 0.5 0.0323 0.0968 0.0732 0.0834 0.0608 0.0156 0.1769 0.2328 0.1040 0.1138 0.0608
0.5 1.0 0.0449 0.0926 0.0638 0.0792 0.0880 0.0115 0.1781 0.2128 0.1267 0.1603 0.0748
1.0 0.5 0.0217 0.0882 0.0715 0.0663 0.0666 0.0078 0.1598 0.2005 0.0866 0.1690 0.0623S

R
M

1.0 1.0 0.0282 0.0845 0.0792 0.0698 0.0754 0.0120 0.1942 0.2479 0.1437 0.1724 0.0628

Median test error

X M P4 P7 P9 R1 R2 R3 K11 K12 K13 K14 K15

0.0 1.0 0.0009 0.0084 0.0342 0.0071 0.0044 0.0026 0.0555 0.0529 0.0000 0.0028 0.0057
0.5 0.5 0.0000 0.0046 0.0256 0.0025 0.0123 0.0030 0.0425 0.0581 0.0000 0.0017 0.0008
0.5 1.0 0.0000 0.0045 0.0142 0.0037 0.0045 0.0015 0.0333 0.0290 0.0000 0.0032 0.0008
1.0 0.5 0.0000 0.0069 0.0306 0.0030 0.0042 0.0017 0.0260 0.0311 0.0000 0.0021 0.0005F

P
M

1.0 1.0 0.0000 0.0055 0.0227 0.0025 0.0027 0.0009 0.0300 0.0295 0.0000 0.0024 0.0008

0.0 1.0 0.0039 0.0593 0.0346 0.0087 0.0145 0.0071 0.1089 0.0988 0.0215 0.0774 0.0185
0.5 0.5 0.0025 0.5159 0.0469 0.0406 0.0148 0.0028 0.0738 0.0374 0.0070 0.0252 0.0036
0.5 1.0 0.0117 0.3084 0.0715 0.1522 0.0652 0.0618 0.0639 0.2124 0.0022 0.0556 0.0097
1.0 0.5 0.0006 0.0704 0.0104 0.0081 0.0319 0.0057 0.0445 0.0364 0.0030 0.0283 0.0014R

D
O

1.0 1.0 0.0097 19.486 8E+3 0.0607 0.0466 0.0155 0.0402 0.3878 0.0023 0.0378 0.0026

0.0 1.0 0.0485 0.1170 0.1017 0.0836 0.0585 0.0123 0.2005 0.2649 0.1986 0.1458 0.0814
0.5 0.5 0.0240 0.0958 0.0810 0.0730 0.0592 0.0106 0.1770 0.1874 0.1122 0.0988 0.0525
0.5 1.0 0.0572 0.1865 0.0922 0.0800 0.0694 0.0105 0.1686 0.2037 0.1311 0.1207 0.0882
1.0 0.5 0.0191 0.0899 0.0785 0.0711 0.0641 0.0101 0.1493 0.1874 0.0998 0.1126 0.0446S

R
M

1.0 1.0 0.0257 0.0734 0.0725 0.0739 0.0727 0.0142 0.1894 0.1853 0.1843 0.1723 0.0389

Average program size

X M P4 P7 P9 R1 R2 R3 K11 K12 K13 K14 K15

0.0 1.0 172.6 179.0 195.9 162.2 187.9 161.0 210.9 172.4 9.1 204.9 207.7
0.5 0.5 150.4 341.4 322.1 325.3 352.8 347.7 328.3 305.5 7.4 326.5 260.6
0.5 1.0 78.3 292.4 271.7 287.9 283.3 265.9 286.4 264.5 8.5 258.9 239.6
1.0 0.5 44.0 346.6 354.4 327.2 339.2 311.0 328.0 311.1 7.8 298.6 300.0F

P
M

1.0 1.0 99.2 283.4 271.0 255.7 253.3 270.6 244.8 230.6 8.9 239.8 264.4

0.0 1.0 537.6 690.6 550.8 777.5 2656.9 1203.7 418.6 434.8 85.0 147.2 250.2
0.5 0.5 503.6 637.9 686.0 493.9 529.6 485.7 358.4 482.4 497.1 346.4 1299.6
0.5 1.0 626.9 1004.3 934.1 906.7 854.0 747.2 654.2 841.2 464.3 548.6 1137.2
1.0 0.5 378.6 631.2 588.4 473.0 508.9 486.7 316.8 472.9 311.0 325.5 673.8R

D
O

1.0 1.0 645.6 903.6 909.9 668.6 746.4 696.2 542.9 838.7 426.7 514.6 1034.4

0.0 1.0 122.9 176.1 152.4 133.8 116.2 155.9 109.3 95.1 95.7 63.0 74.7
0.5 0.5 60.0 109.4 95.4 79.7 76.1 95.8 62.7 69.4 59.6 53.5 57.5
0.5 1.0 111.8 172.8 159.6 154.3 122.3 173.6 99.2 95.3 96.1 79.1 82.0
1.0 0.5 97.9 106.4 107.1 96.8 89.9 137.2 89.5 86.6 81.1 87.6 64.4S

R
M

1.0 1.0 119.0 160.9 147.5 150.6 131.0 165.7 95.3 83.2 95.9 80.4 96.5
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