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SUMMARY 

 
1.1 Significant Accomplishments 
 

Since we have been working on this project for about three years, significant 

accomplishments are: 

(i) Five students (Andrew Hooker, Fatimata Diop, Nakarsha Bester, Donald 

Hendon and Chris Heron) partially supported through this grant graduated 

with MS degree in Civil and Environmental Engineering from Jackson State 

University. Fatimata Diop is currently working at USACE ERDC, Vicksburg 

while pursuing Ph.D. at Jackson State University. Mr. Hendon is a bridge 

engineer at Mississippi Department of Transportation. 

(ii) Three students are fully supported by this grant. Ms. Neha Sinha is a MS 

Degree pursuing student at Jackson State University working on uncertainty 

modeling. She is expected to graduate in December 2016. Under the new 

Ph.D. program in Engineering at Jackson State University, since Fall 2014, 

another student (Mr. Xuesheng Qian) was hired to work on mathematical 

modeling of storm surge. Mr. Qian is our first Ph.D student in engineering at 

Jackson State University who has been supported by this grant. He is expected 

to graduate in 2017. Also Ms. Amanda Tritinger is pursuing Ph.D. at 

University of North Florida under Dr. Donald Resio’s supervision. 

(iii) Ongoing collaborations with Engineer Research and Development Center 

(ERDC), Vicksburg to conduct joint projects and use the DOD high 

performance super-computing facility to conduct storm surge simulations. 

Under this collaboration, we had been working on a joint project titled “Surge 

Protection for the City of Galveston: Advancing the Ike Dike Concept” Total 

funded amount: $193,000, Duration 1.5 years (Feb 2013- June 2014). Dr. 

Resio provided independent UNF funding ($40,000) to two students (two 

years funding for an MS candidate and one-year funding for a PhD candidate) 

for one year, so far, to work with him on this effort. The M.S. candidate 

(Carolina  Burnette)  graduated  in  July and  was  hired  this  summer  by the 



USACE Jacksonville District. The PhD candidate (Amanda Tritinger) was an 

intern at USACE ERDC this summer and has been invited to work with them 

again next summer. Ms Tritinger’s PhD topic is the development of a 

stochastic matrix approach to the 3-D problem described in our report. 

Additional funds for leveraging this work include funding by the Office of 

Naval Research (ONR: $210,000) to develop improved estimates of radiation 

stresses for coupled wave-surge modeling improved coupling between 

hydrologic and open-coast models by the Department of Homeland Security 

(DHS $210,000). Dr. Das received $80,000 from National Institute of 

Health (NIH) to explore impact of storm surge and climate on public health 

along the coast of Mississippi. 

 

(iv) Publications: 
 

1. Vulnerability of Coastal Communities from Storm Surge and Flood Disasters, 

Jejal Bathi and Himangshu Das, Int. J. Environ. Res. Public Health 2016, 13, 239; 

doi:10.3390/ijerph13020239 

2. Himangshu S. Das, 2013, Efficient Simulations of Operational Risk in Coastal 

Environments (eSORCE), International Journal of Engineering Research and 

Technology (IJERT), Vol. 2, Issue 9 

3. Xuesheng Qian, Himangshu Das, Flow Structure of Submarine Debris Flow, 

Coastal Sediment '15, San Deigo, CA, May 11-15, 2015 

4. Robert W. Whalin, Himangshu S. Das, Thomas W. Richardson, Donald L. 

Hendon, Nakarsha Bester and Chris Herron, Ike Dike: A Concept to Protect 

Galveston Island and Houston Metropolitan Area from Devastating Hurricane 

Surges, Southeastern Symposium for Contemporary Engineering Topics and 

University of New Orleans-Engineering Forum, Sept. 19, 2014 

(v) Awards:  

In Fall 2014, Dr. Das received the “Public Servant of the Year” award 

for Excellence in Service. In 2013, Dr. Das received CSET award for 

Innovation. In 2013, Dr. Resio received the International Coastal Engineering 

Award from the American Society of Civil Engineers (ASCE).  

 



2.0 Summary of Work: 

 
2.1: Mathematical Decomposition of Multi Scale Processes 

Typically, orthogonal functions are used to decompose motions when they are 

known to provide an either an improved basis for solving the equations or reduce the 

number of degrees of freedom in the equations which need to be solved. In the case of 

three-dimensional flows in coastal areas, the motions tend to be represented in terms of 

two orthogonal horizontal axes and a third vertical axis. The addition of a vertical axis is 

usually accomplished in models by partitioning the vertical dimension into layers or 

levels within the water column. However, models based on layers, such as the Regional 

Ocean Model and the Princeton Ocean Model, are difficult to scale in the vertical in very 

shallow water, particularly in areas with flooding and drying; and models using fixed 

levels within the water column created difficulties in the representation of the upper 

boundary. 

 

Because of the significantly increased computational burden and difficulties with 

vertically-refined grids in very shallow water, essentially all surges modeling in 

applications has utilized depth-averaged models to specify coastal surges, even in cases 

where accuracy is absolutely critical. Although several studies have examined cases in 

areas with complicated bathymetry, no one has conduction detailed analyses of the 

suitability of depth-averaged models for typical open-coast areas, which often tend to be 

relatively slowly varying spatially. 

 

Our work here should be recognized as a step toward an eventually more- 

universal applicability; however, as our point of departure, we will focus on situations 

which represent the most significant risks in most coastal areas along the Gulf and 

Atlantic coasts of the United States. The propagation of the coastal surges inland, 

interacting with inland hydrologic flows represents the dominant flood-producing 

hazard in these areas. It is likely that our work can be extended and the work here 

should be 



considered as a starting point for such generalization. This piece of work carried out at 

University of North Florida (UNF) is detailed in Appendix A. 

 

2.2: Characterization of Vertical Flow Structure 

To further explore the vertical flows in sediment rich high energy environment, a 

two dimensional biphasic (i.e., sediment and water) numerical model has been developed 

using CFD software ANSYS FLUENT. Model results were compared with experimental 

results and found to match notably with them. To understand the characteristics of the 

vertical flow structure, varying percentages of sediment concentration have been used. 

Altogether, thirty runs were made by varying the sediment concentrations and advection 

characteristics. Distinct flow characteristics were observed at the vertical direction, which 

demonstrate the entrainment processes at its top and lubricating behavior beneath the 

head. This is illustrated in Appendix B. It is expected that the mathematical 

decomposition of multiscale process (Appendix A) and enhanced understanding of 

vertical flow structure (Appendix B) can be extended to more complex geometries with 

some modifications to account for the nesting of smaller scales. 

 

2.2: Parameterization of Meteorological Forcing with Uncertainty 

It is recognized that the accuracy of storm surge results highly depends on the 

accurate representation of the meteorological forcing such as, landfall location, pressure 

field, and size of the storm which have inherent uncertainties due to the randomness in 

driving atmospheric forecast conditions at the sea surface, which also vary substantially 

due to the meteorological condition. A neural network model was developed to estimate 

Central Pressure (CP) and Radius to Maximum Wind (RMax) for an approaching 

landfall. Estimation of these important parameters starting 2-3 days ahead of landfall can 

benefit us in two ways: first of all, these estimated parameters can be directly feed into 

any circulation model (ADCIRC for example) to calculate operational storm surge in real 

time and secondly (probably most importantly) these estimated parameters along with 

other advisory data available from National Hurricane Center NHC (e.g., forecasted 

track, current Cp and wind speed) will guide to select a group of synthetic storms that 



closely matches with the approaching storm.  Details of the work are illustrated in 

Appendix C. 

 

2.3:   Development   and   Application   of   a   Simulation   Driven   Decision   Making 

Framework (SiDMAF) 

The objective was to demonstrate the application of a simulation driven decision 

making framework in decision making. Standardizing and archiving pre-computed 

simulations results in the SiDMAF Tool were completed. Developed tool was validated 

with observed High Water Marks (HWM) from historical hurricanes such as hurricanes 

Katrina, Camille, Betsy and Gustav which made landfall in the Gulf coast. It was found 

that modeled results using the SiDMAF Tool were well compared with the observed High 

Water Marks. For visualization, the pre-computed maximum surge elevation raster data 

of the matching storm can be displayed on the map. The toolbox then conducts spatial 

analysis using this surge elevation data with other GIS data including road, population, 

important facilities and infrastructure, etc. With this information, hazard areas can be 

identified. This allows decision makers or emergency management teams to respond very 

quickly under circumstances which may change dynamically. Appendix D summarizes 

the work. 



Appendix A (UNF Contribution) 
 

Decomposition of Vertical Current Structure in Multi-scale Applications  
 

1.  Introduction 

 Typically, orthogonal functions are used to decompose motions when they are known to 

provide an either an improved basis for solving the equations or reduce the number of degrees of 

freedom in the equations which need to be solved.  In the case of three-dimensional flows in 

coastal areas, the motions tend to be represented in terms of two orthogonal horizontal axes and a 

third vertical axis. The addition of a vertical axis is usually accomplished in models by 

partitioning the vertical dimension into layers or levels within the water column.  However, 

models based on layers, such as the Regional Ocean Model and the Princeton Ocean Model, are 

difficult to scale in the vertical in very shallow water, particularly in areas with flooding and 

drying; and models using fixed levels within the water column created difficulties in the 

representation of the upper boundary. 

 Because of the significantly increased computational burden and difficulties with 

vertically-refined grids in very shallow water, essentially all surge modeling in applications has 

utilized depth-averaged models to specify coastal surges, even in cases where accuracy is 

absolutely critical. Although several studies have examined cases in areas with complicated 

bathymetry (for example:Peng et al., 2005 and Weisberg and Zheng, 2008), no one has 

conduction detailed analyses of the suitability of depth-averaged models for typical open-coast 

areas, which often tend to be relatively slowly varying spatially.  

 It is straightforward to show that wind input and Coriolis acceleration represent the total 

momentum vector for a frictionless surface in a steady state situation; however, when the entire 

water column is not in a steady state, transients can occur related to gradients in the rate of 

vertical momentum transfer.  In shallow water, the wind fields are assumed to vary sufficiently 

slowly that the steady state can be assumed at all times; however, two asymptotic cases exist in 

which depth-integrated equations can be shown to misrepresent surges at the coast.  A third 

factor, which involves a more subtle but possibly important aspect of these equations between 

the two asymptotes will be examined subsequently. In this project we are investigating the 

possibility of an innovative approach to overcome these difficulties.  This approach attempts to 

decompose the vertical structure using Empirical Orthogonal Functions (EOFs) to retain a good 

approximation to the vertically-refined velocity structure in conjunction with the typical depth-

averaged equations of motion for long waves in shallow water. 

 Our work here should be recognized as a step toward an eventually more-universal 

applicability; however, as our point of departure, we will focus on situations which represent the 

most significant risks in most coastal areas along the Gulf and Atlantic coasts of the United 

States.  The propagation of the coastal surges inland, interacting with inland hydrologic flows 

represent the dominant flood-producing hazard in these areas.  It is likely that our work can be 

extended and the work here should be considered as a starting point for such generalization. In 

particular, the extension to more complex geometries should be able to utilize the same 

decomposition with some modifications to account for the nesting of smaller scales. 

 

 

 



2. Two Asymptotic Situations in which Depth-Integrated Equations Deviate from 

Physically Expected Flows in Coastal Areas 

 

2.1 Prediction of forerunners generated by tropical cyclones 

 One problem facing surge forecasters is providing a good estimate of when surge levels 

surpass certain critical thresholds known to affect the ability to evacuate areas or to conduct 

needed pre-storm preparations.  It is well known that when large water bodies contain regions of 

very sharp gradients the fluxes of momentum are suppressed and oceanic motions become 

layered.  In most areas of the Atlantic and Gulf of Mexico, typical mixed layer depths (MLDs) 

are in the range of 15 – 25 meters, in most months during hurricane season. When a hurricane is 

approaching land, such as the approach of Hurricane Ike to the Texas coast in 2007, the water 

level can become significantly elevated days before landfall. Such a rise in water in advance of a 

hurricane’s arrival is termed a forerunner.  

 In Ike, the forerunner reached 3 meters 12 to 24 hours before landfall (Kennedy et al., 

2011).  If we simplify the situation to an idealized case of winds parallel to the coast, which was 

the situation in Hurricane Ike for several days before landfall, we can see that the depth-

integrated momentum component toward the shore will be driven primarily by Ekman pumping, 

as noted by Kennedy et al. (2011). If we further simplify by assuming that the wind field remains 

offshore for sufficient time that it can be regarded as stationary relative to the current toward the 

coast, the arrival time of the forerunner will depend directly on the distance between the region 

of high winds and the speed of the current toward the coast. In this region of the Gulf of Mexico, 

we will assume a depth of 2000 m for 100km followed by a continental shelf of average depth 

100 m for a distance of 50 km.  If a depth integrated model is used, the speed will be 100 times 

slower than a current over its depth than the corresponding current in a 20m MDL. Currents in 

the order of 1 m/sec can be generated by peripheral winds in a hurricane in the 20-m layer, while 

the currents in the depth-averaged model driven by the same winds would be only 1 cm/sec. In 

this case the forerunner would reach the coast in a little over a day for the MDL while only the 

locally generated (i.e. the surge generated by Ekman pumping when the storm was almost at the 

coast) would be significant in the depth-averaged model.  Although a depth-averaged model can 

be tuned to exacerbate the locally-generated Ekman pumping, such a tuning would likely 

produce problems with surge estimates when applied in different situations and/or areas. 

 

2.2 Wind- and wave-forced motions adjacent to a coast 

 It is well recognized that depth-integrated models have substantial difficulties when used 

to simulate flows near a boundary.  In nature, fluids which are forced by winds and radiation 

stresses transfers directed toward the coast at the surface and near surface characteristically 

exhibit a two-layer flow with motions directed toward the boundary from some mid-level 

upward and away from the boundary beneath that point. This has long been known to make 

depth-integrated models ineffective for moving surface floating material (barges, oil slicks, 

pollutants, etc.) into the boundary.  Once the gradient in surface height balances the forcing 

toward the coast only motions along the boundary can exist. 

 This problem is not only important in the case of material transport but also can play an 

important role in the contributions of waves to surges at the coast.  Presently, surges are 

significantly underestimated in situations dominated by wave setup. An excellent example of this 

is the performance of the coupled ADCIRC-SWAN model in hindcasts of the so-called “Perfect 

Storm” in late October 1990.  Records on the east end of Long Island show that actual surge 



levels were over 1.5 meters and coincided with a time of light offshore winds.  The coupled 

ADCIRC-SWAN model produced less than 0.25 m for this case.  As will be shown in a later 

section here, a significant part of this problem is likely related to the improper specification of 

bottom friction.   

 

3.  Methodology for Decomposition of Vertical Currents 

 

 Our basic hypothesis is that natural vertical variations of currents in open-coast areas are 

expected to follow typical patterns of self-similarity found in most turbulent fluxes, with the 

added complication of near-boundary effects. The first step in our study was a lengthy search for 

appropriate long-term deployments of systems which provided vertically resolved currents.  We 

were fortunate in that we were able to find and access several long-term deployments in depths 

in the range of 8 – 10 meters off the coast of Florida (Figure 1).  Work conducted by Carolina 

Burnette as part of her Masters’ Thesis (Burnette, 2016), funded independently by UNF, was 

able to contribute a great deal to the interpretation and detailed data processing of this current 

information.   Figure 2 from her thesis shows the current vectors in the uppermost layer of the 

profile resolved by the ADCP used in this collection.  Figures 3-6 show the average longshore 

profiles for March, June September and November, which shows that seasonal current variations 

exist in this area.  Figures 7 and 8 show the average annual profiles for the longshore and cross-

shore velocity components, respectively.  The shape of the longshore profiles suggests that both 

tides, which are expected to be relatively uniform with depth, and longshore winds, which are 

expected to exhibit relatively strong velocity gradients, contribute significantly to these current 

profiles. 

 Eigenfunctions of the covariance matrix, often referred to as Empirical Orthogonal 

Functions (EOFs), have shown to be an effective means to reduce the dimensionality of natural 

systems to the set of vectors which explain the maximum amount of variance with the fewest 

possible terms. In this case the covariance matrix is formed from the time series of longshore and 

cross-shore current components.  This gives us two sets of spatially orthogonal EOFs that we 

analyze separately.   

 Table 1 shows the results of these analyses.  As can be seen here, the first EOF in the 

longshore direction consistently explains over 99% of the total variance in the longshore 

direction and the first two EOFs in the cross-shore direction consistently explains over 99% of 

the total variance in the cross-shore direction. Figure 9 shows the shapes of EOF1 for both the 

longshore and the cross-shore components for all years.  The consistency among the shapes from 

year-to-year suggests that these functions are physically based, and this suggestion is supported 

by the interpretation of these shapes in terms of a depth-constrained Ekman spiral.  Figures 10 

and 11 for the components of EOF 1 and EOF 2 also appear to have a physical interpretation that 

is very consistent with the theoretically expected rotation of the current vector with depth. 

 

4. The Scales of Decompositions Relevant to Open-Coast Models 
 

4.1 The General Case of Surge Generation in Offshore Areas 

 The fact that many years of data can be well-represented by a small number of EOFs 

supports the argument that, at least in open-coast areas, in may be possible to utilize the EOFs, or 

perhaps theoretical turbulent closure models which agree with these shapes to be used to enable 

an accurate representation of the three-dimensional current structure in these areas within a 



depth-integrated model. An important remaining question is the relaxation time required to attain 

a “quasi-equilibrium” vertical structure.  In most areas the primary depth range for surge 

generation in is less than about 30 meters.  For example, in a wind blowing toward the coast, 

neglecting Coriolis acceleration for the moment and neglecting wave-induced radiation stresses, 

the linearized slope of the water surge is given by (Resio and Westerink, 2008) 

 1.  
2

Dc Ru

x gh





 

where

 is the water surface level,  is the onshore direction,  is the coefficient of drag,  is the ratio

of air density to water density,  is the onshore wind speed,  is gravity, and  is water d

Dx c R

u g h



epth.

 

 For a wind speed of 50 m/sec and a depth of 30 meters, the slope is about
64 10 , so in 

100 km the surface would rise by only 0.4 m.  Additionally, typical Mixed Layer Depths along 

the Gulf of Mexico and Atlantic coasts are less than 30 meters, so the part of the water column 

that would respond to the forcing would depend on the MLD and the rate of deepening of this 

layer during the storm.  This means that the relaxation rate is limited to current profile responses 

in depth of 20-30 meters.  As shown in observations (Murray, 1975), in depths such as these, 

current profiles tend to follow a parameterized form, consistent with maintaining a consistent 

equilibrium with wind forcing.  This same consideration is likely the reason for the small number 

of EOFs required to represent the preponderance of the variance in the current profiles along the 

Florida coast.  

 

4.2 The Case of Wave and Wind Driven Motions Close to the Coast 

 An experiment conducted at the Field Research Facility in Duck, North Carolina provides 

a different scale of motions with a different dominant process, wave breaking.  This extremely 

turbulent and hostile region creates very strong forcing near the coast and can contribute very 

substantially to enhanced surge levels, wave runup, overtopping, breaching of protective 

levees/dunes and damages along the coast.  This data was made available to UNF by the 

Engineering Research Development Center, since the UNF Principal Investigator directed the 

field effort throughout its duration.   

 Although there are many days of observations, we will concentrate our analyses on the 

set of analyses from a single event.  Since this data is in raw form and relatively unedited, it 

required a major effort to extract usable information for our project.  As can be seen in Figure 12, 

the Sensor Insertion System used in this set of experiments was a unique piece of equipment 

designed specifically to be able to take measurements on the up-current side of the pier at a 

distance that should have eliminated essentially all of the “pier effects” on waves and longshore 

current, since these tend to occur downstream from the pier.  Figure 13 shows the location of the 

experiment and Figure 14 shows the set of instruments deployed from the SIS.  Miller (1999) 

provides additional details on the instrumentation and the information collected. 

 Significant wave heights in the range of 3 – 4 meters in a nominal depth of about 8 

meters are typical for storm conditions produced by northeasters along the Outer Banks.  

Combined wind and wave forcing consistently generated currents in excess of 0.5 m/sec toward 

the coast in the top layer of water and a return flow beneath the top layer of up to 0.4 m/sec.  The 

overall net transport fluctuated due to both infragravity waves and sampling deviations; however, 

the currents averaged to a depth integrated mean current near zero.  On one hand this might seem 

to confirm the appropriateness of depth-integrated models in this situation; however, the bottom 



friction is directed toward the coast, so it must be added to the force balance.  Simplifying this to 

be a quasi-steady-state situation during each measurement cycle, we obtain a slope equation 

represented by 

 2. 
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 is the velocity of the mean current at the surface
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 A scale analysis of terms is helpful at this point, so given that 
Dc R is approximately equal 
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where 0 is the initial wind stress toward the coast, so this is clearly not a term that can be 

neglected in shallow water; and since this zone of return flow is expected to extend over the 

entire region with onshore winds, it deserves additional attention. 

 

5. Methodology for Including Three-Dimensional Current Structure into Depth-Averaged 

Models 

 Experiments with relaxation rates of various flows in coastal water has shown that most 

situations driven by synoptic-scale wind systems can be successfully modeled using a stochastic 

approach in which the initial state variable is a function of 8 properties (the x and y components 

of EOFs 1 and 2) of the flow field at a given horizontal location.  Time-dependent simulations 

using a number of different turbulent closure schemes have shown that at least two approaches (k 

and k-ε) appear suitable for applications in shallow coastal areas (Figures 15 and 16).  

Simulations can be executed for a set of discretized values of the 8 parameters used to 

characterize the initial state plus additional discretized parameters used to characterize other 

forcing and site characteristics (depth, wind speed and directions, wave radiation stress, bottom 

characteristics, etc.).  In this context, the stochastic matrix will be referenced by the 8 initial 

values plus x-y momentum flux inputs, the depth, the simulation time increment and the bottom 

friction coefficient. Using inherent symmetries will reduce the number of combinations required 

for this referencing considerably.  For example wind and wave directions are symmetric around 

the local cross-shore direction and solutions with respect to depth are expected to exhibit self-

similarity. Also wind-speed and direction characteristics are expected to be very smoothly 

varying, which should allow accurate interpolations over relatively large increments.  Utilizing 

such symmetries and interpolation concepts is expected to reduce the storage requirements for 



the stochastic matrix to the neighborhood of 500 MB.   

 The potential value of this methodology to improve open-coast water levels could prove 

to be very important in many areas of the United States.  Today’s depth-integrated approaches 

are very well established but depend heavily on local calibration to achieve reasonable accuracy; 

and in cases where calibration involves storms with forerunners, this can create significant 

problems in this calibration when applied to storms approaching from different directions. 

Likewise, assuming that the direction of the bottom friction force is aligned with the average 

direction is very crude at best, particularly near boundaries where the overall velocity toward the 

coast is constrained to approach zero.  This methodology described here, based on using a 

stochastic third dimension may be extendable to many water bodies, even some with relatively 

complex geometries such as the Chesapeake Bay or San Francisco Bay; however, the potential 

scaling for its applicability in these area has not been addressed to date.   
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Table 1. Eigenvalues, percentage variance and cumulative variance for Cross-shore and 

Longshore currents 2002 – 2011.  

 

 
 

 



 
Figure 1.  Primary data collection areas used in this report.  



 
Figure 2. Typical time series of velocities in the upper layer of the depth normalized water. 

 



 
Figure 3. Average longshore current for each year in the data collection in March. 

  



 

 

 
Figure 4. Average longshore current for each year in the data collection. 

 

 

  



 

 

 
Figure 5. Average longshore current for each year in the data collection for September. 

 

 

  



 

 

 
Figure 6. Average longshore current for each year in the data collection for November. 

 

  



 
Figure 7. Average annual longshore current for each year in the data collection. 



 
Figure 8. Average annual cross-shore current for each year in the data collection. 

 

 

 

 

 



 
Figure 9. First EOFs of longshore (designated by ending letter L) and cross-shore (designated by 

ending letter C) for all years in collection.  



 

 

 

 

 

 

 

 
Figure 10.  Unit weighting on EOF 1 for both the longshore and cross-shore components of 

motion, showing that the motions resemble an Ekman spiral constrained by depth. 

  



 

 
 

Figure 11.  Similar to Figure 10 but for component shapes of EOF 2. 

 

 

 

 

  



   

 
 

Figure 12.  The Sensor Insertion System (SIS) during the STORM experiment. 

 

  



 

 

 
 

Figure 13.  Site location for nearshore storm experiment. 

 

  



 

 

 
Figure 14. Sensor set deployed from SIS. 

 



 
Figure 15. Steady-state solution using k-scaling for wind only (dashed line) and wind plus waves 

(solid line) on a steep beach with 1:10 slope and 20 m/sec winds and incident significant wave 

height of 6 meters. 

 

 

  



 

 

 

 

 
Figure 16. One-minute snapshots of solutions from zero-velocity initial state using k-scaling for 

constant wind and waves impacting a beach with 1:100 slope, 3.0 meter significant wave height 

and 15 m/sec wind speed. 

 

 

 

 

 

 

 

 



Appendix B 
Characterization of Vertical Flow Structure 

 

1. Introduction 

 Sediment rich flows are fast, episodic, gravity driven near bottom flows that represent 

one of the most prominent processes of sediment transport from shallow water into the deep 

ocean over long distances (Middleton and Hampton 1976). Once these flows are initiated, they 

move downslope, usually at speeds of 10’s of meters per second, on scales ranging from less 

than a kilometer to very long distances. They even have the potential to severely damage fixed 

platforms, submarine pipelines, cables, and other sea floor installations (Norem et al., 1990).  

 In spite of the increased viscous drag and reduced effective gravity due to buoyancy, 

these flows are associated with significantly higher velocities making them difficult to measure, 

understand, and simulate. Although their distinct characteristics are manifested by the rough 

and blocky appearances of most deposits, their flow characteristics are poorly understood. The 

purpose of this study is to study the characteristic flow structure of these flow using numerical 

methods that involves the combination of water and fraction of sediments. Understanding the 

structure of flow is vital to understand the vertical mixing process and its far travelling transport 

phenomena and associated geohazard.  

 

2. Numerical Model 

 

2.1 General Description 

 A two dimensional Eulerian biphasic (i.e., sediment and water) numerical model has been 

developed using the CFD software ANSYS FLUENT to simulate the flow. Within the solution, 

a single pressure is shared by all phases, and equations for the conservation of mass, 

momentum, and energy are solved separately for each phase. Several interphase drag functions 

and k-ε turbulence models are available. Herein, the realizable per phase turbulence model, 

which is the appropriate choice when the turbulence transfer among the phases plays a 

dominant role, was applied by solving a set of transport equations for each phase. The Morsi-

Alexander exchange coefficient model, which is the most complete by adjusting the function 

definition frequently over a large range of Reynolds numbers, was employed to consider the 

interphase interaction. The near-wall modeling approach, which is reliable for flows with low 

Reynolds number and high viscosity, was adopted as the wall boundary treatment method. 

 



2.2 Physical Domain 

 The domain consists of a 7.0m long flume, which has an inclination of 4 degree making 

with the horizontal plane. The upstream depth of the flume is 0.45m, and downstream water 

depth is 0.94m. An inlet with its height of 0.075m was set at the upstream bottom boundary to 

release the sediment. A pipeline with outside diameter of 0.024m has been placed at a distance 

of 3.5m downslope from the inlet to its centroid. The pipe was also elevated by a clearance of 

0.024m from the flume bed. Figure 1 shows the computation domain and mesh. 

 

2.3 Meshing and Boundary Conditions 

 The meshing was performed using the Gambit module. The thickness of the boundary 

layer, which is uniformly divided into 5 layers, was set to be 0.002m on the flume bed and 

0.001m on the pipe surface. As the sediment rich flow mainly flows on the flume bottom, the 

large domain can thus be divided into two connected parts with fine grids for the bottom zone 

and coarse one for the top region. Therefore, both more accurate solutions in the main region of 

the moving  flow and more efficient computations for the whole domain can be achieved. 

Specifically, for the bottom domain, the grid spacing on edges was set as 0.005m and on pipe 

surface as 0.001m; for the top part and domain-splitting interface, the spacing is 0.01m; 

consequently, the whole computational domain was paved with a total number of 187,513 

triangle elements. In this modeling exercise, the time step was set as 0.005s. 

 The pipe and flume bed surfaces were defined as the no-slip boundaries with equivalent 

sand roughness of 0.0000015m (Crowe et al., 2001) and 0.0005m (Zakeri et al., 2009), 

respectively. Both the top of the domain and the upstream wall above the inlet were set as free-

slip wall boundary conditions. The inlet and outlet boundary conditions were specified with 

velocity inlet and free outflow. At the inlet, various constant velocity values (i.e., 0.5-1.0 m/s) 

under different scenarios were set normal to the boundary. The turbulent kinetic energy and 

turbulent dissipation rate at the inlet boundary were respectively estimated as (Fukushima and 

Watanabe, 1990) 

 
2

0.1in ink u  

 3/2 3/4
10 /in in ink C h   

where kin, uin, εin, hin are the turbulent kinetic energy, averaged velocity, turbulent dissipation 

rate, and current thickness at the inlet, respectively. κ = 0.41 is the von Karman constant, and Cμ 

= 0.09 is the constant. 

 



2.4 Material Properties 

 Different percentages of clay (10 to 30%) and sand (35 to 55%) have been used to 

represent various flow concentrations (Table 1). Dynamic viscosity of the  flow was calculated 

by the Power-law rheological model, which was experimentally determined as (Zakeri et al. 

2008) 

n
app K      

where τ is the shear stress, μapp is the apparent viscosity, K is the flow consistency index, n is the 

flow behavior index, and γ is the shear rate, which is defined as 

U

D
   

where U∞ is the approaching  head velocity, D is the diameter of the pipe. 

 

3. Vertical Profile Monitoring 

 Previous studies have demonstrated that the approaching flow head velocities measured 

at an upstream point situated between 5 and 10 times the pipe diameter is an appropriate 

approximation for the free field stream velocity (Zakeri et al. 2009). In order to obtain the free 

upstream flow velocity and its vertical distribution, a vertical section #1 with 30 monitoring 

points equally arranged from the flume bottom to its top was placed at the upstream location 

with a distance of 6 times the pipe diameter from the pipeline centroid. To capture the 

immediate moment when the  flow impacting on the pipe, another vertical section #2 was 

established through the centroid of the pipe with a total of 36 monitoring points, among which 7 

monitoring points were placed between the pipe and flume bed to acquire more accurate data 

beneath the pipe. Every monitoring point is able to record time-series physical quantities such 

as velocity components and volume fractions during the simulation. 

 

4. Model Verification 

 A total number of 30 runs with varying sediment concentrations and inlet velocities have 

been performed in an attempt to determine the non-Newtonian Reynolds number and the drag 

coefficient impacting on the pipeline. The non-Newtonian Reynolds number is obtained from 

2

Renon Newtonian
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where ρ is the  flow density. The drag coefficient is determined by 
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where FD is the drag force and A is the projected area perpendicular to the flow direction. 

Selecting a flow event with 15% clay and 1.0m/s inlet velocity as a typical representation 

for all the other cases, its velocity profiles for the #1 monitoring section at the corresponding 

time before (t=4.73s) and after (t=4.75s) the  flow impacting on the pipe is displayed in Fig.2. 

The solid line pertains to the head velocity profile prior to the impact and the dashed one 

displays the profile shortly after the impingement. In this case, the upstream approaching flow 

velocity was adopted as the average velocity magnitude of 0.73m/s at the pipe location, which 

has an elevation of 0.024m from the flume bottom. Therefore, the shear rate is 30.4s
-1

; the shear 

stress is 38.3 Pa; the non-Newtonian Reynolds number is 23.4; and the drag coefficient can be 

output by the model as its peak value of 1.3. Similarly, for each case, we can obtain its non-

Newtonian Reynolds number and the corresponding drag coefficient, and finally establish a 

quantitative relationship between these two important parameters. The quantitative relationship 

between the non-Newtonian Reynolds number and the drag coefficient established from the 

modelling results were compared with previously conducted experiment (Zakeri et al., 2008). As 

displayed in Fig. 3, we find that the model results generally matches the experimental solution, 

which lay a good foundation for further predicting the sediment transport phenomena and flow 

structure characteristics. 

 

5. Results and Analysis 

 

5.1 Velocity Structure of Flow 

 Fig. 4a shows the velocity structures for the case with 10% clay content and 0.5m/s inlet 

velocity at t=6.0 and 12.0s in the #1 monitoring section. For t=6.0s, the flow head is just passing 

#1 monitoring section, and at t=12.0s, the flow body reaches a quasi-equilibrium state. From the 

head velocity profile, we can observe an abrupt jump of velocity from 0.08 to 0.8m/s for two 

sequential monitoring points at the bottom, while the water depth only changes from 0.0 to 

0.00236m. The gradient of the velocity at this location therefore is 305.1s
-1

; from the body 

velocity profile, we can observe a gradual change of velocity near the bottom. As water depth 

for two sequential monitoring points at this boundary changing from 0.0 to 0.00236m, the 

velocity varies from 0.02 to 0.36m/s. Thus, the gradient of the velocity at this location is 144.1s
-

1
, which sharply reduces by 52.8% compared with the value at the head. 

 The explanation for the significant differences of the near bed velocity profiles between 

the head and body can be introduced from Fig. 5. In Fig.5a, we can find the significant thin film 

of water layer beneath the head, which is termed as the hydroplaning phenomenon (Mohrig et 

al., 1998, 1999). In Fig. 5b, the body part is filled with sediment, where the vertical velocity 

profile near the bottom is directly controlled by the frictional stress coming from the flume bed. 

As a consequence, the corresponding velocity profile should take on a gradual variation trend 



from the bed. While for the head part, the thin water film exists beneath the head, and it serves 

as a lubricating layer between the head and the flume bottom to avoid the direct contact of each 

other. This separation from the flume bottom avoids the violent frictional stress from the bed, 

and just a slight shear stress from the top of the water film acts on the bottom of the  head. 

Therefore, its velocity profile possesses a significant jump near the bottom bed. 

 In addition, three distinct layers can be obviously observed from Fig.4a, i.e. the shear 

layer, the plug layer, and the mixture layer. The shear layer where shear stress exceeds the yield 

stress is significant in the bottom part of the body. Above the shear layer is the plug layer, 

where flow uniformly travels forward. The mixture layer is located at the top of these two 

layers. In this zone, the velocity at the head and body will gradually decrease due to the shear 

stress from the overhead water body, and turbulence will occur because of the relative 

movement and material mixture between the flow and ambient water. Since the body comes to a 

quasi-equilibrium state which means less turbulence induced there, from Fig. 4a and Fig. 5b, we 

cannot see the negative velocity during the interface of water and flow. On the contrary, we can 

obviously observe the negative flow at the head from Fig. 4a and Fig. 5a. The fast downslope 

movement leads to enough pressure on the head, which is an essential to lifting the head for the 

generation of hydroplaning. More pressure impacting on the head thereby contributes to more 

violent turbulence on the interface of the head and ambient water. And these enough 

turbulences trigger the negative velocity distribution around the interface of flow and its 

surrounding water.  

 Similar phenomena can also be observed from Fig. 4b and Fig. 6, which are the results 

for the case with 30% clay content and 1.0m/s inlet velocity. A summary of the velocity 

variations near the bottom boundary for these two cases are displayed in Table 2. In spite of the 

remarkable similarities between these two cases, they still present some particular distinctions. 

Since the drop of the gradient velocity (85.3%) in Fig 4b is larger than that (52.8%) in Fig. 4a, 

we can further get the information that the hydroplaning effect on the bottom part of the 

velocity profile for  flow which are associated with larger fractions of clay materials tend to be 

more significant compared to those with moderate clay contents. Besides, the plug zone in Fig. 

4b is more obvious than that in Fig. 4a, which denotes that the flow associated with larger 

fractions of clay materials tend to be more accessible to form the plug zone than those with 

moderate clay contents. Furthermore, we also find that the negative velocity for 10% clay 

content flow is more significant than that for 30% clay content, which conveys the information 

that the flow associated with moderate clay material tend to be more sensitive to the 

surrounding turbulence to form negative velocity than those with larger fractions of clay. 

 

5.2 Downslope Movement of Flow 

 Fig.7 (a) shows the s downslope propagation of 10% clay case. With different inlet 



velocities (0.5-1.0 m/s), at t=3, 6, and 9s, the downslope propagation speed of the  with 1.0m/s 

triggering velocity shows the fastest, while that with 0.5m/s inlet velocity is the slowest. And 

the remaining cases with inlet velocities of 0.6-0.9m/s place their corresponding head locations 

between cases with inlet velocities of 0.5 and 1.0 m/s. Another extreme situation with the flow 

of 30% clay material in our simulation is provided in Fig. 7 (b), which displays the same result 

as provided in Fig. 7(a). And similar results can also be attained for all the remaining cases with 

different clay contents. To sum up, with a certain flow rheology property, and keeping the 

triggering velocity changed, we can find that the larger the inlet velocity, the faster the flow 

propagates downslope.   

 Fig.8 (a) shows the downslope propagation case with 0.5m/s inlet velocity. With varying 

percentages of clay (10 to 30%) and sand (35 to 55%) by mass, at t=3, 6, and 9s, the downslope 

propagation of the  with 10% clay content shows the fastest, while that with 30% clay material 

moves the slowest. And the remaining cases with clay content of 15-25% place their 

corresponding head locations between cases with clay content of 10 and 30%. Another extreme 

situation with 1m/s inlet velocity in our simulation is provided in Fig. 8 (b), which displays the 

same result as provided in Fig. 8 (a). And similar results can also be attained for all the 

remaining cases with different inlet velocities. To conclude, with a certain inlet velocity, and 

keeping the flow rheology property changed, we can find that the flows which are associated 

with larger fractions of clay materials tend to move downslope slower compared to those with 

moderate clay contents. 
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Table 1.  Flow composition and rheological properties
*
 

 

Clay, 

% 

Water, 

% 

Sand, 

% 

Density, 

kg/m
3
 

Power-law 

Model 

10 35 55 1681.0 0.14010.3   

15 35 50 1685.7 0.12525.0   

20 35 45 1687.7 0.12050.0   

25 35 40 1689.6 0.11091.5   

30 35 35 1691.6 0.125118   

* This data are modified from Zakeri et al. 2008, in which the 

percentages of clay, water, and sand are measured by mass. 

 

 

 

 

 

Table 2.  Velocity variations near the bottom boundary 

 

 

Scenario 10% clay+0.5m/s inlet velocity 30% clay+1.0m/s inlet velocity 

Location  head body head body 

Depth, m 0.0-0.00236 0.0-0.00236 0.0-0.00236 0.0-0.00236 

Velocity, m/s 0.08-0.80 0.02-0.36 0.06-0.74 0.0 to 0.1 

 Gradient, s
-1

 305.1 144.1 288.1 42.4 

Reduction, % 52.8 85.3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 1. (a) The computational domain and (b) mesh with structure 



 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Velocity profiles for the #1 monitoring section before and after the flow impacting on 

the pipe (15% clay and 1.0m/s inlet velocity)  
 

 

 

 

 

 

 



 

 

 

 

 
Figure 3.  Comparison of relationship between the non-Newtonian Reynolds number and drag 

coefficient among experimental and numerical results 

 

 

 

 

 

 

 
 



 
Figure 4. Velocity profiles for the #1 monitoring section (a) at t=6.0 and 12.0s for the case with 

10% clay and 0.5m/s inlet velocity, and (b) at t=7.0 and 16.5s with 30% clay and 1.0m/s inlet 

velocity 

 



 
Figure 5. Concentration contour and velocity field of (a) head and (b) body for the case with 

10% clay and 0.5m/s inlet velocity 

 

 

 



 

 
Figure 6. Concentration contour and velocity field of (a) head and (b) body for the case  

 

 

 



 

 

 

 
Figure 7. Downslope movements of flow with certain rheology properties (a) 10% clay (b) 30% clay and 

various inlet velocities.  

 

 

 

 

 

 

 

 

 



 

 

 
Figure 8. Downslope movements of flow with certain inlet velocities (a) 0.5m/s (b) 1m/s and various 

rheology properties.  
 

 

 

 

 

 

 

 

 



Appendix C  

 
Estimation of Hurricane Parameters with Uncertainty 
 
 

1. Introduction 

When a tropical storm occurs at North Atlantic Ocean, National Hurricane Center (NHC) 

provides two different data sets:  ATCF’s best track dataset (BTK) and ATCF’s forecasted storm 

track dataset (AFST). The BTK contains the current and previous storm information including 

maximum wind speed (Vmax), central pressure (CP), and radius of maximum wind (RMW) 

speed along storm tracks (latitude and longitude) in every 6 hrs interval. The AFST dataset 

provides forecasted storm tracks with Vmax for 3, 12, 24, 36, 48, 72, 96, and 120 hours ahead 

but doesn’t contain CP and RMW, which are key climatic parameters with translation speed to 

estimate the hurricane risk (Vickery et al., 2009). 

Hurricane intensity (or CP) is generally modeled as a function of the relative intensity 

and thermodynamic and atmospheric environmental variables including sea surface temperature, 

tropopause temperature, and vertical wind shear (Vickery et al., 2009). Several models have been 

used today to forecast the hurricane intensity. Most of these models are based on regression and 

probabilistic methods, which include SHIFOR (Jarvinen & Neumann, 1979), GFDL (Kurihara et 

al., 1998) and SHIPS (DeMaria & Kaplan, 1994; DeMaria & Kaplan, 1999; DeMaria et al., 

2005). Law & Hobgood (2007) suggested that different models should be used to consider 

different hurricane intensity and different stages during a hurricane life cycle rather than using 

one regression model for a particular forecast interval. They presented a new statistical model to 

consider multiple regression equations to forecast future 24-h wind speed and central pressure 

changes. Su et al. (2010) developed a data mining model to forecast hurricane intensities using a 

generic algorithm (GA). It showed that the model gives better prediction than that of SHIPS 

within 72 hours. 

  The RMW is theologically independent of the relative of pressure and hurricane shape so 

that it could not be determined by hurricane’s intensity and shape (Mouton et al., 2005). 

However, RMW is an important parameter for hurricane risk prediction, particularly for storm 

surge and wave modeling (Mouton et al., 2005; Vickery & Wadhera, 2008; Vickery et al., 2009). 

In order to estimate the RMW, several studies have been conducted. Willoughby et al. (2006) 

developed a linear regression model expressed as a function of the Vmax and latitude. Vickery & 

Wadhera (2008) developed two statistical models for the Gulf of Mexico and Atlantic Ocean 

hurricanes, respectively, which are a function of hurricane intensity and latitude. Some studies 

showed the estimation of RMW via satellite data analysis (Hsu & Babin, 2005; Lajoie & Walsh, 

2008).  

Conventionally, researchers have employed traditional methods such as regression 

analyses and probabilistic models. However, conventional statistic models generally have 

inherent limitations as following. First, the expertise has to specify the functional form relating 

the independent and dependent variables to make the necessary data transformations. Second, 

outliers can lead to biased estimates of model parameter. Finally, statistical models may not 

capture well nonlinear behaviors (Hill et al., 1996). 



In order to overcome the inherent limitations and uncertainties of the statistic models, the 

neural networks have been introduced in various areas dealing with time series forecasting. 

Using neural network has several advantages. First, field recoded data can be directly used 

without simplification because neural networks are less sensitive to the error term assumptions 

and can tolerate noise (Masters, 1993), chaotic components. Second, it can simulate nonlinear 

behaviors. Third, it can execute parallel computations (Kerh & Lee, 2006).  

In water resources field, many studies have demonstrated that neural networks can 

replace or supplement the conventional methods to forecast the river discharges/stages at a 

specific downstream station using river upstream information and other physiographical factors 

to affect river discharges (Thirumalaiah & Deo, 1998; Campolo et al., 1999; Liong et al., 2000; 

Kerh & Lee, 2006; Othman & Naseri, 2011).  

The neural networks have been also applied to fields related to hurricanes and storm 

surge forecasting. Johnson & Lin (1996) applied the back-propagation neural network to forecast 

hurricane tracks using meteorological data for the North Atlantic Ocean Basin. They 

demonstrated that their neural network model has better forecasting capability than the ARIMA 

model. Baik & Paek (2000) also applied the neural network to forecast typhoon intensity in the 

western North Pacific and showed that the network has a better capability than multiple linear 

regression models in the intensity prediction. Some neural networks have been developed to 

forecast the storm surge height at specific stations (Deo & Naidu, 1998; Deo et al., 2001; Tsai et 

al., 2002; Chang & Chien, 2006). 

 In this study, a neural network model has been developed and applied to forecast CP and 

RMW on the base of NHC’s official advisory data (BTK & AFST). The network was trained and 

verified based on the historical dataset collected from National Hurricane Center (NHC). The 

successful application of the neural network provides a low-cost tool to estimate storm 

parameters on base of current hurricane forecasting advisory dataset. 

 

2. Neural Network Model and Data 

 

2.1 Neural Network 

Typical neural networks using back-propagation algorithm, which is known as common 

method for training multilayered feedforward networks, is consisted of three layers: an input 

layer, a hidden layer, and an output layer (Figure 1). The input layer is the layer of neurons 

receiving inputs directly from outside the network and the number of nodes (or neurons) in the 

layer is determined by the number of input. The input layer distributes the values to each of the 

nodes in the hidden layer, which is located between input and output layers. Arriving at a node in 

the hidden layer, the value from each input neuron is multiplied by a weight, and the weighted 

values are added together. The weighted sum is fed into a transfer function, which outputs a 

value. In general, an increasing the number of the hidden layers affects the complexity of the 

network and decreases the learning accuracy (Othman and Naseri, 2011). Theoretically, a single 

hidden layer is enough for most forecasting problem (Cybenko, 1989; Hornik et al., 1989; Tang 

et al., 1991).  

The transfer function scales the output of the each layer. The transfer function used in the 

back-propagation networks is usually expressed by sigmoid function as following: 
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There are various types of transfer function such as hyperbolic tangent and linear 

function. The selection of transfer function is dependent on characteristics of output. These 

outputs from hidden layer are distributed to the output layer. Then each value passed from 

hidden layer to output layer is multiplied by a weight, and the weighted values are added 

together. The weighted sum is fed into a transfer function, which results in an output of the 

network. 

For neural network training, the network needs target data, which are used to determine 

errors of the output from the network training. An error generated from the output propagates 

backward to the input layer via the hidden layer to minimize the error as modifying neuron 

connection weights and thresholds. To calculate and adjust the weights of the network, 

Levenberg-Marquadt back-propagation algorithm is used. To evaluate the results of neural 

network, the root mean square error (RMSE) and coefficient of determination (R
2
) are used. 

 

2.2 Data used 

For neural network’s training and verification, the historical best track data from 2001 to 

2008 were collected from National Hurricane Center (ftp://ftp.nhc.noaa.gov/atcf/archive/). 

During this period, total 130 tropical storms were issued in North Atlantic Ocean, 63 tropical 

storms of them were strengthened to hurricanes. Figure 2 and 3 show relationships among wind, 

CP, and RMW. RMW shows the large variance over 980 mb of CP, ranging from 10 to 250 nm 

(Figure 2), whereas CP shows relatively narrow variance with high R
2
 (Figure 3).  

According to Saffir-Simpson Hurricane Wind Scale 

(http://www.nhc.noaa.gov/sshws.shtml), National Hurricane Center (NHC) defines the 

hurricane as a tropical storm having over 64 knots of Vmax and below 987 mb of CP. Our 

interest is also limited to hurricanes influencing on coastal zones between Louisiana and 

Alabama, USA. Thus, the best track data were re-sampled to consider changes in characteristic 

of storm parameters inside the Gulf of Mexico. In addition, the data were filtered out below 64 

knots in Vmax, over 990 mb in CP, and over 75 nm in RMW. Total 14 hurricanes for this study 

were selected (Figure 4). The major hurricanes namely, Dennis, Katrina, Rita, Gustav, and Ike 

are included in this re-sampled data. In case of Ivan (2004), the hurricane data were not 

considered for this data set because of no RMW data. 

In this study, we developed two forecasting models for CP and RMW of storm using (1) 

short time series data and (2) long time series data, relatively. Each forecasting model is consists 

of two neural network models for CP and RMW, respectively. 

In the development of neural network model, it is very important to select input variables 

as predictors that significantly influence on outputs. In this study, the five storm parameters were 

chosen: storm’s location (latitude and longitude), Vmax, CP, and RMW. These storm parameters 

have been used as input variables of previous regression models for CP (DeMaria & Kaplan, 

1994; DeMaria & Kaplan, 1999; DeMaria et al., 2005; Law & Hobgood, 2007) and RMW 

(Willoughby et al., 2006; Vickery & Wadhera, 2008). It is also easily acquired from the NHC’s 

ftp site. 

In case of the forecasting model using short time series data (Model-A), the neural 

network input data for prediction of CP in future (+ 6 hrs) is composed of storm’s location 

(latitude and longitude), Vmax, CP and RMW at current time (0 hr) and storm’s forecasted  

location and Vmax at + 6 hrs from AFST data. The network for RMW at + 6 hrs uses the 

forecasted CP at +6 hrs with other data used for CP forecasting in the previous step. Therefore, 

The first neural network model to forecast a CP (NN-A1) consists of 8 nodes in the input layer, 

ftp://ftp.nhc.noaa.gov/atcf/archive/
http://www.nhc.noaa.gov/sshws.shtml


20 nodes in the hidden layer, and one node in the output layer (I8H20O1). The second neural 

network model (NN-A2), which estimates the RMW via the estimated CP from NN-A1, has 9 

nodes including the forecasted Cp in the input layer, and 20 nodes in the hidden layer and one 

node in the output layer (I9H20O1).  

In case of the forecasting model using long time series data (Model-B), the neural 

network model uses storm information not only at current (0 hr) and + 6 hrs, but also at 6 hrs 

before (- 6 hrs). The first neural network model to forecast changes in CP (NN-B1) consists of 13 

nodes in the input layer, 20 nodes in the hidden layer, and one node in the output layer 

(I13H20O1). 13 nodes in the input layer consist of storm’s location, Vmax, CP and RMW at - 6 

hours before and current time (0 hr), respectively, and storm’s location and Vmax at + 6 hrs from 

the AFST data. The second neural network model (NN-B2) estimates the RMW via the 

estimated CP and 13 nodes used for NN-B1. Thus, the NN-B2 model has 14 nodes in the input 

layer, and 20 nodes in the hidden layer and one node in the output layer (I14H20O1).  Table 1 

shows a list of storm parameters used for each neural network model. For the network’s training, 

validation, and testing, total 182 sample dataset and target data for each neural network’s training 

were prepared from the best track data. 

 

3. Results 

 

3.1 Neural Network Training and Verification 

For the neural network training and verification, in total 182 dataset, 128 dataset were 

used for the network training, 27 dataset for the validation, and 27 dataset for the testing. The 

estimated CP and RMW values for all dataset were compared with target data using R
2
 and 

RMSE. Table 2 shows that the training, validation, and testing results for each model (Model-A 

and B). It shows that RMSE values are very small compared to the magnitude of Cp (900 - 1000 

mb) and RMW (5 – 80 nmi). The values of R
2
 in most cases is greater than 0.9, which indicates 

vary satisfactory model performance. According to these results, the prediction ability of the 

models is very good. The results also confirm that the storm parameters given as input data are 

sufficient to capture the changes in CP and RMW in the Gulf of Mexico. Figure 5 and 6 show the 

comparison between estimated and observed Cp and RMW for all data including model training, 

validation, and test. 

Even though both models showed a good forecasting capability on given information, a 

comparison between Model-A and Model-B shows that the Model-B can do better prediction 

than Model-A. It suggests an importance of input data in the neural network because only 

difference between them is that Model-B considers more storm parameters than Model-A. Using 

only current time information to forecast future values is too a stringent requirement for the 

model and is not sufficient to recognize a storm’ pattern. In real, the time series forecasting 

problem in neural networks typically uses the past observation time series data as input data to 

discover the underlying pattern (Zhang et al., 1998). It looks that the more input data could lead 

more accurate forecasting results, but it might increase the complexity in a calculation process, 

resulting in more computational time (Kerh & Lee, 2006). In present study, we used the Model-B 

to develop the forecasting model for storm parameters in the Gulf of Mexico. 

 

3.2 Application of Neural Network  

In order to forecast multiple time steps, the method using feedforward and recurrent 



neural networks was used in this study. That is, the neural network designed for single step 

forecasting was applied iteratively to use estimated new information. For example, first, the 

neural network NN-B1 forecast the CP (+ 6 hrs) at a given time step (0 hr), and the neural 

network NN-B2 estimates the RMW at + 6 hrs using newly estimated Cp. After forecasting Cp 

and RMW, the current predicted output for a given time is used as inputs for computing the time 

series at the next time step, and all other input data are shifted back 6 hrs. This process is 

repeated as many time steps ahead as needed.  

To test the neural networks for multiple time steps, four historical hurricanes which 

influenced on the Gulf Coastal areas were chosen: Dennis (2005), Katrina (2005), Rita (2005), 

and Gustav (2008). Each hurricane’s track is shown in Figure 7. From the best track data of each 

hurricane, input data of neural networks for CP and RMW were re-constructed and the 

forecasted outputs were compared with observed ones. 

Figure 8 shows the Vmax variation during Hurricane Dennis and time series data 

comparison between observed and forecasted CP and RMW. The forecasting was conducted 

from 7/7/2005 00:00 to 7/11/2005 00:00. During this period, Vmax was about 130 kn at 7/8/2005 

12:00 and the maximum wind had dropped by 45 kn after the landfall (Figure 8a). On the base of 

input data, the neural network forecasted the CP and RMW in every 6 hours interval. Even 

though the storm information for Hurricane Dennis were included in data for the neural network 

training, the forecasted CP values shows surprisingly a good agreement in terms of the 

magnitude and phase of central pressure (Figure 8b). The R
2
 and RMSE are 0.95 and 3.66.  

Figure 8c shows comparison results between observed and forecasted RMW. The maximum 

difference between them was 10 nm after landfall. In general, forecasted RMWs followed a trend 

of observed RMW change in time. The R
2
 and RMSE for RMW are 0.46 and 3.34. 

For Hurricane Katrina, Rita, and Gustav, forecasted outputs were compared with 

observed data for CP and RMW (Figure 9 to 11). In case of CP, forecasted results for all 

hurricanes show a good agreement with observed ones like Hurricane Dennis. For RMW 

forecasting, they show some discrepancies between forecasted and observed ones but most errors 

are below 5 nm except 10 nm at 8/27/2005 18:00 during hurricane Katrina. Forecasted RMWs 

also followed well a trend of observed RMW change in time.    

As mentioned earlier, these good forecasted results might be highly related to data sets 

prepared for neural network training. In order to avoid this weakness, hurricanes since 2008 were 

searched and Hurricane Ida was chosen although there were no major hurricanes which made a 

landfall on the Gulf Coast areas. Hurricane Ida was formed November 4, 2009 in Atlantic Ocean 

and made a landfall on Nicaragua coast. After this landfall, Hurricane Ida weakened and became 

an extratropical cyclone in the northern Gulf of Mexico (Figure 7).  

Figure 12 shows Vmax during Hurricane Ida and time series data comparison between 

observed and forecasted CP and RMW. The forecasting was conducted from 11/8/2009 00:00 to 

11/10/2009 06:00. During this period, Vmax was 90 kn at 1/9/2005 00:00 (Figure 12a). The 

comparison results between observed and forecasted CP were shown in Figure 12b. In general, 

forecasted CP values are smaller than observed data but the forecasted values followed well a 

changing pattern of observed CP. The maximum difference is about 10 mb after Hurricane Ida 

transformed to a tropical storm. The R
2
 and RMSE are 0.39 and 11.03. Figure 12c shows 

comparison results between observed and forecasted RMW. The maximum difference between 

them was about 13 nm. The forecasted RMWs relatively showed a poor agreement with 

observed ones in terms of magnitude and phase. The R
2
 and RMSE for RMW are 0.04 and 6.30. 

These poor forecasted results for Hurricane Ida might be related to the data set for the 



network training because the network was designed for hurricanes not tropical storms in the Gulf 

of Mexico. Even though Hurricane Ida had shown hurricane’s characteristics before entering the 

Gulf of Mexico, Hurricane Ida after entering the Gulf of Mexico had become weak and was 

changed to the tropical storm. In real, the discrepancy between observed and forecasted became 

bigger after passing 11/9/09 00:00, when Hurricane Ida begun to lose her hurricane intensity, and 

the phase difference of RMW also occurred after hurricane transformed to the tropical storm 

since 11/9/09 12:00. 

Based on the forecasting results presented in this study, the neural network model 

provided a low-cost tool to forecast storm parameters from current hurricane forecasting 

advisory dataset. This network model can also help improving storm surge forecasting systems’ 

accuracy. Current real-time storm surge forecasting systems using NHC’s advisory data use the 

Holland model to generate a wind field. In order to calculate the wind field, the Holland model 

needs several input data such as storm track, Vmax, CP, and RMW or Wind radii in four (NE, 

SE, SW, NW) quadrants. However, NHC’s advisory data doesn’t provide CP and RMW values 

at each forecasted storm locations, and thus many storm surge forecasting models have used 

temporally and spatially same CP and/or RMW along forecasted storm tracks (Mattocks et al., 

2006). Therefore, applying time varying CP and/or RMW values may allowed more realistic 

storm surge estimation results.  
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Table 1. Input variables used as predictors of each neural network for forecasting CP and RMW. 

Model 
Neural 

Network 

6 hrs before 

(- 6 hrs) 

Current time  

(0 hrs) 

6 hrs after  

(+ 6 hrs) 

Forecasted  

(+ 6 hrs) 

Model-A 

NN-A1 
Data are not 

required 

Lat., Long, 

Vmax, CP, 

RMW  

Lat., Long, 

Vmax 
CP 

NN -A2 
Data are not 

required 

Lat., Long, 

Vmax, CP, 

RMW 

Lat., Long, 

Vmax, CP 
RMW 

Model-B 

NN -B1 

Lat., Long, 

Vmax, CP, 

RMW 

Lat., Long, 

Vmax, CP, 

RMW 

Lat., Long, 

Vmax 
CP 

NN -B2 

Lat., Long, 

Vmax, CP, 

RMW 

Lat., Long, 

Vmax, CP, 

RMW 

Lat., Long, 

Vmax, CP 
RMW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2. The evaluation results for neural network model training, validation, test, and all data. 

 
Model-A Model-B 

NN-A1 NN-A2 NN-B1 NN-B2 

Training 

(n = 128) 

R
2
 0.98 0.98 0.99 0.92 

RMSE 3.3 1.5 2.4 3.2 

Validation 

(n = 27) 

R
2
 0.99 0.96 0.99 0.99 

RMSE 2.0 4.5 1.5 1.6 

Test 

(n = 27) 

R
2
 0.94 0.70 0.95 0.91 

RMSE 3.3 8.2 2.7 4.4 

All 

(n = 182) 

R
2
 0.98 0.93 0.99 0.95 

RMSE 3.1 3.8 2.3 3.3 

 

 

 



 

Figure 1. Typical neural network model (INHNO1) for forecasting time series. 

 



 

Figure 2. Relationship between maximum wind speeds and central pressures in the North Atlantic 
Ocean. 



 

Figure 3. Relationship between central pressures and radius of maximum wind speed in the North 
Atlantic Ocean. 



 

Figure 4. The storms used for the neural network training, verification, and testing in this study. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5. The comparison between observed and forecasted data of CP and RMW for Model-A. 



 

Figure 6. The comparison between observed and forecasted data of CP and RMW for Model-B. 



 

Figure 7. The hurricanes tracks considered for multiple time step forecasting. 

 



 

Figure 8. The comparison between observed and forecasted CP and RMW for Hurricane Dennis. 

The forecasting was conducted from 7/7/2005 00:00 to 7/11/2005 00:00. The green vertical line 

indicates the hurricane’s landfall time. 



 

Figure 9. The comparison between observed and forecasted CP and RMW for Hurricane Katrina. 

The forecasting was conducted from 8/26/2005 00:00 to 8/29/2005 18:00. The green vertical line 

indicates the hurricane’s landfall time. 

 



 

Figure 10. The comparison between observed and forecasted CP and RMW for Hurricane Rita. 

The forecasting was conducted from 9/20/2005 12:00 to 9/24/2005 12:00. The green vertical line 

indicates the hurricane’s landfall time. 



 

Figure 11. The comparison between observed and forecasted CP and RMW for Hurricane 

Gustav. The forecasting was conducted from 8/28/2008 18:00 to 9/1/2008 18:00. The green 

vertical line indicates the hurricane’s landfall time. 

 



 

Figure 12. The comparison between observed and forecasted CP and RMW for Hurricane Ida. 

The forecasting was conducted from 11/7/2009 18:00 to 11/10/2009 06:00. The green vertical 

line indicates the hurricane’s landfall time. The Downward-pointing triangle indicates the 

tropical storm stage of Hurricane Ida. 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix D 

 
Development and Application of a Simulation Driven 

Decision Making Framework (SiDMAF) 
 

1. Introduction 

 The United States Gulf of Mexico coast ranging from Texas to Florida is vulnerable to 

frequent hurricane activities. From 1715 to 1985, approximately forty hurricanes struck in that 

region. Over the years, these hurricanes greatly affected the inhabitants surrounding the coast and 

resulted in millions of dollars in property damage and hundreds of deaths. Among them, the most 

severe hurricanes were the Galveston Hurricane of 1900, the 1935 hurricane that destroyed the 

Florida Keys, Hurricane Camille in 1969 and most recently, hurricane Katrina in 2005 which 

devastated the Mississippi coast. On the Mississippi coast, Katrina brought about an extreme 

surge with maximum elevations on the order of 8-9 meters (Niedoroda et al. 2010).   

 The devastation of Hurricanes Katrina and Rita in 2005 focused new attention on 

predicting storm surges and assessing risks. It is a common practice to use an integrated, coupled 

forecasting system for tides, winds and waves to forecast storm surge. Various storm surge 

models (i.e., SLOSH, CH3D-SSMS, ADCIRC) have been developed and used in real-time for 

estimating storm surge from an approaching hurricane. Even with the advent of super computing 

resources, the applications of process based and coupled simulations are often constrained by the 

fact that execution of such numerical models is complex and often time consuming.  

 Once a hurricane is developed in the Atlantic or Pacific oceans, the United States 

National Hurricane Center (NHC) releases hurricane advisory data every 6 hours. When a new 

hurricane advisory is released, decision makers and emergency managers need crucial 

information such as extent and timing of storm surge with sufficient accuracy ahead of the actual 

event. In recent years, several techniques have been used to provide such crucial information. 

One of the techniques is to run a storm surge model such as ADCIRC using hundreds of 

computers (or CPUs) in parallel and use a hotstart concept where the model simulation starts 

from the nowcast point representing current conditions (Fleming et al. 2007). Other forecasting 

systems use simple equations to reduce computational time for preparing the input data. For 

example, using the synthetic asymmetric vortex and wind forcing model (Holland model; 

Holland 1980) allows the surge forecasting model to use surface wind and pressure data without 

waiting several hours to get these wind data from the National Center for Environmental 

Prediction (NCEP) model (Mattocks & Forbes 2008). Even with such various efforts, it can take 

hours to forecast storm surge in real time once a hurricane advisory is issued from NHC.  

To address these limitations, we have developed and verified an alternative, efficient and 



robust data mining technique to forecast storm surge and assess risk in coastal areas. The 

developed Simulation Driven Decision Making Framework (SiDMAF) can be used to predict the 

extent of storm surge (e.g., maximum surge elevation, inundation area, surface wind and wave 

field) and related risk due to coastal inundation. With the help of this tool, decision makers and 

emergency managers can quickly assess the impact of an approaching hurricane and make 

objective decisions by evaluating what-if-scenarios quickly following each NHC advisory and 

starting two to three days ahead of landfall. 

2. Background Data 

In 2004, the Federal Emergency Management Agency (FEMA) Region Six (FEMA-R6) 

initiated a program to update the flood insurance rate maps for the state of Mississippi. Hurricane 

Katrina contributed important new data in the area of local climatology and high quality 

observations of flood elevation data. FEMA-R6 assigned the task of restudying the Mississippi 

coastal areas to a team led by the URS Corporation, and directed it to work closely with related 

efforts of the U.S. Army Corps of Engineers (Corps) already underway in the region (Resio et al. 

2007; Niedoroda et al. 2010). In the FEMA-R6 study, the historical hurricanes in Gulf of Mexico 

were characterized by storm frequency of occurrence, landfall track azimuth (Theta), central 

pressure deficit (dp), pressure scale radius (Rp), forward speed (Vf) of the storm and landfall 

position. Based on these hurricane characteristics, an optimum sampling method was developed 

using Joint Probability Methods (JPM) to find a set of hypothetical synthetic storms to represent 

the full range of conditions contained in the historic storm population. Each of the synthetic 

storms was then offset by a distance of one radius to maximum wind from the landfall location, 

creating multiple offset synthetic tracks that covered the entire length of the Mississippi coast. 

Table 1 shows the synthetic storm parameters used in FEMA-R6 study. In the FEMA-R6 study, 

228 synthetic storms represented by a unique combination of track, intensity, forward speed, 

storm size and radial wind profile decay were considered. A similar approach was also used by 

the USACE to develop flood frequency for Eastern Louisiana. USACE developed 47 synthetic 

storms which were representative to the coast of Eastern Louisiana. Each of the synthetic storms 

was simulated using the Planetary Boundary Layer Model (TC-96) to simulate the translating 

wind and pressure fields of hurricanes (Thompson and Cardone 1996); the WAM ocean wave 

model (Uniwave 3G) for deep-water waves; the SWAN model (ver. 40.51) for storm waves 

approaching the coast (Rogers et al. 2002); and the ADvanced CIRCulation Model (ADCIRC) 

for simulations of the storm surge (Westerink and Luettich 1991). All model results of the 

combined 275 synthetic storms were then archived as part of the present study. Figure 1 shows 

the track distribution of the 275 synthetic storms which made landfall close to the Mississippi 

coast. 

 

3. Methodology 

 The archived 275 high resolution ADCIRC simulations were organized in a central 

database in an effort to assess future risks. These were done through an efficient data mining 



technique. A Graphical User Interface (GUI) was also developed. The GUI named as SiDMAF 

operates in real time and is also capable to validate observed storm surges from historical 

hurricanes. For validation, the tool compares simulation results with observed High Water Marks 

(HWM) from historical hurricanes (e.g., Camille and Katrina) that made landfall in the Gulf of 

Mexico and close to the Mississippi coast. In real time, the SiDMAF tool automatically extracts 

hurricane information (e.g., current location, central pressure and radius to maximum wind) from 

the NHC website and identifies best matching synthetic storms by establishing a correlation 

between the approaching hurricane and synthetic storms within the database.  

 In the GUI, model validations are achieved by extracting key parameters of the 

representative historical hurricanes located in the Best Track information at the NHC website and 

then comparing those parameters with the synthetic storms archived in the database. During this 

process, three main parameters are compared which are: 1) Landfall location (SLF), 2) Central 

pressure (Cp) and 3) Radius to maximum wind (Rmax). The Cp and Rmax parameters are compared 

at an offshore location which corresponds to the storm position at a time 8 hours ahead of the 

landfall (Niedoroda et al. 2010). With these three major storm parameters, and by comparing 

available HWMs associated with the representative historical storms and ADCIRC simulation 

results within the database, the toolbox then extracts the best matching synthetic storm. Example 

results are demonstrated in the following section.  

 In real time, the tool operates sequentially. At first, the GUI collects current hurricane 

information by accessing the Automated Tropical Cyclone Forecast (ATCF) database provided 

by the National Hurricane Center (NHC). Since 2008, the NHC website has been providing real 

time GIS coverage of the forecast advisory such as five day hurricane cone. This GIS data from 

NHC are utilized by the GUI. The ATCF site also provides possible hurricane tracks and with 

maximum sustained wind speed at specific intervals (typically every 6 hours) starting 5 to 7 days 

ahead of the landfall. In our approach, the real time GIS data from NHC is used to determine the 

projected landfall location (SLF) and the characteristic forward speed (SFS), and storm track 

(STRK) of the approaching hurricane. The central pressure (Cp) and radius to maximum wind 

(Rmax) values at the current location are also extracted from the NHC official forecast site 

(ftp//:ftp.nhc.noaa.gov/atcf/afst/). Normally, the NHC releases real time data, such as position, 

Cp, and Rmax as well as the STRK with cone of uncertainty of an approaching hurricane developed 

in the Northern Atlantic Basin starting 5 to 7 days ahead of the landfall. The forward speed (SFS) 

is estimated by using the information available for the forecasted hurricane track. The evolution 

and development of the forecasted track from the NHC along with the information of key 

parameters allow the SiDMAF GUI to compare with the characteristics of the synthetic storm 

parameters archived in the database. The GUI then identifies a group of storms that best matches 

with the track distribution and characteristics of the approaching hurricane. The toolbox uses a 

weight based Storm Similarity Index (SSI) to identify the best matching synthetic storm by 

correlating hurricane characteristic parameters at a current hurricane position and estimated 

landfall location with the characteristics of the synthetic storms within the underlying database. 



The SSI ranges from 0 to 1 and is calculated by the following:  

SSI = ( a·HLF + b·HCp  + c·HRmax + d·HFS ) ·HTRK 

where, HLF = parameter indicating landfall similarity (0 to 1); HCp = central pressure similarity (0 

to 1); HRmax = pressure scale radius similarity (0 to 1); HFS = storm forwarding speed similarity 

(0 to 1); HTRK = storm track similarity (0 or 1), which indicates the similarity for forward 

direction of a hurricane. Here, a, b, c, and d = weighting factor whose summation is one. In the 

present toolbox, fixed values of a, b, c and d were used which were 0.4, 0.3, 0.2 and 0.1 

respectively. These values were optimized for coastal Mississippi.  

The simulation process starts with calculating SSI values by correlating current hurricane 

position, Cp and Rmax values along with the forecasted track and landfall location (SLF) with the 

characteristics of the synthetic storms. Based on the SSI, the toolbox then identifies a group of 

storms that closely matches with the characteristics of the approaching hurricane and then 

displays ADCIRC simulation results (e.g., maximum surge elevation and hydrographs at specific 

locations) in Google Earth environment. This is a very fast process, taking only about 2 to 3 

minutes on a regular PC to forecast high resolution storm surge once an advisory is issued by the 

NHC. As mentioned earlier, NHC advisories are issued every 6 hours (ftp.nhc.noaa.gov) starting 

6-7 days ahead of the projected landfall. However, the current GUI can only be used once the 

hurricane enters the Gulf of Mexico and can be operational typically 2-3 days ahead of the 

landfall. Once an advisory is issued at the NHC, the SiDMAF GUI operates in an autonomous 

mode extracting key data from the advisory, and then comparing those with the synthetic storms 

in the database and then displaying key results such as extent and height of storm surge with 

hydrographs in Google Earth. The operation repeats itself once a new advisory is issued at the 

NHC website. 

 

4. Results 

 

4.1 Model Validation 

For validation, model results were compared with the observed High Water Marks 

(HWMs) from historical hurricanes including hurricanes Camille (1969) and Katrina (2005). 

These were selected as they made landfall close to Mississippi coast. As mentioned earlier, three 

parameters (i.e., SLF, Cp, and Rmax) were used as input to the GUI. These three input parameters 

were extracted from the Best Track Information available at the NHC archived database. The 

toolbox was able to quickly identify the best matching synthetic storms, which was JOS6016D 

for hurricane Camille and JOS6018D for hurricane Katrina stored in the database. Table 2 shows 

the input parameters to the GUI and results of the matching synthetic storms for hurricane 

Camille and Katrina. Figure 3 shows the tracks for Hurricane Camille and Katrina with the best 

ftp://ftp.nhc.noaa.gov/


matching synthetic storms. The comparison of observed HWMs and model simulation results are 

also shown in Figure 3.  

The comparison results with observed HWMs show that the SiDMAF performs 

satisfactorily in hindcasting historical storms. The correlation between observed and modeled 

high water marks were reasonable (R
2
 =0.81 for both Katrina and Camille). 

 

4.2 Model Application  

To demonstrate how the SiDMAF toolbox performs in real time, advisory data issued 

during hurricane Gustav (August 29-31, 2008) were used. Two advisory data sets (al072008-

5day-020A, and al072008-5day-027A; herein, referred as advisory numbers 20 and 27) were 

chosen. Each data set had the projected hurricane track along with current storm location, Cp and 

Rmax values. Figure 4 shows the NHC forecasted Hurricane Gustav tracks and cone of 

uncertainty for advisory numbers 20 and 27. Figure 4 also shows the best matching synthetic 

storms with highest Storm Similarity Index (SSI) values. It can be seen that for the NHC 

advisory number 20, synthetic storm JOS6003A had the highest SSI (0.84), whereas, for the 

advisory number 27, the SSI was updated and synthetic storm JOS6001A was found to be the 

best matching synthetic storm for the current Hurricane Gustav. Table 3 summarizes the results 

identifying the group of storms with high SSI values for these two advisories. Note that, due to 

significant changes in the Cp values from advisory number 20 to 27 (980 mb reduced to 958 mb), 

a new set of synthetic storms were identified by the SiDMAF toolbox. For validation, the model 

results for advisory number 27 data were then compared with the observed HWMs (Figure 5). In 

general, the model surge elevations extracted from JOS6001A storm are in a reasonable 

agreement with the observed HWM(s). The lower correlation results for Gustav might occur for 

two reasons, (1) hurricane Gustav made landfall in the Louisiana coast and (2) the current 

database of the SiDMAF is impaired with a storm population that concentrates only on the 

Mississippi coast. Nevertheless, even with the limitations of the current database, the application 

of the Toolbox is promising. Figure 6 shows the forecasting results for Advisory number 27 

displayed on the Google Earth. 

 

5. Interactive Vulnerability Mapping with SiDMAF  

 An efficient method of estimating storm surge using data mining has been developed. The 

SiDMAF GUI operates on a regular PC and takes less than 5 minutes to predict high resolution 

local storm surge once advisory data are available at the NHC website. The GUI has been 

successfully validated against historical hurricanes Camille and Katrina. Also the GUI has been 

demonstrated in real time for hurricane Gustav in order to identify the best matching synthetic 

storms which make the approach very efficient and robust. The developed toolbox was then used 

to identify hotspots in real time by incorporating socioeconomic determinants. Normalized Z-



scores of aggregate vulnerably values are used to identify tracts by vulnerability groups (Very 

Low, Low, Intermediate, High, Very High). Final vulnerability score for each tract has been 

calculated as an average of the two vulnerability values (Socioeconomic and storm surge). It is 

user specific to choose Z-Score ranges to categories census tracts into individual vulnerability 

groups, which makes it easy to re-group the tracts into vulnerability groups depending on the 

desires. For Z-scores distribution illustrated in Figure 7, tracts with Z-score ≥1.5 and 0.5 < Z-

score < 1.5 are assigned very high and high vulnerability, respectively, while all other tracts are 

intermediate to very low vulnerability. Use of Z-scores approach can help determine how close 

or far (standard deviations) a selected tract’s vulnerability is distributed compared to the mean 

vulnerability of tracts. For example, if Z-score of a tract is -2.0, it indicates that the particular 

tract has 2 standard deviations lower vulnerability than the mean vulnerability of tracts in the 

study area. Same ranges of Z-scores showed in Figure 7 are used to assign tracts into 

vulnerability groups for the study area of coastal MS.  

 In SiDMAF, an aggregate value of vulnerability for each census block has been 

calculated as an average of standardized indicators values normalized between zero and one. 

Final vulnerability score for each tract was calculated as average of two vulnerability values 

(Socioeconomic and climatological). A thematic vulnerability map illustrating vulnerability of 

census tracts is shown in Figure 8. The interpretation of the thematic map is that, during a flood 

event, a red or dark brown‐colored census tract would place it at higher risk than the tracts with 

light colors. In this particular case, there are 7 census tracts found to be very highly vulnerable 

(Z-score ≥1.5), whereas, 20 tracts are found to be highly vulnerable (0.5 ≤ Z-score < 1.5). The 

majority of tracts (32) are in the intermediate vulnerability group (-0.5 ≤ Z-score > 0.5), 16 tracts 

are in low vulnerability group (-1.5 ≤ Z-score < -0.5) and 16 tracts are in very low vulnerability 

group (Z-score < -1.5).  
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Table 1. Synthetic storm parameters used in FEMA-R6 study 

Storm ID dp (mb) Rp (nmi) Vf (m/s) Theta (deg.) 

JOS6001 66.69 18.61 6.047 -38.91 

JOS6002 57.17 29.82 6.047 -13.49 

JOS6003 49.72 22.93 6.047 -38.92 

JOS6004 57.17 10.83 6.047 -13.49 

JOS6005 27.17 20.77 6.047 56.66 

JOS6006 92.95 14.7 5.943 -12.81 

JOS6007 78.59 30.8 6.014 -12.82 

JOS6008 78.59 16.56 4.349 47.33 

JOS6009 78.59 8.904 6.014 -12.82 

JOS6010 78.59 16.56 14.54 -12.86 

JOS6011 70.02 17.98 5.943 -12.82 

JOS6012 78.59 16.56 4.346 -71.04 

JOS6013 128.7 11.66 5.943 -12.81 

JOS6014 103.7 25.3 6.014 -12.82 

JOS6015 103.7 13.6 4.349 47.33 

JOS6016 103.7 7.313 6.014 -12.82 

JOS6017 103.7 13.6 14.54 -12.86 

JOS6018 94.47 14.53 5.943 -12.82 

JOS6019 103.7 13.6 4.346 -71.04 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Input values of hurricane parameters (landfall location and Cp and Rmax for Hurricane 

Camille and Katrina and result of the best matching synthetic storms. 

Input  Parameters Results 

Name 
Landfall 

(lat/lon, 
o
) 

Cp 

(mb) 

Rmax 

(nm) 
Name 

Landfall 

(lat/lon, 
o
) 

Cp 

(mb) 

Rmax 

(nm) 

Camille 30.3/-89.2 905 8 JOS6016D 30.1/-89.4 909 7.3 

Katrina 29.3/-89.6 905 20 JOS6018D 29.9/-89.4 910 14.5 

 

 

 

 

 

 

 

Table 3. Advisory forecast data from Hurricane Gustav. These data were used in the SiDMAF 

GUI in forecasting mode. 

Advisory Number al072008_5day_020A al072008_5day_027A 

Date 08/30/00:00 08/31/12:00 

Location (Lat/Long; o) 19.3/-80.0 29.1/-90.4 

Current Cp (mb) 980 958 

Current Rmax (nm) 20 15 

Landfall Location 

(Lat/Long; 
o
) 

29.1/-91.0 29.1/-90.4 

Results 

Synthetic Storm SSI Synthetic Storm SSI 

JOS6003A 

JOS6001A 

JOS6011A 

CAT2008A 

JOS6003B 

CAT2008B 

0.84 

0.80 

0.78 

0.77 

0.75 

0.71 

JOS6001A 

CAT2008A 

JOS6001B 

CAT2008B 

JOS6004A 

CAT2008C 

0.82 

0.78 

0.73 

0.72 

0.71 

0.63 

 

 

 

 

 

 

 

 

 

 



 

  Figure 1. The combined track distribution in FEMA-R6 and USACE studies 

 

 

 

 

 

 

 

 

 

 



 

(a) Hurricane Camille                                       (b) Hurricane Katrina 

Figure 3. Track of Hurricane Camille and Katrina and the best matching synthetic storms 

(JOS6016D for Camille and JOS6018D for Katrina).The symbols show the HWM locations and 

their comparison with simulated results. Green dots show that the errors between observed and 

simulated HWM are less than 1 ft.   

 

 

 

 

 

 

 

 

 

 



 

(a) Advisory Number 20 and synthetic storm tracks 

 

 

 

 

 

 

 

 

 



 

(b) Advisory Number 27 and synthetic storm tracks 

Figure 4. Forecasted Hurricane Gustav tracks (Advisory Number 20 and 27) and synthetic storm 

tracks having the high SSI values. (a) for Gustav Advisory 20 and (b) for Gustav Advisory 27. 

The blue dots (o) indicate the current hurricane location and the Green line shows the cone of 

uncertainty. 

 

 

 

 

 

 



 

Figure 5. Track of Hurricane Gustav (in Red) and the best matching synthetic storm JOS6001A 

(in Blue). Green dots show the observed HWMs with errors less than 1 ft. 

 

 

 

 

 

 

 



 

Figure 6. The forecasting results of Advisory number 27 displayed on the Google Earth. The 

color contour indicates the storm surge elevation; Green squares (■) on the map indicates the 

stations showing hydrographs (eg., the white box shows a hydrograph at Mississippi River at 

Head of Passes) 

 



 

Figure 7. Use of Z-Scores to Determine Vulnerability 

 

 

 



 

Figure 8. Illustration of Vulnerability of Tracts Developed using Normalized Z-Score 

Approach  

 




