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Abstract 

 
This research explored the potential for backward lasing from natural constituents in air with the 
objective of developing revolutionary methods for standoff detection of trace gases. Backward lasing 
enables far-field monitoring through modulation methods. The approach utilizes the very high gain 
available from multiphoton pumping of atomic species, which can be created by the dissociation of 
molecules in air. Lasing has been demonstrated from oxygen, nitrogen and water vapor. In each of 
these cases the lasing is achieved by two photon pumping of the atomic fragments, leading to high gain 
backward lasing from oxygen, nitrogen, and hydrogen atoms. The research has demonstrated that 
predissociation significantly enhances the efficiency, and in the cases of nitrogen and water vapor it is 
essential. Backward lasing from two simultaneously pumped, closely separated regions in the air 
provides a method for the reduction of pulse to pulse fluctuations. Further reduction in pulse to pulse 
fluctuations will be possible if the dissociate step is eliminated by using argon, which requires three 
photon pumping. Backward lasing from argon in air has been achieved, but at argon concentrations of 
10%. Future work is expected to reduce this threshold to the ~1% natural concentration of argon in air.  
 

OBJECTIVES 
 
The objectives of this research program have been to establish high sensitivity stand off detection 
methodologies based on backward lasing from natural species in air. Once such a method has been 
developed it can be used for trace detection by utilizing it in conjunction with a modulating laser that is 
tuned to the specific trace species of interest, causing a modulation either to the outward propagating 
pump laser or to the backward propagating air laser.  That modulation is detected relative to a similar 
non modulated backward propagating air laser beam. The technical approach is to use a short pulse UV 
pump laser to produce a remote population inversion in an atomic species, leading to “cavityless” 
lasing. Lasing occurs from the population inversion that is created in the focal volume of the pump 
laser, and the lasing direction is determined by the geometry of that volume, reflecting the exponential 
amplification of stimulated emission with path length. Due to the multiphoton nature of the pumping, 
the gain volume is well localized to the high intensity region of the pump. That gain volume is 
elongated in the propagation direction of the pump laser and localized to the Rayleigh range of the 
laser focal volume. This leads to lasing in the forward and backward directions, with the backward 



2 

lasing beam retracing the pump path in the backward direction and the forward lasing overlapping the 
continued propagation of the pump beam in the forward direction. The atomic species are created by 
dissociation of oxygen, nitrogen or water vapor either with the same pulse that pumps the atomic 
fragments, or with an earlier pulse focused to overlap the same volume.  

Figure 1 shows the atomic energy levels associated with the hydrogen, nitrogen and oxygen air 
lasers. Hydrogen is two photon pumped with 205nm light, nitrogen with 207 nm or 211 nm light and 
oxygen with 226 nm light. Lasing can be achieved with picosecond and nanosecond pumping, and, 
possibly, with femtosecond pumping. The general configuration for the experiments is shown in figure 
2, indicating that both backward and forward lasing are monitored as well as emission to the side. 
Figure 3 shows the approximate geometry of the gain region, which is formed by the focal zone of the 
pump laser.  Since the pump in all cases is in the ultraviolet and the lasing is in the red or infrared, 
separation of the pump from the lasing is easily accomplished with dichroic mirrors or prisms. 
 
 

 
 

Figure 1: Energy levels for 2-photon pumping in hydrogen, oxygen, and nitrogen atoms. 
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Figure 2: Experimental setup for forward and backwards air lasing. 
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Figure 3: Mechanism for air lasing: The geometry of the gain region allows for high gain along the propagation direction of 

the pump beam 
 

Both oxygen lasing and nitrogen lasing arise from major species in the air, however hydrogen 
lasing occurs from water vapor at as low as 40% relative humidity in room air, corresponding to a 
mole fraction below 1%. Figure 4 (right) shows the relative backward hydrogen lasing pulse energy as 
a function of humidity in 25C room air.  When pumped by a 100 psec laser, a preliminary dissociation 
step is required. For these experiments, the water molecule was dissociated using either a 10 
nanosecond Nd:YAG laser operating with 200 mJ at 1064nm or a 50 fsec Ti:sapphire laser operating 
with 1 mJ at 800 nm. It is interesting to note that the hydrogen laser pulse arises from the hydrogen 
Balmer alpha line (see Figure 1, left), which is at 656.3 nm (Figure 4, left), essentially the same color 
as a red laser pointer.  
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Figure 4. Left: Hydrogen backwards lasing spectrum. Right: Hydrogen lasing in air as a function of the humidity shows 

nonlinear dependence of the emission on the concentration of water molecules. 
 
 

In order to use the backward lasing for the detection of trace species, the outward propagating 
laser beam will be modulated. There is an intrinsic pulse-to-pulse variation in the backward lasing due 
to the highly nonlinear nature of the dissociation and pumping processes as well as the variations in 
propagation through the air. In order to provide a reference that is capable of removing these pulse-to-
pulse variations, a second, simultaneous backward lasing beam is generated using the same UV 
pumping pulse, split with a beam splitter and focused to a stand off location very close to the first 
backward lasing location. In this manner the pulse-to-pulse fluctuations of the second backward lasing 
beam are almost identical to those of the first, providing a pulse-to-pulse reference. With this 
arrangement modulation of the first backward lasing beam for tract detection can be referenced to the 
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second beam. Figure 5 shows this configuration, with the “second laser” providing the modulation. 
Figure 6 shows preliminary results from this dual beam configuration. The red squares and blue circles 
indicate the return pulse energy of the two beams for a series of 1000 laser pulses. The variations are 
up to 72% of the mean, and in some cases the return pulse energy approached zero. The green filled in 
circles show the ratio of the two pulses, computed on a pulse-to-pulse basis. The fluctuations are 
reduced to 1.7% of the mean.   

The residual fluctuations are most likely due to the dissociation step, which can be highly 
variable. Efforts are underway to determine if natural atomic species in air such as argon or krypton 
can be used for backward lasing. Argon has a molar concentration of 0.8% in air, approximately the 
same as the water vapor, however it requires a three-photon pumping step rather than the two-photon 
steps available for oxygen, nitrogen and hydrogen.  Figure 7 (left) shows the three-photon pumping of 
argon at 261 nm leading to backward lasing at 1327 nm. Figure 7 (right) shows the relative pulse 
energy of the backward lasing as a function of argon concentration in pure argon and in air. Note that 
in pure argon the backward lasing remains robust to below 10% of atmospheric density, however in air 
the signal is lost at 10%, somewhat more than a factor of ten higher than the natural density of argon in 
air. Work in the follow on research effort is addressing this limitation using a higher pulse energy laser 
source. 

 
 
 

Figure 5: Dual backward lasing configuration for simultaneous reference backward beam generation providing enhanced 
detectability of the modulation of the backward lasing process. The “second laser” is tuned to a trace species and causes a 

modulation of one of the backward lasing beams relative to the other. 
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Figure 6: The reduction of pule to pulse variability using the ratio of the two simultaneous backward lasing pulses. The 

pulse to pulse variability of the individual backward lasing is up to 72% of the mean. The variability of the ratio of the two 
is less than 2%. 

 
 
 

 
 

Figure 7: Backward lasing from argon in air. Left: the three photon pumping at 261 nm leads to lasing at 1327 nm. Right: 
The backward lasing from reduced concntrations of argon, in pure argon (blue) and in atmospheric pressure air (red). 
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WORK COMPLETED 
 
High gain backward laser beams from two photon pumped atomic oxygen, nitrogen and hydrogen 
produced by dissociation of molecules in room air all posess similar characteristics: high spatial and 
temporal coherence and close to transform limited properties with pulse lengths of between 10 and 30 
psec, independent of the pulse length of the pumping laser. The laser beams are generated over 
millimeter scale paths and  reflect exponential gains corresponding to approximately e60/cm.  The 
exponential dependence of the gain on path length and atom number density and the lack of sensitivity 
to dephasing collision rates all indicate that the mechanism for the generation of the backward lasing is 
stimulated emission. Backward lasing from two simulatenously pumped regions provides a pulse to 
pulse reference for potential trace species dtection methods based on the modulation of the backward 
lasing. Residual variability arising from the dissociation step suggests that backward lasing from 
naturally present atomic species such as argon and krypton would be beneficial. Preliminary work 
indicates that three photon pumped backward lasing from argon might be feasible. Backward lasing 
from argon at concentrations as low as 10% in air has been achieved.  
 
 

RESULTS 
Demonstration of high gain lasing from two photon pumping of oxygen, nitrogen and hydrogen atoms 
following dissociation of molecular oxygen and nitrogen. Demonstration for the first time lasing in air 
from a minor species in air: atomic hydrogen obtained by dissociating the water molecules. This strong 
emission at 656nm is greatly enhanced by pre-dissociation with a non-resonant laser pulse, and it can 
be used to induce the stimulated emission necessary to optically pump the H atoms into a state with m-
number selectivity. Preliminary results have been achieved on backward lasing from argon in air at 
mole fractions down to 10%. 
 

IMPACT/APPLICATIONS 
 
The research has established the potential for backward lasing in air from numerous atomic species. 
Backward lasing may provide a high sensitivity method for the detection of greenhouse gases, gas 
leakage from pipelines and refineries, pollution, illicit chemical and nuclear processing activities, 
chemical gas attacks, and the presence of explosives and hazardous materials.  Other applications of 
high gain air lasing are of significant interest and include “around the corner” illumination, clandestine 
communication, and a local “guide star” for the correction of aero-optical distortion. 
 
 

RELATED PROJECTS 
 
ONR supported previous research on “Magnetic Anomaly Detection by Remote Means” (N00014-13-
1-0282) and is supporting ongoing follow-on research on “Stand-Off Detection of Magnetic Anomalies 
by Circular Polarized Laser Interactions” (N00014-15-1-2185).  ONR is currently supporting “Stand 
Off Detection of Trace Species by Simultaneous Radar REMPI and Backwards Lasing” (N00014-15-
1-2656).  
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