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1. Introduction 

An accurate understanding of fundamental flow physics and accurate prediction of 
aerodynamic coefficients is critical to the development of precision munitions 
(Fresconi et al. 2011; Coyle and Silton 2015; Silton and Fresconi 2015). The flow 
fields associated with precision munitions can be very complex, involving shock-
boundary layer interaction, unsteady wakes, and body, canard and tail-fin 
interactions (Sahu 1990; DeSpirito et al. 2003; Silton 2005; DeBonis et al. 2012; 
Bhagwandin 2014, 2015; Scheuermann et al 2015; Silton and Coyle 2015; Silton 
and Fresconi 2015). Simple empirical and analytical techniques such as PRODAS 
(Arrow Tech Associates 2015), Missile Datcom (Rosema et al. 2011), MISL3 
(Lesieutre et al. 2002), and AP09 (Moore and Moore 2008) are not always able to 
accurately determine the complex 3-D flow interactions and associated nonlinear 
flow physics. Computational Fluid Dynamics (CFD) offers an alternative to 
compute these nonlinear interacting flow fields, providing detailed understanding 
of the associated nonlinear aerodynamic processes and predicting the associated 
aerodynamic coefficients that are required to determine if performance 
requirements can be met. CFD has continued to emerge as a critical technology for 
the aerodynamic design and assessment of flight vehicles. Bringing CFD into the 
earlier stages of design and development is necessary for it to be more effective; to 
bring CFD into the earlier stages, though, the results must be obtained as quickly 
and accurately as possible. However, even with the advancement of high-
performance computing, CFD computing time is still much greater than the time 
required to obtain solutions using engineering-level codes. This means that CFD is 
not implemented until further along in the process, often after a problem is 
discovered. 

Steady-state and/or time-accurate CFD methods can be used to obtain a complete 
set of aerodynamic coefficients (static coefficients and dynamic derivatives) in all 
flight regimes, from subsonic to supersonic speeds. In general, most of the 
aerodynamic coefficients of a projectile or missile in the supersonic regime can be 
generated efficiently using steady-state methods; only pitch damping may need to 
be calculated in a time-accurate manner. Time-accurate methods are sometimes 
required to accurately predict base flows and dynamic derivatives of these 
munitions, especially in the subsonic and transonic flight regimes (Oktay and Akay 
2002; Park and Kwon 2003; DeSpirito and Heavey 2004; Murman 2007; DeSpirito 
and Plostins 2007; DeSpirito 2008; DeSpirito et al. 2009; Silton 2011; Da Ronch et 
al. 2012; Bhagwandin 2012; Klatt et al. 2012; Bhagwandin and Sahu 2014). The 
static aerodynamic coefficients can be obtained from a steady-state method. A 
number of researchers (Weinacht and Sturek 1990; DeSpirito et al. 2009; 
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Bhagwandin and Sahu 2014) found the pitch-damping coefficient derivative could 
also be determined using a steady-state coning methodology. More recent advances 
in computational modeling have also led to coupling of CFD codes to rigid-body 
dynamics (RBD) codes for the time-accurate simulation of free-flight motion, 
which allows determination of both the static aerodynamic coefficients and 
dynamic derivatives using the same numerical simulation (Sahu 2004; Costello et 
al. 2007; Sahu 2008; Sahu 2009; Stahl et al. 2009; Montalvo and Costello 2010; 
Sahu 2011; Camargo et al. 2012; Sahu and Fresconi 2015; Wang et al. 2015). 

When designing a new precision munition, especially in the early stages, it is the 
static aerodynamic coefficients that are of greatest importance to ensure the 
munition can meet its range and maneuverability requirements. This requires the 
development of an aerodynamic database that likely includes a range of angles of 
attack and either roll angles or side-slip angles at a given (or multiple) Mach 
number(s). While the new coupled CFD–RBD method would require fewer total 
simulations, it is quite time intensive as it must be solved using the time-dependent 
Reynolds-Averaged Navier–Stokes (RANS) equations with very small time steps 
to accurately capture the flow physics. The traditional steady-state solution uses the 
same governing RANS equations, but allows for larger time steps to more quickly 
converge the solution. However, a large number of these steady-state solutions 
would be required to generate the aerodynamic database when nonlinear 
aerodynamic behavior is present (canard stall, vortex interactions, etc.) in the range 
of angle of attack of interest causing this method to be time intensive as well. 

Recently, Sahu and Heavey (2010) demonstrated an alternative method for rapid 
determination of static aerodynamic coefficients using the time-accurate RANS 
equations; a quasi-steady sweep procedure that allows determination of the 
coefficients for an entire range of angles of attack. Although their research was on 
a complex nonaxisymmetric missile configuration, it was limited to the transonic 
and supersonic flight regimes. The work presented in this paper extends their work 
to the subsonic regime. Numerical computations using the quasi-steady sweep 
procedure are performed at Mach 0.65 on the high-maneuverability airframe 
(HMA) being developed at the US Army Research Laboratory (ARL) as a 
demonstrator platform for the precision-munitions research area (Fresconi et al. 
2011; Silton and Fresconi 2013; Fresconi et al. 2014; Silton et al. 2014).  
Steady-state simulations were also performed for comparison with the sweep 
results. Computational resource requirements are included to show the efficiency 
of the quasi-steady sweep procedure. 
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2. Solution Technique 

The commercially available code CFD++ v12.1.1 (Metacomp Technologies 2011), 
by Metacomp Technologies, Inc., is used for the CFD simulations. CFD++ is a 
finite-volume, unstructured solver capable of computing CFD solutions for a wide 
range of aerospace applications. In this study, CFD++ is used in both its steady-state 
and time-accurate modes to numerically solve the 3-D, compressible RANS 
equations to compute the flow solution.   

The Goldberg 3-equation k-ε-Rt turbulence model (Goldberg et. al. 1998) was 
implemented in this study based on the findings by Silton and Fresconi (2013). This 
3-equation model solves the transport equations for undamped eddy viscosity, Rt, 
in addition to turbulent kinetic energy (k) and its dissipation rate (ε). This solution 
methodology accounts for nonequilibrium conditions and avoids free-stream-
turbulence decay under shear-free flow conditions. For the current problem, 
initialization of the turbulence transport was completed by setting the turbulence 
intensity to 2% and the turbulent-to-molecular viscosity ratio to 50, as the length 
scale was not known. 

2.1 Steady-State Simulation 

The flow solution was advanced toward steady-state convergence using a  
point-implicit time-integration scheme with local time-stepping, defined by the 
Courant–Friedrichs–Lewy (CFL) number. A linear ramping schedule was used to 
gradually increase the CFL number over the first 100 iterations after which the CFL 
remained constant until convergence was reached. As only the subsonic flight 
regime (0.3 < M < 0.8) is considered in this paper, the suggested CFL ramping is 
from 1 to 100.  Depending on the angle of attack being investigated, the maximum 
CFL number for the ramping was limited to 25 or 50. The multigrid W-cycle 
method with a maximum of 4 cycles and 20 coarse grid levels was used to 
accelerate convergence. Implicit temporal smoothing was applied for increased 
stability, which is especially useful where strong transients arise. The spatial 
discretization function was a second-order, upwind scheme using a  
Harten–Lax–van Leer-Contact (commonly, HLLC) Riemann solver and 
Metacomp’s multidimensional Total-Variation-Diminishing (commonly, TVD) 
flux limiter (Metacomp Technologies 2011). Double-precision format was used for 
all computations. 

Solution convergence (typically within 3,000 iterations) was determined by 1) a 
several-orders-of-magnitude reduction of the cell-averaged residuals of the RANS 
equations until the residuals plateaued and 2) the total, tail-fin, and canard forces 
and moments reaching asymptote and unchanging to within 0.1%. 
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2.2 Quasi-Steady Sweep Simulation 

Using the equivalent of a series of steady-state simulations, the flow solution for 
the quasi-steady sweep is generated using the CFD solver’s time-accurate mode to 
obtain the static aerodynamic coefficients across a range of angles of attack in a 
single numerical simulation. The time-accurate mode utilizes the implicit solver 
with dual time-stepping. Dual time-stepping employees 2 time-steps; an “outer” or 
global time-step that corresponds to the time discretization of the physical time 
variation and an “inner” or local time variation that helps to satisfy the physical 
transient equations. 

The “outer” time-step is chosen to provide the desired time accuracy and is applied 
to every cell. Typically, this is set to a small value to ensure that the flow features 
are sufficiently resolved in time. In the present, sweep simulation, the time-
accurate, dual time-step method is used to determine a “quasi-steady” solution at 
each time-step, which corresponds to an increment of rotation, in an efficient 
manner. Therefore, a large global time-step of 1.0 s is employed. This large time-
step drives the rate of change of the flow variables with respect to angle of attack 
to zero as quickly as possible. Thus, the solutions are not transient, as is typical of 
a time-accurate simulation, but rather multiple static solutions. 

The “inner” time-step is determined internal to the solver via the CFL number that 
is equal to the final maximum CFL number from the steady-state solution. The 
inner time-step (or iteration) is a local, nonphysical time-step used to converge the 
time-accurate RANS equations at each physical time-step. The time-step for the 
inner iteration is allowed to vary spatially. For the inner iteration, the multigrid  
W-cycle method and implicit temporal smoothing are applied to accelerate 
convergence of the inner iterations and therefore the outer global time-step. If the 
inner iterations are not sufficiently converged, the solution is not converged and 
there is a loss in accuracy. The number of inner iterations is chosen such that 
approximately a 2-order-of-magnitude reduction in the cell-averaged “inner” 
residuals was achieved. Typically, 100 inner iterations are found to be adequate in 
the present simulations using the quasi-steady sweep procedure. These 
requirements are significantly larger than for a “standard” time-accurate solution 
where only 5–20 inner iterations are required for a 1–2-order-of-magnitude drop in 
the cell-averaged inner residuals and a converged solution. 

The steady-state solution with the mesh rotated to the lowest desired angle of attack 
serves as the initial condition for the initial sweep solution. For each step of the 
sweep solution, the computational grid is rotated by a small increment and a new 
solution is computed. In CFD++, the rotation takes place at the end of the time-step; 
the first time-step is solved at the starting angle of attack. This process continues 



 

Approved for public release; distribution is unlimited. 
5 

across the desired range of angles of attack. Figure 1 shows the location of the body 
at various stages of the sweep. In this example, the rotation point is at the 
projectile’s center of gravity. The rotation angle must be chosen small enough to 
capture any nonlinear aerodynamic effects that may be present. In the present sweep 
simulations, a rotation-angle increment of 0.25° was able to suitably capture the 
nonlinear aerodynamic effects.  

 

Fig. 1 Location of the projectile at various stages of the sweep procedure 

Every numerical solver has its nuances in how the sweep procedure is implemented. 
Details of implementation of the quasi-steady sweep simulations in CFD++ can be 
found in the Appendix.  

3. Geometry 

3.1 Model Geometry 

The geometry utilized for this study was the HMA designed as the platform to 
demonstrate advanced guided munitions using low-cost technologies. Both the 
body–fin configuration (BF) and the body–fin–canard configuration were 
considered (Fig. 2).  
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Fig. 2 Subsonic geometries: BF (top) and body–fin–canard configuration (bottom) 

The geometric model was created in SolidWorks (Dassault Systemes 2012) and has 
a body reference diameter of 83 mm (1 caliber). This was a simplified geometry 
with the gaps and slots in the body needed to accommodate the tail fins suppressed. 
The body geometry consisted of a hemispherical nose cap; a nearly cylindrical body 
320.38 mm (3.86 cal.) long; and a 66.4-mm (0.8-cal)-long, 7° boattail. The overall 
projectile length was 427.23 mm (5.15 cal.). Ten flat-plate fins having a span of 
217.22 mm and an average chord of 20.5 mm, with the trailing edge located  
4.48 mm from the base of the projectile, were included for stability. The tail fins 
were shaped such that they can store flush in the body for gun launch while 
maximizing area for stability. A 7-mm-high, 3.8-mm-deep tab at the tip of each tail 
fin was bent at a 15° angle such that the projectile would roll clockwise (looking 
from rear of airframe).   

For the body–fin–canard configuration, 4 NACA0015 airfoils, rotated 45° off 
plane, were added to the model. Each of the 4 canards had a chord of 18.86 mm 
and a semispan of 96.36 mm with the quarter chord located 144.7 mm aft of the 
nose of the projectile. Canard deflection angles of 0° and 4° pitch up about the 
quarter chord were considered. For simplicity, the model had the canards directly 
attached to the body; the body slots were suppressed. 

 

3.2 Numerical Grids 
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The grids used in the numerical simulation were created with MIME v4.1 by 
Metacomp Technologies (Metacomp Technologies 2010). MIME is an 
unstructured mesh generator that allows triangular or quadrilateral dominant cells 
for the surface mesh. Once an adequate surface mesh is generated, prism layers can 
be specified and created when the volume mesh (tetrahedral dominant) is generated. 

Figure 3 shows the extent of the outer boundary. It extended approximately 35 body 
lengths from the projectile in all directions. Cylindrical density boxes were placed 
in the wake of the projectile and tail fins to ensure proper resolution in this area. 
An additional density box (No. 3) was placed between the canards and the tail fins, 
when the canards were present, to ensure the canard-tip vortices would not dissipate 
significantly due to mesh resolution prior to reaching the tail fins. The surface mesh 
and boundary-layer growth was restricted to a ratio of 1.2 or less. The growth ratio 
was relaxed to 2.0 when creating the remainder of the volume mesh. The prism-
layer spacing was chosen such that wall-function spacing (nondimensional wall 
distance, 30 ≤ 𝑦𝑦+ ≤ 60) was present on the body, while a solve-to-wall mesh 
𝑦𝑦+ ≈ 1 was used on and around the tail fins and canards. To achieve this, a first 
cell spacing for the prism layer was specified at 3.5 × 10−3 mm on the tail fins and 
canards, 0.25 mm on the body, and 0.2 mm on the nose. This produced 𝑦𝑦+ ≈ 1 on 
the tail fins and canards as well as on the body immediately surrounding them. On 
the nose of the airframe and remainder of the body, the 𝑦𝑦+ varied between 25 and 
45. MIME allowed for a smooth transition between the specified spacings. Mesh-
refinement studies, which showed that this mesh achieved grid independence, have 
been conducted for this body–fin geometry (Silton and Fresconi 2013) and are not 
included in this paper. Mesh-refinement studies for the body–fin–canard geometry 
have not yet been completed. The computational domain is fully 3-D with no 
symmetry. The body–fin mesh consisted of approximately 26 million cells, while 
the body–fin–canard mesh consisted of approximately 45 million cells. 
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Fig. 3 Extent of outer mesh boundary with close-up of projectile showing locations of 
density boxes 

3.3 Boundary Conditions 

The entire far-field boundary was set as “characteristics-based” inflow/outflow. 
This boundary condition takes the specified free-stream conditions and solves a 
Riemann problem at the boundary using the supplied data as a virtual state outside 
the domain. The walls of the projectile were specified as an adiabatic, no-slip, 
viscous boundary. Wall functions were used to compute the boundary layer on the 
projectile’s surface except where there was adequate prism-layer resolution to solve 
to the wall, as was the case on the tail fins and canards. 

4. Results and Discussion 

Numerical simulations were performed to assess the ability and efficiency of the 
quasi-steady sweep procedure to predict the flow field and aerodynamic 
coefficients for a complex gun-launched-projectile configuration in the subsonic 
flight regime. All computations were completed using a free-stream temperature 
and pressure of 288.15 K and 101325 Pa, respectively. The study was conducted at 
Mach 0.65 (220 m/s). Angles of attack between –14° and 14°, inclusive, were 
considered. The flow domain was initialized using free-stream conditions 
everywhere.  
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4.1 Body–Fin Configuration 

Steady-state simulations were completed for the BF at 𝛼𝛼 = –14°, 0°, 2°, 3°, 5°, 8°, 
10°, and 14°. The quasi-steady sweep procedure was performed using the steady-
state solution at 𝛼𝛼 = −14° as the initial condition. The critical parameters were 
varied to determine the requirements for an accurate solution. The critical 
parameters varied were CFL = 10 and 50; angle-of-attack increments (𝑑𝑑𝛼𝛼) = 0.5°, 
0.25°, and 0.1°; and number of inner iterations (N) = 50, 100, and 200. 

4.1.1 CFL = 10 

Initially, parameters were set to CFL = 10 (small CFL is typically warranted when 
determining time-accurate solutions) with 50 inner iterations (Sahu and Heavey 
2010) and 𝑑𝑑𝛼𝛼 = 0.25° and 0.1° were investigated. Figure 4 shows the convergence 
history of the solution residual for the inner iterations as a function of the 𝑑𝑑𝛼𝛼 used. 
Both increments produce approximately 1-order-of-magnitude drop in residuals, 
although they do not level off as would be expected of a completely converged 
solution.  
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Fig. 4 Time history of solution residual as a function of dα for CFL = 10, N = 50;  
dα = 0.25° (top) and 0.1° (bottom) 

Comparison of the resulting lift and drag coefficients (𝐶𝐶𝐿𝐿 and 𝐶𝐶𝐷𝐷 , respectively) 
obtained from the quasi-steady sweep procedure to those obtained from the steady-
state methodology were reasonable for both 𝑑𝑑𝛼𝛼 values. For the pitching moment, 
𝐶𝐶𝑚𝑚, the results obtained from the sweep procedure showed reasonably good 
agreement between the 2 𝑑𝑑𝛼𝛼 increments investigated. However, there are some very 
small differences between the steady-state values and the sweep values above 𝛼𝛼 =
5° (Fig. 5) that are most noticeable in the fin component contribution. For the roll 
torque, 𝐶𝐶𝑙𝑙𝑜𝑜 , there was good agreement between the steady-state results and the 
sweep procedure for 𝑑𝑑𝛼𝛼 = 0.1°; agreement is not as good for the sweep procedure 
with 𝑑𝑑𝛼𝛼 = 0.25° (Fig. 6). The 𝑑𝑑𝛼𝛼 = 0.25° sweep results are not symmetric about 
𝛼𝛼 = 0° as is expected for this symmetric configuration. Therefore, the convergence 
of the inner iterations for 𝑑𝑑𝛼𝛼 = 0.25° was investigated.   
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Fig. 5 Pitching-moment coefficient for BF comparing dα  variation to steady-state results, 
CFL = 10 and N = 50 

 

Fig. 6 Roll-torque coefficient for BF comparing dα  variation to steady-state results, CFL 
= 10 and N = 50 
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As expected, increasing the number of inner iterations allowed further convergence 
in the solution residuals for the inner iterations (Fig. 7). Nearly 2-orders-of-
magnitude drop are achieved for 200 inner iterations. With the improved 
convergence at each time step, a change in 𝐶𝐶𝑙𝑙𝑜𝑜  over the first 40 steps of the sweep 
procedure can be seen (Fig. 8). Although the actual values do not change 
significantly (the scale is expanded), the shift to the left indicates a better solution 
can be achieved (similar to that of 𝑑𝑑𝛼𝛼 = 0.1°) with an increase in the number of 
subiterations. 

 

 

Fig. 7 Time history of solution residual as a function of number of inner iterations for CFL 
= 10, dα = 0.25°; N = 100 (top) and N = 200 (bottom) 
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Fig. 8 Roll-torque coefficient for BF for varying number of inner iterations, CFL = 10 and 
dα = 0.25° 

Using 𝑑𝑑𝛼𝛼 = 0.1° and N = 50 or 𝑑𝑑𝛼𝛼 = 0.25° and N = 200 both produce reasonable 
sweep results when compared with the steady-state solutions, in a reasonably 
efficient manner. All solutions were obtained using 256 central processing units 
(CPUs) on a SGI ICE X supercomputer. Each steady-state solution takes 
approximately 3.5 wall-clock h (2,000 iterations to converge, approximately 6 s per 
iteration). For 𝑑𝑑𝛼𝛼 = 0.25° and N = 200, it takes approximately 21 min per angle or 
40 h for the entire sweep (10,000 CPU h). For 𝑑𝑑𝛼𝛼 = 0.1° and N = 50, this time was 
further reduced to 3.5 min per time-step or 15 h for the entire sweep (4,000 CPU 
h). Even assuming only 1° increments, it would take nearly 26,000 CPU h for the 
29 steady-state solutions, thus realizing a CPU savings of up to 85% using the 
quasi-steady sweeps. 

4.1.2 CFL = 50 

After completing the sweep-procedure comparison for the BF with CFL = 10, it 
was determined the quasi-steady sweep procedure could be completed in a more 
efficient manner if a larger CFL value—similar to that used for the steady-state 
simulations—was chosen, rather than using a small CFL as would be the case if a 
truly time-accurate solution was being sought. Use of a larger CFL in a steady-state 
simulation typically allow convergence in fewer iterations. Since a quasi-steady 
sweep is solving for a “steady-state” solution at each time-step, it was thought that 
convergence at each time-step could be achieved with fewer inner iterations if a 
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larger value for the CFL number was chosen. As the CFL number for some of the 
steady-state simulations at higher angles of attack had to be limited to 50 in order 
for convergence to be achieved for the BF (if a CFL greater than 50 was chosen, 
convergence was not possible), it was desirable to know the improved efficiency of 
sweep procedure and the required parameters if the CFL was set to 50 for the quasi-
steady sweeps. 

Because inner-iteration convergence is required to achieve accurate solutions, the 
number of inner iterations required for convergence at each 𝑑𝑑𝛼𝛼 (0.5°, 0.25°, and 
0.1°) was investigated first. The findings for each 𝑑𝑑𝛼𝛼 were the same; there were 
small differences in force and moment coefficients when the results of N = 50 and 
N = 100, but virtually no differences when the results of N = 100 and N = 200 were 
compared.   

The convergence history of the inner iterations for the 𝑑𝑑𝛼𝛼 = 0.25° case (Fig. 9) 
shows why this is the case. There is a decrease in the residuals during the inner 
iterations from approximately 2E-2 to 1E-2 when N = 100 is used rather than  
N = 50. When N is further increased to 200, the inner-iteration residuals plateau at 
1E-2 indicating that the solution has converged. Thus, N = 100 was chosen for all 
𝑑𝑑𝛼𝛼 investigated. 
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Fig. 9 Time history of solution residual as a function of number of inner iterations for CFL 
= 50, dα = 0.25°; N = 50 (top), N = 100 (middle), and N = 200 (bottom) 
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With inner iteration convergence achieved, the results of the quasi-steady sweep 
for 𝑑𝑑𝛼𝛼 = 0.5°, 𝑑𝑑𝛼𝛼 = 0.25° and 𝑑𝑑𝛼𝛼 = 0.1° were compared. Most of the forces and 
moments for the total configuration, as well as the body component contribution 
and fin component contribution (CF) were identical and in good agreement with the 
steady-state solutions. Figures 10–13 show the fin component contribution to the 
forces and moments for the sweep procedure. Only 𝐶𝐶𝑙𝑙𝑜𝑜  shows any difference for 
𝑑𝑑𝛼𝛼 = 0.5°, and that is negligible even with the enlarged scale used. The total value 
of roll torque shown in Fig. 13 is equivalent to the fin component contribution as it 
is the only contribution.  

 

Fig. 10 Fin component contribution to drag coefficient for BF with CFL = 50, N = 100, dα 
comparison 
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Fig. 11 Fin component contribution to lift coefficient for BF with CFL = 50, N = 100, dα 
comparison 

 

Fig. 12 Roll-torque coefficient for BF with CFL = 50, N = 100, dα comparison 
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Fig. 13 Fin component contribution to pitching-moment coefficient for BF configuration 
with CFL = 50, N = 100, dα comparison 

Figures 14–16 show the body component contribution (CB) to the forces and 
moments for the sweep procedure. Roll-torque coefficient is not shown as the body 
does not contribute to that moment. Even using dα=0.5°, very good agreement with 
the steady-state solutions is achieved. Thus, agreement in the total forces and 
moments predicted using the sweep procedure and the steady-state solutions is 
achieved for all of the increments investigated, indicating that for the BF at 
subsonic velocity an increment as large as dα=0.5° is acceptable. This does, of 
course, assume a sufficient number of inner iterations is utilized. It becomes the 
researcher’s choice of the desired increment, based on efficiency or resolution. 
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Fig. 14 Body component contribution to drag coefficient for BF with CFL = 50, N = 100, 
dα comparison 

 

Fig. 15 Body component contribution to lift coefficient for BF with CFL = 50, N = 100, dα 
comparison 
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Fig. 16 Body component contribution to pitching-moment coefficient for BF with CFL  
= 50, N = 100, dα comparison 

For 𝑑𝑑𝛼𝛼 = 0.5°, N = 100, 11.7 wall-clock h on 256 cores of the SGI ICE X were 
required (2,995.2 CPU h total). For 𝑑𝑑𝛼𝛼 = 0.25°, N = 100, 21.7 wall-clock h on 256 
cores of the SGI ICE X were required (5,555.2 CPU h total). For 𝑑𝑑𝛼𝛼 = 0.1°, N = 
100, 51.9 wall-clock h on 256 cores of the SGI ICE X were required (13,286.4 CPU 
h total).  

For the body–fin configuration, completing the quasi-steady sweep allows a range 
of angles of attack to be investigated in significantly less time than if individual 
steady-state simulations were used (see Table 1). When completing the quasi-
steady sweep simulations, it is critical to ensure the inner iterations are converged. 
The number of inner iterations required to achieve convergence varies with CFL 
number as well as Mach number. The study conducted by Sahu and Heavy (2010) 
found only 25–50 inner iterations were required to achieve time-step convergence 
in the transonic and supersonic regimes. In the subsonic regime investigated here, 
50–200 inner iterations were required depending on the CFL number chosen. For 
CFL = 10, the required number of inner iterations for convergence varied with 𝑑𝑑𝛼𝛼. 
Only 50 inner iterations were required for 𝑑𝑑𝛼𝛼 = 0.10°, while 200 inner iterations 
were required for 𝑑𝑑𝛼𝛼 = 0.25°. This meant the coarser angular resolution actually 
required more computational resources (Table. Additionally, inner-iteration 
convergence would need to be investigated each time a different angular resolution 
was desired if CFL = 10 was chosen. For CFL = 50, the required number of inner 
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iterations for convergence (N = 100) did not vary with 𝑑𝑑𝛼𝛼. Choosing CFL = 50 
ensures that once inner-iteration convergence is achieved at one angular resolution, 
changing the angular resolution does not vary those criteria. The computational 
requirement is directly proportional to your desired angular resolution. 

Table 1 Comparison of time required to obtain converged solution for –14° ≤ α ≤ 14° at dα 
indicated 

CFL dα (°) N CPU hours 
Steady-state 1.00 . . . 26,000 

10 0.10 50 4,000 
 0.25 200 10,000 

50 0.10 100 13,286 
 0.25 100 5,555 
 0.50 100 2,995 

4.2 Body–Fin–Canard 

The body–fin–canard configuration is investigated for canards in the x-orientation 
only (i.e., 45° rotation out of the lift plane). The canards are considered in their 
undeflected position (𝛿𝛿 = 0°) as well as for a 4° deflection about its quarter chord 
for a pitch up maneuver (𝛿𝛿 = 4°). Two canard deflection angles were considered 
as it was unknown if variations in canard separation, canard stall, canard-root 
and/or -tip vortex shedding, and vortex–fin interactions due to canard deflection 
would require different values of the critical parameters of the sweep procedure to 
obtain agreement with the steady-state solutions. 

As was done for the BF, steady-state simulations were completed first. The steady-
state simulations were completed at 𝛼𝛼 = 0°, ±2°, ±3°, ±5°, ±8°, ±10°, and ±
14°. The sweep procedure was performed using the steady-state solution at 𝛼𝛼 =
−14° as the initial condition. The critical parameters were varied to determine the 
requirements for an accurate solution. The critical parameters varied were CFL = 
10 and 50; 𝑑𝑑𝛼𝛼 = 0.25°, 0.1°, and 0.05°; and N = 50, 100, and 200. 

4.2.1 δ = 0° 

As with the BF, the body–tail–canard configuration with the canards undeflected 
(BFC0), CFL = 10, N = 50 was investigated first for 𝑑𝑑𝛼𝛼 = 0.25° and 𝑑𝑑𝛼𝛼 = 0.1°. 
CFL = 10 was considered for the BFC0 as the BFC0 quasi-steady sweeps were 
completed simultaneously with the quasi-steady sweeps for BF. The CFL = 10 
results are presented for the BFC0 to further show the effects of not converging the 
inner iterations. 

Inner-iteration convergence for the BFC0 was similar to that of the BF (Fig. 4). 
Agreement between the quasi-steady sweep procedure and steady-state results for 
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the BFC0 for CFL = 10 were not as good as those of the BF, indicating inner-
iteration convergence is even more important as the flow field becomes more 
complicated. Agreement was good for the lift and drag coefficients (Figs. 17 and 
18, respectively). However, this is not the case for either 𝐶𝐶𝑚𝑚 (Fig. 19) or 𝐶𝐶𝑙𝑙𝑜𝑜  (Fig. 
20); agreement was quite poor for |𝛼𝛼| > 5°, especially for 𝑑𝑑𝛼𝛼 = 0.25°. While the 
discrepancies in 𝐶𝐶𝑙𝑙𝑜𝑜  were also present in the BF, those in 𝐶𝐶𝑚𝑚 were not. An 
examination of the component contributions to 𝐶𝐶𝑚𝑚 shows the canard component 
contribution (𝐶𝐶𝐶𝐶 ) is the cause of the discrepancy (Fig. 21). With the inner iterations 
not adequately converged, canard stall and separation are not properly predicted.  
Increasing N = 200 for 𝑑𝑑𝛼𝛼 = 0.25° produces results closer to those for 𝑑𝑑𝛼𝛼 = 0.1°, 
N = 50 (Fig. 22), but at a significant time penalty. 

 

Fig. 17 Lift coefficient for BFC0 with CFL = 10, N = 50, dα comparison 



 

Approved for public release; distribution is unlimited. 
23 

 

Fig. 18 Drag coefficient for BFC0 with CFL = 10, N = 50, dα comparison 

 

 

Fig. 19 Pitching-moment coefficient for BFC0 with CFL = 10, N = 50, dα comparison 
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Fig. 20  Roll-torque coefficient for BFC0 with CFL = 10, N = 50, dα comparison 

 

Fig. 21 Component contributions to pitching-moment coefficient for BFC0 with CFL = 10, 
N = 50, dα comparison 
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Fig. 22 Improved agreement for pitching-moment and roll-torque coefficients for BFC0 
for CFL = 10, with N = 200 for larger dα 

While it is possible that a smaller 𝑑𝑑𝛼𝛼 or an increased number of inner iterations 
could lead to a more accurate sweep solution for the BFC0, the amount of 
computing time required to achieve the more accurate solutions would eliminate 
the efficiency of the quasi-steady sweep procedure. Thus, 𝑑𝑑𝛼𝛼 = 0.1°,𝑁𝑁 = 100 was 
not investigated for improved agreement between the static and quasi-steady sweep 
results for 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑙𝑙𝑜𝑜 . Based on the results of the BF—using a larger CFL, similar 
to that used to converge the steady-state solutions, for the quasi-steady sweeps 
produced more reliable results—the remainder of the quasi-steady sweeps for the 
BFC0 were completed with CFL = 50. 

As was the case for quasi-steady sweeps on the BF when CFL = 50, N = 100 was 
found to produce a converged solution for both 𝑑𝑑𝛼𝛼 investigated (0.25°, 0.1°), the 
size of 𝑑𝑑𝛼𝛼 did not matter with the larger CFL. The inner-iteration convergence 
histories were similar to those found for the BF (Fig. 9). For CFL = 50, N = 100, 
significantly better agreement was found between the static results and the quasi-
steady sweep results for both 𝐶𝐶𝑚𝑚 (Fig. 23) and 𝐶𝐶𝑙𝑙𝑜𝑜  (Fig. 24) for the BFC0. Prediction 
of the body and fin component contributions to 𝐶𝐶𝑚𝑚 by the sweep procedure 
remained good with the better-converged inner iterations as would be expected. 
Canard stall was now properly captured (when compared to the steady-state 
solutions) with proper inner-iteration convergence even for 𝑑𝑑𝛼𝛼 = 0.25° (Fig. 25). 
While it is possible an adequately converged sweep solution could still be obtained 
for 𝑑𝑑𝛼𝛼 = 0.5°, it was decided that 𝑑𝑑𝛼𝛼 = 0.25° was sufficiently large enough due 
to the small discrepancies that were being observed in the BF.   
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Fig. 23 Pitching-moment coefficient for BFC0 with CFL = 50, N = 100, dα comparison 

 

Fig. 24 Roll-torque coefficient for BFC0 with CFL = 50, N = 100, dα comparison 
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Fig. 25 Single canard component contribution to pitching-moment coefficient for BFC0 
with CFL = 50, N = 100, dα comparison 

The time savings achieved in obtaining the solutions for the BFC0 using the quasi-
steady sweep procedure as compared to the steady-state method is even greater than 
it was for the BF. The BFC0 solutions were completed on 384 cores of the SGI ICE 
X supercomputer SPIRIT at the US Air Force Research Laboratory’s Department 
of Defense Supercomputing Resource Center. A single steady-state solution could 
be obtained in approximately 5 h. That means, just to obtain the 13 steady-state 
solutions for comparison here took 65 wall-clock h or 24,960 CPU h. The sweep 
procedure using 𝑑𝑑𝛼𝛼 = 0.25° (CFL = 50, N = 100) took just 37.7 wall-clock h 
(14,477 CPU h), a 42% time savings. This would significantly improve resolution 
for predicting stall while greatly reducing resources. Increasing resolution further 
by using 𝑑𝑑𝛼𝛼 = 0.1° (CFL = 50, N = 100) increases use of computing resources to 
37,900 CPU h. While this is 50% increase in use of resources over that used to 
generate the steady-state solutions presented here, a lot more data were generated 
with those resources.  

4.2.2 δ = 4° 

The final case considered as part of this study was the body–fin–canard 
configuration with the canards deflected to 4° for pitch control (BFC4). A 
deflected-canard configuration was investigated to ensure the variations in the flow 
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that occur when the canards are deflected (separation, stall, vortex shedding, 
vortex–fin interaction, etc.) did not cause a change in sweep’s critical parameters. 

Convergence criteria for CFL = 10 were again investigated because it was thought 
that a more complicated configuration (i.e., more flow nonlinearities) may require 
a smaller CFL for convergence of the steady-state solution at high α, which would 
in turn limit the CFL for the sweep procedure. Due to the simpler BF requiring N 
= 200 for convergence of the quasi-steady sweep when 𝑑𝑑𝛼𝛼 = 0.25°, only 
𝑑𝑑𝛼𝛼 = 0.25° with N = 200 is compared to the results for 𝑑𝑑𝛼𝛼 = 0.1° and 𝑑𝑑𝛼𝛼 = 0.05° 
each with N = 50, which was the required number of inner iterations for 
convergence on the BF.   

As with the previous configurations considered, only 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑙𝑙𝑜𝑜  showed any 
noticeable variation with 𝑑𝑑𝛼𝛼; the forces converge more quickly than the moments. 
The variation in 𝐶𝐶𝑚𝑚 was only noticeable at |𝛼𝛼| ≥ 10° and even there it was typically 
less than 5% (Fig. 26). The variation in 𝐶𝐶𝑙𝑙𝑜𝑜  was only noticeable for  
|𝛼𝛼| ≥ 8° and on an enlarged scale (Fig. 27). This further validates that it is not the 
𝑑𝑑𝛼𝛼 that matters but, rather, that a sufficient number of inner iterations are completed 
such that convergence is reached (Fig. 27) for the chosen CFL number. A smaller 
𝑑𝑑𝛼𝛼 requires fewer inner iterations and shows less inner-iteration residual drop as 
there are fewer changes in the flow between steps. This implies that if there are 
regions of 𝛼𝛼 where the flow is more difficult to converge—thus requiring a smaller 
CFL number—the quasi-steady-sweep procedure can be completed with an 
increased number of inner iterations in the region; a smaller 𝑑𝑑𝛼𝛼 may not be 
required. This would, of course, require additional CPU time for the increased inner 
iterations.   



 

Approved for public release; distribution is unlimited. 
29 

 

Fig. 26 Cm comparison of BFC4 for CFL = 10 and dα = 0.25° with N = 200 to dα = 0.1° and 
dα = 0.05° with N = 50 

 

Fig. 27 Clo comparison of BFC4 for CFL = 10 and dα = 0.25° with N = 200 to dα = 0.1° and 
dα = 0.05° with N = 50 
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Fig. 28 Inner-iteration convergence history for BFC4 for CFL = 10, dα = 0.25° with N = 200 
(top), dα = 0.1° with N = 50 (middle), and dα = 0.05° with N = 50 (middle) 
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Since CFL = 50, N = 100 produced better results at larger 𝑑𝑑𝛼𝛼 than a CFL = 10 for 
the BFC0, it was investigated for the BFC4 to determine if the quasi-steady sweep 
could be obtained any more efficiently. For CFL = 50, convergence of the inner-
iteration residuals was confirmed for N = 100. Residual drops of approximately 2E-
2 and 4E-2 were achieved for 𝑑𝑑𝛼𝛼 = 0.25° and 𝑑𝑑𝛼𝛼 = 0.1°, respectively (Fig. 29). 
The residual drop is not as large for 𝑑𝑑𝛼𝛼 = 0.1° because there is less change in the 
flow due to the smaller change in 𝛼𝛼. For both increments, the residuals appear to 
be reaching a plateau, which indicates convergence. Therefore, N = 100 was used 
and no further inner-iteration convergence was investigated for CFL = 50. 

 

 

 

Fig. 29 Inner-iteration convergence history for BFC4 with CFL = 50, N = 100; dα = 0.25° 
(top) and dα = 0.1° (bottom) 
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The true test of inner-iteration convergence is the comparison of the quasi-steady-
sweep procedure’s results to the results obtained from the steady-state 
methodology. All force and moment coefficients (Figs. 30–33) show very good 
agreement with the solutions from the steady-state methodology, indicating the 
inner iterations must indeed be converged. Even the nonlinearity in the moment 
coefficients is accurately captured. From the analysis of 𝐶𝐶𝑚𝑚𝐶𝐶  for each canard  
(Fig. 34), canard-stall angle is known to within a 0.25°; no interpolation is 
necessary.   

 

Fig. 30 Drag coefficient for BFC4 with CFL = 50, N = 100, dα comparison 
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Fig. 31 Lift coefficient for BFC4 with CFL = 50, N = 100, dα comparison 

 

Fig. 32 Roll-torque coefficient for BFC4 with CFL = 50, N=100, dα comparison 
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Fig. 33 Pitching-moment coefficient for BFC4 with CFL = 50, N = 100, dα comparison 

 

Fig. 34. Individual canards’ pitching-moment contributions with dα = 0.25°, CFL = 50, 
N = 100 
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As the mesh size for the BFC4 is approximately the same as that of the BFC0, the 
required computational time was found to be similar. For 𝑑𝑑𝛼𝛼 = 0.25°, 36.5 wall-
clock h on 384 cores of the SGI ICE X cluster (approximately 14,000 CPU h) were 
required. For 𝑑𝑑𝛼𝛼 = 0.1°, 86.3 wall-clock h on 384 cores of the SGI ICE X cluster 
(approximately 33,000 CPU h) were necessary. Compare this to a required wall-
clock time of 3.8 h (1,460 CPU h) for the steady-state solution.  The break-even 
point is 10 steady-state solutions. If more than 10 steady-state solutions are required 
to adequately resolve the static coefficients, which is likely the case of a highly 
nonlinear flow such as this, the sweep procedure is definitely the more efficient 
method. The increment is dependent on the resolution desired as was the case with 
the BFC0. The physics is being adequately captured. 

5. Conclusions 

A quasi-steady sweep procedure that allows determination of the static 
aerodynamic coefficients for a range of angles of attack in a single simulation is 
extended to subsonic Mach numbers. Given a steady-state solution, the procedure 
can be used to generate multiple quasi-steady numerical simulations over a select 
range of angles of attack for a given set of flight conditions. Computational fluid-
dynamics simulations are completed for the ARL-designed HMA, a canard-
controlled, fin-stabilized projectile, at Mach 0.65 for a moderate range of angles of 
attack (−14° ≤ 𝛼𝛼 ≤ 14°) using the sweep procedure. Separate steady-state 
solutions were also computed at various angles of attack within this range for 
comparison.   

Three configurations of the HMA geometry were considered to evaluate the sweep 
procedure for increasingly complex geometries: 1) body–fin, 2) body–fin–canard 
at 0° canard-deflection angle, and 3) body–fin–canard with canards deflected 4° for 
a pitch up maneuver. For each configuration, the parameters of 𝑑𝑑𝛼𝛼, CFL number, 
and number of inner iterations were varied to find the most efficient combination 
to achieve a converged solution. The initial values used for these parameters, based 
on previous findings for supersonic velocities, were found to be insufficient in the 
subsonic regime to find agreement with the steady-state solution for 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑙𝑙𝑜𝑜 . 

Inner-iteration convergence is critical to accurate solutions for the quasi-steady 
sweep procedure. Depending on the CFL number and 𝑑𝑑𝛼𝛼 chosen, inner-iteration 
convergence is achieved when a magnitude drop of greater than 1E-2 in residuals 
occurs or the residual levels do not vary significantly; the inner-iteration 
convergence needs to be checked periodically during the sweep to ensure there is 
not an angle of attack that is having difficulty converging. If inner iterations are 
having difficulty converging during just a section of the sweep trajectory, the CFL 
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number could be reduced and either the 𝑑𝑑𝛼𝛼 could be reduced or the number of inner 
iterations increased (or both) for that section to ensure convergence throughout the 
range of angles of attack. 

Variation of CFL number in the sweep procedure showed that agreement with the 
steady-state solution could be approached for either CFL = 10 or CFL = 50 for any 
of the 3 configurations if a sufficient number of inner iterations and a sufficiently 
small 𝑑𝑑𝛼𝛼 were used. Using CFL = 50, 𝑑𝑑𝛼𝛼 = 0.25°, and N = 100, the sweep 
procedure was found to achieve excellent agreement with the aerodynamic forces 
and moments obtained from the steady-state method for all 3 configurations. The 
CFL = 10 required the use of a smaller 𝑑𝑑𝛼𝛼 (0.1° versus 0.25°) and/or an increased 
number of inner iterations (200 versus 100) to achieve convergence as compared to 
CFL = 50 to obtain results that were in reasonable agreement with the 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑙𝑙𝑜𝑜 
values obtained from the steady-state method. Thus, convergence occurs more 
quickly when a larger CFL number is used, as would be expected. However, if the 
CFL number needs to be limited to achieve a converged flow field, inner-iteration 
convergence can still be achieved with use of smaller 𝑑𝑑𝛼𝛼 or an increased number 
of inner iterations.   

Although smaller d𝛼𝛼 values and more inner iterations are required to obtain 
accurate moment coefficients from the sweep procedure for a subsonic flow, the 
quasi-steady sweep procedure remains an efficient means of obtaining a range of 
angles of attack for a given set of flow conditions. A typical steady-state solution 
at one angle of attack for the BFC4 took 1,460 CPU h (approximately 3.5 h on 384 
cores). The sweep procedure with CFL = 50, 𝑑𝑑𝛼𝛼 = 0.25°, N = 100 required 
approximately 14,000 CPU h (approximately 36.5 h on 384 cores). This means that 
in the time it would take to complete 10 steady-state solutions, a solution with 112 
angles was generated. For a complex configuration that may potentially have 
nonlinear forces and moments, this increased resolution is critical. For a less 
complex configuration such as the BF, where the forces and moments are known 
to be linear, the increased resolution of the sweep procedure is not necessary; 
greater efficiency could be achieved by just choosing a small number of angles of 
attack to simulate with the steady-state method and using standard curve fit 
procedures to generate data at the other angles. 
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Appendix. Quasi-Steady Sweep’s Implementation in CFD++ 
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The CFD++ implementation of the sweep procedure is fairly typical of any 
computational fluid dynamics solver. There are, however, a number of nuances in 
this particular solver that the author believed should be documented. All have to do 
with the setup of the procedure and not the actual solution. 

In initializing the quasi-steady sweep procedure (and all time-accurate simulations) 
in CFD++, one must first determine how they want to start: reset the step to zero or 
continue from the last step in the steady-state solution; the time always starts from 
a value of 0. If one chooses to continue from the last step in the steady-state 
solution, the following does not affect the solution; but, if one chooses to reset the 
step to zero—the author’s preference for the sweep procedure—the following must 
be completed. There are a number of equations that are not turned on at Step 0 by 
default. These include preconditioning and turbulence modeling. These can be 
easily set to start at Step 0 either in the steady to unsteady wizard or in the Reimann 
Solver and Turbulence Control panels, respectively. The author recently found the 
additional transport equations are solved in nonconservation mode for the first 20 
steps in CFD++ by default. Prior to Version 15.1 Update 4, one had to add the option 
“iftcon_ntstart 0” to the mcfd.inp input file such that the additional transport 
equations are solved in conservation mode from Step 0. In Version 15.1 Update 4 
and later, there is an “Extra Eqns” button in the second panel of the Time Integration 
Panel. By choosing this “Extra Eqns” Panel, one can change the conservation 
updates for the equations for turbulence, scalars, and species to start at Step 0. This 
ensures that every single step is physically relevant.  Although not relevant to this 
subsonic simulation, one also needs to ensure that 1st- to 2nd-order spatial 
discretization blending is turned off and that the Right Hand Side dissipation is 0 
for the time-accurate solution that starts at Step 0 if either was used to obtain the 
steady-state simulation. 

CFD++ uses file-based rotation to complete the mesh motion used for the sweep 
procedure. For the case considered here, only single-axis rotational motion in the 
body frame is required.  As per the CFD++ help, the file format is as follows: 

Origin (x y z values) 

Direction vector (x y z values) 

# datalines 

Time1 (s) rotation_angle1 (radians) rotation_rate1 (radians/s) 

Time2 (s) rotation_angle2 (radians) rotation_rate2 (radians/s) 
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For an angle-of-attack sweep, the origin should be at the center of gravity. If the 
origin of the computational domain is at the center of gravity, this is (0, 0, 0). If the 
origin of the computational domain is at another location, the center of gravity’s 
location relative to the origin of the computational domain should be entered. 

The directional vector is self-explanatory. For an alpha sweep, with the x-axis 
aligned with (and pointing downstream) the flow and the z-axis up, the rotational 
axis is the y-axis. Therefore the directional vector would be (0 1 0). 

For an angle-of-attack sweep where a single angle-of-attack increment (𝑑𝑑𝛼𝛼) is 
utilized, only 2 data lines are required. Because the sweep procedure always starts 
from time zero, regardless of whether or not you reset the step to zero, the first data 
line is at time zero with a rotation angle of zero. The rotation angle is zero because 
the steady-state solution from which the quasi-steady sweep is initialized is 
obtained on the computational domain that has been rotated to the minimum angle 
of attack desired. The second data line is a bit more complicated. The final time 
(𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙) is the total angle of sweep (𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) divided by the increment (Eq. A-
1). The rotation angle is the total angle of sweep in radians, which for −14° ≤ 𝛼𝛼 ≤
14° is 28° or 0.4886922 radians. CFD++ calculates the time-accurate solution at the 
starting angle of attack on Step 1; the mesh is not rotated until the end of Step 1. 
Therefore, to obtain the full range of the sweep it is necessary to calculate a solution 
for one additional increment. This means a total of 113 (including 0) seconds (steps) 
are simulated. 

 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙 = 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝛼𝛼

 (A-1) 

The contents of the file for the alpha sweep performed here is shown below: 

0       0       0 
0       1       0 
2 
0       0.0000000       0 
112   0.4886922       0 
 

If more than one 𝑑𝑑𝛼𝛼 needs to be utilized to ensure resolution, an additional data line 
can be added for each additional increment desired. The first data line remains the 
same as in the previous case as the mesh is at 𝛼𝛼 = −14° to start the simulations. 
Equation A-2 is now used for each additional data line. 

 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒𝑓𝑓 =
𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖
𝑑𝑑𝛼𝛼𝑖𝑖

+ 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒𝑓𝑓−1   , (A-2) 

where 
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 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝛼𝛼𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓 − 𝛼𝛼𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓     : (A-3) 

𝛼𝛼𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓  is the final angle in the increment and 𝛼𝛼𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓  is the initial angle on the 
increment. The value for the second column is determined by  

 rotation_angle𝑓𝑓 = 𝛼𝛼𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓 − 𝛼𝛼𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑙𝑙 (A-4) 

 

where 𝛼𝛼𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑙𝑙 is the initial angle of attack. For example, if it was desired to use 
𝑑𝑑𝛼𝛼 = 0.1 for −14° ≤ 𝛼𝛼 ≤ −9°, 𝑑𝑑𝛼𝛼 = 0.25 for −9° ≤ 𝛼𝛼 ≤ 3°, and 𝑑𝑑𝛼𝛼 = 0.1 for 
3° ≤ 𝛼𝛼 ≤ 14°, the content of the file for the alpha-sweep procedure would be as 
shown below and a total of 209 s (i.e., steps) simulated. 

0       0       0 
0       1       0 
4 
0       0.0000000       0 
50     0.0872665       0 
98     0.2967060       0 
208   0.4886922       0 
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List of Symbols, Abbreviations, and Acronyms 

3-D 3-dimensional 

ARL US Army Research Laboratory 

BF body–fin configuration 

BFC0 body–fin–canard configuration with 𝛿𝛿 = 0° 

BFC4 body–fin–canard configuration with 𝛿𝛿 = 4° 

𝐶𝐶𝐷𝐷 drag coefficient 

𝐶𝐶𝐿𝐿 lift coefficient 

𝐶𝐶𝑙𝑙𝑜𝑜  roll-torque coefficient 

𝐶𝐶𝑚𝑚 pitching-moment coefficient 

𝑑𝑑𝛼𝛼 angle-of-attack increment 

CFD Computational Fluid Dynamics 

CFL Courant–Friedrichs–Lewy number 

CPU central processing unit 

HMA  high-maneuverability airframe 

M Mach number 

N number of inner iterations 

RANS Reynolds-Averaged Navier–Stokes 

RBD rigid-body dynamics 

𝑅𝑅𝑖𝑖 undamped eddy viscosity 

y+ nondimensional wall distance 

𝛼𝛼 angle of attack 

𝑘𝑘 turbulent kinetic energy 

ε dissipation rate 

Superscripts 

B body component 

F fin component 

C single-canard component
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