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Abstract— Training planning is a recurring military problem.
Since training programs can utilize multiple training devices
with varying costs and training capabilities, selecting the types
of devices required is a complex trade-off problem. Further-
more, the placement of these devices is critical due to the time
and costs involved in travelling to and from the location of
a training device. In this paper, we introduce a device bin-
packing-and-location-based model, Training Device Estimation
(TraDE), to study the computation of heterogeneous device
mixes including the location of each device with respect to
numerous objectives including various costs and training time.
We apply the multi-objective Non-dominating Sorting Genetic
Algorithm II to the TraDE model on a population represented
by two-dimensional chromosomes. Finally, we also present a
new mutation type to handle the nonlinearity inherent in a dual
optimization problem which includes scheduling and location
optimization. We clearly show that the new mutation operator
produces superior results to the standard mutation operator.

I. INTRODUCTION

EVERY soldier has to successfully complete mandatory

military training. The training usually consists of suc-

cessfully completing a series of tasks. Moreover, the same

equipment can be used for training of various tasks, but

the device’s capacity, efficiency and costs per use are task-

dependent. Even when considered at a single location, there

is a need to match a device type used for a training task for

each soldier, as there are many compatible devices. However,

military bases are usually spread throughout a country and

every location does not have or need the same training

equipment. Moreover, not all training devices can be placed

at every base due to terrain, weather or land use limitations.

Hence, individual soldiers or parts of a unit may be required

to travel to another location in order to obtain training. In

this complex set of constraints, we address the question of

what is the minimum number of training devices at each

admissible location which are necessary to ensure that all

soldiers are able to complete required training. There are

multiple objectives to consider such as minimizing capital

and operating costs of the devices, as well as minimizing

the soldiers’ total travel costs and their total time spent in

training.

Given the wide variety of training tasks and the large

number of possible training devices, finding a good device

mix is difficult [2]. There are many key parameters to take

into account. For example, the triangle model [3] considers

device fidelity, training delivery method, and training content

to determine good device mixes. On the other hand, the

FAPV approach analyzes the stage of the trainee’s learning
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process to select an effective training environment [6]. Fur-

thermore, the Army Training [11] and the Stochastic Fleet

Estimation (SaFE) [15] models approach the problem from

a resource allocation standpoint. The Army Training Mixed

Model [11] considers a single cost objective training device

mix problem for one location. On the other hand, SaFE [15]

is applicable to a multi-objective fleet mix allocation problem

also at a single location. Like in the SaFE model, the problem

of selecting training devices is similar to a sparse-multi-

capacity 2D bin packing application for job scheduling (the

device dimensions are soldier capacity and training duration).

However, since the number of each device type used is not

directly proportional to other training device types, methods

normally applied to multi-capacity bin packing problems are

not applicable [15].

In this paper, we also consider the training problem from

a resource allocation point of view. First, we must determine

the minimum number of devices of each type necessary for

all soldiers to be able to complete their full required training.

Second, we need to determine where to locate these devices

to minimize the travel costs of all soldiers. Both problems,

for a large number of locations and devices, are usually indi-

vidually difficult to solve. Determining only a device mix for

each task is comparable to determining a fleet configuration,

which is based on bin packing and scheduling, two NP-

complete problems [1], [16]. Moreover, given that a change

in the location and number of any training devices would

significantly (and nonlinearly) affect the computed objective

functions, performing these two optimizations sequentially

would not ensure an overall optimal solution. Therefore, we

propose to carry out a joint optimization of the number

of devices and their locations. For our model, called the

Training Device Estimation (TraDE), the joint optimization

is represented by a multi-dimensional chromosome for a

population member in the genetic algorithm used to explore

the solution space. Training tasks correspond to genes in a

chromosome, and every gene carries the information about

the device configuration for the given task as well as the

locations of the devices.

We evaluate the solutions with respect to four objectives:

acquisition and operating costs of the devices, as well as total

travel costs for all soldiers and total time spent in training.

Multi-objective optimization allows us to evaluate the solu-

tions without the need to estimate weights of objectives with

respect to each other [4]. Furthermore, we are exploring a

vast solution space. Indeed, the training consists of multiple

tasks; for each task, there is a set of devices which are equally

compatible for use in training; a device of each type can

be placed at a number of locations; and multiple devices

of various types can be designated for training of a single
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task (this depends on device capacity and number of soldiers

needing to be trained). Hence, we explore a large number

of combinations using the Non-dominating Sorting Genetic

Algorithm II (NSGA-II) [4].

The paper is organized in the following manner. We give a

detailed problem description in Section II. Section III gives

the TraDE model specifications. In Section IV, we compare

the two mutation types and provide an overview of the

results. Section V contains some concluding remarks.

II. MODEL DESCRIPTION

A. Tasks and Devices

Building a training system to deliver small arms training

entails decisions regarding many system components, such

as personnel, infrastructure, funding, and equipment. The

main goal of training is to ensure that all soldiers obtain

satisfactory sensory-motor skills, such as short release and

follow-through, and cognitive skills, like the coordination of

small arms fire amongst dispersed groups. For example, new

recruits might acquire basic marksmanship skills, which is

one of the training tasks performed during a three month

basic training program [7].

The devices used for training can greatly vary. Tradition-

ally, the training was performed using unloaded weapons

and live fire. Today, the devices can vary from a shooting

range to a virtual simulator or an online computer course [5].

Depending on their type, the devices vary in their capa-

bilities, capacities, but also in costs, risks and infrastruc-

ture requirements. No device can be used for training of

all tasks. For example, a computer cannot be utilized for

training of body positioning and rifle holding for a stable

and comfortable firing. Similarly, training with non-lethal

ammunition on a live fire range is not adequate for training

long range engagements due to ballistic differences in non-

lethal and operational ammunition [7]. However, a task is

often trainable by different device types, and devices have

versatile functionality, some of which may overlap. Hence,

different task-to-device assignments are studied to find a

better combination with respect to our objectives.

In TraDE, to carry out soldier training, a fixed set of

training tasks, such as quick aim shooting or safe handling

are specified [5]. We denote by T the total number of tasks.

All tasks must be completed by all soldiers. Each task is

characterized by a set of compatible devices that can be used

to complete the task. There are D device types. It is assumed

that all compatible device types for a task are used to achieve

the same level of proficiency in that task1. The following two

values characterize the task-device type dependency.

• A device type training effectiveness is measured in

τ(t, i), the time required for the task training t using

a device of type i.
• Device types vary in the cost, c(t, i), incurred when

completing a training task t on the device of type i.

1We suspect that this is most likely not a correct assumption and a model
that will take this information into account is currently being developed.

In TraDE, each device type i, i = 1, 2, . . . , D, is charac-

terized by the following five values:

• the soldier capacity sci,
• the total amount of time a device of this type can be

used per year, θi,
• the acquisition cost Ai,

• the annual operating cost Opi, and

• the set of possible locations where a device of this type

can be placed, Li.

Soldiers needing training are stationed at various locations
(e.g., bases and other facilities) across the country. When

training is required, the unit (or a part of it) may have to travel

to the training location, complete the training, and return to

their home location. Since some tasks can take multiple days

to train, each soldier incurs costs for staying at the training

location for the duration of the training task. Also, there

are travelling costs between the home location and device

locations per soldier per task.

The training program, which specifies the set of tasks to

be completed by all soldiers, device types’ characteristics,

as well as the number of soldiers needing training and their

location are pre-determined and fixed. Data used to study the

TraDE model has been simulated. Although this data was

obtained with the help of subject matter experts, it should

not be construed as to represent in any way the capabilities

or deficiencies of the Canadian Armed Forces.

B. Device-to-Task Assignment Configuration

As described in Subsection II-A, various device types

can be used for task training. Thus, depending on the total

number of soldiers requiring training and the capacities of

device types, a training task can be distributed over several

compatible devices (i.e., not necessarily of the same type),

depending on the time limit in which the training has to

be completed. This configuration problem is equivalent to

determining a configuration of aircraft to transport a large

amount of cargo: depending on the capacity and speed of

each plane type, the transportation can be distributed over

various combinations of aircraft, depending on the size of the

cargo and the time in which the task has to be performed [15].

More precisely, for a task t, a device configuration is

a D-tuple (nt1 , nt2 , . . . , ntD ) where nti is the number of

devices of type i (in this study, nti is not constrained to

a particular value; however, it is still implicitly limited by

the combination of training tasks and soldiers who need to

complete those tasks). Only considering the soldier capacities

for each device type and the number of soldiers who need to

complete training, we determine all possible minimum device

configurations adequate for completing a training task by all

soldiers. That is, for each task t, we pick the non-dominated

set of configurations among all which satisfy the following:

total number of soldiers ≤
D∑
i=1

ntisci,

and the total time spent in training of all soldiers on this task

using this configuration does not exceed the predefined limit.



The set of all device configurations for each task is the

configuration set. The configuration set is determined prior

to the execution of the model, and allows us to fully specify

the search space (even if it is still huge) of admissible

configurations for each task during model execution. The

number of admissible configurations for a task can vary

from only one if the task can be performed on a single

device, to a mix of devices of one or more types. Hence,

the combinatorial complexity of the problem depends on the

number of tasks and the number of device configurations for

each task [10].

C. Device Number and Location Determination

The goal of the present study is to determine a device
mix per location; i.e., the number of devices of each type

required at a given location while minimizing the capital,

operating and travel costs together with the total time spent

in training. In TraDE, a solution has a device configuration

assigned to each training task, giving a number of devices

of each type required for the successful completion of the

training task by all soldiers. Moreover, the model assigns a

location for each device in the configuration, which may, or

may not, coincide with the location of sets of soldiers to be

trained using the device. More precisely, a solution in TraDE

has the following information for every training task:

(n1, n2, . . . , nD)× ((l11, l12, . . . , l1n1
),

(l21, l22, . . . , l2n2
), . . . , (lnD1, lnD2, . . . , lnDnD

)) , (1)

where ni is the number of devices of type i necessary to

complete the given task in this configuration, and lij is a

location of the jth device of type i. Note that even though

this information corresponds to only one task t, we omitted

the subscript t to improve the readability.

To achieve our goal of determining the device mix at

each location, we adapt the bin-packing method applied in

SaFE [15]. First we compute the total time over all tasks for

which a device type is used in the solution. That is, given a

location l and a device type i, denote by nti(l) the number

of devices of type i which are assigned to the location l for

the task t by the solution. Then, the total time the device

type i is utilized at the location l in training is:

Ti(l) =

T∑
t=1

nti(l) · τ(t, i).

Now, given our restrictions on annual device usage θi, we

compute

fi(l) =

⌈
Ti(l)

θi

⌉
,

the number of devices of type i which are required by the

solution at the location l, that is, the device mix at each

location.

Note that the number of devices in a device configuration

for a training task depends on the number of soldiers to be

trained. Since the number of soldiers is constant, the number

of devices of each type in a configuration is limited from

above. Therefore, even though there are no constraints on

the maximum number of devices at each location (which

technically can be infinite), the model keeps these numbers

always below certain maximum dependent on the number or

soldiers and the number of training tasks.

In TraDE, the set of all soldiers is ordered prior to

the model execution. The device configuration specifies the

number of devices of each type necessary for the training

of all soldiers for a given task (see equation (1)). First

we decide in which order we will match device types to

soldiers. The order is determined by sorting the D-tuple

(n1, n2, . . . , nD) from the smallest to the largest number.

Given that ni0 = mini{ni : i = 1, 2, . . . , D}, then the

devices of type i0 are considered first. The device type i0
has capacity sci0 , and we match the soldiers to the device

locations in the following order, starting from the first soldier:

Location Soldiers

li01 1 to sci0
li02 sci0 + 1 to 2 sci0

...
...

li0ni0
(ni0 − 1) sci0 + 1 to ni0 sci0

The remaining soldiers are then matched to devices of other

types in the same manner. Given the home location of each

soldier, we can determine the travel and other expenses

incurred by the soldier completing the training for an task at

the location specified by the given solution.

III. MULTI-OBJECTIVE OPTIMIZATION

Since we do not want to estimate weights of each ob-

jective with respect to each other prior to applying an

optimization algorithm, we need to use a multi-objective

genetic algorithm. TraDE uses the NGSA-II [4] algorithm

to obtain an approximation of the Pareto Front with respect

to many objectives (in this case four). Moreover, using a

multi-objective algorithm allows us to study the trade-offs

between different objectives and how these objectives affect

the device mix at each location.

In Subsection III-A, we discuss the structure of the chro-

mosomes of the population members. Like every genetic

algorithm, NGSA-II applies the crossover and mutation op-

erators (see Subsection III-B) on the current set of solu-

tions, called the parents, to obtain the new set of solutions,

called the children. The parent and children population are

combined and re-evaluated, and the fittest members of the

population are taken to be the parents in the next generation.

A. Solution Representation

In TraDE, every solution is represented by a two-part

chromosome. A chromosome consists of genes, and a gene

corresponds to a training task’seeds device configuration with

locations, as described by equation (1).

Two-dimensional chromosomes have been considered in

joint problem optimization [9] and in two-dimensional pack-

ing [8]. However, for these problems the chromosomes

had a fixed size in both dimensions. In our problem, the



number of required device locations depends on the number

of devices in the configuration. Hence the length of the

array of locations varies with the device type. Having a

two-part chromosome requires adapting the crossover and

mutation operators in a genetic algorithm [8], [9]. In TraDE,

the standard crossover operator can be used. On the other

hand, we study two variations of the mutation operator.

The mutation operators differ by which part of a gene is

altered and how this is done. More details are provided in

Subsection III-B.

B. Crossover and Mutation

The crossover and mutation operators act on the genes of a

chromosome. In TraDE, genes correspond to the training task

configuration. We use a standard crossover operator which

picks, with equal probability, from one of the two parents

the device configuration and locations for the given task.

However, not all members of the population are equally fit

to be parents to the next generation. Population members

are sorted in non-dominated fronts. A member in front i
has a probability of 1

i of being picked as a parent for the

next generation. In this way, members that are more likely to

produce better solutions are picked with higher probability

to be parents, which speeds convergence for a small number

of objectives [12].

Given that each solution has two-part chromosome, the

mutation operator can be defined in a number of ways. We

consider two types:

• Mutation Type 1: In this variation, we have only

one mutation rate, μ, representing the probability to

change a task configuration of a child. If the task

configuration is being replaced, we pick uniformly at

random an admissible device configuration from the

configuration set which gives us the first part of the

gene (see equation (1)). Then for each device type i,
we assign uniformly at random ni locations from the

set of all eligible locations Li, to obtain the second part

of the gene.

• Mutation Type 2: The mutation rate is a three-tuple

(μ1, μ2, μ3). A task configuration of a child is mu-

tated with probability μ1. If the task configuration is

being changed, we have a possibility of altering the

device configuration or keeping the configuration and

only mutating device locations. The device configu-

ration is replaced with probability μ2. In this case,

another device configuration for the task is picked

uniformly at random from the configuration set. How-

ever, we keep as many device locations unchanged as

possible. That is, if the original task configuration is

given as in equation (1), and the new device con-

figuration is (N1, N2, . . . , ND), then for every i =
1, 2, . . . , D, let mi = min{ni, Ni}, and assign locations(
li1, li2, . . . , limi

, Li(mi+1), Li(mi+2), . . . , LiNi

)
for the

devices of type i, where locations Lij are picked uni-

formly at random from the set Li (j = mi + 1,mi +
2, . . . , Ni).

Otherwise, the device configuration remains the same.

In this case, we go through the list of device locations,

and replace the location lij with probability μ3 by a

randomly chosen location from Li.

We tested the TraDE model with both mutation types. We

discus the results of these experiments in Section IV.

C. Objective Functions

Before we define the objective functions, we need to

introduce some notation. We denote by S the set of all

soldiers who need training. Also, we denote by x a specific

solutions, that is a device configuration and their location

specified for all tasks.

The fitness of each population member is evaluated with

respect to the following four objective functions which are

to be minimized.
• Acquisition cost :

D∑
i=1

(
∑
l∈Li

max(0, (fi(l)− existingi(l) ))) ·Ai,

where existingi(l) is the number of devices of type i
which already exist at location l.

• Operating cost:

D∑
i=1

(
∑
l∈Li

fi(l)) ·Opi +
∑
s∈S

Ux(s),

where Ux(s) is the total cost incurred by soldiers to

complete the full training on devices as specified by

solution x.

• Travel cost: ∑
s∈S

Vx(s),

where Vx(s) is the total cost incurred by soldier s for

a return trip between his/her home base and the device

location, as specified by solution x, to perform a training

task, summed over all tasks. In addition, Vx(s) contains

the costs of soldier s staying at the location of the device

for the duration of the training task, summed over all

tasks.

• Training time: ∑
s∈S

Tx(s),

where Tx(s) is the total time in takes a soldier s to

complete all tasks on the devices specified by solution

x.
A device location is necessary to determine the expense of

a return trip for each soldier from the home location to the

device location, as well as for calculating the costs incurred

by the soldier staying at the device location for the duration

of the training. To simplify the model, these computations

are done per task, with an assumption that after completing

the training task, the soldier always returns back to the home

location before starting a new training task.



D. Optimization Initialization

The algorithm initializes the first population randomly.

For the device configuration part of the chromosome, a

random admissible configuration is chosen from the pre-

determined configuration set for each training task. For the

device location part, eligible locations are randomly assigned

to the devices for the previously chosen configuration.

After initialization, some of the randomly chosen members

of the first population are replaced by seeds, i.e. approximate

best-fit solutions, in order to bootstrap the genetic algorithm.

A seeding mechanism has been implemented in order to

generate an optimal or nearly optimal solution with respect to

each objective separately. In particular, given a configuration

for a task from the configuration set, the value of all

objectives, except the travel cost, can be computed. The travel

cost depends on the locations of the devices which are not

specified by device configurations. To get a value for the

travel cost objective, for each device configuration, a location

is assigned for one device at a time, such that the incurred

travel cost by this device placement is minimized. Finally,

for each task, the configuration from the configuration set

with the minimum value for the given objective is taken, to

obtain a seed.

A planned set of devices could also be added as a seed.

This would allow an analyst to determine whether a planned

solution would be part of the non-dominated front or might

be superseded by solutions on the non-dominated front.

IV. RESULTS

The experiments were performed on a data set which has

the following parameters: 8,550 soldiers that need training

at 13 locations, four distinct training devices, and 11 tasks

which each soldier has to complete. For the current data

set, the training devices can be positioned at 22 different

locations. At nine of those locations, there are no soldiers.

We assume an inter-location travel cost between $0 (no travel

required) and $2000 with different per day costs at a device’s

location (in the $100-$500 range).

We performed 30 experiments, that is, 15 experiments for

each mutation type. Every experiment had the number of

population members set to 200, the number of generations

equal to 10,000, producing 15 · 200 = 3, 000 solutions in

total. We implemented the TraDE model in MATLAB and

ran it on a Windows 7 PC with 3 GHz twelve core CPU

and 18 GB RAM. Each experiment took approximately 12

hours to complete. The experiments with Mutation Type 1

had μ = 0.1. The experiments with Mutation Type 2 had

(μ1, μ2, μ3) = (0.1, 0.5, 0.1). Subject matter experts helped

in devising the input data set.

The results of the 15 experiments with a specified mutation

type were combined and re-evaluated to produce a combined
non-dominated front (combined NDF). We obtained two

combined NDFs, corresponding to the two mutation types,

having 1,388 and 1,480 population members. Then the sets

of solutions in the two combined non-dominated fronts were

united and resorted, to produce a super non-dominated front

(super NDF) having 2,002 solutions. Few of the solutions

in the super front were achieving the same values in all

four objective functions; hence, the repeated solutions were

eliminated. Ultimately, we obtained 1,990 non-dominated

solutions in the super front.

The results of the experiments are compared in the fol-

lowing way. For a set of non-dominated solutions A, define

O(A) to be the multi-set of all tuples of the objective

function values of the solutions in A. Assume that the union

of the set A with another set of solutions was re-evaluated

to produce a combined non-dominated front of solutions B.

We compare the 4-tuples of the objective function values of

the solutions in A with the 4-tuples of the objective values

of the solutions in B by computing the portion of A covered

by B:

P =
|O(A) ∩ O(B)|

|O(A)| .

We say that P · 100% of A is covered by B.

Recall, we performed 15 experiments for each mutation

type. Hence, we can compute the percentage of the non-

dominated front of each experiment covered by the combined

non-dominated front, or alternatively by the super front.

In Table I, we present only the mean value and standard

deviation of these percentages over all 15 experiments.

TABLE I

COMPARISON OF COVERAGE OF NDFS FOR THE TWO MUTATION TYPES

Mutation Type 1 Mutation Type 2

Size of Combined NDF
1,388 1,480
(out of 3,000) (out of 3,000)

Mean and standard deviation

0.4627± 0.0494 0.4933± 0.1319
of the coverage of each
experiment’s NDF
by their respective combined
NDFs
Mean and standard deviation

0.2100± 0.0489 0.4573± 0.1393of the coverage of each
experiment’s NDF
by the super NDF

We found that, on average, about one half of the non-

dominated front of an experiment is covered by the combined

non-dominated front in both cases. Moreover, a t-test fails to

reject the hypothesis that the coverage of the NDFs from the

experiments by the respective combined fronts is determined

by a normal distribution with the respective observed mean

at the 5% significance level (with p-value= 1).

However, the last row of Table I shows that the two muta-

tion types substantially differ when the non-dominated fronts

from the individual experiments are compared with the super

non-dominated front. The mean value of the coverage of the

non-dominated front from an experiment with Mutation Type

1 is considerably lower than the mean value of the coverage

of the non-dominated front from a trial with Mutation Type 2.

In addition, a paired t-test, with the assumption of unequal

standard deviations, fails to reject the hypothesis that the

mean of the coverage of the NDFs from the experiments with

Mutation Type 1 is smaller than the mean of the coverage



of the NDFs from the experiments with Mutation Type 2,

at the significance level of 5% (with p- value= 0.99). This

trend is clearly reflected on the coverage of the combined

non-dominated fronts for each mutation type by the super

non-dominated front. As shown in Figure 1, only 45% of the

combined NDF with Mutation Type 1 is covered by the super

front. On the other hand, 93% of the combined NDF with

Mutation Type 2 is contained in the super non-dominated

front.

Fig. 1. Coverage of the combined mutation type-specific non-dominated
fronts by the super front

A. Device Mixes

In this section, we look into some traits and general

characteristics of the produced device mixes.

For example, in our data, Devices A and B have similar

functionality; the sets of tasks that can be performed on them

almost coincide. Moreover, these devices are versatile, that

is, almost all training tasks can be performed on them. The

correlation coefficient between Devices of type A and B
in the solutions from the super front is -0.76. This inverse

relationship could have been expected given the compatibility

of the two devices. Recall that the TraDE model keeps the

number of devices capped and therefore if one device is used

more some other device must be used less. However, even

though these devices have similar functionality, their training

time per task, as well as cost per use for a task differ; hence,

they cannot completely replace one another.

However, examining the solution set, we see that Device

type B is favoured. Indeed, Table II shows the average of the

number of devices of each type taken over all solutions in

the super non-dominated front (summed over all locations)

required to perform the training of all soldiers. Examining

the input values to the model, we can see that Device B is

more efficient and less costly than Device A; therefore, the

obtained solution set confirms our expectations. Furthermore,

on average, Devices of type B and D are the most used.

Figure 2 depicts the number of hours devices of a given

type are used for a training task, averaged over all solutions.

While Device B is versatile and used for the majority of

tasks, Device D is primarily used for tasks which cannot be

trained on Devices of type B.

TABLE II

THE AVERAGE NUMBER OF DEVICES OF EACH TYPE REQUIRED PER

SOLUTION IN THE SUPER NDF.

Device A Device B Device C Device D
6.5754 51.9101 3.2612 26.9136

Fig. 2. Average of hours a device type is used in training per solution in
the super NDF.

Figure 2 identifies the average task-dependent device mix,

suggesting which device types are more efficient for the given

tasks, helping in planning future procurement. Moreover,

studying the number of devices of each type per location,

averaged over all solutions, gives us which locations may

profit the most from the introduction of new training equip-

ment.

Next we consider the solutions in our super NDF which

have the minimum value for one of the objectives. Since we

have a large super NDF, we obtained many distinct solutions

reaching the minimum for each objective function. This

many-to-one mapping is possible given that each solution is

based on a different device-to-task assignment, i.e., different

configurations. We present the solutions having the smallest

value of the fixed objective function and are the closest to the

minimum values of the other objectives. That is, denote by

X the set of all solutions in the super non-dominated front.

Let

mj = min
x∈X

fj(x),

be the minimum value of the jth objective function over all

solutions in the super NDF, and let

Mj = {x ∈ X : fj(x) = mj},
be the set of all solution reaching the minimum in the jth

objective. Below, we present solutions meeting the following



minimum:

min
x∈Mj

4∑
j=1

(
1− mj

fj(x)

)
.

Recall a device mix specifies a number of devices of each

type at all locations necessary for completing all training

tasks for all soldiers in a given time period. Solutions which

have capital cost equal to zero use up the existing devices

and usually only a small subset of them. Moreover, no

solution in the super NDF utilizes all of the existing devices,

potentially indicating that some of the existing resources at

certain locations are redundant (however, this result could

also have been obtained due to erroneous input data provided

by subject matter experts).

In terms of costs, the values of the operating cost and travel

cost objective functions are of similar orders of magnitude.

The solution with the smallest operating cost (see Fig. 3)

greatly favours use of Device B at almost all locations.

This is consistent with the fact that Device of type B is

inexpensive. However, its capacity is considerably smaller

than the capacity of competitive devices on which the same

task can be performed (on average only 9.8% of the capacity

of other devices). Moreover, the solution in Figure 3 has

about 3.8 times higher travelling costs than the solution with

the minimum value for travel costs (see Figure 4).

The solution in Figure 4 with the smallest value for the

travel costs has approximately 1.5 times higher operating

costs than the minimum, and interestingly, does not require

devices to be present at all locations. However, it does

emphasize the presence of devices at locations where the

majority of soldiers are stationed. In our input data, Loca-

tions 1-5 are home bases for 75% of soldiers.

The device mix in Figure 5 corresponds to the solution

with the smallest sum of all costs: capital, operational, and

travel. It is a representation of a solution with objective

functions’ values between those in solutions given in Fig-

ures 3 and 4. In this solution, we have devices at all locations;

however, most devices are still concentrated at Locations 1-5.

Fig. 3. A device mix for a solution with the minimum operational cost

Fig. 4. A device mix for a solution with the minimum travel cost

Fig. 5. A device mix for a solution with the minimum of sum of capital,
operational, and travel costs

Figure 6 gives a device mix for a solution with the

minimum total training time among the solutions in the

super NDF. The objective values for the operational and

travel costs in this solution are slightly higher than in the

solution with the minimum travel costs (see Figure 4), and

the device mixes are almost identical. They only differ in the

device mix at Locations 1 and 2. However, the correlation

between the travel cost objective and the total training time

objective among the solutions in the super NDF is only 0.44.

Nonetheless, in many experiments, the solutions reaching

minimum values in these objectives have consistently had

identical or almost the same device mixes for our input data.

One possible answer would be that, for our data, these two

objectives result in similar optimal solution sets; however,

the relationship between suboptimal solutions in these two

objectives could be highly nonlinear. This is certainly not

well understood and merits further study.



Fig. 6. A device mix for a solution with the minimum training time

V. CONCLUSION

Determining the number of training devices to accomplish

training tasks is a complex problem, especially when one

must consider the optimal location placement of the devices.

TraDE gives a set of solutions which provide trade-offs be-

tween multiple objectives. Each solution gives an allocation

of devices at various suggested locations. Furthermore, the

solutions can be used to identify existing devices which are

redundant and can be removed to lower annual maintenance

costs. Also, solutions suggest which new devices may be

placed at various locations for more efficient training. More-

over, we can infer which device types are more effective for

meeting a given objective, and how many of them and where

they should be placed.

The introduction of locations where devices should be

placed is reflected in the double chromosomes for the mem-

bers of the population in the genetic algorithm. In TraDE, the

crossover operator is suggested naturally by the formulation

of the problem. However, we tested two mutation types and

found that Mutation Type 2 performs significantly better

in terms of obtaining non-dominated solutions and overlap

with the super NDF. This type of mutation operator set up

may help in other complicated optimization problems where

several NP-hard problems are being solved at the same time.

The next stage of work will involve running the algorithm

for a longer number of generations to ensure further conver-

gence. A more detailed analysis of the trade-offs between the

various objectives will also be performed. Moreover, we plan

to adapt the model to more complex data which may involve

introducing task prerequisites, having compound tasks for

which subtasks can be completed on different devices, and

having different training programs. Finally, we will look into

trade-offs in training effectiveness between different device

types.
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