REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
25-08-2015 Conference Proceeding -

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Can humans fly? Action understanding with multiple classes of [ W911NF-11-1-0090

actors 5b. GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER
611102
6. AUTHORS 5d. PROJECT NUMBER

Chenliang Xu, Shao-Hang Hsieh, Caiming Xiong, Jason Corso

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT

State University of New York (SUNY) at Bt NUMBER
Sponsored Projects Services

402 Crofts Hall

Buffalo, NY 14260 -7016
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS 10. SPONSOR/MONITOR'S ACRONYM(S)
(ES) ARO

U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT
P.O. Box 12211 NUMBER(S)
Research Triangle Park, NC 27709-2211 58260-CS-YIP.21

12. DISTRIBUTION AVAILIBILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT

Can humans fly? Emphatically no. Can cars eat? Again, absolutely not. Yet, these absurd inferences result from the
current disregard for particular types of actors in action understanding. There is no work we know of on
simultaneously inferring actors and actions in the video, not to mention a dataset to experiment with. Our paper
hence marks the first effort in the computer vision community to jointly consider various types of actors undergoing
various actions. To start with the problem, we collect a dataset of 3782 videos from YouTube and label both pixel-

| PN R VISSIEODA BN SO PR RS P § § S 2SRRI P | AP NSRS BTSN PSR PR PR 1 PO IR P SR I

15. SUBJECT TERMS
Action understanding, simultaneously inferring, pixel-level actors and actions

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF [15. NUMBER [19a. NAME OF RESPONSIBLE PERSON

a. REPORT [b. ABSTRACT [c. THIS PAGE |ABSTRACT OF PAGES  |Venkat Krovi

uu uUu UU uu 19b. TELEPHONE NUMBER
716-645-1430

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18



Report Title
Can humans fly? Action understanding with multiple classes of actors

ABSTRACT

Can humans fly? Emphatically no. Can cars eat? Again, absolutely not. Yet, these absurd inferences result from the
current disregard for particular types of actors in action understanding. There is no work we know of on
simultaneously inferring actors and actions in the video, not to mention a dataset to experiment with. Our paper hence
marks the first effort in the computer vision community to jointly consider various types of actors undergoing various
actions. To start with the problem, we collect a dataset of 3782 videos from YouTube and label both pixel-level
actors and actions in each video. We formulate the general actor-action understanding problem and instantiate it at
various granularities: both video-level single- and multiple-label actor-action recognition and pixel-level actor-action
semantic segmentation. Our experiments demonstrate that inference jointly over actors and actions outperforms
inference independently over them, and hence concludes our argument of the value of explicit consideration of
various actors in comprehensive action understanding.

Conference Name: IEEE Conference on Computer Vision and Pattern Recognition
Conference Date: June 08, 2015



This CVPR2015 paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in IEEE Xplore.

Can Humans Fly? Action Understanding with Multiple Classes of Actors

Chenliang Xu', Shao-Hang Hsieh!, Caiming Xiong? and Jason J. Corso?

! Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
2 Statistics, University of California, Los Angeles

{cliangxu, shaohang, jjcorso}@umich .edu

Abstract

Can humans fly? Emphatically no. Can cars eat? Again,
absolutely not. Yet, these absurd inferences result from the
current disregard for particular types of actors in action
understanding. There is no work we know of on simulta-
neously inferring actors and actions in the video, not to
mention a dataset to experiment with. QOur paper hence
marks the first effort in the computer vision community to
Jjointly consider various types of actors undergoing various
actions. To start with the problem, we collect a dataset of
3782 videos from YouTube and label both pixel-level actors
and actions in each video. We formulate the general actor-
action understanding problem and instantiate it at vari-
ous granularities: both video-level single- and multiple-
label actor-action recognition and pixel-level actor-action
semantic segmentation. Our experiments demonstrate that
inference jointly over actors and actions outperforms infer-
ence independently over them, and hence concludes our ar-
gument of the value of explicit consideration of various ac-
tors in comprehensive action understanding.

1. Introduction

Like verbs in language, action is the heart of video un-
derstanding. As such, it has received a significant amount
of attention in the last decade. Our community has moved
from small datasets of a handful of actions [12, 50] to large
datasets with many dozens of actions [27, 45]; from con-
strained domains like sporting [42, 46] to videos in-the-wild
[38, 45]. Notable methods have demonstrated that low-level
features [25, 33, 58, 59], mid-level atoms [67], high-level
exemplars [48], structured models [42, 56], and attributes
[37] can be used for action recognition. Impressive meth-
ods have even pushed toward action recognition for multiple
views [40], event recognition [20], group-based activities
[32], and even human-object interactions [15, 44].

However, these many works emphasize a small subset of
the broader action understanding problem. First, aside from

caimingxiong@ucla.edu

Figure 1. Montage of labeled videos in our new actor-action
dataset, A2D. Examples of single actor-action instances as well
as multiple actors doing different actions are present in this mon-
tage. Label colors are picked from the HSV color space, so that
the same objects have the same hue (refer to Fig. 2 for the color-
legend). Black is the background. View zoomed and in color.

Iwashita et al. [19] who study egocentric animal activities,
these existing methods all assume the agent of the action,
which we call the actor, is a human adult. The only work
we are aware of that jointly considers different types of ac-
tors and actions is Xu et al. [61], but this work uses a dataset
two-orders of magnitude smaller (32 videos versus 3782
videos), groups all animals together into one class sepa-
rate from humans, and is primarily a visual-psychophysical
study using off-the-shelf vision methods.

Although looking at people is certainly a relevant appli-
cation domain for computer vision, it is not the only one;
consider recent advances in video-to-text [1, 14] that can be
used for semantic indexing of large video databases [36],
or advances in autonomous vehicles [11]. In these applica-
tions, understanding both the actor and the action are critical
for success: e.g., the autonomous vehicle needs to distin-
guish between a child, a deer and a squirrel running into the
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road so it can accurately make an avoidance plan. Applica-
tions like these, e.g., robotic autonomy [55], are abundant
and growing.

Second, these works largely focus on action recogni-
tion, which is posed as the classification of a pre-temporally
trimmed clip into one of k action classes from a closed-
world. The direct utility of results based on this problem
formulation is limited. The community has indeed begun to
move beyond this simplified problem into action detection
[56, 65], action localization [22, 39], action segmentation
[23, 24], and actionness ranking [8]. But, all of these works
do so strictly in the context of human actors.

In this paper, we overcome both of these narrow view-
points and introduce a new level of generality to the ac-
tion understanding problem by considering multiple differ-
ent classes of actors undergoing multiple different classes
of actions. To be exact, we consider seven actor classes
(adult, baby, ball, bird, car, cat, and dog) and eight action
classes (climb, crawl, eat, fly, jump, roll, run, and walk) not
including the no-action class, which we also consider. We
formulate a general actor-action understanding framework
and implement it for three specific problems: actor-action
recognition with single- and multiple-label, and actor-action
semantic segmentation. These three problems cover differ-
ent levels of modeling and hence allow us to analyze the
new problem thoroughly. We further distinguish our work
from multi-task learning [5] that focuses on getting a shared
representation for training better classifiers, whereas we fo-
cus on modeling the relationship and interactions of the ac-
tor and action under a unified graphical model.

To support these new actor-action understanding prob-
lems, we have created a new dataset, which we call the
Actor-Action Dataset or A2D (see Fig. 1), that is labeled at
the pixel-level for actors and actions (densely in space over
actors, sparsely in time). The A2D has 3782 videos with at
least 99 instances per valid actor-action tuple (Sec. 3 and
Fig. 2 have exact statistics). We thoroughly analyze empir-
ical performance of both state-of-the-art and baseline meth-
ods, including naive Bayes (independent over actor and ac-
tion), a joint product-space model (each actor-action pair is
considered as one class), and a bilayer graphical model in-
spired by [31] that connects actor nodes with action nodes.

Our experiments demonstrate that inference jointly over
actors and actions outperforms inference independently
over them, and hence, supports the explicit consideration of
various actors in comprehensive action understanding. In
other words, although a bird and an adult can both eat,
the space-time appearance of a bird eating and an adult
eating are different in significant ways. Furthermore, the
various mannerisms of the way birds eat and adults eat
mutually reinforces inference over the constituent parts.
This result is analogous to Sadeghi and Farhadi’s visual
phrases work [49] in which it is demonstrated that joint

detection over small groups of objects in images is more
robust than separate detection over each object followed
a merging process and to Gupta et al.’s [15] work on hu-
man object-interactions in which considering specific ob-
jects while modeling human actions leads to better infer-
ences for both parts.

Our paper marks the first effort in the computer vision
community to jointly consider various types of actors un-
dergoing various actions. As such, we pose two goals: first,
we seek to formulate the general actor-action understand-
ing problem and instantiate it at various granularities, and
second, we seek to assess whether or not it is beneficial
to explicitly jointly consider actors and actions in this new
problem-space. The paper describes the new A2D dataset
(Sec. 3), the actor-action problem formulation (Sec. 4) and
our experiments to answer this question (Sec. 5).

2. Related Work

A related work from the action recognition community
is the recent Bojanowski et al. [2] paper, which focuses on
finding different human acfors in movies, but these are the
actor-names and not different types of actors, like dog and
cat as we consider in this paper. Similarly, the existing work
on actions and objects, such as [15, 44], is strictly focused
on interaction between human actors manipulating various
objects and not different types of actors, which is our focus.

The remainder of the related work section discusses seg-
mentation, which is a major emphasis of our broader view
of the action understanding problem-space and yet was not
discussed in the introduction (Sec. 1). Semantic segmen-
tation methods can now densely label more than a dozen
classes in images [13, 29, 30, 41] and videos [21, 57] under-
going rapid motion; semantic segmentation methods have
even been unified with object detectors and scene classifi-
cation [63], extended to 3D [18, 28, 53] and posed jointly
with attributes [66], stereo [9, 31, 51] and SFM [4, 10]. Al-
though the underlying optimization problems in these meth-
ods tend to be expensive, average-per-class accuracy scores
has significantly increased, for example, from 67% in [52]
to nearly 80% in [26, 29, 63] on the popular MSRC seman-
tic segmentation benchmark. Further works have moved be-
yond full supervision to weakly supervised object discovery
and learning [16, 54].

Other related works include unsupervised video object
segmentation [34, 35, 43, 64] and joint temporal segmenta-
tion with action recognition [17]. These video object seg-
mentation methods are class-independent and assume a sin-
gle dominant object (actor) in the video; they are hence not
directly comparable to our work although one can foresee a
potential method using video object segmentation as a pre-
cursor to the actor-action understanding problem.

There is a clear trend moving toward video semantic seg-
mentation and toward weak supervision. But, these exist-
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Figure 2. Statistics of label counts in the new A2D dataset. We
show the number of videos in our dataset in which a given
[actor, action] label occurs. Empty entries are joint-labels that are
not in the dataset either because they are invalid (a ball cannot ear)
or were in insufficient supply, such as for the case dog-climb. The
background color in each cell depicts the color we use throughout
the paper; we vary hue for actor and saturation for action.

ing works in semantic segmentation focus on labeling pix-
els/voxels as various objects or background-stuff classes.
They do not consider the joint label-space of what actions
these “objects” may be doing. Our work differs from them
by directly considering this actor-action problem, while also
building on the various advances made in these papers.

3. A2D—The Actor-Action Dataset

We have collected a new dataset consisting of 3782
videos from YouTube; these videos are hence unconstrained
“in-the-wild” videos with varying characteristics. Figure 1
has single-frame examples of the videos. We select seven
classes of actors performing eight different actions. Our
choice of actors covers articulated ones, such as adult, baby,
bird, cat and dog, as well as rigid ones, such as ball and
car. The eight actions are climbing, crawling, eating, flying,
jumping, rolling, running, and walking. A single action-
class can be performed by various actors, but none of the
actors can perform all eight actions. For example, we do not
consider adult-flying or ball-running in the dataset. In some
cases, we have pushed the semantics of the given action
term to maintain a small set of actions: e.g., car-running
means the car is moving and ball-jumping means the ball is
bouncing. One additional action label none is added to ac-
count for actions other than the eight listed ones as well as
actors in the background that are not performing an action.
Therefore, we have in total 43 valid actor-action tuples.

To query the YouTube database, we use various text-
searches generated from actor-action tuples. Resulting
videos were then manually verified to contain an instance of
the primary actor-action tuple, and subsequently temporally
trimmed to contain that actor-action instance. The trimmed
videos have an average length of 136 frames, with a mini-
mum of 24 frames and a maximum of 332 frames. We split
the dataset into 3036 training videos and 746 testing videos
divided evenly over all actor-action tuples. Figure 2 shows

Actor-Action Actor Action

2503 2794 2639

1051 936 1037
194 31 3 49 3 o 9 6 1
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Figure 3. Histograms of counts of joint actor-actions, and individ-
ual actors and actions per video in A2D; roughly one-third of the
videos have more than one actor and/or action.

the statistics for each actor-action tuple. One-third of the
videos in A2D have more than one actor performing dif-
ferent actions, which further distinguishes our dataset from
most action classification datasets. Figure 3 shows exact
counts for these cases with multiple actors and actions.

To support the broader set of action understanding prob-
lems in consideration, we label three to five frames for each
video in the dataset with both dense pixel-level actor and
action annotations (Fig. 1 has labeling examples). The se-
lected frames are evenly distributed over a video. We start
by collecting crowd-sourced annotations from MTurk us-
ing the LabelMe toolbox [47], then we manually filter each
video to ensure the labeling quality as well as the tempo-
ral coherence of labels. Video-level labels are computed di-
rectly from these pixel-level labels for the recognition tasks.
To the best of our knowledge, this dataset is the first video
dataset that contains both actor and action pixel-level labels.

4. Actor-Action Understanding Problems

Without loss of generality, let V = {v1,...,v,} denote
a video with n voxels in space-time lattice A® or n super-
voxels in a video segmentation [7, 60, 62] represented as
a graph G = (V, ) where the neighborhood structure of
the graph is given by the supervoxel segmentation method;
when necessary we write £(v) where v € V to denote the
subset of V that are neighbors with v. We use X’ to de-
note the set of actor labels: {adult, baby, ball, bird, car,
cat, dog}, and we use ) to denote the set of action labels:
{climbing, crawling, eating, flying, jumping, rolling, run-
ning, walking, none'}.

Consider a set of random variables x for actor and an-
other y for action; the specific dimensionality of x and y
will be defined later. Then, the general actor-action under-
standing problem is specified as a posterior maximization:

(x",y") = arg max P(x, y|V) . (1)

X,y

Specific instantiations of this optimization problem give rise
to various actor-action understanding problems, which we
specify next, and specific models for a given instantiation

IThe none action means either there is no action present or the action
is not one of those we have considered.
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will vary the underlying relationship between x and y al-
lowing us to deeply understand their interplay.

4.1. Single-Label Actor-Action Recognition

This is the coarsest level of granularity we consider in
the paper and it instantiates the standard action recognition
problem [33]. Here, x and y are simply scalars x and y, re-
spectively, depicting the single actor and action label to be
specified for a given video V. We consider three models for
this case:

Naive Bayes: Assume independence across actions and ac-
tors, and then train a set of classifiers over actor space X
and a separate set of classifiers over action space ). This is
the simplest approach and is not able to enforce actor-action
tuple existence: e.g., it may infer adult-fly for a test video.
Joint Product Space: Create a new label space Z that is
the joint product space of actors and actions: Z = X x ).
Directly learn a classifier for each actor-action tuple in this
joint product space. Clearly, this approach enforces actor-
action tuple existence, and we expect it to be able to ex-
ploit cross-actor-action features to learn more discrimina-
tive classifiers. However, it may not be able to exploit the
commonality across different actors or actions, such as the
similar manner in which a dog and a cat walk.

Trilayer: The trilayer model unifies the naive Bayes and
the joint product space models. It learns classifiers over
the actor space X, the action space ) and the joint actor-
action space Z. During inference, it separately infers the
naive Bayes terms and the joint product space terms and
then takes a linear combination of them to yield the final
score. It models not only the cross-actor-action but also the
common characteristics among the same actor performing
different actions as well as the different actors performing
the same action.

In all cases, we extract local features (see Sec. 5.1 for de-
tails) and train a set of one-vs-all classifiers, as is standard
in contemporary action recognition methods, and although
not strictly probabilistic, can be interpreted as such to im-
plement Eq. 1.

4.2. Multi-Label Actor-Action Recognition

As noted in Fig. 3, about one-third of the videos in A2D
have more than one actor and/or action present in a given
video. In many realistic video understanding applications,
we find such multiple-label cases. We address this explicitly
by instantiating Eq. 1 for the multi-label case. Here, x and
y are binary vectors of dimension |X'| and |)| respectively.
x; takes value 1 if the ¢th actor-type is present in the video
and zero otherwise. We define y similarly. This general
definition, which does not tie specific elements of x to those
iny, is necessary to allow us to compare independent multi-
label performance over actors and actions with that of the
actor-action tuples. We again consider a naive Bayes pair

Figure 4. Visualization of different graphical models to solve
Eq. 1. The figure here is for simple illustration and the actual
voxel or supervoxel graph is built for a video volume.

of multi-label actor and action classifiers, multi-label actor-
action classifiers over the joint product space, as well as the
trilayer model that unifies the above classifiers.

4.3. Actor-Action Semantic Segmentation

Semantic segmentation is the most fine-grained instanti-
ation of actor-action understanding that we consider, and it
subsumes other coarser problems like detection and local-
ization, which we do not consider in this paper for space.
Here, we seek a label for actor and action per-voxel over
the entire video. Define the two sets of random variables
x = {x1,...,x,} andy = {y1,...,yn} to have dimen-
sionality in the number of voxels or supervoxels, and assign
each x; € X and each y; € ). The objective function in
Eq. 1 remains the same, but the way we define the graphical
model implementing P(x,y|V) leads to acutely different
assumptions on the relationship between actor and action
variables.

We explore this relationship in the remainder of this sec-
tion. We start by again introducing a naive Bayes-based
model that treats the two classes of labels separately, and a
joint product space model that considers actors and actions
together in a tuple [x,y]. We then explore a bilayer model,
inspired by Ladicky et al. [31], that considers the inter-
set relationship between actor and action variables. Finally,
we introduce a new trilayer model that considers both intra-
and inter-set relationships. Figure 4 illustrates these various
graphical models. We then evaluate the performance of all
models in terms of joint actor and action labeling in Sec. 5.

Naive Bayes-based Model First, let us consider a naive
Bayes-based model, similar to the one used for actor-action
recognition earlier:

P(x,y[V) = Px|[V)P(y|V) 2
=1 P@)Pw) [ I Piz)Plyiy;)

i€V i€V jEE(T)
oc [T ee(@witw) T T 6is (@i 2i)vis(vir vs)

S% 1€V je&(i)

where ¢; and v; encode the separate potential functions de-
fined on actor and action nodes alone, respectively, and ¢;;
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and 1);; are the pairwise potential functions within sets of
actor nodes and sets of action nodes, respectively.

We train classifiers { f.|c € X'} over actors and {g.|c €
YV} on sets of actions using features described in Sec. 5.3,
and ¢; and v; are the classification scores for supervoxel i.
The pairwise edge potentials have the form of a contrast-
sensitive Potts model [3]:

bij = { exp(—0/(1 + ij)) otherwise, )

where X%j is the x? distance between feature histograms of
nodes ¢ and 7, € is a parameter to be learned from the train-
ing data. 1;; is defined analogously. Actor-action semantic
segmentation is obtained by solving these two flat CRFs in-
dependently.

Joint Product Space We consider a new set of random
variables z = {z1,..., 2, } defined again on all supervox-
els in a video and take labels from the actor-action prod-
uct space Z = X x ). This formulation jointly captures
the actor-action tuples as unique entities but cannot model
the common actor and action behaviors among different tu-
ples as later models below do; we hence have a single-layer
graphical model:

P(x,y|V) = P(z|V) = H P(z;) H H P(z;,2j)
i€V 1€V je&(4)
< [T IT I @itz 2) 4)
i€V i€V jeE()

:H%([%,%DH H pij (@i yil, [z, 950)

i€V i€V jEE(®)

where ¢; is the potential function for joint actor-action
product space label, and (;; is the inter-node potential func-
tion between nodes with the tuple [x,y]. To be specific, ¢;
contains the classification scores on the node ¢ from running
trained actor-action classifiers {h.|c € Z}, and ;; has the
same form as Eq. 3. Fig. 4 (b) illustrates this model as a
one layer CRF defined on the actor-action product space.

Bilayer Model Given the actor nodes x and action
nodes y, the bilayer model connects each pair of random
variables {(z;,y;)}"_; with an edge that encodes the po-
tential function for the tuple [z;,y;], directly capturing the
covariance across the actor and action labels. We have

PxyV) =] P@iv) [T T Piz)Pwiu))
i€V i€V jeg(i)
o [ [ dilwa)ws (wi)&i (i, yi)-
iev

H H Gij(Tis )i (Yiry;) 4)

i€V jEE(D)

where ¢. and 7). are defined as earlier, &;(x;, y;) is a learned
potential function over the product space of labels, which
can be exactly the same as ¢; in Eq. 4 above or a compatibil-
ity term like the contrast sensitive Potts model, Eq. 3 above.
We choose the former in this paper. Fig. 4 (c) illustrates this
model. We note that additional links can be constructed
by connecting corresponding edges between neighboring
nodes across layers and encoding the occurrence among the
bilayer edges, such as the joint object class segmentation
and dense stereo reconstruction model in Ladicky et al. [31].
However, their model is not directly suitable here.

Trilayer Model So far we have introduced three baseline
formulations in Eq. 1 for semantic actor-action segmenta-
tion that relate the actor and action terms in different ways.
The naive Bayes model (Eq. 2) does not consider any rela-
tionship between actor x and action y variables. The joint
product space model (Eq. 4) combines features across ac-
tors and actions as well as inter-node interactions in the
neighborhood of an actor-action node. The bilayer model
(Eq. 5) adds actor-action interactions among separate actor
and action nodes, but it does not consider how these inter-
actions vary spatiotemporally.

Therefore, we introduce a new trilayer model that ex-
plicitly models such variations (see Fig. 4d) by combining
nodes x and y with the joint product space nodes z:

P(x,y.z|V) = P(x|V)P(y|V)P(z|V) [ [ P(xi,2)Pyi. =)

%
X H @(%)%(yz)%(zz)uz(%a Zi)’/i(yia Zz)
iey
H H Gij (i, 3)Vij (yir y5) iz (2i, 25) 5 (6)
i€V jEE(D)

where we define

(5, 21) = w(y'|x;)  ifz; =z for z; = [z, yi']
Hil®i, Zi 0 otherwise

)

vi(yi, zi) = w(z|ys)  ifys =i for z; = [, 9]

s 22 0 otherwise
Terms w(y}|z;) and w(x}|y;) are classification scores of
conditional classifiers, which are explicitly trained for this
trilayer model. These conditional classifiers are the main
reason for the increased performance found in this method:
separate classifiers for the same action conditioned on the
type of actor are able to exploit the characteristics unique
to that actor-action tuple. For example, when we train a
conditional classifier for action eating given actor adult, we
use all other actions performed by adult as negative training
samples. Therefore our trilayer model considers all rela-
tionships in the individual actor and action spaces as well as
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Single-Label Multiple-Label

Classification Accuracy Mean Average Precision
Model| Actor Action | <A, A> Actor  Action | <A, A>
Naive Bayes| 70.51 74.40 56.17 76.85 78.29 60.13
JointPS| 72.25 72.65 61.66 76.81 76.75 63.87
Trilayer| 75.47 75.74 64.88 78.42 79.27 66.86

Table 1. Single-label and multiple-label actor-action recognition
in the three settings: independent actor and action models (naive
Bayes), joint actor-action models in a product-space and the tri-
layer model. The scores are not comparable along the columns
(e.g., the space of independent actors and actions is significantly
smaller than that or actor-action tuples); the point of comparison
is along the rows where we find the joint model to outperform
the independent models when considering both actors and actions.
<A, A> denotes evaluating in the joint actor-action product-space.

the joint product space. In other words, the previous three
baseline models are all special cases of the trilayer model.
It can be shown that the solution (x*,y*, z*) maximizing
Eq. 6 also maximizes Eq. 1 (see Appendix).

5. Experiments

We thoroughly study each of the instantiations of the
actor-action understanding problem with the overarching
goal of assessing if the joint modeling of actor and action
improves performance over modeling each of them inde-
pendently, despite the large space. We follow the training
and testing splits discussed in Sec. 3; for assigning a single-
label to a video for the single-label actor-action recognition,
we choose the label associated with the query for which we
searched and selected that video from YouTube.

5.1. Single-Label Actor-Action Recognition

Following the typical action recognition setup, e.g., [33],
we use the state-of-the-art dense trajectory features (trajec-
tories, HoG, HoF, MBHx and MBHy) [58] and train a set of
1-versus-all SVM models (with RBF-y? kernels from LIB-
SVM [6]) for the label sets of actors, actions and joint actor-
action labels. Specifically, when training the eating clas-
sifier, the other seven actions are negative examples; when
we train the bird-eating classifier, we use the 35 other actor-
action labels as negative examples.

Table 1-left shows the classification accuracy of the
naive Bayes, joint product space and trilayer models, in
terms of classifying actor, action and actor-action labels. To
evaluate the joint actor-action (the <A, A> columns) for the
naive Bayes models, we train the actor and action classifiers
independently, apply them to the test videos independently
and then score them together (i.e., a video is correct if and
only if actor and action are correct). We observe that the
independent model for action outperforms the joint product
space model for action; this can be explained by the regu-
larity across different actors for the same action that can be
exploited in the naive Bayes model, but that results in more

inter-class overlap in the joint product space. For example,
a cat-running and a dog-running have similar signatures in
space-time: the naive Bayes model does not need to distin-
guish between these two, but the joint product space does.
However, we find that when we consider both the actor and
action in evaluation, it is clearly beneficial to jointly model
them. This phenomenon occurs in all of our experiments.
Finally, the trilayer model outperforms the other two mod-
els in terms of both individual actor or action tasks as well
as the joint actor-action task. The reason is that the trilayer
model incorporates both types of relationships that are sep-
arately modeled in the naive Bayes and joint product space
models.

5.2. Multiple-Label Actor-Action Recognition

For the multiple-label case, we use the same dense trajec-
tory features as in Sec. 5.1, and we train 1-versus-all SVM
models again for the label sets of actor, action and actor-
action pairs, but with different training regimen to capture
the multiple-label setting. For example, when training the
adult classifier, we use all videos containing any actor adult
as positive examples no matter the other actors that coexist
in the positive videos, and we use the rest of videos as neg-
ative examples. For evaluation, we adapt the approach from
HOHAZ2 [40]. We treat multiple-label actor-action recogni-
tion as a retrieval problem and compute mean average preci-
sion (mAP) given the classifier scores. Table 1-right shows
the performance of the three methods on this task. Again,
we observe that the joint product space has higher mAP than
naive Bayes for the joint actor-action evaluation. We also
observe the trilayer model further improves the scores fol-
lowing the same trend as in the single-label case.

However, we also note that large improvement in the
both individual tasks from the trilayer model. This im-
plies that the “side” information of the actor when doing
action recognition (and vice versa) provides useful infor-
mation to improve the inference task, thereby answering the
core question in the paper.

5.3. Actor-Action Semantic Segmentation

State-of-the-Art Pixel-Based Segmentation. We first ap-
ply the state-of-the-art robust P model [29] at the pixel
level; we apply their supplied code off-the-shelf as a base-
line. The average-per-class performance is 13.74% for the
joint actor-action task, 47.2% for actor and 34.49% for ac-
tion. We suspect that the modeling at pixel and superpixel
level can not well capture the motion changes of actions,
which explains why the actor score is high but the other
scores are comparatively lower. The P model could be
generalized to fit within our framework, which we leave
for future work. We use supervoxel segmentation and ex-
tract spatiotemporal features for assessing the various mod-
els posed for actor-action semantic segmentation.
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bird cat dog

Model| BK |climb eat fly jump roll walk none|climb eat jump roll run walk none|crawl eat jump roll run walk none [ Average Per Class Accuracy
Naive Bayes| 79.5 | 21.0 6.2 28.7 173 283 28 293|282 243 16 382 436 10 44 | 61 132 53 219 359 258 43 |5 Model| Actor Action | <A, A>
JointPS| 75.1 | 23.0 155 36.0 192 266 7.5 00 [19.4 246 41 324 285 7.5 05 (109 242 21 211 212 382 00 || NaveBayes| 4302 40.08 | 1635
Conditional| 79.5 | 23.2 8.4 407 254 305 75 00 |260 305 80 317 533 91 00 | 74 162 31 246 293 536 00 |4 _ JoniPS| 4089 3850 | 2061
Bilayer| 79.7 | 245 133 408 130 354 7.0 00 |327 329 11 380 370 75 01 |25 228 24 359 270 296 00 |3 °°"(;f"°"a' jggi :;;g f:z:
Trilayer| 785 | 281 182 553 203 425 9.0 00 331 272 61 498 485 66 00 | 99 31.0 20 276 236 394 00 |5 Tn":;’:: won 4161 | 2500
adult baby ball car Average Per Class Accuracy

Model|climb crawl eat jump roll run walk none|climb crawl roll walk none| fly jump roll none| fly jump roll run none Model [ Actor  Action | <A, A>
Naive Bayes| 21.5 304 215 113 50 181 115 258|216 235 205 86 7.4 | 29 136 66 86 |100 712 222 55 137 Nai’veBayes 7478 4259 | 19.28
JointPS| 231 59.3 440 17.5 17.6 346 284 214|183 240 281 172 06 | 00 65 47 28 [132 747 439 305 81 [3  JontPS| 4196 4009 | 2173
Conditional| 185 43.1 363 254 17.4 318 307 121|265 204 367 139 56 | 37 162 214 90 |27.7 776 435 372 17 |Gl Condiional| 4478 4188 | 2419
Bilayer| 27.2 496 51.6 251 284 27.9 392 06 |132 254 440 240 00 | 03 103 60 00 209 768 372 396 05 Bilayer| 4446 4362 | 2343
Trilayer| 331 59.8 49.8 19.9 27.6 402 31.7 246|204 217 393 253 00 | 1.0 119 61 00 |244 759 443 483 24 Trilayer| 4570  46.96 | 26.46

Table 2. Average per-class semantic segmentation accuracy in percentage of joint actor-action labels for all models (for individual classes,
left, and in summary, right). The leading scores of each label are displayed in bold font. The summary scores on the right and indicate that
the trilayer model, which considers the action and actor models alone as well as the actor-action product-space, performs best.

Supervoxel Segmentation and Features. We use TSP [7]
to obtain supervoxel segmentations due to its strong per-
formance on the supervoxel benchmark [60]. In our exper-
iments, we set & = 400 yielding about 400 supervoxels
touching each frame. We compute histograms of textons
and dense SIFT descriptors over each supervoxel volume,
dilated by 10 pixels. We also compute color histograms in
both RGB and HSV color spaces and dense optical flow
histograms. We extract feature histograms from the entire
supervoxel 3D volume, rather than a single representative
superpixel [57]. Furthermore, we inject the dense trajectory
features [58] to supervoxels by assigning each trajectory to
the supervoxels it intersects in the video.

Frames in A2D are sparsely labeled; to obtain a super-
voxel’s groundtruth label, we look at all labeled frames in
a video and take a majority vote over intersecting labeled
pixels. We train sets of 1-versus-all SVM classifiers (linear
kernels) for actor, action, and actor-action as well as con-
ditional classifiers separately. The parameters of the graph-
ical model are tuned by empirical search, and loopy belief
propagation is used for inference. The inference output is
a dense labeling of video voxels in space-time, but, as our
dataset is sparsely labeled in time, we compute the average
per-class segmentation accuracy only against those frames
for which we have groundtruth labels. We choose average
per-class accuracy over global accuracy because our goal is
to compares actor and action rather than full video labeling.

Evaluation. Table 2-right shows the overall performance
of the different methods. The upper part is results with only
the unary terms and the lower part is the full model perfor-
mance. We not only evaluate the actor-action pairs but also
individual actor and action tasks. The conditional model is
a variation of bilayer model with different aggregation—we
infer the actor label first then the action label conditioned
on the actor. Note that the bilayer model has the same unary
scores as the naive Bayes model (using actor ¢; and action
1; outputs independently) and the actor unary of the condi-
tional model is the same as that of the naive Bayes model
(followed by the conditional classifier for action).

Over all models, the naive Bayes model performs worst,

which is expected as it does not encode any interactions
between the two label sets. We observe that the condi-
tional model has better action unary and actor-action scores,
which indicates that knowing actors can help with action in-
ference. We also observe that the bilayer model has a poor
unary performance of 16.35% (actor-action) that is the same
as naive Bayes but for the full model it improves dramati-
cally to 23.43%, which suggests that the performance boost
again comes from the interaction of actor and action nodes
in the full bilayer model. We also observe that the full tri-
layer model has not only much better performance in the
joint actor-action task, but also better scores for actor and
action individual tasks in the full model, as it is the only
model considered that incorporates classifiers in both indi-
vidual actor and action tasks and also in the joint space.

Table 2-left shows the comparison of quantitative per-
formance for specific actors and actions. We observe that
the trilayer model has leading scores for more actor-action
tuples than the other models. The trilayer model has sig-
nificant improvement on labels such as bird-flying, adult-
running and cat-rolling. We note the systematic increase
in performance as more complex actor-action variable in-
teractions are included. We also note that the tuples with
none action are sampled with greater variation than the ac-
tion classes (Fig. 2), which contributes to the poor perfor-
mance of none over all actors. Interestingly, the naive Bayes
model has relatively better performance on the none action
classes. We suspect that the label-variation for none leads
to high-entropy over its classifier density and hence when
joint modeling, the actor inference pushes the action vari-
able away from the none action class.

Fig. 5 shows example segmentations. Recall that the
naive Bayes model considers the actor and action labeling
problem independent of each other. Therefore, the baby-
rolling in the second video get assigned with actor label dog
and action label rolling when there is no consideration be-
tween actor and action. The bilayer model partially recovers
the baby label, whereas the trilayer model successfully re-
covers the baby-rolling label, due to the modeling of inter-
node relationship in the joint actor-action space of the tri-
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Figure 5. Comparative example of semantic segmentation results. These sample only two frames from the each dense video outputs.
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Figure 6. Example results from the trilayer model (upper are good,
lower are failure cases).

layer model. We also visualize more example outputs of the
trilayer model in Fig. 6. Note that the fragmented segmenta-
tion in the ball video is due to poor supervoxel segmentation
algorithm in the pre-processing step. We also show trilayer
failure cases in the bottom row of Fig. 6, which are due to
weak cross-class visual evidence.

6. Discussion and Contributions

Our thorough assessment of all instantiations of the
actor-action understanding problem at both coarse video-
recognition level and fine semantic segmentation level pro-
vides strong evidence that the joint modeling of actor and
action improves performance over modeling each of them
independently. We find that for both individual actor and
action understanding and joint actor-action understanding,
it is beneficial to jointly consider actor and action. A proper
modeling of the interactions between actor and action re-
sults in dramatic improvement over the baseline models of
the naive Bayes and joint product space models, as we ob-
serve from the bilayer and trilayer models.

Our paper set out with two goals: first, we sought to
motivate and develop a new, more challenging, and more
relevant actor-action understanding problem, and second,
we sought to assess whether joint modeling of actors and

actions improved performance for this new problem. We

achieved these goals through the three contributions:

1. New actor-action understanding problem and dataset.

2. Thorough evaluation of actor-action recognition and se-
mantic segmentation problems using state-of-the-art fea-
tures and models. The experiments unilaterally demon-
strate a benefit for jointly modeling actors and actions.

3. A new trilayer approach to recognition and semantic seg-
mentation that combines both the independent actor and
action variations and product-space interactions.

Our full dataset, computed features, codebase, and evalu-

ation regimen are released’ to support further inquiry into

this new and important problem in video understanding.

Appendix

We show that a solution (x*,y*, z*) maximizing Eq. 6 also max-
imizes Eq. 1. First, to simplify Eq. 6, we set z = [x, y]. Therefore
we can obtain:

P(x,y, [xy][V) = P'(x,y|V) ®)
= 5 [T 6:@owswer Gowlulewlzly)
i€V
1T I1 o e (i, vi)ei (=i, 2) -
i€V jEE(D)

P'(x,y|V) be
yLIxLY) =

Theorem 1. Let (x",y*) = argmax,
the optimal solution of Eq. 8, then (X7,
argmax,  , P(x,y,z|V) are optimal results.

Proof. First, by construction, when z = [x, y] then P (x,y|V) =
P(x,y,z|V). The rest of the proof follows in two parts:

e Assume that z = [x,y] in the optimal solu-
tion of Eq. 6. Then: argmax P(x,y,z|V) =
arg max,_, . P(x,y,z[V) = argmax P (x,yV).

e Assume that in the optimal solution (x,y,z) that z =
[x',¥'] # [x,y]. Thus, there exists some X’ # xory’ # y.
According to the definition of p;(xs, z:) and v;(y;, 2:) in
Eq. 7, we would obtain p;(x;,2;) = 0 or v;(ys,2i) = 0
which results in P(x,y, z|V) = 0, which is a contradiction.

Therefore, we prove the Theorem. O

2http://web.eecs.umich.edu/~jjcorso/r/a2d/
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