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Molecular analysis of blood samples is pivotal to clinical diagnosis and has been intensively investigated since the
rise of systems biology. Recent developments have opened new opportunities to utilize transcriptomics and
metabolomics for personalized and precision medicine. Efforts from human immunology have infused into this
area exquisite characterizations of subpopulations of blood cells. It is now possible to infer from blood tran-
scriptomics, with fine accuracy, the contribution of immune activation and of cell subpopulations. In parallel,
high-resolution mass spectrometry has brought revolutionary analytical capability, detecting N10,000 metabo-
lites, together with environmental exposure, dietary intake, microbial activity, and pharmaceutical drugs. Thus,
the re-examination of blood chemicals by metabolomics is in order. Transcriptomics and metabolomics can be
integrated to provide a more comprehensive understanding of the human biological states. We will review
these new data and methods and discuss how they can contribute to personalized medicine.
© 2015 Li et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural

Biotechnology. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Many human diseases are complex and heterogeneous, whereas di-
agnostic methods are still limiting. Genetics and high-throughput mo-
lecular profiling now helps to redefine the disease classifications [1,2].
Personalized and precision medicine aims to design therapeutic inter-
ventions based on the condition of individual patients. For example, in
the case of trastuzumab, a drug that is administered to breast cancer pa-
tients, its therapeutic efficiency varies depending on the patient’s breast
cancer subtype. This is because trastuzumab targets HER2 (human
epidermal growth factor receptor type 2) proteins, and it is only
effective on breast cancers with HER2 overexpression [3]. Therefore, a
diagnostic test that determines HER2 overexpression is required before
behalf of the Research Network of Co
0/).
trastuzumab can be subscribed. A different type of example is adoptive T
cell transfer for cancer immunotherapy, where specific T cells from an
individual patient are engineered and expanded, then infused back to
the samepatient [4–6]. This type of therapy is “double” personalized be-
cause the T cells have to be from the very patient to be immunologically
tolerant, and their surface receptors have to be specific to the tumor
mutation found in that patient. Numerous examples exist that drug ef-
ficacy is limited due to the lack of “precision” mechanism. The widely
used statins (cholesterol lowering drugs) may be efficacious in only
5% of the population, while esomeprazole (for heartburn treatment)
fares even less [7]. A lot of research efforts have gone to identifying
genetic variations associated with diseases, including many large
genome-wide association studies (GWAS). However, genetic variations
only account for small percentages of the occurrence of common
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diseases [8,9]. It is increasingly recognized that there is a large gap be-
tween genomics and phenotypes and that transcriptomics andmetabo-
lomics are important to fill this gap [10–14]. In this article, we will
review the latest progress in transcriptomics and metabolomics, with
a focus on samples from blood, a key tissue for clinical diagnosis. Since
abundant introductory literature can be found on omics technologies
and their data analysis, this article focuses more on important recent
developments and opportunities.

1. An overdue review of “blood systems biology”

Blood has been intensively investigated since the beginning of mo-
lecular systems biology. Publications on disease diagnosis using blood
transcriptomes are now numbered in thousands. Although it is widely
recognized that mRNA only provides a slice of information from com-
plex biology, fewpapers attempted to quantify the cell-level complexity
in blood transcriptomics. Because blood is a mixture of many different
cell types (Fig. 1), the fluctuation of cell populations alone causes large
variations in transcriptomics data. This problem only became tractable
with the recent progress in human immunology, where transcriptomics
of isolated cell populations provided necessary information [15–17].
Nonetheless, a review on “blood systems biology” is long overdue.

As part of the body circulatory system, blood reflects the homeosta-
sis of metabolism, hematopoietic development, and immune functions.
As Fig. 1 shows, this involves many cell types and subtypes, and a num-
ber of “omics” technologies are employed to measure on different as-
pects of the system. The global molecular profiles of different cell
types are tightly related to their developmental lineage and functions.
As Novershtern et al. [18] showed, the clustering of transcriptomics
data of blood cells reflects the hematopoietic process. The white blood
cells are also sensitive indicators of the immune status. An infection
will readily induce the influx of immune cells to blood as well as the ac-
tivation ofmolecular programs in these cells. Cytokines and chemokines
can increase dramatically during such events. The plasma contains mo-
lecular signals and wastes from the lymphatic system. The metabolites
within plasma can reflect liver or kidney function, endocrine signaling,
inflammation, and metabolic disorders. Thus, blood systems biology
needs to address the following: (1) mixture data—most commonly,
omics data are collected on peripheral blood mononuclear cells, where
cell population composition is critical; (2) connection to a systemic
model, such as pharmacokinetics or host-pathogen interaction
models—blood is not a closed system by itself, only awindow to systemic
Fig. 1.Overviewof blood systems biology, the pertinent samples and technologies. After a blood
majorwhite blood cells are listed on the left, while each cell type can be analyzed via exquisite p
“omics” technologies are listed on the right. DNAmicroarrays overlap with both genomics (gen
mics (and epigenomics), transcriptomics (RNAseq), and immune repertoires. Immune repertoi
tibody diversity. Both metabolomics (and environmental chemical exposures) and proteomics
events; and (3) data integration. This could be the association between
omics data and phenotype or the connection between different omics
data types. We will start with an overview of transcriptomics and meta-
bolomics then move on to specific topics for “blood systems biology”.

2. Data acquisition of transcriptomics and metabolomics

DNAmicroarrays were developed in the 1990s as a major technolo-
gy to measure transcriptomics. The technology relies on the specific hy-
bridization between complementary polynucleotides. Probes are
designed based on known gene transcripts and tethered on a glass sur-
face. Targets are generated from biological samples, labeled directly or
indirectly with fluorescent dyes. The hybridization reactions are carried
on in miniaturized chambers. After the probes capture specific targets,
the fluorescent signals are scanned and reported based on their grid lo-
cations. Thousands of microarray experiments are now deposited in
public repositories such as GEO [19] and ArrayExpress [20].

As the cost of DNA sequencingdrops, RNAseq becomes a viable alter-
native to capture transcriptomics. Using massively parallel sequencing
platforms, RNAseq reads the number of DNA copies that are converted
from mRNA, thus quantifying the concentration of mRNA species.
From these sequencing reactions, the sequence variations in exons,
such as single nucleotide polymorphisms (SNPs) and alternative splic-
ing, are also captured in the data. Both the experimental methods and
the computational analysis of RNAseq are evolving rapidly, and signifi-
cant improvements are expected.

Metabolomics is the global profiling of small molecules (usually
under 2000 Da). While nuclear magnetic resonance (NMR) [21] has
been a powerful tool, mass spectrometry coupled with liquid or gas
chromatography is themost popular platformdue to the superior sensi-
tivity and coverage [22–24]. The newest high-resolution mass spec-
trometer, in particular, yields unparalleled precision in analyzing
chemicals in complex biological samples. The basic principle used by
mass spectrometers is the differentiated deflection of charged particles
in a magnetic field based on their mass. By the Lorentz law, the magni-
tude of the deflection is proportional to themass to charge ratio. The ad-
vanced version, Fourier transform mass spectrometers, can achieve
spectacular mass resolution by measuring the spinning frequency of
ions that are trapped and oscillate in a chamber. The computational as-
pects of metabolomics are also in rapid progress, including open source
feature extraction tools (XCMS [25], OpenMS [26], apLCMS [27],
xMSanalyzer [28]), databases of metabolites (Human Metabolome
sample is taken, it is easily separated into plasma,white blood cells and red blood cells. The
roteinmarkers via flow cytometry, giving information on particular subpopulations.Major
otyping arrays) and transcriptomics (expression arrays). DNA sequencing supports geno-
res include T cell receptor and B cell receptor sequences, whereas the latter represents an-
are largely dependent on mass spectrometry.
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Database [29,30], METLIN [31], PubChem [32], ChEBI [33]), and data
analysis tools (XCMS Online [34], MetaboAnalyst [35], mummichog
[36]). It should be noted that these data contain more than endogenous
metabolites, also including food intake, microbial activities, pharmaceu-
tical drugs, and environmental exposures. The collective measurement
is sometimes termed as “exposome” [37,38].

For the analysis of both transcriptomics andmetabolomics data, gen-
eral principles of “omics” apply.Withmeasurement of thousands of fea-
tures, multiple test correction is necessary to control false positive rates
[39,40]. The number of features is usually far larger than the number of
samples. Statistical methods often “borrow” information from variation
between features to help the estimation of variation between samples
[41]. Prior knowledge of molecular pathways and interactions can be
of great value, and the methods usually involve over-representation
tests or network modeling [42,43]. Since these areas can be referred to
other more generic reviews, we will highlight a few areas that are
more pertinent to blood data: how to deal with data from the mixture
of blood cells, emerging metabolomics data on plasma or serum, and
useful pathway and network tools.

3. Untangling mixed cell populations in blood transcriptomics

When transcriptomics data are measured on a mixture of multiple
cell populations, it is a reasonable assumption that the data are a linear
combination of transcriptomes of each populations [44]. These separate
cell populations can be obtained by flow cytometry-based sorting, and
large quantity of data aremade available in ImmGen and ImmPort data-
bases [15,16]. Conversely, if the percentages of each cell population are
known, variations may be attributed to each population by regression
methods [45].

Since “omics” data are often noisy, pre-filtered cell-type-specific
genes (markers) are very useful in this context [46–48]. The use of too
fewmarkers, like those in flow cytometry, is not recommended in tran-
scriptomics analysis because a larger number of genes are needed to
counter the measurement noise, and time differential may exist be-
tween protein (used in flow cytometry) and mRNA (measured in tran-
scriptomics) levels. A set of cell-type-specific genes are included in the
blood transcription modules from Li et al. [46]. With cell-type-specific
markers, a statistical test of over-representation can reveal what cell
type contributes to the most differential genes [42,48]. An example is
shown in Fig. 2A: immunization using MCV4 vaccine upregulated 466
significant genes after 1week. These genes contain 7 out of 24 signature
genes for plasma cells, the major antibody secreting cells. Given that
these numbers were drawn from genome-wide measurement of
20,722 genes, the enrichment on plasma cell signature genes is highly
significant (p b 10−5, Fisher exact test). Alternatively, one can leverage
the GSEA (Gene set enrichment analysis [49]) statistical framework,
using cell-specific markers as gene sets. This method shows that the
same plasma signature of 24 genes are highly enriched for upregulated
genes (p-value approaching 0, Fig. 2B). The GSEA approach can bemore
sensitive than over-representation tests and less biased by cutoffs in
feature selection. In general, we have found that distribution tests in
the style of Kolmogorov–Smirnov test suit well for assigning cell type
information from blood transcriptomics, and the results are very consis-
tent with flow cytometry data that were obtained on the same samples
(unpublished).

4. Metabolomics for disease markers

While transcriptomics analysis usually requires cell collection proto-
cols in place to preserve the integrity ofmRNA,metabolomics is amend-
able to most archival samples. This easy access to samples and the
reasoning that metabolites provide functional readout of gene activities
gather a great deal of enthusiasm to look for disease markers using
metabolomics [51–65]. Examples of metabolomics for biomarker
study include diabetes [62,66], macular degeneration [67], asthma
[68], Parkinson’s disease [69], nonalcoholic fatty liver disease [70], and
tuberculosis [71]. Notably, metabolite markers of diabetes were report-
ed many years prior to the disease onset [61]. The field of high-
resolution metabolomics is advancing very rapidly [24,72]. Although it
has been difficult to compare earlier data from different platforms, the
accumulation of high-resolution metabolomics data may be ap-
proaching a critical threshold of assembling a reference human
metabolome.

The current clinical blood tests report a limited number of metabo-
lites (Fig. 3), most of which are detected in current metabolomics
data. That is, with similar cost, metabolomics can already deliver quan-
titative information on hundreds ofmetabolites. The normal and abnor-
mal ranges of many metabolites are either already in the literature or
can be learned from large cohorts. Recently, Miller et al. [73] have al-
ready demonstrated that a single metabolomic analysis successfully di-
agnosed 20 inborn metabolic diseases. The potential of clinical
metabolomics is revolutionary—once proofs of new disease markers
sink in and regulatory approval comes, metabolomics can become a
powerful tool for universal health screen.

5. Pathways and modules—power in groups

While statistical analysis of “omics” data is often penalized by false
discovery rates, pathway analysis is powerful because it both brings in
the context of prior knowledge and increases the statistical power
while doing so [42,43]. However, the curation of pathways contains in-
herent human bias and is sometimes incomplete, i.e., genes of conse-
quence are missing. In fact, pathway analysis has severe limitations
when it comes to the complex data of blood transcriptomics. First, the
current pathway databases are biased towards cancer, under-
representing the immunology in white blood cells. Second, many path-
ways are based on tissues other than blood. Third, pathways poorly cap-
ture signaling cross-talks and intercellular communications. Fourth,
genes in a sequential pathway may be expressed at different time,
which is easily masked by heterogeneous populations of cells. More-
over, many pathways were discovered under extreme perturbations
that do not reflect physiological conditions. Finally, the important con-
text of cell types is usually missing in pathway databases.

To amend these above issues, Li et al. [46] undertook a large-scale in-
tegration of transcriptomics to definedetailedmolecularmechanisms in
human antibody response. Using blood transcriptomics data from over
500 public studies, high-quality gene networks were reverse
engineered via a mutual information approach. The resulting blood
transcription modules (BTM) were validated by prior knowledge, as
they recovered known protein complexes and recaptured immunologi-
cal events in the literature. They also demonstrated superior sensitivity
over canonical pathways. Using this new toolset of BTMs, distinct anti-
body response programs were identified for different types of vaccines.
Examples of using BTMs as alternative to canonical pathways are shown
in Fig. 2C and D, in combination with the popular GSEA software. Other
efforts along this direction include amodular framework of blood geno-
mics [75] and common axes of peripheral blood gene expression [76].
Better database curation is also under the way [49,77] (Godec et al.,
submitted).

The power of pathways andmodules is also sought by computational
metabolomics. Xia andWishart [78] developed a metabolite set enrich-
ment analysis, where metabolite modules were based on prior human
curation. Deo et al. [79] built data-drivenmodules and identified a signif-
icant group of transporter reactions that escaped previous pathway
curation. Li et al. [36] took the concept of metabolic pathways and net-
works to high-throughput metabolomics data without prior annotation.
They used the collective statistical power in metabolic knowledge to re-
solve the ambiguity in computational prediction of metabolite identity,
therefore predicting pathway and module activity in one step. This
method, under the name ofmummichog, becomes a powerful tool to ac-
celerate metabolomics studies [80–82].



Fig. 2. Testing cell populations and gene modules in blood transcriptomics. This demonstration is based on a paired comparison between day 7 and baseline in MCV4 vaccination [46].
Common statistical methods for pathway analysis are used here, while we replace conventional pathways with cell-specific signatures or custom genemodules. (A) Over-representation
test. DNAmicroarray data are collapsed to the gene level by using the probe set of highest intensity per gene. Gene expression values are compared by paired t-test, and corrected for false
discovery rate [50]. Among the significant genes identified here, 7 are found in a predefined signature of plasma cells. These numbers are used to construct a contingency table, and Fisher
exact test returns an enrichment p-value b 1E−5. (B) The distribution of the same plasma cell signature genes is tested by GSEA. The bottom color bar shows the distribution of all genes,
ranked by t-score between two time points. The vertical lines indicate the positions of the 24 genes on the ranked list, which are highly skewed for upregulation. (C) A genemodule from
theBTM collection [46] provides bettermeasurement of antibody secreting cells, demonstrated on the same data. (D) Additional example of BTMmodule onPLK1 signaling, showing high-
ly significant enrichment towards upregulation. The p-values in B, C, and D approach zero. A detailed tutorial on BTMs is available as an online supplement to Li et al. [46].
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6. Integrating different data types to understand
disease pathophysiology

The analysis of “omics” data is challenging and has motivated many
new developments in informatics and statistics. However, each “omics”
experiment only captures a static picture of dynamic and complex biol-
ogy and often an averaged value of mixed signals, e.g., from many het-
erogeneous cells. The integration of different data types will result in a
more complete understanding of disease pathophysiology and combine
experimental evidences to filter out noisy signals [83–85].
Data integration can be a knowledge-driven process. For instance,
enzyme proteins connect metabolites by catalyzing their conversions,
and such knowledge is collected in metabolic models and databases
(e.g., KEGG [86], BioCyc [87], andReactome [88]). Guo et al. [89] recently
reported that the integration of metabolomics and genomics, by
matching metabolite concentration to genetic mutation on the corre-
sponding enzymes, was successful to explain several physiological ab-
normalities and disease risks in relatively healthy volunteers. Genes
and proteins are often conveniently organized into the annotation of ge-
nomes. In the absence of prior curation, data-driven processes become



Fig. 3.Metabolomics as potential alternative to clinical blood test. (A) Partial chart of chemicals in blood test (adopted from [74]). Thephysiological ranges of severalmetabolites are shown
by log scale. (B) Current coverage on KEGGpathways by LC-MSmetabolomics, using data generated from our group. Each black dot is amatchedmetabolite. The full KEGGmetabolicmap
can be viewed at high resolution at http://www.genome.jp/kegg/pathway/map/map01100.html. As metabolomics technology progresses, it can be expected to quantify over 1000
chemicals in less than 10 min. Such data will be able to support a much more detailed diagnostic chart.
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necessary. For instance, transcriptomics data can be associated with ge-
nomic QTLs (quantitative trait loci) and denoted as expression QTL or
“eQTL” [14,90]. Similarly, metabolomics data can support the notion of
metabolomic QTL, “mQTL” [91,92].

Real-world data are often heterogeneous and require the combina-
tion of multiple methods. For example, the analysis tool for heritable
and environmental network associations (ATHENA) [93]was developed
to examine the associations between copy number alterations, methyl-
ation, microRNA, and gene expression with ovarian cancer survival. A
neural network model was constructed for each data type separately,
and the variables from the best models of each individual data set
were then combined to create an integrative model using grammatical
evolution neural networks (GENN) and grammatical evolution symbol-
ic regression [94,95]. The statistical methods in ATHENA include sym-
bolic regression, artificial neural networks, support vector machines,
and GENN. These methods are selected based on a number of criteria,
including fitting accuracy and robustness to non-linear interactions.
Bayesian networks are also incorporated to identify conditional
relationships.

Bayesian networks (BN) are a flexible and powerful method in inte-
grating multiple “omics” data and prior information [96–101]. BNs are
directed acyclic graphs in which the edges of the graph describe the
conditional dependencies (given information on parent nodes) be-
tween nodes and nodes are random variables representing quantitative
traits such as expression levels of genes, proteins, or metabolites. The
unconnected nodes in the network represent the genes or metabolites
that are conditionally independent of each other, given the parent infor-
mation. Information from known interactions and pathways can be
used to generate prior information of graph structure. Different weights
(prior probabilities) can be given to nodes or edges reflecting re-
searchers’ belief of the structure. Even though edges in BNs are directed,
they do not represent causal relationships. However, the BN reconstruc-
tion algorithm can infer causal directions in the network by taking addi-
tional information as priors. For example, genes with cis-eQTLs (cis
means locally acting on a genomic sequence) could be parent nodes of
genes with coincident trans-eQTLs (trans means distally acting), but
genes with trans-eQTLs are not allowed to be parents of genes with
cis-eQTLs; information flows from DNA to mRNA but not in the reverse
direction.

7. Concluding remarks

In the gap of common diseases and genomics, transcriptomics and
metabolomics provide the important functional link and thus are key
components to guide the development of personalized precision medi-
cine. Rapid progress has been made in both areas very recently. Blood
transcriptomics has now absorbedmany details of human immunology.
The example of blood transcription modules [46] is a powerful tool to
gauge systemic immune response from blood transcriptomics, captur-
ing changes in both cell populations and immune pathways in general
populations. Metabolomics is a fast-growing technology that captures
both endogenous metabolites and environmental exposures. These
data overlap with blood tests performed by current clinical methods
but offer a much more powerful future alternative. The advent of
these capabilities impacts many scientific and biomedical fields.

By definition, personalized medicine is an “n = 1” problem, which
however, does not mean there is less biological complexity in a single
person. For that very reason, in the past few decades, the translation
from animal research to clinical care has constantly seen huge disap-
pointments. With the accumulation of detailed, information-rich data,
human subjects start to contributemore to our understanding of patho-
biology. It has been envisioned for some time that the combination of
systems biology and epidemiology will be the prescription of personal-
ized medicine [12]. The new developments in “blood systems biology”
may be just enough to connect epidemiology, the “n N N 1” problem,
to the realm of personalized medicine. That is, transcriptomics and
metabolomics data from large cohorts can lead to robust models of
risk factors and disease mechanisms. The future is bright also because
biobank samples, even after long-term storage, can be still analyzed
usingnewer technologies [102]. Close collaborations between computa-
tional scientists, epidemiologists and clinicians shall play a key role to-
wards this future.
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