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Abstract 
The task of determining the optimal design requirements of a new system, which will operate 
along with other existing systems to provide a set of overarching capabilities, is challenging 
due to the tightly coupled effects that setting requirements on a system’s design can have on 
how the operator uses the system. In this paper, the new system is a strategic military cargo 
aircraft and the other systems are a fleet of different, existing cargo aircraft; a subset of actual 
fleet operations from the U.S. Air Force Air Mobility Command defines the example problems 
in this work. This research builds upon prior efforts to develop a quantitative approach that 
identifies optimum design requirements of new, yet-to-be-designed systems that, when 
serving alongside other systems, will optimize fleet-level objectives. The new efforts here 
address the effect of various uncertainties. The approach incorporates techniques from 
multidisciplinary design optimization, statistical theory, and robust/reliability-based methods to 
develop computationally tractable approaches for this kind of problem. The paper also 
demonstrates the ability to generate tradeoffs between a cost-related metric of fleet-level fuel 
usage and a performance related metric of fleet-wide productivity. A possible extension for 
application in commercial air travel also appears in the paper.  
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Introduction 

Nomenclature 

 

Research Issue 
The Better Buying Power 3.0 (Office of the Under Secretary of Defense for 

Acquisition, Technology, and Logistics [OUSD(AT&L)], 2014) document states, “Defining 
requirements well is a challenging but essential prerequisite in achieving desired service 
acquisition outcomes.” Typical acquisition processes focus on development at the system-
level (e.g., aircraft performance), with little explicit consideration for the impact that the new 
system will have on the holistic performance of a combined set of existing and new systems. 
Current acquisition processes (how a decision-maker evaluates and acquires systems) are 
disjointed from considering operations (the way an end user operates these new systems 
alongside existing ones), resulting in inefficiencies at the higher aggregate level (Taylor & de 
Weck, 2007; Mane, Crossley, & Nusawardhana, 2007). As an example, consider the 
acquisition decision-making process within the Department of Defense (DoD) that 
traditionally involves identification of alternatives, establishment of requirements, estimation 
of effectiveness, and cost-benefit analyses (Greer, 2010). These action processes do not 
involve an exhaustive search of the “requirements space” of the new system, where 
changes in requirements can affect operations due to how the new, yet-to-be-introduced 
system will be used in conjunction with other existing systems in the fleet.  
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This research effort seeks to reduce such “handoffs” between the acquisition phase 
and the operations phase through leveraging quantitative innovations that reduce such 
handoffs. However, this coupling of the requirements of new systems, and the resulting 
system’s impact on operations, brings an added dimension of complexity to the acquisition 
problem. The complexity of dealing with many variables related to interdependent systems, 
the impact of changing characteristics of such systems, and the uncertainties related to 
allocations of such systems becomes cognitively impossible to manage without a decision-
support framework. Hence, determining the optimal set of requirements for a new, yet-to-be-
designed system presents a need for analytical tools to assist decision-makers with 
quantitatively supported insights. 

This paper presents the methodology and formulations of a quantitative approach 
that identifies the design requirements for a new aircraft under multiple domain-specific 
uncertainties through an optimization approach. The paper illustrates the approach via 
examples derived from reported operations of the U.S. Air Force Air Mobility Command 
(AMC). The approach treats design requirements of new individual systems as decision 
variables in an optimization problem formulation under various uncertainties to minimize (or 
maximize) fleet-level objectives—the solution, based on mathematical techniques, identifies 
the new aircraft requirement decision variables that yield the best fleet-level objectives.  

Two different types of uncertainty are important to this problem: (1) uncertainty in 
how a designed system “actually” performs in operations as to opposed the predicted 
performance in the design phase, and, (2) the variations in how much the operator uses the 
system, as reflected by, say, changing demand for air transportation of military cargo pallets. 
The uncertainties in how the designed system performs naturally affects the uncertainties in 
how much the system is being used. Simultaneously considering the system design problem 
and resource allocation problem under uncertainty captures most of the coupling and 
interactions present in these two problems, and capturing these can result in fleet-level 
improvements. Often, high computational expense accompanies quantifying and addressing 
uncertainty in multiple dimensions, which can make the design problem intractable. 
Effectively conducting studies that examine several scenarios using different predictions of 
demand, cost of operating the fleet, and so forth, requires a computationally efficient 
approach. The authors’ initial efforts to identify an effective approach explored two different 
strategies—design of experiments and bounding analysis—to understand the effects of 
considering both demand and design parameter uncertainties in the coupled aircraft design 
and fleet assignment problem (Govindaraju, Davendralingam, & Crossley, 2015; 
Govindaraju & Crossley, 2015).  

Furthermore, this paper demonstrates an extension of the approach to consider 
multiple objectives, thereby enabling the assessment of tradeoffs that choices about design 
requirements may have on fleet-level metrics of interest (e.g., choice of an aircraft may 
affect fleet-level productivity and fuel burn—quantities that are at odds with one another). 
This can allow decision-makers to view this problem in the context of fleet-level fuel 
consumption as an independent variable. Two key innovations in this approach are that it 

1. Considers the holistic implications that setting design requirements may have 
on the fleet-level metrics. 

2. Relegates the mathematical complexities of considering the design 
requirements, operations of the fleet and manifestations of uncertainties to 
sound algorithmic approaches, while retaining exploratory and decision-
making elements to the practitioner. 
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Modeling Military Cargo Air Transportation  
The transportation of cargo across the AMC service network requires effective 

deployment of its fleet of cargo aircraft to meet daily cargo delivery requirements while 
minimizing fuel consumption and related costs. The choice of which aircraft to operate on 
individual flight legs to meet the cargo delivery obligations within a scheduled time frame 
determines the total amount of fuel consumed by the AMC fleet. Fleet-wide fuel 
consumption is tied to the features of aircraft used and the structure of the routes flown. 
However, the characteristics of the aircraft (e.g., range of the aircraft) also dictate the kind of 
network that the fleet can serve, thus making it a closely coupled problem. Because of this, 
there may be an opportunity to identify design requirements for a new aircraft that can 
reduce the total fleet fuel consumption and/or improve fleet-level cargo delivery 
performance. This work extends a deterministic decomposition approach (Mane et al., 2007) 
to allow for the examination of tradeoffs between objectives of productivity (as a measure of 
mission effectiveness) and fuel consumption when considering the addition of a new, yet-to-
be-acquired aircraft to a fleet of existing aircraft under various domain-specific uncertainties. 
These two competing objectives of productivity and fuel consumption (maximizing 
productivity increases fuel consumption and minimizing fuel consumption decreases 
productivity) play a critical role in determining new system requirements—an analyst can 
perform acquisition assessments by treating fuel consumption as an independent variable in 
our approach.  

Cargo Demand in the AMC Service Network 

The AMC service/demand network differs from commercial airline passenger or 
cargo networks in that cargo demand fluctuates greatly over time and in that cargo demand 
is asymmetrical, meaning that the demand for cargo from one base to another is usually 
very different than the demand in the opposite direction between the same bases. Figure 1a 
shows the fluctuation in the number of pallets transported daily between a representative 
base pair in the Global Air Transportation Execution System (GATES) dataset for the year 
2006. In this plot, the calendar day appears on the horizontal axis, while the heights of the 
bars indicate the number of pallets transported each day in one direction. Figure 1b 
presents a histogram of the number of pallets transported per day for the same 
representative base pair; this reveals that many days had a demand of 20 or fewer pallets 
on this route. Twenty pallets might be well below the maximum capacity of a single aircraft 
used to transport this demand. The AMC fleet must have the flexibility to meet fluctuating 
demand—the comparatively rare, high-demand scenarios, and the typical, nominal demand 
scenarios—to address fuel efficiency effectively. 
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 Pallets Transported on a Sample Route From the GATES Dataset 

GATES Dataset 

The AMC fleet operates on a global network consisting of over 350 bases and in 
excess of 1750 routes. The GATES dataset provides historical route and cargo demand 
data, and it contains comprehensive information on palletized cargo and personnel 
transported by the AMC fleet. From the GATES dataset for 2006, the existing AMC fleet to 
serve the demand consisted of 92 C-5s, 145 C-17s, and 69 747-Fs. This shows that the 
AMC transported cargo using C-5 and C-17 aircraft from the strategic fleet and using 
chartered Boeing 747 Freighter (747-F) aircraft from the Civil Reserve Air Fleet (CRAF) for 
long range missions. The 2006 GATES data provides a representative cargo flow in the 
AMC service network and the aircraft used to transport the cargo. For future aircraft design, 
the demand should be a prediction of future demand; in this work, this historical data takes 
the place of this future demand prediction.  

Each data entry in the GATES dataset represents cargo on a pallet or a pallet-train 
that the AMC actually transported. Each pallet data entry has detailed information about the 
pallet transported, such as pallet gross weight, departure date and time, arrival date and 
time, mission distribution system (MDS), aircraft tail number, aerial port of embarkation 
(APOE), aerial port of disembarkation (APOD), pallet volume, pallet configuration, and so 
forth. These data enable the reconstruction of the route network, pallet demand 
characteristics, and existing fleet size for the fleet assignment problem. 

Based on the available dataset, this problem investigation uses the following 
assumptions: 

1. The refined route network from the GATES dataset is representative of all 
AMC cargo operations 

a. Only routes served by C-5, C-17 and 747-F aircraft are considered. 
These aircraft types account for a substantial portion (≈75%) of the 
total pallets transported in the year 2006.  

b. All pallets have fixed dimensions representing the 463L pallet type. 
Sizing the payload bay and, therefore, the fuselage, of the yet-to-be-
acquired aircraft uses these pallet dimensions. In this effort, the 
problem formulation does not consider any “outsized” cargo capacity 
requirements. 
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2. The demand reported in GATES for 2006 is representative of future demand 
requirements when a new, yet-to-be-designed aircraft would enter into 
service. 

The application problem does not assume any demand growth. The lack of publicly 
available information coupled with having only one year of operations reported in the 
GATES dataset prevents the development of a reasonable future pallet demand-forecasting 
algorithm for the routes operated by the AMC. However, the research methodology is still 
applicable, and effective, if future demand distributions are available, or if future demand 
can be estimated using demand forecasting algorithms. 

Methodology 
We pose the monolithic problem of simultaneously designing an aircraft and its 

operations as a mathematical programming problem that seeks to minimize (or maximize) a 
fleet-level objective by searching for the optimal values of a set of decision variables. These 
decision variables describe the requirements of the new system and the new system design 
features and determine the assignment of the new and existing systems to meet demand 
requirements under multi-domain uncertainties. The resulting problem is a stochastic MINLP 
problem. 

 It is stochastic because of the presence of uncertainty in both new system 
design and pallet demand. 

 It is mixed-integer because of the presence of continuous decision variables 
such as the aircraft design variables of aspect ratio and wing loading, along 
with integer decision variables such as pallet capacity. 

 It is non-linear because of the existence of non-linear objective function and 
constraints related to the aircraft sizing equations. 

Subspace Decomposition Strategy  
The monolithic deterministic problem formulation results in an MINLP problem, which 

is, in general, difficult—if not impossible—to solve; MINLP problems combine the difficulty of 
nonlinear optimization and the combinatorial nature of mixed integer programs. The 
decomposition approach, a procedure of solving several domain-specific subproblems 
linked by a top-level problem, is one procedure that can obtain results for this kind of 
problem, with some minor modifications. Figure 2 presents the decomposition strategy and 
shows how information flows between the three smaller subproblems. The subspace 
problems presented here follow natural boundaries of the domains involved.  
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 Subspace Decomposition of Monolithic Optimization Problem 
Addressing Uncertainty in Both Aircraft Sizing and Fleet Assignment 

The top-level problem explores the requirements space for the new, yet-to-be-
introduced aircraft based on fleet-level metrics. The top-level problem chooses candidate 
values for the top-level decision variables, which then become parameters for the aircraft 
sizing subproblem. A reliability-based design optimization formulation is used for the aircraft 
sizing subproblem. After the aircraft sizing subproblem is solved, the outputs of the aircraft 
sizing problem and the current values of the top-level optimization problem (namely the 
productivity coefficients and fuel consumption coefficients, pallet capacity and design range) 
then become inputs to the fleet assignment problem. A hybrid formulation that combines the 
descriptive sampling approach and interval robust counterpart formulation solves the fleet 
assignment subproblem. Here, the assignment problem’s objective is to minimize the fleet-
level fuel consumption using characteristics of the new, yet-to-be-introduced aircraft (range, 
pallet capacity, and speed) along with other existing aircraft in the fleet, subject to capacity, 
demand, fleet-level productivity, and scheduling constraints. The fleet-level values of the 
performance metrics return to the top top-level problem as the responses of interest. 

Top-Level Problem 

In this effort, the top-level optimization problem does not include any nonlinear 
constraints and only has bounds imposed on the top-level decision variables. Equations 1 to 
4 describe the deterministic formulation of the top-level problem; the formulation 
incorporating uncertainty appears later in the paper. 
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Equation 1 describes the objective function that seeks to minimize the fleet-level fuel 
consumption using pallet capacity, range and cruise speed of the new, yet-to-be-introduced 
aircraft type X as decision variables. Equations 2 to 4 describe the bounds for the top-level 
design variables. The values for the bounds were based on strategic airlift requirements and 
characteristics exhibited by current cargo transport aircraft (Gertler, 2010; Graham et al., 
2003). Here, the design requirement decision variable describing payload capacity uses an 
integer number of pallets, while the design range and design speed decision variables are 
continuous. 

Aircraft Sizing Subproblem 

Uncertainty in Design Parameters 

The conceptual phase of the aircraft design process relies upon semi-empirical 
equations and simplified physics models. The limited knowledge available about the system 
definition at this phase of the design process combined with the usage of low-fidelity 
modeling tools results in high uncertainty. Aircraft sizing typically determines the size, weight 
and performance of an aircraft to meet its design mission based on a set of nominal values 
on operating conditions (e.g., cruise altitude). However, when evaluating the “operating 
missions” to determine block time and fuel consumed on the flight, there might be a variation 
in assigned altitude, routing, speed, and so forth, which would alter the block time and fuel 
consumed. For instance, there is uncertainty in the prediction of the parasite drag 
coefficient. In this example, a scaling factor 

DCk  follows a distribution to represent the 

uncertainty in the parasite drag prediction, so that the “actual” coefficient relates to the 
“predicted” coefficient in the following manner: 

0 0  ( )
actual D predictedD C DC k C   

To address the uncertainty related to operations and predictions of the new aircraft 
performance in the aircraft sizing subspace with reasonable computational expense, the 
Analysis of Variance (ANOVA) technique, a sensitivity analysis method, determined the 
subset of the most important parameters that influence the outputs under consideration 
(Montgomery, 2008). This investigation assumes triangular distributions for the scaling 
factors of identified parameters listed in Table 1. 
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 Triangular Distributions of the ANOVA Identified Uncertain Parameters 
in the Aircraft Sizing Subspace 

 

The aircraft sizing subproblem seeks to minimize the fuel consumption of the new, 
yet-to-be-introduced aircraft for the values of design range (RangeX), pallet capacity 
(PalletX), and cruise speed (SpeedX) from the top-level problem. With the top-level objective 
to minimize fleet-level fuel consumption, and the aircraft sizing objective to minimize the fuel 
consumed by the new aircraft for its prescribed design range, pallet capacity, and cruise 
speed, a slight disconnect exists between the objectives of these two levels. The difference 
in the objectives is that, at each aircraft sizing iteration, the minimization of fuel consumption 
uses a single combination of fixed values for design range, pallet capacity, and cruise 
speed—this is the typical case in aircraft design where these quantities are set as 
requirements for some “representative design mission.” However, the top-level optimization 
problem drives the question of “what requirements do we need to set in the first place?” by 
searching through the decision space of the top-level variables to find aircraft requirements 
that optimize fleet-level operational aspects of how the aircraft is used.  

For example, consider the dimension of design range—as the top-level problem 
searches across values of range, this naturally changes the set of feasible routes that the 
new aircraft can fly, thereby changing how the fleet comprising existing and new aircraft 
serves the overall route network. By doing so, the top-level problem seeks additional fleet-
wide fuel savings that these operational aspects reflect as a function of the decision 
variables. Therefore, the aircraft sizing objective can be viewed as a subset of the top-level 
problem objective. Because the type of aircraft assigned on individual flight segments drives 
the total amount of fuel consumed by the fleet, an aircraft designed for minimal fuel 
consumption will lead to improved fleet utilization that reduces fleet-level fuel consumption, 
when compared to fleet operations using only the fleet of existing aircraft. The approach in 
this work poses the aircraft design subproblem in the context of Reliability Based Design 
Optimization problem to account for uncertainty in the design phase.  

The Reliability-Based Design Optimization (RBDO) formulation (shown below) 
represents the aircraft design under uncertainty problem. 

 

 

  ,

  , 0           1,  2,  ,  

:  set of decision variables

:  set of uncertain parameters

:  desired probability of satisfying the  constraint 

x

i

th
i

Minimize f x

Subject to g x b i m

x

b i






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Aggregating the outputs for each realization (sample) of the uncertain parameter 
allows for the estimation of statistical measures such as expectation and probability, which 
the objective and constraint function evaluations require. The objective of the aircraft sizing 
subspace is to minimize the fuel consumption of the new aircraft X using the decision 
variables listed in Table 2. For each function evaluation of the top-level problem, the current 
values of PalletX, RangeX, and SpeedX become fixed parameters for the aircraft sizing 
problem. Table 2 summarizes the decision variables, uncertain parameters and constraints 
in the aircraft sizing optimization problem.  

 Decision Variables and Constraint Limits in the Aircraft Sizing 
Optimization Problem 

 

The aircraft sizing subproblem includes performance constraints such as limits on 
takeoff and landing distances, and also upper and lower bounds for the decision variables. 
The RBDO formulation optimizes the expected performance metric of interest and ensures 
that the probability of satisfying the performance constraints is greater than or equal to the 
user-defined reliability level, ܾ௜, considering the uncertainty present in this subproblem. 

Fleet Assignment Subproblem 

The fleet assignment subproblem identifies the optimal assignment of the fleet’s 
aircraft to meet demand obligations; this includes allocation of the new aircraft—as 
described by the solution from the preceding aircraft sizing subproblem—along with existing 
aircraft in the fleet. The following equations describe the deterministic formulation of the fleet 
assignment problem; a sampling approach, as described later, will address the uncertainty 
in the fleet assignment subproblem.  
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Minimize 

, , , , , ,
1 1 1 1

P K N N

p k i j p k i j
p k i j

x FC
   

  (Fleet-level fuel consumption)  (5) 

Subject to  

 , , , , , , , , ,
1 1 1 1

P K N N

p k i j p k i j p k i j
p k i j

x Speed Cap L
   

      (Fleet-level productivity limit)   (6) 
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    (Node balance constraints)   (7) 
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      (Daily utilization limit)   (8) 
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  (Pallet demand constraints)   (9) 
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        (Trip limit)  (11) 

 , , , 0,1p k i jx                     (Binary variable)     

Equation 5 is the objective function that seeks to minimize the fleet-level fuel 
consumption, where FCp,k,i,j indicates the fuel consumption coefficient of the kth trip for 
aircraft ݌ from base ݅ to base ݆. The equation has two parts; the first product inside the 
square brackets, ݔ୮,୩,୧,୨ × FCp,k,i,j, represents the fuel consumption of the existing fleet, while 
the rest of the terms inside the square brackets represents the fuel consumption of 
assigning the new, yet-to-be-designed aircraft. The fuel consumption characteristics of the 
new aircraft are a function of aircraft design variables (aspect ratio, thrust-to-weight ratio, 
etc.) and aircraft design requirements (pallet capacity, design range, and cruise speed). The 
term ݔ୮,୩,୧,୨ is a binary decision variable that takes a value of 1 if the kth trip of aircraft ݌ is 
flown from base ݅ to base ݆, and it takes a value of 0 otherwise.  

Equation 6 accounts for the multi-objective nature of this problem. This forces the 
fleet-level productivity to be greater than a pre-defined limit, L; the limit is varied and the 
problem is re-solved for each varied value of the limit to generate a set of Pareto optimal 
solutions. The term ݔ୮,୩,୧,୨ × FCp,k,i,j in Equation 6 refers to the productivity (speed of payload 
delivered) of utilizing aircraft type ݌ for the kth trip from base ݅ to base ݆.  
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Equation 7 is the balance and sequencing constraint that enables the (k+1)th trip of 
an aircraft out of a base, ݅, to occur only after the kth trip of that aircraft into base ݅. This 
constraint ensures that an aircraft needs is present at a base prior to completing a 
subsequent segment trip out of the same base.  

Equation 9 limits flights to only occur within the daily utilization limit, Bp (here, this 
uses an assumption of 16 hours per day to account for loading, unloading, servicing, 
maintenance, etc.), of the aircraft, where BHp,k,i,j indicates the block hour of the kth trip for 
aircraft ݌ from base ݅ to base ݆.  

Equation 9 ensures that the carrying capacity of the combined trips meets or 
exceeds the pallet demand on each route, where Capp,k,i,j indicates the pallet carrying 
capacity of the kth trip for aircraft ݌ from base ݅ to base ݆.  

Equation 10 ensures that the first trip of each aircraft ݌ originates at its initial location 
(this is considered the aircraft’s home or starting base for the day of operations); this initial 
location is randomly generated. Because the GATES dataset does not clearly indicate the 
starting location of aircraft each day, the problem formulation here uses a random 
distribution for each aircraft’s starting location. The term Op,i is a binary variable that 
indicates if base ݅ is the initial location for aircraft ݌.  

Equation 11 ensures that each aircraft ݌ flies at most one trip for its kth segment.  

The motivation for the “scheduling-like” formulation is to represent the scheduling 
and operations decisions made by the Air Mobility Command; it does not explicitly consider 
pilot scheduling (this 16 hours per day of available aircraft time could represent this, in part), 
nor does it account for the prioritization of cargo (this is not addressed in this formulation). 
This formulation, using node balance constraints, allows individual aircraft to make multiple 
flight segments in one day (as long as these fit within a prescribed time limit), allows for 
pallets to be carried from their origin to destination on possibly multiple aircraft, and tracks 
each individual aircraft by “tail number.” These features more directly model AMC operations 
than some of the previous models of the authors and their colleagues when considering 
passenger airline transportation (Mane et al., 2007; Govindaraju et al., 2015). 

Uncertainty in Fleet Operations 

The uncertainty associated with the performance of the newly designed aircraft (type 
X) propagates to the fleet assignment subspace through the distributions of the new 
aircraft’s predicted fuel consumption, ܥܨ෪௣,௞,௜,௝, and flight block hours, ܪܤ෪௣,௞,௜,௝, on given 
routes in the network; only aircraft “tail numbers” ݌ that are associated with type X aircraft 
have these distributions. Additionally, the AMC service network has inherent pallet demand 
uncertainty, as described above. Hence, the fleet assignment problem now includes 
uncertainty in both the performance of the new aircraft and the pallet demand in the service 
network. In this paper, a hybrid formulation that combines the interval robust counterpart 
formulation (Lin, Janak, & Floudas, 2004) for user-defined tolerance parameters (ߜ) and the 
descriptive sampling technique (Saliby, 1990) solves the fleet assignment problem under 
uncertainty. 

Lin et al. (2004) proposed a robust optimization approach for bounded uncertainty to 
overcome the large computational expense incurred by scenario/sampling-based 
frameworks. Their approach produces “robust” solutions that are immune against 
uncertainties in both the coefficients and right-hand-side parameters of the inequality 
constraints of the Mixed Integer Linear Programming (MILP) problems. Lin et al. (2004) term 
a solution to be robust if it satisfies the following conditions: 
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 The solution is feasible for the nominal values of the uncertain parameters. 

 For any value of the uncertain coefficients in the objective function and the 
uncertain parameters in the right-hand side of the constraints, the solution 
must satisfy the ith inequality constraint or, at worst, violate the constraint with 
an error of at most ߜ x max[1,|݌௟|]. In this expression, ߜ is a user-selected 
infeasibility tolerance coefficient, and pl is the right-hand-side limit of the 
linear inequality constraint. 

Applying the interval robust counterpart model to the deterministic formulation of the 
fleet assignment subproblem described above results in two additional sets of constraints 
and a modified objective function where an auxiliary variable (Fleet fuel) is introduced to 
enable introduction of the original objective function represented by Equation 5 as a 
constraint—thereby making it amenable to robust optimization strategies. The reformulation 
of the original objective function (Equation 5) is now as follows: 

 (12)         ݈݁ݑ݂	ݐ݈݁݁ܨ	݁ݖ݅݉݅݊݅ܯ

 , , , , , ,
1 1 1 1

     1
P K N N

U
p k i j p k i j

p k i j

Subject to x FC Fleet fuel 
   

      (13) 

where FCU
p,k,i,j is the upper bound of the fuel consumed by aircraft ݌ on the kth trip 

from base ݅ to base ݆. Evaluating the performance of the new aircraft for different samples of 
the aircraft sizing uncertain parameters (ߦ) generates distributions of the performance 
metrics such as the fuel consumption coefficient. The upper bound, FCU

p,k,i,j , is then 
determined from the distribution of the fuel consumption coefficient ܥܨ෪௣,௞,௜,௝ applied to only 
aircraft p that are of the newly-designed type X. ߜ is the user-defined, infeasibility tolerance 
parameter that can take values between 0 and 1. For example, setting ߜ to 0.1 for a 
particular constraint indicates that 10% violation of the worst-case scenario of that constraint 
is acceptable. Using Equation 13, if all of the uncertain fuel consumption coefficients for the 
new aircraft are at their upper bound (i.e., the aircraft burns the most possible fuel from the 
distribution, (ܥܨ෪௣,௞,௜,௝), then the total fuel consumed by the fleet is no more than 10% above 
the user-defined limit for fleet fuel consumption. The daily utilization limit constraint 
(Equation 8) is modified as follows: 

 , , , , , ,
1 1 1

1 1,2,3...
K N N

U
p k i j p k i j P

k i j

x BH B p P
  

      (14) 

where BHU
p,k,i,j  is the upper bound of the distribution of block hours of aircraft p 

(restricted to only aircraft of type X) on the kth trip from base ݅ to base ݆. The deterministic 
robust counterpart fleet assignment problem now includes Equations 12, 13, and 14 in 
addition to Equations 5 to 11 from the original deterministic formulation of the fleet 
assignment problem. 

The interval robust counterpart model is also applicable for the demand constraint 
(Equation 9) in the deterministic formulation, but this leads to a very conservative (protected 
against the maximum demand scenario) solution because the right hand side constraint 
limit, demi,j, is set to its upper bound or maximum value, demU

i,j, for each route as shown in 
Equation 15 below. For this constraint, the GATES dataset provides the values for the upper 
bound of the pallet demand on each route. 
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U
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p k

Cap x dem

i N j N

 

 

   


    (15) 

Instead, because of the AMC service network’s high fluctuations in pallet demand 
and the on-demand nature of military cargo transport, the approach here employs a 
descriptive sampling approach (Saliby, 1990) to incorporate the stochastic nature of the 
demand. The method of descriptive sampling involves a deliberate collection of sample 
values that closely describes the represented distribution. The descriptive sampling 
approach samples more values from regions of higher density and fewer values from 
regions of lower density. The purposeful collection of sample values at specific quantile 
levels helps to match closely the actual or reported discrete demand distributions using a 
reduced number of samples, thus reducing the computational expense.  

The deterministic robust counterpart formulation is solved multiple times for each 
demand sample vector generated through the descriptive sampling approach. From these 
multiple solutions, the expected value of the fleet-level performance metrics (fleet-level fuel 
consumption and/or fleet-level productivity) now return to the top-level optimization problem 
as the responses of interest. The robust counterpart formulation accounts for the 
propagation of uncertainty from the aircraft sizing to the fleet assignment subspace, while 
the descriptive sampling approach addresses the stochastic nature of pallet demand in the 
service network. 

25-Base Network Problem 
This section demonstrates how the subspace decomposition approach can identify 

the best new aircraft requirements and subsequent aircraft design to address fleet-level 
metrics under uncertainty. By treating this problem as a multiobjective problem, the 
approach can also generate tradeoffs between fleet-level metrics of interest; from these best 
tradeoff solutions, a decision-maker can also observe how the optimum design requirements 
for the new aircraft change for these different tradeoff opportunities. 

Network Description 

This study uses a subset of the AMC route network and fleet, comprising 25 bases 
and 219 directional routes, to demonstrate the approach. Figure 3 depicts the geographical 
locations and routes of the 25-base network. For the 25-base network, the existing fleet of 
AMC comprises 28 C-5s, 44 C-17s, and 21 chartered 747-Fs. The existing fleet serves as a 
“baseline” to measure the improvements due to the introduction of the new aircraft. This 
study assumes that five new, yet-to-be-designed-aircraft (all of type X) are introduced into 
the fleet. This assumption reflects an external decision made by the user or the decision-
maker that specifies the number of new aircraft that are added to the fleet.  



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 128 - 

 

 25-Base Network  
Note. Illustration was generated using http://www.gcmap.com/. 

The 25 bases in the network are either the origin or the destination locations that 
transported the largest number of pallets in the AMC service network for the year 2006. The 
routes span the continents of North America, Asia, and Europe. Figure 4a shows the 
average and the minimum/maximum of the directional daily pallet demand for 50 routes in 
the network. Figure 4b shows the distribution of the number of routes based on the average 
daily pallet demand. The histogram indicates that the demand distribution is right-skewed 
and that several of the routes have an average daily demand of less than 20 pallets. 

 

 Pallet Demand Characteristics of the 25-Base Network 
 

 

 

 

 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 129 - 

Results 

In this study, the top-level optimization problem (refer to Figure 2) chooses candidate 
values for the decision variables of pallet capacity, design range, and cruise speed. These 
candidate values then become inputs to the aircraft sizing subproblem. The RBDO 
formulation of the aircraft sizing subproblem uses 50 samples for the uncertain parameters; 
this is a small number, but it allows for a tractable computational time. The reliability level, bi, 
is set to 0.90 for the performance constraints in the aircraft.  

After the aircraft sizing problem is solved, the outputs of the top-level subspace such 
as pallet capacity, and the outputs of the aircraft sizing subspace, the uncertain performance 
coefficients such as ܥܨ෪௣,௞,௜,௝, then become inputs to the fleet assignment subspace. The 
interval robust counterpart formulation of the fleet assignment problem is solved for 20 
samples of demand across the network generated through the descriptive sampling 
approach. In this study, the infeasibility tolerance parameter, ߜi, is set to 0.10 for all the 
appropriate constraints. The expected values of the fleet-level performance metrics, 
calculated from the different solutions of the robust counterpart formulation, now return to 
the top-level subspace, and this process continues until convergence at the top-level.  

Then, to identify tradeoffs between fleet-level fuel consumption and productivity, the 
entire process repeats with a different limit value on the productivity constraint. Minimizing 
the fleet-level fuel consumption with several different limits on fleet productivity leads to a 
number of tradeoff solutions. Figure 6 shows the results from the multi-objective analyses of 
the 25-base network problem. The plot shows the normalized expected values of the fleet-
level metrics. Using normalized fleet-level responses helps to identify the trends and helps 
to show the relative variations in fleet-level responses for different solutions to the multi-
objective optimization problem. The fleet-level responses have been normalized with 
respect to the lowest expected values from the results of the scenario labeled “Fleet with 
five new A/C.” Each point in the “Fleet with five new A/C” scenario describes the optimal 
design of the new aircraft required to meet the specific fleet-level objectives. These results 
show the collection of optimal aircraft designs that would meet the fleet’s operational needs 
at each level of permitted fuel consumption or at each level of required fleet-wide 
productivity. 

For three different solutions from the “Fleet with five new A/C” results, Figure 5 
contains callout boxes that describe the values of the new aircraft requirement decision 
variables along with the values of the aircraft design variables. The trends in the fleet-level 
responses are as expected, with fuel consumption increasing as productivity increases. 
There appears to be a trend in the “size” of the optimal aircraft along the Pareto frontier for 
increasing productivity/fuel consumption values. For a normalized expected productivity and 
normalized expected fuel consumption value of 1.0, the optimal requirement decision 
variables of the new aircraft X are at the lower bounds for pallet capacity (16) and design 
range (3800 nmi). Moving from this point on the tradeoff plot towards solutions with 
increasing fleet-level productivity, the results suggest that larger pallet capacities for the new 
aircraft X can best meet the fleet-level objectives. There is not substantial evidence to 
determine whether these trends would generalize to other route networks or other similar 
design problems; however, the behavior is not unexpected because the aircraft pallet 
capacity strongly drives the fleet-level productivity metric. Though it is intuitive that a larger 
aircraft would increase productivity, the optimal design features of the new aircraft X, such 
as the aspect ratio (ARX), the wing loading ((W/S)X), the thrust-to-weight ratio ((T/W)X), etc., 
are reflective of the specific existing fleet and demand characteristics of the service network. 
For each solution in the plot, the assignments of the fleet of aircraft to routes are different to 
meet the actual demands better. The introduction of the five new aircraft (of type X) results 
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in fleet-level fuel savings between 2.79% and 6.48% for the same normalized expected fleet 
productivity values when compared to the case where only the existing fleet operates in the 
network. 

 

 Results From Multi-Objective Analyses of 25-Base Network Problem 

The solutions to multi-objective analyses present a way to perform “fuel/cost as an 
independent variable” type of trade-space analysis; this might be more obvious by switching 
the axes in the plot from Figure 5. These types of plots can help decision-makers/acquisition 
planners to analyze the trade-space and select the optimal requirements and design of the 
new aircraft that would achieve the desired level of fleet fuel consumption and productivity. 
For instance, a decision-maker can determine the level of fleet productivity available for a 
specific level of fleet fuel consumption; this fleet-level productivity value can then be 
translated to a specific (or bounded) level for the mobility airlift requirements that are set by 
the DoD in terms of tonnage of cargo transported per day. Having established the goals for 
the fleet-level productivity and fuel consumption, the collection of optimal aircraft designs 
required to achieve these fleet-level goals can be determined from plots such as those 
shown in Figure 5.  
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Decision-makers/acquisition planners can use such results to perform 
comprehensive exploratory analysis of the design space and identify regions in this design 
space that present significant viable opportunities to reduce the fleet fuel consumption. For 
instance, the AMC may need to incur “switching costs” (additional cost for training, 
maintenance and infrastructure due to the addition of a new aircraft type into the fleet) of 
integrating a new aircraft type into the fleet for a relatively small decrease in fuel burn; 
however, the trade-space analysis (Figure 5) can help identify promising designs and 
“inflection points,” if they exist, where the decision to acquire a new aircraft type could 
provide significant benefits. 

Modeling and Solution Procedure for Commercial Air Travel Applications 
In an effort to explore broader applications of the approach for similar acquisition-

related issues, the authors conjecture how the approach could help decision-makers 
consider the best requirements for a new passenger transport aircraft. The nature and 
structure of uncertainty in commercial passenger air travel differs from the characteristics of 
data for the AMC service network. Adapting the subspace decomposition framework to 
commercial applications requires proper attention to the differences in the nature of the 
uncertainty that manifests in the data.  

Similar to the approach used to extract an example problem from the GATES data, 
data from the Bureau of Transportation Statistics (BTS) T100 Segment database for non-
stop monthly passenger demand can provide the basis for a commercial passenger airline 
problem.  

The operations of the commercial air travel industry differ from military airlift 
operations, such as those managed by the Air Mobility Command (AMC) of the U.S. Air 
Force. The primary difference lies in the fact that commercial aviation operators such as 
airlines publish their schedules several weeks in advance of operating the flights, limiting the 
opportunities for modifications in the face of uncertain passenger demand. However, the 
AMC has a higher flexibility to modify their flight schedules due to the on-demand nature of 
palletized cargo transportation. The airline planning process typically involves a 
chronological sequence of decision-making phases. The planning process starts with 
schedule planning and development followed by four concurrent routines, namely, crew 
scheduling, revenue management, airport resource management, and aircraft maintenance 
routing. The schedule planning and development phase comprises market forecasting, 
schedule construction, capacity planning, fleet assignment, and schedule evaluation 
procedures.  

For the purposes of strategic fleet planning and acquisition decision-making, the fleet 
allocation formulation for the commercial air travel case study integrates the schedule 
creation and fleet assignment procedures into a single mathematical programming problem. 
Figure 6 shows the modified subspace decomposition framework addressing uncertainty in 
both the design of the new aircraft and passenger demand for the commercial air travel case 
study. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 132 - 

 

 Subspace Decomposition Framework Addressing Uncertainty in Both 
the Aircraft Sizing and Airline Allocation Subspace for Commercial Air 

Travel Application 

The top-level problem explores the “requirements space” for the new, yet-to-be-
designed aircraft using passenger capacity, range and cruise speed as the top-level 
decision variables. The aircraft sizing subspace accounts for the inherent uncertainty 
present in the conceptual phase of the design process through an RBDO formulation.  

The airline allocation subspace is solved in two steps. The first step involves 
determining the minimum cost schedule based on the maximum number of passengers 
transported on each route. To use the framework in practice, the maximum anticipated 
demand would rely upon internal analysis performed by the airline to predict this; therefore, 
the demand is a point of input from the analyst and reflects a priori beliefs on the future state 
of demand. Here, our implementation will use the reported historical demand served on 
each route as available from the Bureau of Transportation Statistics, and the highest 
demand served will take the place of what we would expect the airline to predict. Solving the 
airline allocation problem generates an optimum schedule for the aircraft in the fleet to 
service the passenger demand in the route network. The second step involves a Monte 
Carlo simulation to account for the uncertainty in actual/realized passenger demand. The 
two-step procedure mimics the decision-making process of an airline, where a specific 
number of seats are allocated first for each route, followed by passengers buying tickets 
from the airline for traveling on those routes. Using the data from the demand distribution 
plots, the Monte Carlo simulation calculates the profits for the various simulated instances of 
passenger demand. From these numerous samples, the average (expected) fleet profit 
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values are then estimated. If required, the airline allocation subspace can be solved for four 
different quarters of demand data to reflect the seasonal variations in demand and the 
tactical planning timeframe usually employed by airlines. The expected fleet profit values 
return to the top-level subspace as the metrics of interest. The process continues until the 
top-level converges. At convergence, the solution describes the optimal aircraft 
requirements, the optimal description of the new aircraft, and the optimal allocation of the 
new and existing fleet of aircraft. 

Concluding Statements and Future Work 
The approach presented in this paper allows investigation of tradeoffs between fleet-

level fuel usage, performance metrics and acquisition alternatives for a conceptual problem 
based on operations of the U.S. Air Force Air Mobility Command (AMC) under domain-
specific uncertainties. The approach, while applied to the AMC case study, appears to be 
domain agnostic. Results from the AMC case study describe a collection of optimal aircraft 
design requirements and subsequent aircraft design descriptions that reduce fleet-level fuel 
consumption while satisfying the operational requirements under uncertainty in the new 
system design and uncertainty in the service network demand. A reliability-based design 
optimization formulation addresses uncertainty in the design of the new aircraft. A hybrid 
fleet assignment formulation that combines the interval robust counterpart model and the 
descriptive sampling approach addresses both the propagation of uncertainty from the 
aircraft sizing subspace to the fleet assignment subspace and the demand uncertainty in the 
service network. The immediately preceding section describes modification of the approach 
to address a commercial passenger airline application. 

The methodology described in this paper can help guide decision-makers and 
acquisition planners to determine optimal design requirements for new, yet-to-be-introduced 
aircraft to reduce fleet-level fuel consumption. Solutions from these “design under 
uncertainty” problems provide insight (expected performance gain and costs incurred) about 
new systems, and these insights can inform acquisition decisions related to setting the right 
design requirements for the new system. Addressing uncertainty explicitly in this quantitative 
approach allows for a more “robust” selection of these new system requirements.  

Using the approach to address this as a multi-objective problem enables tradeoffs in 
the context of “fuel/cost as an independent variable.” Generating the new design 
requirement and new aircraft design solutions should facilitate discussion and understanding 
about what features this kind of process should entail under various operational scenarios. 
The results from the 25-base network problem demonstrate the quantitative framework’s 
applicability in guiding potential acquisition decisions under uncertainty for the AMC case 
study, and the computational tractability of the approach to solve large-scale real-world 
problems. A preliminary framework for adapting the approach to commercial aviation 
application is presented as well. Future work will focus on extending the decomposition 
approach to solve the combined aircraft design and fleet assignment problem under 
commercial aviation specific uncertainties for the commercial travel case study.  
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Research Question 

• Improve Requirements Definition 
• Can we identify a quantitative 

approach to determine the “right 
requirements” for a new system? 

– New system must work in a “fleet” with 
existing systems 

– Adding new system to improve “fleet-
level” objectives 

– Make use of methods from operations 
research, operations analysis 

• Can this approach address 
uncertainties? 

– New system design  
– Fleet-level operations 

• Application here is military air cargo 
– Introduce new aircraft  
– Minimize fuel consumption, maximize 

productivity 
– Display tradeoffs 

What are the right requirements for a new 
strategic cargo aircraft? 



Strategy: Subspace 
Decomposition 

Approach: Decomposition Strategy 
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Optimization-based Approach  

• Objectives 
– Minimize Fleet fuel consumption 
– Maximize Fleet productivity (speed of payload delivered) 

• Variables 
– New aircraft  requirements (pallet capacity, range, speed) 
– New aircraft design variables  (NLP: Nonlinear Programming) 

• Wing loading, aspect ratio, thrust-to-weight ratio, etc. 
– Assignment variables (MIP: Mixed integer programming) 

• Flights, payload on a particular route 
• Constraints 

– Cargo demand  
– Aircraft performance (takeoff distance, landing distance etc.)  
– Fleet operations (maximum operational hours, number of each aircraft 

types etc.)  
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Aircraft Design (Sizing) Uncertainty 

• Uncertain parameters 
characterized via scaling 
factors with triangular 
distributions 

• Aircraft performance 
predictions follow 
distributions 

0 0  ( )
D predictedD C DC k C= × 



Operational Uncertainty in Pallet Demand 

7 

• GATES dataset shows large variation in daily cargo 
transported, asymmetric demand between base pairs 

• From this, treat future daily pallet demand as uncertain 

 



Approach: Handling Uncertainty 

• Reliability-based design optimization (RBDO) formulation to 
handle uncertainty in new system design 

• Descriptive sampling approach to handle uncertainty in 
pallet demand 

• Propagation of uncertainty from aircraft sizing subspace 
– Performance of new aircraft is uncertain 
– Coefficients in assignment problem are distributions 

• Used a ‘Robust Optimization’ approach 
– Interval Robust Counterpart (IRC) formulation: Optimize the 

worst-case values of parameters within an uncertainty set  
– Insensitive to data uncertainty in the problem 

8 



Case Study: 25-base Network 
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• Determine the requirements for a new aircraft (type 
X) that would improve fleet-level objectives 

• 25-base problem consisting of 219 directional routes 
– Extracted from the GATES dataset, so reflects actual 

levels of demand 
• Existing fleet for AMC 

– 28 C-5, 44 C-17, and 21 B747-F operated on 25 base 
subset 

The fleet can add five new aircraft (all of type X) 

Source: www.amc.af.mil 
B747-F chartered from Civil Reserve Air Fleet 

C-17 

C-5 



Combined Results 
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• “Optimal” requirements and design of new 
aircraft to improve fleet-level capabilities 

• Tradeoff of fuel consumption and 
productivity 

• Formulation addresses uncertainty 

New Aircraft X: 
Pallet capacity   = 24 
Design range     = 2992 nmi 
Cruise speed     = 550 knots 
AR = 9.20 T/W = 0.24 W/S = 161 lb/ft2 

Engine BPR    = 13.13 
Wing Sweep    = 10 deg  
Taper Ratio     = 0.25 

New Aircraft X: 
Pallet capacity   = 16 
Design range     = 3800 nmi 
Cruise speed     = 549.37 knots 
AR = 9.06 T/W = 0.24  W/S = 161 lb/ft2 

Engine BPR    = 12.11 
Wing Sweep    = 10 deg  
Taper Ratio     = 0.30 



Concluding Statements 

• Decision support framework to assist decision-maker 
or acquisition practitioner 
– Assess tradeoffs of different  fleet-level metrics 
– Each tradeoff solution describes the design requirements 

for the new system 
– Addressed multi-domain uncertainty and uncertainty 

propagation 
• Tradespace evaluation based on quantitative metrics  

– Shows impact of system requirements on fleet-level 
capabilities 

– Results here are limited by the accuracy of the aircraft 
sizing methodology 
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Thank You 



BACKUP SLIDES 



Application: Air Mobility 
Command (AMC) 

• AMC: One of the major command centers 
of the U.S. Air Force 

• AMC is the DoD’s single largest aviation 
fuel consumer* 

• Non-deterministic nature of AMC 
operations 

– Demand is highly asymmetric 
– Demand fluctuation on a day to day basis 
– Routes flown vary based on demand 

• AMC’s mission profile includes 
– Worldwide cargo and passenger transport** 

• Used Global Air Transportation Execution 
System (GATES) dataset  

14 

*Aviation fuel savings: AMC leading the charge. Air Mobility Command 

**This work only addresses cargo transport 
 

Sample route network from GATES 

 



Air Mobility Command 

• Used Global Air 
Transportation Execution 
System (GATES) dataset  
 

• Filtered route network from 
GATES dataset 
– Demand for subset served 

by C-5, C-17 and 747-F 
(~75% of total demand) 

– Fixed density and dimension 
of pallet (463 L) 
 

• Our aircraft fleet consists of 
only the C-5, C-17 and 747-F.  
 

Source: www.amc.af.mil 
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Subspace Decomposition Approach 
(Deterministic Formulation) 
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Top Level 

 minimize:       Fuel consumed 

 variable:   PalletX, RangeX, SpeedX  

Aircraft Sizing Subspace 

minimize:  Design mission fuel 
 consumption  

subject to: Performance constraints 

variables: ARX, (T/W)X, (W/S)X, 

PalletX 
RangeX 
SpeedX 
 

FCpkij  

Fuel consumed 

PalletX 
SpeedX 

 

AMC Assignment Subspace 

minimize:       Fuel consumed 

subject to:       pallet capacity, 
       scheduling constraints, 

       demand 

variables:       xpkij 



Results: 25-base Network 
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Non convex Pareto front 
Some non-dominated 

solutions 

 Non-dominated solutions 



Results: 25-base Network 
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New Aircraft X: 
Pallet capacity   = 16 
Design range     = 3800 nmi 
Cruise speed     = 549.37 knots 
AR      = 9.06 
T/W    = 0.24 
W/S    = 161 lb/ft2 

Engine BPR    = 12.11 
Wing Sweep    = 10 deg  
Taper Ratio     = 0.30 



Results: 25-base Network 
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New Aircraft X: 
Pallet capacity   = 17 
Design range     = 3800 nmi 
Cruise speed     = 525.28 knots 
AR      = 9.37 
T/W    = 0.24 
W/S    = 161 lb/ft2 

Engine BPR    = 12.92 
Wing Sweep    = 10 deg  
Taper Ratio     = 0.26 



Results: 25-base Network 
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New Aircraft X: 
Pallet capacity   = 24 
Design range     = 2991.7 nmi 
Cruise speed     = 550 knots 
AR      = 9.2 
T/W    = 0.24 
W/S    = 161 lb/ft2 

Engine BPR    = 13.13 
Wing Sweep    = 10 deg  
Taper Ratio     = 0.25 
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Top level subspace Minimize Fleet fuel consumption 

Subject to Bounds on PalletX , RangeX , SpeedX   

Aircraft sizing 
subspace 

Minimize  Fuel consumption of Aircraft X for design mission 

Subject to Performance constraints 
Bounds on AR, W/S, T/W 

Fleet assignment 
subspace 

Minimize Fleet fuel consumption 

Subject to Demand constraints 
Node balance constraints 
Starting location of aircraft constraints 
Daily utilization limits 
Trip limits 

Subspace Decomposition Approach 
(Deterministic Formulation) 



25-base, 219-route Network 

• Top level 
– Three decision variables 
– Bounds on decision variables 

• Aircraft sizing 
– Six continuous decision variables 
– Four nonlinear constraints 
– Five uncertain parameters 
– Bounds on decision variables 

• Fleet assignment 
– 183,750 binary decision variables 
– 134,203 constraints 
– Uncertainty in pallet demand on each route along with 

uncertainty propagation from aircraft sizing 
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INTERVAL ROBUST COUNTERPART 
MODEL 
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Deterministic Formulation 
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IRC Model 

• 𝜀𝜀, 𝛿𝛿 -Interval Robust Counterpart (IRC) formulation* for 
bounded uncertainty 
– 𝛿𝛿: infeasibility tolerance, 𝜀𝜀 – data uncertainty 
                 𝑎𝑎𝑖𝑖𝑖𝑖� − 𝑎𝑎𝑖𝑖𝑖𝑖 ≤ 𝜀𝜀 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖� − 𝑏𝑏𝑖𝑖 ≤ 𝜀𝜀 𝑏𝑏𝑖𝑖  
– Uncertainty in objective function: Transform objective function 

as constraint 
– 𝜀𝜀 and 𝛿𝛿 can change for each constraint 

 
•  A solution 𝒙𝒙 is robust if 

– 𝑥𝑥 is feasible for the nominal values 
– Whatever are the true values of the coefficients and RHS 

parameters within the corresponding intervals, must satisfy the 
i-th inequality constraint with an error at most 𝛿𝛿 × max (1, 𝑏𝑏𝑖𝑖) 
 

 
25 

*Lin et al., A new robust optimization approach for scheduling under uncertainty: I. Bounded uncertainty 



IRC 𝜺𝜺,𝜹𝜹  Formulation 
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riables  with uncertain coefficients in the 
      -th inequality constrainti

 

• The additional constraints consider the worst-case values of 
the uncertain parameters 
– With tolerable violations of the constraint 
– Enforced using user-defined factors, 𝛿𝛿𝑖𝑖   

 

 



Demand Uncertainty 

• Applying IRC model to the demand constraint 
– ‘Immunized’ against the worst-case scenario 

(maximum value) of demand 
– Leads to a ‘conservative’ solution 

• Instead, handled through a stratified sampling 
technique to reduce computational expense 
– On-demand nature of fleet operations 
– Large fluctuations in pallet demand 
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How can our approach help AMC? 

• Our methodology 
– Helps determine the requirements for – and describe 

the design of – a new aircraft for use in the AMC fleet 
– Optimize fleet-level metrics that address performance 

and fuel use 
– Account for uncertainties in fleet operations and new 

aircraft performance 
• Describe how design requirements of the new 

aircraft would change for different tradeoff 
opportunities between productivity and fuel 
consumption 
 

28 



Descriptive Sampling 

• Discretize the distribution to generate B demand scenarios 
– Sample more from high-density and less from low-density 

regions  
• Random permutation of the demand values for each route 

29 

Random sampling  =  random set × random sequence 
Descriptive sampling  = deterministic set × random sequence 

Saliby, E., “Descriptive sampling: A better approach to Monte Carlo simulation”  
Listes, O. and Dekker, R., “A scenario aggregation–based approach for determining a robust airline fleet composition for 
dynamic capacity allocation” 
 



Aircraft Sizing Problem 
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Decision variables  Lower Bound Upper Bound 

Wing Aspect Ratio 6 .00 9 .50 

Thrust-to-weight Ratio 0 .18 0 .35 

Wing Loading [lb/ft2] 65 .00 161 .00 

Engine Bypass Ratio 4 .50 14 .50 

Wing Leading Edge Sweep [deg] 10 .00 35 .00 

Wing Taper Ratio  0 .10 0 .40 

Constraints Value   

Takeoff Distance [ft] ≤ 8500   

Landing Distance [ft] ≤ 5500   

Second segment climb gradient ≥ 0.025   

Top-of-climb rate [ft/min] ≥ 500   

Uncertain Parameters:  𝐶𝐶𝐷𝐷0 multiplier, SFC, Cruise altitude, Pallet mass, Oswald 
efficiency multiplier 



Fleet Assignment Subspace 
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Minimize 
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Subject to 

Fleet-level DOC 

Node balance constraints 

Demand constraints 

Starting location of aircraft 
constraints 

Daily utilization limit 

Boolean Variable 

Trip limit 



Uncertainty in Aircraft Sizing 
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Uncertain Parameters 𝝃𝝃  Lower limit Mode Upper Limit 
𝐶𝐶𝐷𝐷0multiplier, 𝑘𝑘𝐶𝐶𝐷𝐷 0.90 1.0 1.10 

SFC 0.45 0.5 0.55 
Oswald efficiency multiplier, 𝑘𝑘𝑒𝑒0 0.95 1.0 1.05 

• Two major types of uncertainty 
– Aleatoric uncertainty: Inherent 

or natural randomness 
– Epistemic uncertainty:  

Imprecise or absence of 
complete information  

• Some uncertain parameters used 
as scaling factors 

• Represented using assumed 
triangular distributions 

0 0  ( )
D predictedD C DC k C= ×

Lower 
limit 

Mode Upper 
limit 
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Uncertainty in Pallet Demand 

• Reported AMC operations 
show large variations in daily 
cargo transported and 
asymmetrical cargo demand 
between base pairs 
– From this, treat future daily 

pallet transport demand as 
uncertain 

– Demand must address 
direction in route network 

33 

Actual Data from GATES 

 



Multi-objective Formulation 

• Two objectives 
– Maximize fleet-level 

productivity 
– Minimize fleet-level fuel 

consumption 
– Epsilon (Gaming) 

constraint formulation  
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