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Abstract 
The overall goal of this paper is to continue our efforts to forge new ground in identifying the 
effects of interdependencies in large complex networked applications and, if needed, 
uncovering early indicators of interdependency risk so that appropriate risk mitigation actions 
may be taken. Specifically, we seek to study and quantify the impact of network 
characteristics on cascading risk. Cascading risk is defined as the propagation of 
programmatic issues across networked programs due to the interdependency of one program 
upon the other. Harnessing the extensive data that has been collected over the years in the 
form of Defense Acquisition Execution Summary (DAES) and Selected Acquisition Reports 
(SARs) documents for Major Defense Acquisition Programs (MDAPS), we will present our 
intermediate results in our ongoing efforts on leveraging network structure and sequential 
data to study cascading risks. We will also identify the challenges to data acquisition. 

Introduction 
Our work is motivated by the need for “what-if” analysis in large complex 

interdependent and networked applications such as the critical infrastructure network 
(electric, water, gas grids). The research goal is to develop methodologies and algorithms to 
proactively model and reason about non-linear cascading risks to facilitate this analysis. 
Networked applications often operate under uncertainty in environmental response and the 
temporal state and action choices of the nodes are captured in the form of structured and 
unstructured text data as well as image data.  

We build on our previous work (Raja, Hasan, & Brown, 2012; Raja et al., 2013, 
2014), where we used state-of the-art extraction technologies including Latent Dirichlet 
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Allocation (LDA) topic modeling algorithms to develop automated text and image extraction 
techniques to extract features from various types of structured and unstructured text and 
image data. In addition to this automated data extraction module, we developed two 
executable modules: one to identify the relationships in a network (Network Identifier 
module) and the other to compute the weight of the links among the neighboring nodes 
(Interdependency Index Determiner). We tested and evaluated these algorithms on a small 
network and showed that the performance of the automatic extraction algorithms was 
comparable to the performance of manual extraction.  

We use the MDAP network as a case study to study cascading risks and develop 
methodologies and algorithms that can be generalizable to similar networks. Individual 
MDAP performance across months and years has been captured by a combination of 
structured and unstructured temporal data, including Selected Acquisition Reports (SARs), 
Defense Acquisition Execution Summary (DAES) reports, and milestone reviews are 
evaluated from an individual program point of view without emphasizing the dynamics of 
joint space. The question of modeling cascading risk across programs with funding or data 
relationships is important since we conjecture that poor performance of the MDAPs (various 
breach conditions) can be attributed to local (individual MDAP) as well as non-local (related 
MDAPs) sources that result due to interdependencies among the MDAPs. 

In this paper, we present a network-centric approach that has the dual goal of 
contributing to advances in reasoning about uncertainty, large-scale text and image data 
analysis, as well as understanding of complex networks. This project breaks ground in the 
areas of (a) defining a metric to quantify the influence of network characteristics on 
performance and (b) identifying the type of data required to formulate appropriate 
mathematical models for understanding the dynamics of complex networks.  

Network Performance Study From an Interdependent Hierarchical Network 
Perspective 

The joint space of major defense acquisition programs (MDAPs) creates 
interdependencies among MDAPs. These interdependencies contain the characteristics of a 
complex network (Brown, 2014). Programs in the MDAP network share diverse 
relationships. Mainly, there are two types of ties that exist among the MDAPs: (1) 
programmatic ties (also called programmatic interdependencies) are defined by the program 
managers in terms of inbound and outbound connections to support hardware/software 
requirement of the programs, and (2) funding ties that identify the programs as funding 
neighbors if they draw funding support from the same “program element” (PE) account. 
These two types of ties result in two types of network relationships among the MDAPs, 
namely, programmatic network and funding network.  

A systemic understanding of the performance of the MDAPs requires the 
understanding of these two types of networks. Therefore, the system of MDAPs can be 
considered as a multiplex network that is a superposition of both programmatic and funding 
networks defined on the same set of programs (Szell, Lambiotte, & Thurner, 2010). 

Interdependencies among the program influence the performance of the MDAPs 
(Brown, 2014; Raja et al., 2012). However, the multiplex nature of the MDAP network has 
not been considered to examine the performance of the programs. Moreover, the effect of 
interdependency on the programs was not quantified previously. Our goal is to investigate 
the joint space of the MDAP multiplex network as it influences program performance and to 
define a metric (the risk parameter) that quantifies this influence. The values of this risk 
parameter for each program in the multiplex network would be useful to forecast a potential 
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cascading effect. Moreover, the program managers would be able to identify critical 
programs using this parameter and take necessary measures to improve programs’ 
performance. The risk parameter is formally defined in the following section based on the 
Probabilistic Risk Analysis (PRA) methodology for networked systems. 

Probabilistic Risk Analysis (PRA) 

Probabilistic risk analysis (PRA) is a methodology (Lewis, 2009) to evaluate risks 
associated with a complex engineering entity. It systematically looks at how the pieces of a 
system work together to ensure safety. PRA allows analysts to quantify risk and identify 
what could have the most impact on safety (Lewis, 2009). Therefore, we use the risk 
parameter from PRA methodology to quantify the influence of interdependency in a complex 
network, specifically the MDAP network. 

The PRA equations for risk in a system use the notion of vulnerability and 
consequence. Although the concept of vulnerability, risk, and consequence in non-network 
systems share standard definitions in financial and engineering communities, these terms 
are not well understood for networked systems. This is because network science is a new 
field, and it is not very clear how to understand the failure of the assets in networks.  

According to the standard definitions (Lewis, 2009) in non-networked systems, 
vulnerability V is the probability that a component or asset will be compromised after 
successful attacks. Risk R measures the expected loss due to the failure of an asset. Threat 
T is the probability that an attack will be attempted. Consequence C is the outcome of a 
successful attack. Therefore, standard risk is defined as the product R=TVC. 

These definitions, however, do not provide an appropriate measure for risk in 
networked systems. In a network, system failure is a function of the interdependence of the 
nodes. These definitions do not incorporate the interdependency of the various components 
of a system. Therefore, it is important to consider the connectivity among the nodes in a 
network for computing risk. 

Lewis (2009) extended these standard definitions to networks containing many 
components or assets (nodes and links). Threat (t), vulnerability (v), consequence (c), and 
risk (R) in a networked system are an aggregation of individual component or asset threat, 
vulnerability, and consequences. Network risk is defined in the following PRA equation as 
an expected value by taking the sum over all nodes (n) and links (m) of the individual 
components: ࡾ ൌ 	∑ ࢓ା࢔࢚

ୀ૚࢏ ࢏ ࢏ࢉ࢏࢜ ൌ 	∑ ࢓ା࢔࢜
ୀ૚࢏ ࢏ ௜ݐ assuming ,࢏ࢉ ൌ 1. Here, threat and vulnerability 

are a priori estimates of the probability of failure. Consequence is typically measured in 
dollars or lives. This PRA equation for risk is applicable for any system where a priori 
approximations of the probability of failure can be reasonably estimated. For reducing risk in 
a networked system, Lewis (2009) argues that it is important to identify the critical nodes 
that have higher risk values. 

Earlier works by Albert, Jeong, and Barabasi (2000) and others explored why highly-
connected nodes were more critical nodes than others. However, these studies were done 
in the context of a single-plex network. Al-Mannai and Lewis (2007) proposed a static 
technique for critical node analysis in a multiplex network where criticality of a node not 
only depends on the number of connections, but also on other measures. They use a 
degree-weighted model of network risk to identify the most critical nodes in a network. 
Intuitively, critical nodes either have many connections or have larger target values. Based 
on this observation, Al-Mannai and Lewis (2007) extended the simple PRA definition of risk 
to define the target value of a node as giCi , where gi is the degree of the node and Ci is the 
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consequence associated with the node’s intrinsic value. Therefore, according to their model, 
extended risk ࢘ for an n-node network is related to network topology as follows: 

rext = ∑ ݃௜
௡
௜ୀଵ ௜ܸܥ௜     (1) 

where g is the degree of node ݅, while V and C are its vulnerability and consequence, 
respectively.  

Example: PRA for a Small Synthetic Network 

As an illustration of the above-mentioned extended PRA technique, let’s consider the 
following network (Figure 1) of four nodes (A, B, C, and D). Connectivity among the nodes is 
shown for three years. We will use fictitious values for vulnerability and consequence of the 
nodes in this network in order to understand how the above-mentioned model helps to 
identify nodes that are most critical for the operation of the network. Also, it will facilitate in 
understanding the various factors that contribute towards the criticality measure. 

 

 Critical Node Analysis for a Synthetic Network 

Table 1 shows the results for extended PRA. In Year 1, we notice that node C is the 
most critical. Although it has the smallest consequence value in the network, its high 
connectivity and largest value for the vulnerability are responsible for its critical condition. 

In Year 2, however, node C is not the most critical node anymore. This is due to the 
reduction in its consequence measure. Node D appears to be the most critical because of 
the increase in its degree. Its vulnerability and consequence values did not increase from 
the previous year. 

In Year 3, Node A becomes the most critical node because of the increase in its 
vulnerability and consequence values. However, its degree did not increase. 
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 PRA of the Synthetic Network for Three Years 

 

Figure 2 shows the change in extended risk values for the nodes that indicate node 
criticality during the three-year time-span. This simple illustration helps us to understand the 
significance of incorporating a node’s degree (g) for the computation of its risk along with its 
vulnerability and consequence (Al-Mannai & Lewis, 2007).  

 

 Critical Node Analysis for the Synthetic Network 
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Critical Node Analysis for a Small MDAP Network 

Implementing the above-mentioned technique of extended PRA is a non-trivial task 
for MDAP networks. PRA requires a reasonable estimation of a priori approximations of 
vulnerability and consequence of the network assets. However, there is no guideline to do 
such estimation for MDAPs. Moreover, data on the MDAPs are complex artifacts and often 
times are either incomplete or fuzzy. Therefore, defining vulnerability and consequence 
parameters for MDAPs is a challenging task that we address below.  

MDAPs operate on a multiplex network. At one hand, MDAPs share funding with 
other MDAPs (as a result, they form a shared-funding network); on the other hand, MDAPs 
share hardware/software components with other MDAPs (as a result, they also belong to a 
programmatic network). Therefore, performance of MDAPs can be examined in light of the 
performance of the individual program (program-centric) as well as its resulting performance 
in two different networks (network-centric): (1) a programmatic network and (2) a funding 
network. In our analysis, we consider both the program-centric and network-centric 
contributions.  

Below, we first discuss how to discover diverse (programmatic and funding) network 
relationships among the MDAPs and form a multiplex network. Then we define the various 
parameters for the extended PRA model. Finally, to validate the approach for extended PRA 
of the MDAP network, we present a case study of critical node analysis for an MDAP 
enterprise. 

Multiplex Network Formation 

The interdependency of the MDAPs that influence their performance can be best 
understood via the programmatic network (Brown, 2014). In a programmatic network, 
individual MDAPs support other MDAPs by providing software or hardware components. 
Therefore, our network of interest is based on the programmatic relationships that exist 
among the MDAPs. We have gathered data on programmatic interdependencies from the 
DAES reports for the respective MDAPs. Typically, the last page of the DAES report records 
the inbound and outbound connections. 

Apart from their programmatic dependency, the MDAPs are also related via common 
PE accounts. In our network model, we capture this funding network relationship as well. 

Both the programmatic and funding relationships on the same set of MDAPs are 
superimposed to define a multiplex MDAP network. For example, Figure 3 shows both the 
funding and programmatic interdependencies among the MDAPs in an MDAP multiplex 
network in 2009. 
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 An MDAP Multiplex Network Model 

Parameters of Extended PRA Model: Degree (g), Vulnerability (V), and 
Consequence (C) 

We define the extended PRA model parameters as follows: 

 Degree (g): It is defined by the number of outgoing edges from a node in the 
programmatic network. Therefore, degree measures the extent of influence of 
one program (node) on other programs. In an m-node network, 

݃	 ൌ෍݊௜

௠

௜ୀଵ

																																																																															(2) 

 Vulnerability (V): It is a measure of weakness of a node in a network. It is 
defined as the probability of failure of a node if a successful attack is 
launched on it. 

In the MDAP network, we notice that a program may become prone to failure; we call 
such a program a critical program. Our hypothesis is that breach incidences and other 
factors mentioned below are indicators of criticality of a program. Program failure is 
characterized by increased APB breaches and PAUC increase. Moreover, we hypothesize a 
program’s criticality could potentially influence its neighbor’s performance (increased 
breached condition and PAUC increase). 

 First, from a program-centric point of view, a program may fail due to its 
intrinsic poor performance. For example, a weapons procurement cut could 
lead to intrinsic poor performance (Raja et al., 2012). This program-centric 
view is captured in the “Program Status” page of the DAES report of the 
programs. 

 Second, APB beaches and the percentage of increase in PAUC is also a 
measure of a program’s performance. These values are recorded in SAR 
files. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 101 - 

 Third, from a program-centric perspective, the number of its funding and 
programmatic neighbors influences the performance of a MDAP. For 
instance, having a large number of funding neighbors (per PE account) 
makes a program susceptible to potential reduction in promised funding as 
funds could be siphoned to its neighbors.  

 Fourth, having a large number of upstream programmatic neighbors (from 
which the edges fall on the program) increases its dependency of 
software/hardware components for successful completion of its tasks. 

 Fifth, funding lag also affects the performance of a program and may make it 
prone to failure. 

We propose that the above-mentioned five parameters provide a reasonable 
estimation for the probability of failure of a program and use these to define vulnerability 
(Lewis, 2009). Therefore, vulnerability should be considered as the cumulative effect of 
these parameters. We define the normalized vulnerability based on these parameters using 
a simple linear function and study its effectiveness: 

V=
௣ା௕ା௙ே௕௢௥ା௣ே௕௢௥ାௗ௜௙௙ி

ଵାଵାଵାଵାଵ
																																																											 (3) 

Each parameter in the numerator has a maximum value of 1. In the following, the 
individual parameters are formally defined. 

p: It refers to a program’s intrinsic performance (captured in DAES reports) 
and is a linear combination of the factors contributing to Program Status. We 
use the December DAES report for the last reported month of a year for this 
computation. The last reported month’s data is used as it provides that year’s 
intrinsic performance level of the program. We use the data provided in the 
“Program Status” page of the DAES reports to compute this metric as 
described in Table 2. 

b: It refers to the number of breaches that occurred in the current year 
(retrieved from SAR files). 

 fNbor: It is the normalized number of funding neighbors (retrieved from R 
docs). 

pNbor: It is the normalized number of upstream programmatic neighbors 
(retrieved from DAES reports). 

diffF: It is the normalized differential between received and promised funding 
amounts (retrieved from SAR and R docs). 

Table 2 reports the formulas that we defined to compute these five parameters. 
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 Formulas for the Five Parameters Used in the Computation of 
Vulnerability 

 

 C (Consequence): Consequence measures the damage or loss (in dollars) 
of an asset when failure occurs. Therefore, it should be proportional to the 
RDT&E funding (from R Docs) and is determined by the breach condition. For 
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example, if a program experiences 100% breach, then its Consequence 
would be tantamount to its entire RDT&E funding. We define it as follows: 

C=b* Funding (RDT&E)     (4) 

The breach parameter b from the vulnerability computation is used to compute 
Consequence. 

Case Study: An MDAP Network 

We use the extended PRA to identify the most critical nodes for an MDAP enterprise 
that consists of six MDAPs: PNO1, PNO2, PNO3, PNO4, PNO5, and PNO6. These six 
MDAPS are funded by four program elements (funding sources): PE1, PE2, PE3, and PE4, 
as shown in Figures 4–6. 

Data for the years 2009 to 2011 are used for this case study. Figures 4–6 show the 
MDAP enterprise multiplex network for these three years. 

 

 The MDAP Enterprise Multiplex Network, 2009 
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 The MDAP Enterprise Multiplex Network, 2010 

 

 The MDAP Enterprise Multiplex Network, 2011 

Detailed calculation of the risk values for each MDAP for three years was performed. 
Table 3 shows the summary of the results. 
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 Critical Node Analysis for MDAP Enterprise Network 

 

As an illustration of the calculations in Table 3, we show the detailed calculation of 
the risk value for PNO1 in 2009 in Table 4. 
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 Detailed Calculation of the Risk Value for PNO1 in 2009 

 

From Figure 7, we observe that over the years, PNO1 and PNO3 became the most 
critical programs in the network. PE6 retained its criticality level, and we do not see 
significant improvement. A careful analysis of the data for PNO1 and PNO3 in year 2011 
reveals that both programs have high breach incidence (that includes increased PAUC). As 
a result, their consequence values increased as well. Also, these two programs were 
characterized by higher degrees. All these factors contributed to their high level of criticality. 
For PNO6, although its degree is relatively small, it has been experiencing schedule and 
cost breaches as well as increases in PAUC for three consecutive years. The funding 
budget for PNO1 and PNO6 (over $300 million) is also a contributing factor. 

According to 2011 SAR files, PNO1, PNO3, and PNO6 experienced significant 
PAUC increase and APB breaches, indicating their poor performance level. This observation 
confirms that our risk computation measure is a step in the right direction. 
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 Critical Node Analysis for the MDAP Enterprise Network 

Discussion of Extended PRA Model for Risk Computation 

The objective for defining the risk parameter (R) in this paper is to capture the effect 
of multiplex network relations on an MDAP program’s performance. As mentioned earlier, 
breach conditions (from DAES and SAR) are indicators of a program’s intrinsic performance, 
but do not account for the exogenous effects on a program. We have developed the PRA 
risk model with the potential to capture the network effect on a program’s performance. In 
this model, the intrinsic parameters (p and b) tell us whether a program is “Vulnerable,” while 
the MDAP program’s network status accounts for “Criticality.” The premise shown by the 
case study is that this criticality measure helps identify programs that are susceptible to 
future breaches more effectively than by simply using their intrinsic performance parameters 
(p or b values). 

Manual analysis of MDAP data (done in previous phases of the project) facilitated 
the process of modeling a small MDAP network for extended PRA analysis. For this 
modeling, we considered the multiplex nature of the MDAP network and used various 
performance reports. The results indicate that the extended PRA technique has the potential 
to successfully identify risky programs and infer the performance of programs. 

Also, the PRA analysis uses a network-based composite metric, instead of just 
individual program PAUC increase and APB breaches, to compute the risk level of a 
program. For example, both PNO1 and PNO3 have relatively high degree and share the 
same funding accounts, which makes them susceptible to poor performance. By looking at 
their increasing PRA risk values in 2009 and 2010, it can be inferred that these two 
programs are in critical condition. Also by looking at the nearly stable high-risk values of 
PNO6 in 2009 and 2010, this program should be considered critical as well. 

Hence, with the aid of an automated information retrieval mechanism from the 
performance reports, it is possible to develop an algorithmic tool to identify risky programs. 
Recognizing the potential of these risky/critical programs to affect the performance of their 
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neighbors could contribute towards predicting cascading effects. As future work, we plan to 
verify this empirically. 

Also, we plan to use this model on another MDAP network to determine if it is able to 
identify the critical programs; we will modify the parameters of our PRA based model (if 
necessary) and use this knowledge to define a general model for the entire MDAP network 
as whole or more realistically, specialized PRA models for classes of similar MDAPs.  

Studying the Feasibility of Mathematically Modeling the Phenomenology of 
MDAP Networks  

We also conducted a feasibility study for modeling interdependent networks as a 
coupled dynamical system and potentially adapting the algorithms for feed-forward networks 
(Mintchev & Young, 2009; Lanford & Mintchev, 2015) to risk propagation interdependent 
networks like the MDAP network.  

To do this, we would have to determine the network model which includes 
determining network architecture properties, including various centrality measures, strength 
of network connections including a precise form of the coupling formalism (strength can be 
seen as a precise rule that determines dynamical evolution), state features and action 
options which were already determined in Raja et al. (2012), and a reward optimization 
model that provides some dynamics to this network. The model would allow us to investigate 
whether the system has any attractive equilibria, as well as determining the strengths and 
weaknesses of the basins of attraction. For example, if the steady state of the MDAP 
network is characterized by only one funded program, with all others having discontinued 
funding, this is probably not good. We hypothesize that if good equilibria were discovered, 
an outcome of this analysis could be to recommend a funding strategy that maintains 
equilibrium or guarantees a rapid convergence toward it. 

The specific working hypothesis in the context of the MDAP network is as follows: 
The programmatic interdependencies between MDAPs have a profound influence on large-
scale network performance over an extended period of time.  

To determine a network model that is descriptive, predictive, and mathematically 
sound, we would need a collection of numerical quantities either measured or somehow 
computed from other measurements recorded in a time series over a sufficiently long period 
of time. This would involve 

 (R1) determination of observable quantities measured numerically (i.e., real 
numbers on a well-defined scale). The KEY characteristic is to have some a 
priori evidence that the observables chosen evolve dynamically (i.e., change 
over time); also, it is absolutely NECESSARY for these to be numerical, or to 
correspond to some sort of real number scale. 

 (R2) finding time series of data on the observables chosen in (R1). Usually a 
lot of data over a sufficiently long time scale is required to build this historical 
account of how the observables have changed over time. If the model is to be 
predictive in the short term, then the variables/observables must have been 
sampled at a sufficiently high rate. 

Evaluating DAES Data 

We began by studying the DAES data of several MDAPs collected over a decade 
with the hope that the sequential monthly data would provide indicators of performance 
degradation. We have extensive experience with DAES data from our previous work, where 
we used DAES data to study local and non-local issues that affect the performance of the 
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MDAP (Raja et al., 2012) and also developed sophisticated text and image extraction tools 
(Raja et al., 2013, 2014) to automatically extract the DAES data en masse. 

Since changes in total cost could be considered as a useful observable, we 
constructed a few test time series based on the information captured on Top Cost Drivers in 
the DAES report. Figure 8 captures one such example. It became clear the cost driver time 
series was not sufficiently volatile enough to facilitate predictability. 

 

 Stacked Area Time Series Data of Five Top Cost Drivers of PNO3 

While there is some volatility in January 2010, the volatility is not frequent enough to 
capture the change in performance risk of the MDAP program over time. 

Moreover, we ran into several challenges with the preciseness of the data as far as 
our goal of building a mathematical model is concerned. Some of our observations are 
captured below:  

In the DAES Program Status page, 

 We could not ascertain the quantitative mechanism for color transitions of the 
red, yellow, or green bubbles that capture the changes in value of Cost, 
Schedule, Performance, etc. in going from one month to the next.  

 The risk in the Risk Summary page describes the risk computation in 
somewhat of a quantitative way. However, it was still unclear how the risk 
quantity evaluated; it seems to be coded by a 2-dimensional vector, a 
(consequence, likelihood) pair; how (if at all) is each of those coordinates 
computed?  

In the DAES page with Top Cost Drivers, Technology Readiness Assessment, 
Performance (kpps), and Acquisition Program Baseline (APB), 

 All of the KPP diagrams seem to be set at T (or threshold); it was not possible 
to ascertain how these quantities were computed and whether they change 
over time. 

 While the technology readiness assessment box is another potentially 
interesting measure with regards to building a state space model, the values 
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did not change for long periods of time and so were at a course level of 
granularity. 

In the Finley charts of the DAES reports,  

 The knowledge gained from the Finley charts is that the dependencies are of 
some programmatic importance—they can affect the course of the subject 
program—otherwise they wouldn't be mentioned. So of all the potential types 
of interdependencies that could exist among programs, the Finley charts 
show those that present a potential risk to the program in question (subject to 
the limitations of the format and the awareness of the program manager). The 
dependencies described by the Finley charts generally relate to some 
component or subsystem in the subject program (or system) that must be 
provided by, or is somehow dependent upon, the external program (or 
system). In many cases (actually, most cases) the external entity is a non-
ACAT 1D program. There is no requirement for those programs to report their 
data to OSD via the SAR and DAES. In fact, the data for those programs will 
be held by the program office or their Program Executive Offices within the 
military department. This makes getting detailed data about the external 
program difficult.  

 Also, the challenge with the Finley charts is that the nature of the dependency 
is usually not defined: It could be funding, schedule, or some technical issue. 
Given the shortcomings of the Finley charts as a way to represent 
programmatic interdependencies, other more objective representations of 
system interdependencies have been explored, particularly artifacts that 
describe the interconnections between the system in question and external 
systems. These data are in the Information Support Plan (ISP) that each 
major program generates as part of its milestone approval documentation. 
The difficulty with the ISP, however, is that the reports are more difficult to 
obtain, and recent changes in policy have made the data less analytically 
useful.  

The data acquisition challenges could be summarized as follows: Although there are 
some allusions to the idea that various quantities presented in the reports are quantitatively 
obtainable through formulas or calculations, there is not much explanation as to how this is 
actually done or what the numerical values/ranges would be and whether these definitions 
are consistent across all programs. This information is crucial to building a state space 
model for the MDAP network. Also, the strategy for determining interdependencies seems to 
be a difficult. Also, given the time lag (DAES reports are generated monthly) and the level of 
data captured, often there was not variation in the data from one month to the next. 

Analyzing Contract Data 

We then deliberated on whether contract data would probably be a better data set for 
the type of time series based risk analysis we were considering. Instead of focusing on 
metrics related to contract value (looking for indicators of cost growth), we would instead 
look at the frequency of contract transactions.  

The idea is that when a program is running smoothly, there's probably a baseline 
rate of contract modifications in the normal course of business (i.e., as funding is added, 
tasks are completed, deliverables are received, etc.). However, when something traumatic 
happens, like a test failure or other technical difficulties, we could probably expect significant 
contractual “churn” as previously-planned efforts are realigned to address the mission-
critical issue.  
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The following is a possible scenario where the “churn” metric might be a more 
reliable indicator of program distress than cost: Consider a program that is composed of 
multiple components, each being developed under separate contracts (e.g., a satellite and 
its ground control segment). If, for example, the satellite has a problem in development (i.e., 
a test failure), the satellite contract will probably experience cost growth, but the ground 
control segment might actually experience a decrease in expenditures, as it has to slow 
down to accommodate delays in the satellite. So whereas costs might increase on one 
contract, they might be somewhat offset by temporary decreases in the other, which would 
muddy the “signal” seen at the overall program level. However, each contract would 
probably have to be re-scoped in order to increase the level of effort for the satellite and 
reduce the level of effort for the ground segment. Thus, both will incur additional contract 
“churn” as a result, which should be observable by plotting the frequency of contract 
modifications over time.  

Figures 9, 10, and 11 are the time series of the contract “churn” for the three MDAPs. 
Each contract transaction reported in the Federal Procurement Data System–Next 
Generation (FPDS-NG) has an “issue date” indicating when the contract modification was 
signed. We plotted the frequency of contract actions over time. 

 

 Time Series Data of PNO3-Related Issue Dates  
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 Time Series Data of PNO5-Related Issue Dates  

 

 Time Series Data of PNO6-Related Issue Dates  

In an effort to determine whether there is any type of correlation between the onset 
of significant contract churn in Figure 11 and program performance, we examined the 
breaches reported in the annual SARS data for PNO6. The December 2004, 2005, 2006, 
and 2007 SAR files show no APB or Nunn-McCurdy breaches, although the notes in the 
2005 Threshold breach section state that there was a cost deviation from the key decision 
point-b approved APB even though there was no change in the total program cost as a 
result of the action. The 2009, 2010, and 2011 SARS show Schedule and Cost RDT&E APB 
breaches with varying levels of explanations. The December 2012 SARS indicates no such 
breach. We are continuing to study the executive summaries as well as SARS of future 
years in more detail. 

Our observation from this examination of churn in contract data is that it does indeed 
have the volatility that could support the network modeling process. In addition to studying 
the PNO6 SARS data in greater detail as mentioned above, we are also trying to find 
contract data over a sufficiently long time scale to support our modeling analysis. 
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Conclusions and Future Work 
In this paper, we have discussed our progress in our ongoing efforts to (1) study the 

impact of network topological characteristics on risk propagation and our methodology to 
quantify it, (2) evaluate the critical importance of quantifiable state features in order to 
assess network dynamics, and (3) describe our investigation into time-series data that could 
facilitate our analysis. 

Our initial results on PRA analysis for a case study and the contract data time series 
are encouraging, and we plan to further investigate the scale-up of the PRA analysis as well 
as using the contract data towards building the network model. 
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Motivation 

• Background: 
• Joint Capabilities. 
• Operating environment: uncertainty, complexity, rapid change and 

persistent conflict. 
• Integrated approach (WSARA 2009). 

• Definition: 
• Cascading risk: Propagation of programmatic issues across 

networked programs due to the interdependency of one program 
upon the other. 

• Research Question: 
• Study and quantify the impact of network characteristics on 

cascading risk.  
 



Main Contributions 
 

Hypothesis: The programmatic interdependencies 
between MDAPs have a profound influence on large-scale 
network performance over an extended period of time.   
 
1. Define a metric to quantify influence of network 

characteristics on program performance. 
 
1. Determine if it is possible to formulate mathematical 

models that capture dynamics of complex networks 
and provide prescriptive actions. 



Task 1: Risk Computation  
• Probabilistic Risk Analysis (Lewis 2009) :  

• Compute risk to identify and manage  critical nodes. 
• Why critical nodes? 
• Leverage network topology (extended PRA) 
•  Extended risk for n-node network is rext=Σn

i=1giViCi    
where  
• g: Degree  
• V: Vulnerability  
• C: Consequence 



Case Study of a multiplex network 



Critical Node Analysis  



Task 1: Observations 
• Network-centric approach helps capture  exogenous effects on 

program performance. 
• Underscores importance of addressing multiplex network 

relationship among MDAPs. 
• Uses data from various reports (DAES, SAR, R Docs) to define 

multiplex network and vulnerability parameter for  PRA analysis. 
• Extended PRA technique 

•  identifies critical (risky) programs in the multiplex network. 
• could be used to forecast a program’s performance and avoid 

negative cascading effects.  



Task 2: Feasibility Study 
• Modeling interdependent networks as a coupled dynamical system and 

potentially adapting related algorithms. 
 
 
 
 
 
 
 
 
 
 

• Does the system have any attractive equilibria?  
• If good equilibria were discovered, an outcome could be to recommend 

a funding strategy that maintains equilibrium or guarantees a rapid 
convergence toward it. 

 
• Ack: Prof. Stan Minchev, Eui Seong Han. 

 
 



Methodology 
• Goal: Determine a network model 

• Centrality measure. 
• Strength of network connections including a precise form of 

the coupling formalism.  
• State features and action options (as in Raja 2012). 
• Reward optimization model capturing network dynamics. 

•  Process: 
• Determine variables that evolve over time and can be  

measured numerically, i.e., real numbers on a well-defined 
scale 

• Find time  series of data on the variables chosen above. 



E.g.: Top Cost Driver 
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PNO3 Top Cost Drivers 

S/C 1&2 S/C 3, 4 &5 Ground HW Ground SW EELV 1-5

• Data source: 
• DAES reports of several MDAPS collected over a decade 
• Program Status, Top Cost Drivers, KPPs, Finley Charts. 



Churn in Contract Data 

• July 2008: new cost and schedule breach occurred per the PNO6 DAES 
data. We are investigating if spikes in the contract churn data predict a 
future breach. 

• Missing data problem. 
• 2009, 2010, 2011 PNO6 SARS show Schedule and Cost RDT&E APB 

breaches with varying levels of explanations. 



Task 2 Observations 
• Allusions that various DAES and SARS quantities are quantitatively 

obtainable through formulas or calculations. However  unclear  
• how this is actually done;  
• what the numerical values/ranges would be;   
• whether these definitions are consistent across all programs. 

• Given time lag (DAES  reports are generated monthly) and the level 
of data captured, often there was not variation in the data from one 
month to the next. 

• Churn data has the evolutionary characteristics that could facilitate 
network modeling process. 
 



Future Work 
• Risk computation: Further study the impact of 

network topology  on risk propagation and our  
methodology to quantify it. 

• Delve further into contract data and investigate effect 
on future performance wrt breaches. 
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