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Abstract
Objective. Lost sensations, such as touch, could one day be restored by electrical stimulation
along the sensory neural pathways. Such stimulation, when informed by electronic sensors,
could provide naturalistic cutaneous and proprioceptive feedback to the user. Perceptually,
microstimulation of somatosensory brain regions produces localized, modality-specific
sensations, and several spatiotemporal parameters have been studied for their discernibility.
However, systematic methods for encoding a wide array of naturally occurring stimuli into
biomimetic percepts via multi-channel microstimulation are lacking. More specifically,
generating spatiotemporal patterns for explicitly evoking naturalistic neural activation has not yet
been explored. Approach.We address this problem by first modeling the dynamical input–output
relationship between multichannel microstimulation and downstream neural responses, and then
optimizing the input pattern to reproduce naturally occurring touch responses as closely as
possible. Main results. Here we show that such optimization produces responses in the S1 cortex
of the anesthetized rat that are highly similar to natural, tactile-stimulus-evoked counterparts.
Furthermore, information on both pressure and location of the touch stimulus was found to be
highly preserved. Significance. Our results suggest that the currently presented stimulus
optimization approach holds great promise for restoring naturalistic levels of sensation.
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1. Introduction

Loss of somatosensation could one day be treated by direct
electrical stimulation of the central nervous system.

Assessment of the naturalness of microstimulation-induced
sensations is difficult in animal models, since it has been
largely achieved by training animals to report these sensations
as being conceptually ‘higher’ or ‘lower’ in some regard than
natural stimuli [1–4]. For example, [4] demonstrated that a
static nonlinear transformation of touch pressure could match
detection and relative amplitude discrimination rates seen in
natural touch experiments. The subjects could similarly report
spatial comparisons (i.e. ‘more medial than’) as well. Other
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work has explored sensitivities to variations of micro-
stimulation temporal pattern, spatial variation, and level of
randomness [5–8].

While these psychophysical studies show the potential
for discriminability of such induced sensations, it is unlikely
that the simple heuristically chosen pulse patterns, often
involving only a single electrode at a time, used in these
studies are sufficient to recreate natural cortical activation
and natural sensations. Indeed, in humans, constant-ampl-
itude pulse trains applied to single electrodes in the ventral
caudal thalamus evoke percepts that are both place and
modality-specific, and yet ‘unnatural’ in feeling [9, 10].
Although such signals could provide useful feedback in a
brain machine interface, developing more biomimetic spa-
tiotemporal patterns remains an open problem. As these
patterns increase in complexity, the difficulty of assessing
performance psychophysically in animals increases, perhaps
prohibitively.

A likely way to increase the realism of microstimula-
tion-induced sensations is to use dynamic, biomimetic
encoding algorithms that are specific to a subject, the
implanted electrodes, and the state of the neuronal circuit.
A relatively simple method is to, on every electrode, inject
current pulses according to the predicted naturally occur-
ring firing rate. This method was employed by [11] to
replicate the spiking activity of a damaged hippocampal
region. Reference [12] showed that this method could
modulate cortical activity in a naturalistic fashion when
applied to electrodes implanted in the dorsal root ganglion.
Unfortunately, these methods are predicated on the
assumption of a one-to-one correspondence between a sti-
mulation pulse and elicited spike. Electrophysiological
evidence in [13] suggests that each pulse instead produces a
spatiotemporal blur of activity involving many cells.
Indeed, for the range of currents likely to be useful for
evoking percepts, a single microelectrode would have
direct effects on neuronal elements within 30–100 μm of
their conducting areas [14, 15].

Given these effects, a more reasonable approach is to
deliver microstimulation pulse patterns at locations upstream
of the target population in a manner that trans-synaptically
induces desired downstream activation. To this end, we have
developed a model-based control method capable of eliciting
naturalistic responses in the somatosensory cortex via opti-
mized patterns of intra-thalamic microstimulation (ITMS).
These patterns spatiotemporally resembled naturalistic spike
rates, and their evoked responses preserved most of the
information of touch parameters.

2. Methods

In this study, two separate microelectrode arrays (see
figures 2(a)–(b)) were implanted in order to record and sti-
mulate synchronously. The first, situated in the forelimb
representation of the VPL thalamus, delivered the micro-
stimulation, and the second, situated in the corresponding

projection area in S1, measured ongoing neural activity dur-
ing stimuli (natural touch or microstimulation).

We investigated the following procedure in rats (see
figure 1). A set of downstream responses to rectangular skin
indentations of varying pressure, duration, and location are
obtained to serve as templates. Probing ITMS is then deliv-
ered and the neural responses are used to train a linear state-
space model of the effects of VPL microstimulation. A con-
troller then optimizes a set of pulse patterns that, in terms of
the model, approximates the natural downstream responses as
closely as possible. The optimal patterns are then applied in
VPL, the responses are recorded, and the similarity of the
responses are assessed. Herein, we consider multi-electrode
recordings of the local field potentials (LFP). As an alter-
native, sets of spike trains or spike counts can be used [16–
19], but as a continuous signal the LFP is simpler for state-
space modeling. In addition, we can use mean-square error
and correlation as metrics amenable to highly efficient convex
optimization. This study concentrates on characterizing the
neural responses to both natural taction and optimized
microstimulation along with their similarity. Studying the
performance enhancement it offers behaviorally is left as
future work.

2.1. Surgical methods

All animal procedures were approved by the SUNY Down-
state Medical Center Institutional Animal Care and Use
Committee. Nine female Long-Evans rats (250–350 g) were
acutely implanted with electrode arrays in VPL and S1 (see
figure 2(b)) under urethane anesthesia. In the first six animals,
the microelectrode array (MicroProbes Inc.) in VPL was a
2×8 grid of 70% platinum 30% iridium 75 μm diameter
microelectrodes, with 500 μm between the rows, and 250 μm
inter-electrode spacing within the rows. The shank lengths
were custom designed to fit the contour of the rat VPL [20].
Both rows were identical and the shaft lengths for each row,
from medial to lateral, were {8, 8, 8, 8, 8, 7.8, 7.6, 7.4} mm.
In the remaining animals, we used a 32 channel 4-shank
multi-contact silicon array (NeuroNexus A4x8-10mm-200-
500-703-CM32) in VPL. This array was used in place of the
traditional microwire array due to its higher contact density in
VPL and lower insertion force. Each shank contained eight
contacts separated by 200 μm. In our insertions we found that
2–4 shanks picked up spike responses to touch on a subset of
contacts, which corresponded with known maps of rat VPL.

Figure 1. Experimental timeline. ITMS: intra-thalamic
microstimulation.
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In the first three animals, the cortical electrode array
(Blackrock Microsystems) was a 32 channel Utah array (see
figure 2(b)). The electrodes are arranged in a 6×6 grid
excluding the four corners, and each electrode is 1.5 mm long,
with a spacing of 400 μm. In the remaining six animals, we
instead used a 4-shank silicon multi-contact array (Neuro-
Nexus A4x8-5mm-100-400-703-CM32). This array allowed
us to measure activity along the dorsoventral axis, a spatial
dimension that is fixed in the Utah array. This enabled us to
test our optimization not only across the surface of cortex, but
also different cortical layers. Electrode arrays were positioned
using stereotaxic coordinates for the digit region of S1
(4.0 mm lateral and 0.5 mm anterior to bregma) [21, 22]. The
VPL electrode array was centered on stereotaxic coordinates
for the hand representation in the medial subdivision of
VPL [20].

In order to recover stable neural activity following array
insertion, we waited a period of 2 h post-insertion before
starting neural recording and stimulation, and a stable plane of
anesthesia was maintained through small supplemental doses
of urethane.

2.2. Recording neural responses during natural touch probing

Multichannel LFP were collected during tactile stimulation
with a neural signal acquisition system (RZ2, Tucker-Davis
Technologies). Broadband field potentials were band-pass
filtered with cutoff frequencies at 5 and 200 Hz and sampled
at 610 Hz. This filtered signal is what we refer to in this work
as LFP. The average post-touch-onset LFP responses for each
(touch site, indentation, and hold time) combination were
collected up to 300 ms following touch onset. These respon-
ses were used as target waveforms for optimizing the multi-
channel intrathalamic microstimulation (ITMS). Some
example waveforms and a channel map capturing the spatial
extent of excitation are shown in figures 4 and 6.

The single unit activity(SUA) in VPL was recorded
using standard spike-sorting techniques. Peri-stimulus time
histograms (PSTH) were taken for each distinct natural sti-
mulus condition, with a bin size equal to the sampling period
at which the LFP was sampled, i.e., 1.63 ms within a window
of time from the moment of touch onset to 50 ms after touch
offset. The single-unit activity in VPL was collected for two
reasons: firstly, to compare optimized thalamic

Figure 2. (a) Natural touch stimulation delivered to various touch sites on the ventral forepaw. (b) Touch responses measured by field
potentials in S1 and spike rate in VPL. (c) Multichannel microstimulation delivered through the VPL array, with LFP recorded in S1. (Inset)
Parameterization of microstimulation patterns: For each channel, the pulse train’s amplitude is modulated by an envelope signal. Each
stimulation channel corresponds to an adjacent pairs of electrodes. (d) Sample microstimulation modeling sequence (top), corresponding S1
response trajectory (middle), and linear model output (bottom).
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microstimulation to native VPL spiking; and secondly, to
measure the natural response reproduction accuracy of a
microstimulation signal whose amplitude follows the same
rate modulation as VPL spikes—similar to a method used
in [23].

Physical touch stimulation was administered to 3–9 sites
on the ventral surface of the right forepaw with a precision
tactor. The touch patterns consisted of a touch-hold-release
sequence parameterized by a pressure and duration. For each
site, three different skin indentations and two different touch
durations {150, 250} ms were applied. A shuffled series of 25
instances of each of the six patterns were presented with
random time intervals in between the touches. The pressures
were chosen to evoke responses ranging from threshold to
near-saturation: indentation depths: {0.025, 0.2, 0.6}mm.
Due to the small size of the digits, we did not attempt
indentations larger than 0.6 mm.

The tactile probe was driven by a DC motor (Maxon RE-
25) fitted with an optical encoder (Maxon HEDS-55). Timing
of contact and level of skin indentation were controlled via
the motor’s angle, which was accomplished by a proportional
derivative controller implemented onboard the neural
recording system. The endpoint of the probe was a circular
shaft 1 mm in diameter. For the first three animals, the probe
was attached at the end of a beam 9 cm in length attached
directly to the motor. In the remaining six animals in this
study, the probe was attached to a mechanical slide via a rack
and pinion mechanism (gear diameter= 0.438”). Precise
control of the mechanism was achieved via control of the
motor’s rotation, which translated into linear motion of the
probe used to touch discrete locations on the forepaw. The
amplitude of the force applied by the bar is directly propor-
tional to the skin indentation by Hooke’s Law. For the pur-
poses of this work, however, we present results in terms of the
lever angle in degrees.

2.3. Recording and modeling LFP response to electrical
stimulation

To train a model of the cortical LFP response to VPL
microstimulation input, we used a random multichannel pulse
sequence. A multichannel microstimulator (IZ2, Tucker-
Davis Technologies) delivered the pulses to non-overlapping
bipolar pairs of adjacent electrodes spanning the VPL array
(see figures 2(c) and (d) for illustration). Eight bipolar con-
figurations were used for 6 of 9 animals where 16-channel
arrays were implanted, and 16 bipolar configurations in the
remaining animals, where 32 channel arrays were used. We
used bipolar configurations since they produced less stimu-
lation artifact in cortical recording channels than monopolar
ones. Pulses were symmetric and biphasic (200 us per phase).
Symmetric pulses were chosen because of their relative safety
compared to asymmetric pulses [24–26]. The choice of pulse
width was chosen on the basis of consistency with similar
studies [13, 27]. Three different stimulation amplitudes {10,
20, 30} μA were used in the probing phase of our work for
the first three animals. However, on the remaining six ani-
mals, we stimulated with a more comprehensive range of

amplitudes: {7, 12, 20, 30, 40} μA, which evoked responses
ranging from subthreshold to saturation when using bipolar
configurations. The procedure for pulse timing and delivery is
as follows: each pulse-to-pulse interval was drawn from an
exponential distribution, and a stimulating configuration and
amplitude was chosen uniformly at random from all config-
urations and predesignated current amplitudes. This input
distribution is a multi-input variant of the random-amplitude
Poisson stimulation train, which has been used with success
in the past for modeling neuronal responses [28–30]. In 6 of 9
animals, the probing distribution was interleaved with pulse
doublets where pairs of pulses were delivered with inter-
pulse-intervals chosen from a discrete list of intervals {20, 50,
75, 100, 200}ms. The use of pulse doublets was meant to
enable a set of analyses separate from the results of this study.
The mean frequency of pulse delivery was varied from sub-
ject to subject but ranged from 3 to 8 Hz in the first three
animals and 12–18 Hz in the remaining six. The total duration
of the probing sequences also varied from 6 to 18 min and
each unique combination of configuration/amplitude was
repeated 50–240 times.

To facilitate the modeling and control steps, we represent
this pulse sequence as a discrete-time amplitude envelope that
modulates a constant-frequency pulse train (see figure 2(c)).
The frequency was set equal to the sampling rate of LFP
recording (610 Hz). At each time step, we treat each channel
as the amplitude gain on a 1 μA pulse through each unique
stimulation configuration (adjacent bipolar pair). In this study,
this resulted in 8 or 16 distinct input channels depending on
the electrode array used. By using bipolar configurations,
stimulation artifacts were generally small and brief. The
unfiltered waveforms never exceeded 0.5 mV, well below the
clipping level of the amplifiers, and lasted for less than 200 μs
after the end of a stimulation pulse. Since all signals were
initially filtered at broadband (0.2–8.5 kHz) frequencies and
sampled at 24.4 kHz, filter ringing was also minimal. This
allowed us to use a simple sample-and-hold method for
blanking a 480 μs period of time starting from the start of a
pulse. This blanking was applied digitally to the broadband
24.4 kHz signal prior to further processing.

Several signals of interest can be obtained from extra-
cellular recording within cortex following microstimulation of
upstream thalamic nuclei, including SUA and LFP, among
others [31]. While each of these cortical signals is a potential
target for control using thalamic microstimulation, our group
ultimately decided to use cortical LFP in this work. We chose
LFP as opposed to SUA for its comparative efficacy in
decoding touch parameters [32, 33] in a similar implant set-
ting. It has also been shown to be a robust signal for decoding
motor activity in a variety of contexts [34–36]. LFP has
gained some recent interest for brain machine interfaces due
to its relative robustness over long periods of implantation
compared to SUA. While the origin of LFP remains con-
troversial, it is believed that LFP, being a measure of aggre-
gate extracellular voltage resulting from membrane currents,
represents dendritic input within a small (<200 μm) region
surrounding the electrode. We also noticed that the stimula-
tion artifact, although small in amplitude after the
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aforementioned blanking, was difficult to completely elim-
inate from being misclassified as valid multi-unit spiking due
to the large variety of artifact waveforms (multiple config-
urations, amplitudes) and their similarity in some cases to
spike waveforms Additionally, the continuous nature of the
LFP signal allows for the application of more straight-forward
comparison than the discrete-valued spiking signal. For LFP,
distance measures such as the traditional mean-squared error
and cross-correlation can be used, whereas distances between
spike trains are more varied and involve tuning parameters.

2.3.1. Model. A discrete-time linear state-space model was
trained using the subspace identification algorithm [37, 38].
Subspace system identification methods estimate system
parameters by finding, using a dataset of input–output pairs,
a projection that maps past inputs and outputs to future
outputs. From this projection, a low-dimensional sequence of
state variables can be extracted, along with parameters that
describe their associated temporal dynamics and relations to
the observed output. A description of the model follows, but
we refer to [37] for algorithmic details.

Let Îtu m( ) , Îty p( ) denote the input (multichannel
microstimulation amplitude envelope) and output (neural
readout), respectively, at time t. Let Îtx n( ) denote the state
vector at time t. The state-space equations relating the current
state with the state at time +t 1 and the output at time t are

+ = + +A Bt t tx x u1 , 1x( ) ( ) ( ) ( )
= +Ct ty x , 2y( ) ( ) ( )

where  ~ QN 0,x ( ) and  ~ RN 0,y ( ) are Gaussian white
(uncorrelated in time) disturbances. The system parameters
are hence the matrices A B C Q R, , , ,( ) which are estimated
using a subspace method (algorithm 4.8 in [37]).

In preliminary experiments, we sometimes found that this
optimization procedure would ‘undershoot’ the amplitude of
microstimuli necessary to reproduce the desired response.
This was due to the linear model not capturing stimulation
thresholds, and the the controller, as a result, relying on sub-
threshold amplitude regimes for control. To solve this
problem, we modeled a microstimulation threshold using a
‘gate’ function that attenuated the input if it was below a
certain threshold value and left it unchanged otherwise.
Precisely, for each input channel i

⎧⎨⎩


=u
u u
au

gate
if threshold
otherwise,

3i
i i

i
( ) ( )

where Îa 0, 1( ] is an attenuation factor used to pre-scale
subthreshold input values before being passed into the state
space equation (1).

In our experiments, the model dimensions and gate
parameters were set as follows: an 8 or 16 dimensional input
for representing distinct microstimulation configurations was
used. In 3 of 9 animals, the output was simply the recorded
LFP on 32 channels, but in 6 of 9 animals, we used a reduced
representation consisting of the first 12–15 principal compo-
nents that captured 99.7% of the observed instantaneous
variance in the output. A target state dimensionality of 50 was

chosen empirically as a tradeoff between model complexity
and prediction accuracy. We set the gate attenuation factor
and the threshold value based on a separate probing pulse
sequence that used a lower set of current amplitudes. We
found that suitable threshold values ranged from 4 to 10 μA.
The attenuation factor was difficult to measure directly due to
the wide variability and nonlinearity of the responses near
threshold. We instead set this factor by hand to 0.1 or 0.2. We
noticed that very small values of the attenuation factor (values
approaching 0) were not used because of their deleterious
effect during stimulus optimization.

2.4. Optimizing microstimulation patterns

Our goal is to optimize multichannel ITMS control inputs in
order to reproduce, as closely as possible, the natural touch
responses for each unique touch type presented. Specifically,
we penalize the deviation between our system output and
some desired template neural response trajectory over a finite
time period. We first pose this optimization problem as a
quadratic cost function with linear equality and inequality
constraints. This type of problem, known as a quadratic
program, is well-studied and specialized algorithms exist for
efficient polynomial-time solution [39]. One strategy for
solving this type of control problem is to solve for not only
the optimal control input over the time horizon, but also the
state variables. However, the states are implicitly a function of
the input (1), and the optimization procedure must enforce
this dynamical relationship through linear constraints. This
formulation, although containing more variables and con-
straints, is actually beneficial computationally when problem
structure is exploited [40].

The optimization problem also contains inequality con-
straints due to our representation of electrical amplitude.
Since the probing microstimulation sequence only consisted
of pulses of a single polarity, we choose to constrain the input
to a single polarity to keep all optimized stimulations in an
approximately linear regime. Changing the polarity switches
the order in which current is sinked or sourced on each of the
two adjacent electrodes, and response to negative polarities
are not linearly related to the response to positive polarities
[41]. For this reason, we impose a non-negativity constraint
on all inputs as well as a maximum input bound to keep
solutions within the range of current amplitudes explored
during probing. As in the modeling step, the pulse sequence
consisted of a 610 Hz train for each stimulating channel.

Let tyd( ) denote the desired neural trajectory at time t.
We assume that at time t, a desired neural trajectory yd for the
times + ¼ + -t t T1, , 1 is available. The horizon T governs
the amount of future time that the controller considers in
optimizing control inputs. In practical (causal) applications,
this desired signal could be the output of a predictive response
model that, using sensor information available up to t, outputs
a predicted neural response for -T 1 future time points.
Alternatively, yd could also be a precomputed/recorded
neural trajectory. For this study, we treated yd as completely
known, i.e., we set it to the peristimulus trial average of the
natural response for each touch condition.
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The primary goal of the controller is to minimize the
distance between ty( ), the system output under the applied
input sequence, and the desired signal tyd( ). We define the
quadratic cost at stage τ as

t t= - Cℓ t tx y x, . 4d 2( ( )) ( ) ( ) ( )

The optimization goal is to minimize, within the aforemen-
tioned constraints, this cost over T time steps and can be
stated as

 
å t

t

t t t t+ = + = ¼ + -

t=

+

A B

ℓ t

I

t t T

x

u

x x u

minimize ,

subject to 0 ,

1 , , , 1,

5

t

t T

u x,

max

( ( ))

( )
( ) ( ) ( )

( )

where the optimization is performed over values of
¼ + -t t Tu u, , 1( ) ( ) and + ¼ +t t Tx x1 , ,( ) ( ), and Imax

is the maximum current limit, which we set to the largest
current value used during the probing sequence. The model’s
dynamics are enforced by equality constraints relating the
current input and state ( tx( ), tu( )) to the next state t +x 1( ).
The system evolution in this case is deterministic and the
optimization does not depend on the density of x or y in
equation (1).

We include a secondary objective that penalizes large
currents. This is accomplished by adding a term m tu 2∣∣ ( )∣∣ to
the cost function in equation (4) that penalizes the squared
norm of the input, where μ is a weighting parameter that
controls the relative importance of this penalty. Similarly, one
could economize on the amplitude of a low-pass filtered
version of the input by adding lv t 2( ) to the stage cost where

a a+ = - + åv t v t u t1 1 i i( ) ( ) ( ) ( )—a rudimentary single-
pole low-pass filter with a pole at a-1( ). This has the effect
of penalizing high amplitude, slowly varying input patterns.
We noticed that without this penalty, some of the less
effectual inputs would be driven to continuously stimulate at
significant amplitudes. Although these inputs would be
accomplishing nominally better output tracking over the
control horizons, they were stimulating at significant supra-
threshold amplitudes without much pertinent effect on the
measured field potentials. We suspect that these were chan-
nels that influenced a part of S1 that was only partially picked
up by our recording array. In our experiments, the relative
weighting factors μ and λ were hand-chosen for each animal
according to a tradeoff between current injection and tracking
error. In contrast, the low-pass filter parameter α was fixed to

t +F1 1lp s( ) where Fs is the sampling frequency and tlp, the
filter time constant, was set to 100 ms.

This method of penalizing a filtered version of the inputs
is very similar to the method used by [18]. In that work,
however, the optimization was done over raw current wave-
forms, and the penalty on slow current injection served pri-
marily the purpose of limiting charge build-up, which is well
known for causing electrode corrosion or tissue damage near
contacts. In our work, charge balance is immediately restored
with each biphasic pulse, since our optimization is on the
amplitude envelope of a stereotyped pulse train. Instead, the

filtered penalty puts a selective cost on slow, sustained trains
of pulses.

The optimal control problem in equation (5) is quadratic
in the control inputs and states. In our formulation, the vari-
able being optimized is a concatenation = +t tz u x, 1 ,( ( ) ( )

+ ¼ + - +t t T t Tu u x1 , , 1 ,( ) ( ) ( )). This leads to a set of
equality constraints enforcing the system dynamics of inputs
and states in adjacent points in time, and a set of inequality
constraints enforcing control input bounds. Since equation (5)
is convex (i.e., its 2nd derivative with respect to the z is
positive definite for all z) and its equality and inequality
constraints are linear, this problem can be solved tractably by
convex optimization methods [39]. By exploiting the struc-
ture induced by the equality constraints only being enforced
for adjacent time points, the running time is +T n m 3( ( ) )—
a vast improvement over the running time if the structure was
not exploited +T n m3 3( ( ) ). We refer the reader to [40] for
details on the specific algorithm used to solve (5) via an
interior point method.

The input gate feature introduced to our model makes the
system nonlinear. The state transition with an input gate is

+ = +A Bt t tx x gate u1( ) ( ) ( ( )),where = ugate u gatei i( ) ( ).
To deal with this, on each iteration, the system at each time t
is linearized around the current value of the input, denoted

tũ( ), and hence the nonlinear input-dependence can be
replaced by a linear time-varying term. Precisely, the gated
input in the state transition equation can be replaced by its
first-order Taylor approximation

⎧⎨⎩


» +
¶
¶

-

=

=
u

a

gate u gate u
u

gate u u u

g u u

g u

diag ,

1, if threshold
, otherwise.i

i

( ) ( ˜ ) ( ˜ )( ˜ )

( ( ˜ ))

( ˜ ) ˜

Hence the state transition equation can be treated as a time-
varying, but linear, function + = +A Bt t t tx x u1( ) ( ) ˆ ( ) ( )
where =B Bt tg udiagˆ ( ) ( ( ˜ ( ))). As a damping measure, a
combination of new and current solutions is taken after each
iteration as b b+ -z z z1new≔ ( ) . In our experiments, we
found that setting β equal to 1.0 initially and scaling β by 0.97
on each iteration until β=0.3 was suitable for finding good
solutions.

Another method we explored was the iterative linear
quadratic regulator (iLQR) [42]. This also used successive
time-varying linearizations of the system dynamics in order to
cope with the gate nonlinearity. iLQR also uses a different
method for updating the input and states based on LQR,
which produces linear state-feedback policies of the form

f=tu xt( ) ( ) instead of just input trajectories. We found that
in our implementations, iLQR’s input solutions did not differ
significantly with those of the interior point method.

Initially, the optimal control input was found for each
touch condition (site, amplitude, duration) offline. The desired
trajectory in each case was the trial-averaged natural touch
response with t = 0 corresponding to touch onset and
T=hold duration + 50 ms. The microstimulation pattern
begins at touch onset and continues up until T.
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Once found, the optimized ITMS patterns were applied
through the VPL array. The patterns for each touch type were
applied in the same order and timing as the original natural
touch stimuli for each forepaw location. We define the term
virtual touch to refer to stimulating with optimized patterns of
microstimulation corresponding to a particular type of natural
touch.

2.5. Comparison with rate-based stimulation

An alternative method for encoding microstimulation pat-
terns is to have them resemble how the stimulated neurons
would normally spike in response to touch stimulation. This
was the approach used in [23] where spikes were ‘played
back’ on the stimulating array with the same spatiotemporal
timing and with each spike represented by a stimulation
pulse of an appropriate amplitude. We noticed that applying
this directly to our experimental setting was problematic for
two reasons. One was that many units in VPL showed a
fairly high background firing rate, so playing back pulses
unrelated to the stimuli would cause unintended activation
of S1. Even when a wide range of substitution pulse
amplitudes were exhaustively attempted, these patterns
would not reliably evoke effective stimulus tuning. The
other was that often two or more distinct units would be
detected on each channel, and even more would be present
in each stimulating configuration. Combining these units
into a single stimulation signal required a way to deal with
this redundancy.

To address these issues, we first extracted the PSTHs for
each detected VPL unit for each touch condition. The PSTH
was calculated so as to represent, for each bin, the expected
(average) number of spikes relative to stimulus onset. Pre-
cisely, for the ith bin relative to touch onset, =PSTHi

Ncounti trials where counti is the total number of spikes to
occur in that bin for all Ntrials trials. Then, the background rate
(total number of spikes divided by the duration of the
recording) was subtracted from each PSTH. This step was
designed to mitigate the effect of background firing. Then, for
each stimulating configuration (bipolar configurations on
adjacent electrodes), the unit with the highest peak in the
background-subtracted PSTH was selected as the repre-
sentative unit for the stimulus configuration. This was meant
to select the unit with the most unambiguous touch-stimulus-
tuning. Then, a global gain was applied to the representative
PSTHs to produce a stimulation signal in μA. Since the
PSTHs were scaled such that each bin’s value represented
the average number of spikes in that bin, the gain is precisely
the μA per spike. For each animal, the optimal gain was
determined by searching exhaustively in increments of 1 from
5 to 15 for the most accurate S1 LFP reproduction in
the touch site with the largest response. This gain was then
fixed and the rate-based stimulations were applied for the
remaining touch sites. This method was applied in 3 of 9
animals in our study.

2.6. Decoding touch parameters from responses

Given a single multichannel response, how accurately can the
touch parameters of location, amplitude, and duration be
decoded? Can virtual touch responses, having been optimized
for naturalness, be decoded with similar levels of accuracy?
To measure this discriminability, we performed a set of
classification experiments in which the touch condition
(location, amplitude, duration) was predicted from the peri-
stimulus touch response.

This was first done separately for virtual and natural
touch, to see how much information the neural responses in
each modality provides about the touch parameters. Ideally,
however, virtual responses to different touch parameters
should not only be discriminable from each other, but should
be well-separated along the same boundaries as natural
responses. To test this, we attempted to classify virtual touch
responses under a single ‘generalized’ classifier whose feature
space is defined using both virtual and natural responses, but
whose classification boundaries are based solely on the nat-
ural responses. We will first describe the algorithm used in
these experiments and present classification rates in the next
section.

The decoding procedure, in both the individual and
generalized classifiers, consists of supervised dimensionality
reduction followed by nearest-mean classification. We
assume the multichannel LFP responses (within the post-
onset window of T samples), given the label, can be treated as
random vectors and modeled using a unimodal distribution
such as a multivariate normal. Under this assumption, each
sample can be assigned the label of the nearest peristimulus
average. To take into account covariance, linear discriminant
analysis (LDA) is used to project the responses into a lower
dimensional subspace. LDA has a closed form solution given
by a generalized eigenvalue problem defined by the between-
class and within-class covariance matrices [43]. Since the
responses have many dimensions (p T· ), principal comp-
onent analysis (PCA) is performed before computing the
covariance matrices. Then each response is projected into a
reduced subspace before being assigned the label of the
nearest peristimulus average. In the results that follow, we
chose the reduced dimensionality by cross validation, but it is
at most one less than the number of classes [43]. For most of
the results we use a post-onset window of 300 ms, which
corresponds to T=367 samples at the raw sampling fre-
quency of 1220 Hz. For short duration touches we also ana-
lyze the effect of window length on classification
performance, this is done by computing a different LDA
projection for every window length.

The individually trained classifiers used responses from
exclusively natural or virtual touch when learning the LDA
projection and when assigning the final class label. In the
generalized classifier, however, the LDA projection was
performed using both types of responses, but the final clas-
sification was performed by assigning the label of the nearest
natural-touch mean. All classifiers were validated through 8
Monte-Carlo divisions of data (2/3 train, 1/3 test) and the
results are presented in the next section.
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To directly measure how much information the decoded
touch parameters provided about the true touch labels, the
mutual information (in bits) between the two discrete label
variables was computed empirically. As in the computation of
classification rate, each unique combination of touch para-
meters was treated as a discrete label, and the expected con-
ditional entropy of the decoded touch parameter label given
the true label was subtracted from the marginal entropy of the
touch label. To compute the information rate in bits s−1, the
information per touch was multiplied by the average rate of
touch delivery for each rodent.

3. Results

3.1. Microstimulation model

The cortical LFP response to microstimulation was modeled
with the linear state-space model described in the previous
section. Figure 2(d) shows an example of the model output
for a segment of the probing sequence. Across animals, the
model on average accounted for 39.0%±16.8% of the var-
iance in the time periods that were within 400 ms after a
stimulation pulse, and the average correlation coefficient was
0.61. Accuracy was highest during the intervals immediately
following stimulation pulses, with the best performance in a
window from 0 to 14.8±2.0 ms following a pulse. As
shown in figure 5(a), the model accuracy degraded gradually
for longer time windows. No correlation of model accuracy
with the overall LFP signal energy (r= 0.061, p= 0.88,
N= 9) was detected, where energy was measured as the rms
voltage values on all channels. Similarly, we did not detect a
correlation with stimulation frequency, measured as pulses
per second (r= 0.4, p= 0.28, N= 9). However, a correlation
might have been present between the temporal current den-
sity, measured in μA s−1 (r= 0.62, p= 0.0739, N= 9).
Model error was not correlated with electrode implantation
depth (p= 0.751).

3.2. Accuracy in reproducing natural responses

The optimized ITMS waveforms elicited neural responses that
were spatiotemporally similar to their natural counterparts
across touch sites and patterns. Across all conditions and rats,
the correlation coefficient between the average natural and
virtual responses was 0.78±0.05. If the comparison was
made only for periods of time that were within 100 ms of
touch onset, the correlation coefficient was 0.90±0.03.
Figure 3 shows two segments of tactor position, natural LFP
responses, optimized microstimulation, and the LFP respon-
ses to virtual touch. Trial-to-trial variability was similar on
average between natural and virtual responses. The variability
for each touch condition was measured by subtracting the trial
average response and taking the root-mean-square (rms) value
of the centered responses. The median rms variability across
rodents was 79 μV and 86 μV for natural and virtual touch
responses, respectively, but significance was not detected
(p= 0.1, Wilcoxon signed rank test). In one isolated case (Rat

D in subsequent figures and tables), the variability was fairly
low, especially for virtual touches, with an rms variability of
24 μV for virtual touch and 43 μV for natural touch.

Examples of the average temporal responses to different
touch patterns are shown in figure 4. Natural touch elicits a
strong, brief potential 9–15 ms after touch onset, followed by
a recovery period lasting 150–200 ms. Another temporal
feature is the smaller negative potential that occurs shortly
after touch-offset when the actuator starts rising away from
the touch site. The corresponding optimized microstimulation
pattern is shown in figure 4(c). Figure 4(d) shows the
resulting average LFP response.

Figures 6(a)–(b) show examples of the spatial responses
from two different sites (digit 1, digit 4) on the rat hand.
Displayed are the maximum negative deviations in the trial-
averaged virtual and natural touches. Each channel of the S1
recording array is shown in its actual spatial arrangement.
Natural taction of the sites d1 and d4 activated two over-
lapping but clearly distinct zones which were replicated to a
high degree of accuracy (r= 0.91± 0.04 in that particular
animal). Overall, the spatial reproduction accuracy, measured
by correlation coefficient, was r=0.72±0.22 across all
touch patterns in all animals. We found that the spatial
reproduction accuracy with the 32 channel Utah array was
24.3% higher (p= 0.02) than that of the 32 channel Michigan
probe. The Utah array, since it distributes its channels across
the cortical surface rather than vertically like in the Michigan
probe, could capture somatotopic variations more unam-
biguously while sacrificing information in the dorso-ventral
(laminar) axis.

Figure 6(c) shows, for a representative animal, a com-
parison (natural versus optimized ITMS) of the energy output
of S1, where we define the energy as the combined rms
voltage of the multichannel response in the response window.
Generally, the response energy for each natural touch type
was well matched by its ITMS counterpart (r= 0.81± 0.13).
We also compared the experimental reproduction accuracy
with the theoretical accuracy of the model output. The mod-
eled reproduction accuracy was 5.8% higher than that
achieved in vivo, and this relation was significant (p< 0.001,
N= 546 touch conditions in all animals). Figure 6(d) shows
the model versus in vivo reproduction accuracy for all touch
conditions in all animals.

The control reproduction accuracy varied as a function of
aspects of the touch stimuli and corresponding responses. In
particular, we noticed that accuracy was better in cases where
the target touch response was large compared to background
noise. We measured this by computing the signal to noise
ratio defined as: = å å -y y ySNR 10 log i i i10

d 2 d 2( )∣∣ ∣∣ ( ∣∣ ∣∣ ),
where yi is the observed response on trial i and yd is the trial
average. Figure 5(b) shows overall that control reproduction
accuracy (correlation coefficient) was correlated (r= 0.601
p< 0.001) with this SNR.

A two-way repeated measures ANOVA was conducted to
assess the effect of touch strength and duration on control
reproduction accuracy. Significant effects were found for both
strength (F= 6.7, p= 0.0017) and duration (F= 20.1,
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p= 2.7× 10−5, N= 73 touch sites). Post-hoc tests were per-
formed between strengths within each duration group (three
comparisons per group) and between durations within each
strength group (one comparison for each group) are shown in
figure 5(c). Significance thresholds were Bonferroni corrected
to α= 0.05/(number of comparisons). No effect of the inter-
action between strength and duration was detected (F= 1.4
p= 0.25). A significant correlation between control accuracy
and model accuracy was not detected (r=0.32, p= 0.40).

The global accuracy scores for different touch patterns,
averaged over touch sites, is shown in figure 5(c). Stronger
touches were more easily reproducible than medium or light
touches, and shorter-duration touch patterns had a higher
accuracy than longer patterns. Figure 5(d) shows accuracies
for all touch sites in all animals, sorted in increasing order
within and among animals.

The accuracy of virtual touch responses was also mea-
sured in terms of their natural variability using Mahalanobis
distances. For each touch condition, the distance was com-
puted from the virtual touch response mean with respect to the
mean and covariance of the natural response. This compar-
ison was done in the same time window for which the sti-
mulation was optimized, and because of the high
dimensionality of the responses (p T· ), PCA was performed
to reduce this dimensionality to -N 1trials components. The
distance between the virtual touch mean, represented as a
vector x of principal component scores, and the natural
response distribution with mean m and covariance S is

m m mS S= - --d x y y, , .T 1( ) ( ) ( )

Figure 3. (a) Skin indentation measured by tactor position as a function of time for a sample of data (negative is towards the skin). The shaded
portion of the curve represents periods of time in which the tactor was in contact with the skin. (b) Multichannel S1 LFP for 32 electrode
channels during natural touch. Channels are sorted by their overall response amplitude for this touch site. (c) Optimized microstimulation
delivered through eight channels. The shade indicates the amplitude of current, and channels are shown sorted by their overall usage for this
touch site. (d) S1 LFP during optimized microstimulation, or ‘virtual touch.’ (e)–(h) Similar plots for a different dataset.
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We found that virtual touch responses showed specificity for
their corresponding touch conditions. This was quantified by
measuring, for each touch condition, the average distance
over all conditions excluding the current one, and we found
that the average ‘unmatched’ distance was 1.23-fold larger
than the normal, matched distance (p< 0.0001 two-sided
rank-sum test).

The performance of rate-based stimulation was quantified
in the same way, and its distances were 1.38-fold larger than
that of optimized virtual touch (p< 0.0001 two-sided rank-
sum test). These distances were more variable across condi-
tions. The standard deviation over distances was 2.3 for vir-
tual touch (N= 438) and 4.2 for rate-based stimulation
(N= 27). No significant difference in the median distances of
the unmatched virtual touch and rate-based stimulation was
detected (p= 0.59 two-sided rank sum test). A spatiotemporal
comparison of rate and optimized microstimulation patterns
will be given later in this section. Figure 5(e) shows a com-
parison of Mahalanobis distances for virtual touch, unmat-
ched virtual touch, and rate-based stimulation.

3.3. Optimized pattern characteristics

We examined the output of our optimization procedure in
terms of the timing of pulses and their spatiotemporal prop-
erties. Consistently with known somatotopy, VPL spatial

current injection for different touch sites followed a pro-
gression from medial to lateral as the touch site varied from
medial to lateral on the hand. Any given virtual touch pri-
marily used 1–3 bipolar configurations (2–6 stimulating
electrodes), and the number of configurations used across all
touch sites spanned 4–5 configurations. Most of the pulses
occurred in a short burst from 4 to 8 ms after onset. This
coincides with observations that the initial response latency to
taction is ∼9 ms, and the latency of VPL stimulation
is ∼2 ms.

One question of interest is how closely the optimized
ITMS patterns resembled single-unit activity measured on the
stimulating electrodes, and this was first quantified in a
strictly spatial sense. For each touch condition, the sum was
taken of total current injection on each stimulating channel.
This was compared with the peri-stimulus spike count on each
channel. Since these channels corresponded with bipolar
electrode configurations, we calculated the spike count of the
most touch-sensitive unit detected in each configuration in
exactly the same way as used during rate-based stimulation.
Figure 7(a) shows a representative example of the spatial
variation of current injection and VPL spiking as a function of
touch site. As the touch site is varied from one side of the
hand to the other, the charge injected on each electrode, as
well as native spiking, follows a spatial progression from
medial to lateral on the VPL array. This spatial overlap was

Figure 4. Post-touch-onset trace of the trial-average LFP for six touch patterns on a single touch site. (a) Trial-average tactor angular position
(negative is towards the skin). The shaded portion of the top plot corresponds to the period of time when the actuator was in contact with the
skin. (b) Average multichannel LFP response to natural touch, each curve representing an S1 recording channel. Channels are sorted
according to their overall response amplitude for this touch site. (c) Optimized microstimulation, each curve represents a distinct stimulation
channel. (d) Average microstimulation LFP response.
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more concretely analyzed by taking the correlation coeffi-
cients between the spatial patterns of current injection and
spiking across all touch conditions for each animal. The
average correlation was r=0.46±0.38, and 7 of 9 animals
showed a significant correlation at a significance threshold of
α=0.05, of which the correlation values ranged from
r=0.26 to 0.90.

To quantify temporal correlation with VPL spike rate,
the background-subtracted PSTHs (see methods) were
compared with optimized ITMS for all animals. Figure 7(b)
shows, for two different touch durations, the post-onset
spike rate and the corresponding optimized ITMS. For each
time point, the displayed waveforms are the maximum
currents across channels. The strongest stimulation pulses
were delivered shortly after touch onset and offset. This
resembled the natural temporal pattern of VPL spike rate
in that almost all touch-responsive units recorded showed
rapid adaptation.

In order to assess the spatiotemporal correlation between
VPL rate and optimized ITMS, we estimated the cross-cor-
relation between the two signals for each stimulating channel.
In order to reduce the effect of suboptimal somatotopic cov-
erage/representation on our analysis, the correlation was only
computed for most accurate touch location in each animal.
The cross-correlation function tRxy ( ) between two real sig-

nals x and y, and an unbiased estimate tRxy
ˆ ( ) using T samples

are defined as
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This formula was applied to estimate the function
tRRate,ITMS

ˆ ( ) for each touch pattern. Averages for each touch
pattern, across all animals, are shown in figure 7(c) (top
inset).

3.4. Touch parameter decoding

To assess the information content of virtual touch responses,
we performed a set of classification experiments in which the
touch condition (duration, location, amplitude) was predicted
from multichannel peri-stimulus responses. This was first
done separately for virtual and natural touch, to see how much
information the neural responses in each modality provides
about touch parameters. We then attempted to classify virtual
touch responses under a single generalized classifier whose
classification is based on the label of the nearest natural touch
mean in a subspace optimized for both natural and virtual
touch.

Figure 5. (a) Model accuracy when restricting comparison to variable-length time-windows following every stimulation pulse. Each curve
represents one animal. PVE: percent variance explained. (b) Control reproduction accuracy as a function of the signal-to-noise ratio (SNR) of
the natural touch LFP response. Each point represents a touch site. (c) Control reproduction accuracy as a function of touch parameters
(*: p< 0.05, **: p< 0.01, ***: p< 0.001, Bonferroni corrected. Error bars: ±1 s.d. N= 73 touch sites, all animals). (d) Control reproduction
accuracy of all touch sites in all animals. (e) Mahalanobis distances between the responses of natural touch and those of virtual touch
(N= 438), unmatched-virtual touch (N= 438), and rate-based stimulation (N= 162). Significance and variability indicated the same way as
in (c).
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For natural and virtual touch, the individually trained
classifiers could predict touch conditions with 56% and 61%
accuracy, respectively. Given that the classification problems
contained 30–54 classes, depending on the animal, this acc-
uracy is quite high. The mutual information between the true
class label and the estimated class label varied from 2.57 to
5.55 bits, with an average of close to 4 bits for both natural
and virtual touch. The generalized classifier yielded classifi-
cation rates of close to that of the individually trained clas-
sifiers (52% for natural touches, 54% for virtual touches).
This means that using the combined responses to learn the
LDA projection did not degrade the discriminative quality
present in the individually-learned projections. Table 1 shows
the classification performance and mutual information
resulting from both the individually trained classifiers and the
single generalized classifier. Table 2 shows the accuracy of
classifying touch location when only considering trials of
strong stimuli and short (150 ms) duration. In this case, the
accuracy of decoding touch location alone was 90% for both
natural and virtual touches. Chance levels in both tables
reflect 1/(number of classes), where the number of classes is
either the number of touch conditions (table 1) or the number
of sites (table 2). Using the average touch frequency for each
animal, table 3 shows the information rate in bits s−1 between
the true touch label (location, duration, and amplitude) and
the estimated touch label. The virtual touches carry approxi-
mately the same information rate as the natural touches across
the animals. The average information rate across animals is
5.2 bits s−1 for both natural and virtual touches trained
separately, and the average information rate of virtual touches
using the generalized classifier is 6.64 bits s−1.

The joint classification rates for natural touch responses
measured on the Utah array were on average 1.8-fold higher
than those with the Michigan probe, and this was significant
(p= 0.024, Wilcoxon rank sum test). As in the previously
mentioned results for spatial reproduction accuracy, this can
be explained by the greater somatotopic differentiability
afforded by an array that spreads its channels horizontally
across the surface of cortex rather than across layers. An
analysis of conditional classification of touch pattern given
the touch site revealed no significant difference (p= 0.9) in
accuracy for natural responses. A smaller (1.3-fold higher),
but significant difference in accuracy for virtual touch
responses (p= 0.024) was observed.

Under the generalized classifier described above, virtual
touch responses showed comparable levels of discriminability
among different touch pressures, locations, and durations as
natural touch responses. Figures 8(a) and (b) show classifi-
cation rates based on two restricted subsets of trials.
Figure 8(a) shows correct decoding rates for the subsets of
data corresponding to light, medium, or strong touches of
short (150 ms) duration. Figure 8(b) shows similar rates for
both touch durations. In both of these classification experi-
ments, stronger stimuli resulted in higher correct classification
rates, which is not very surprising given that stronger touches
were more accurately reproduced. The first column of
figure 8(c) shows decoding performance when considering all
types of trials, and the second column shows the overall
accuracy when considering site-conditional subsets of data.
The classification rates shown use the response in a window
of 300 ms after touch onset for decoding. The classification
rates across a range of windows sizes is shown in figure 8(d)

Figure 6. (a) and (b) Spatial response topologies natural and virtual touch. Each pixel corresponds with a recording electrode, and the color
indicates the LFP strength, which we define as the most negative voltage in the response window (0–300 ms). (c) Channel-average amplitude
comparison for natural touch and optimized ITMS in vivo. Each point represents a unique touch site/pattern combination. (d) A comparison
between the modeled reproduction accuracy (correlation coefficient) of optimized ITMS and the actual accuracy obtained in vivo. Each point
corresponds with a touch condition, and the touch site is color coded according to the touch site (see inset).
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for decoding the touch location and amplitude given touches
of fixed duration. It can be seen that for decoding touch site
and amplitude, the classification rate reaches peak values at
15–20 ms after touch onset and remains high throughout the
touch window, with a small increase shortly after touch offset.

4. Discussion

We have developed a neurophysiological approach to encoder
design that optimizes the naturalness of downstream evoked
responses. This provides a way to directly compute extremely
detailed spatiotemporal microstimulation patterns that,
according to a model of activation, are optimal for evoking
desired natural responses. This study is, to our knowledge, the
first in vivo demonstration of such a method.

This method, tested over a range of touch amplitudes and
patterns, performed more accurately for short, strong touch
patterns. This might suggest that a neuroprosthetic that uses
this type of optimization would more effectively convey
sensation of contact events or object slip rather than sustained

pressure. However, the result could have been due in part to
the natural neural response exhibiting mostly onset-offset
tuning in the neural subregions that were implanted. Gen-
erally, the strength of the neural readout was very predictive
of controller accuracy, and had the responses shown more
sustained-pressure tuning, the optimization might have con-
veyed this aspect of touch more informatively. Additionally,
the spatial (somatotopic) reproduction accuracy with a read-
out array with greater horizontal coverage exceeded that of an
array with good laminar but poor horizontal coverage. Since
the same stimulating array was used in both cases, the dif-
ference in performance cannot be attributed to differences in
controllability. Rather, the greater horizontal coverage puts
more resolution in the dimensions that are most relevant for
distinguishing somatotopically varying responses, and this
increased observability is likely responsible for the increased
accuracy. This suggests that a combination of horizontal and
dorsoventral sampling could further improve overall control
accuracy.

The optimized waveforms shared some notable char-
acteristics: (1) for the physical contact area used, (1 mm2),

Figure 7. (a) Spatial distribution of electrode usage during optimized ITMS and VPL spiking activity during natural touch. For the four touch
sites shown, the distribution of current injection on the VPL electrode array (top) and the accompanying average spike counts on the same
electrodes (bottom) is shown. Spatially, the optimized current injection pattern coincides with the locations of responsive units. (b) The top
row shows the post-onset MUA responses in VPL during natural touch and the corresponding optimized ITMS. Each trace represents the
spike rate (units: spikes/bin) for a particular touch site. The two columns correspond with two different touch durations of 150 and 250 ms.
Bottom inset: corresponding optimized ITMS, shown as the maximum current across stimulating channels. (c) Cross-correlation between
VPL spike rate and optimized ITMS computed over all channels, touch sites, and animals. Top inset: cross-correlation for each touch pattern.
Bottom inset: average across all patterns.
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Table 1. Classification performance in terms of accuracy and mutual information for decoding touch parameters (touch site, duration,
amplitude) from responses to natural and virtual touch. The mean and standard deviation of the rates across 8 Monte-Carlo divisions of data
(2/3 train, 1/3 test) are shown. The individually trained classifiers used trial data from exclusively natural or virtual touch, while the
dimensionality reduction for the joint classifier was trained with trials from both sets, and test examples are classified by selecting the nearest
natural touch mean. For classification rate, the chance levels of prediction, which are dependent on the number of touch sites attempted on
each animal, are shown in the second column. Chance levels: 1/(number of classes). For mutual information, the entropy of the true touch
labels is the upper bound and is shown in the second column.

Trained separately Generalized classifier

Natural Virtual Natural Virtual

Animal Mean s.d. Mean s.d. Mean s.d. Mean s.d.

Chance Classification rate

A 0.06 0.74 0.03 0.54 0.03 0.68 0.03 0.47 0.03
B 0.02 0.84 0.02 0.82 0.01 0.79 0.02 0.79 0.01
C 0.02 0.81 0.02 0.66 0.02 0.75 0.02 0.51 0.02
D 0.02 0.40 0.02 0.95 0.01 0.38 0.03 0.85 0.02
E 0.02 0.44 0.02 0.54 0.03 0.41 0.02 0.46 0.01
F 0.02 0.47 0.02 0.51 0.02 0.45 0.02 0.46 0.02
G 0.02 0.46 0.03 0.45 0.02 0.41 0.02 0.44 0.02
H 0.02 0.52 0.02 0.45 0.02 0.47 0.02 0.37 0.02
I 0.02 0.37 0.02 0.54 0.02 0.36 0.02 0.51 0.02

Average 0.56 0.18 0.61 0.17 0.52 0.17 0.54 0.16

Entro-
py

Mutual information (bits)

A 4.17 3.21 0.10 2.57 0.06 2.98 0.09 3.26 0.10
B 5.58 4.98 0.06 5.01 0.04 4.81 0.06 5.31 0.04
C 5.75 5.00 0.06 4.59 0.08 4.76 0.06 5.10 0.04
D 5.74 3.67 0.06 5.55 0.03 3.59 0.07 5.49 0.04
E 5.73 3.79 0.06 3.84 0.08 3.73 0.05 4.87 0.07
F 5.73 3.88 0.07 3.58 0.09 3.83 0.08 4.87 0.06
G 5.73 3.81 0.09 3.40 0.09 3.63 0.05 4.69 0.05
H 5.73 4.11 0.07 3.68 0.07 3.90 0.07 4.40 0.08
I 5.73 3.34 0.07 3.74 0.08 3.40 0.06 4.85 0.06

Average 3.98 0.64 4.00 0.90 3.85 0.60 4.76 0.65

Table 2. Decoding touch site given a short, strong touch. Correct classification rates here reflect the discriminability endowed by spatial
variation in natural and/or virtual stimuli. Similar to table 1, the chance level is 1/(number of classes). The means and standard deviations
shown are with respect to 8 Monte-Carlo trial divisions (2/3 train, 1/3 test).

Trained separately Generalized classifier

Natural Virtual Natural Virtual

Animal Chance Mean s.d. Mean s.d. Mean s.d. Mean s.d.
A 0.33 0.98 0.02 0.93 0.03 0.95 0.03 0.89 0.04

B 0.12 0.95 0.03 0.96 0.03 0.89 0.02 0.95 0.03
C 0.11 0.90 0.03 0.81 0.04 0.80 0.05 0.66 0.04
D 0.11 0.93 0.03 1.00 0.01 0.91 0.03 1.00 0.01
E 0.11 0.86 0.05 0.85 0.04 0.77 0.04 0.84 0.04
F 0.11 0.91 0.03 0.90 0.03 0.81 0.05 0.79 0.04
G 0.11 0.90 0.04 0.92 0.03 0.83 0.03 0.89 0.03
H 0.11 0.91 0.03 0.86 0.04 0.89 0.04 0.84 0.06
I 0.11 0.77 0.05 0.86 0.03 0.72 0.05 0.86 0.05

Average 0.90 0.06 0.90 0.06 0.84 0.07 0.86 0.10
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most of the optimized ITMS patterns used 1–3 electrode
configurations over the course of 300 ms following touch
onset, and these configurations were usually adjacent to each
other. (2) Temporally, the optimized ITMS consisted of a
brief burst of pulses beginning 5–7 ms after touch onset and a

secondary burst of pulses shortly after touch release. In
between these two bursts, the amount of charge injected in the
holding period was negligible. (3) The stimulation amplitudes
(with stereotyped biphasic pulses with 200 μs per phase)
remained largely below 30 μA per phase, although in this

Table 3. Average information rate (bits s−1) for decoding touch parameters (touch site, duration, amplitude) from responses to natural and
virtual touch.

Trained separately Generalized classifier

Animal Touch rate Natural Virtual Natural Virtual

A 2.45 Hz 7.85 6.29 7.28 7.98
B 0.91 Hz 4.52 4.55 4.37 4.82
C 0.91 Hz 4.57 4.19 4.35 4.66
D 1.43 Hz 5.26 7.96 5.15 7.88
E 1.45 Hz 5.49 5.56 5.39 7.04
F 1.46 Hz 5.66 5.23 5.60 7.10
G 1.47 Hz 5.58 4.99 5.32 6.88
H 1.45 Hz 5.97 5.34 5.67 6.39

Average 5.52 5.50 5.34 6.64

Figure 8. Performance in correctly inferring touch parameters from natural (black) and virtual (red) touch responses. Decoding is performed
using a generalized classifier—one whose LDA projection is trained using responses from both natural and virtual touch. For prediction, new
examples are first projected and then classified based on nearest natural touch mean. Classification rate is calculated as the (number of
correctly classified trials)/(total number of trials) computed over 8 Monte-Carlo selections of training/test data (2/3 train, 1/3 test). Data
points represent animals. Error bars show±1 s.d. across animals. (a) Decoding rates when only considering trials that were of short (150 ms)
duration and were light, medium, or strong. (b) Classification rate for decoding duration and touch site when the touch strength is known. (c)
Classification rate for all trials in the first column. The second column shows the accuracy in decoding amplitude and duration when the touch
site is known. (d) Classification rate across different window sizes. Thin lines represent animals. Thick lines show the average across animals.
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work we did not aggressively constrain the maximum input
current, but rather used the range of current that was applied
during the probing microstimulation sequence. Future work
might measure the relative effectiveness of highly constrained
input currents, which might prove useful for smaller electrode
surface areas.

4.1. Information transfer

Ideally, a sensory prosthetic encoder should accomplish two
related goals: high information transfer and natural neural
activation. Much of the work so far in somatosensory pros-
thetics has focused on information transfer, measured by
perceptual discriminability. Our work, in contrast, focused on
the naturalness of neural activation, and we found, through a
series of classification experiments, that optimized responses
showed the same amount of discriminability of touch para-
meters as natural responses. Single-trial LFP responses to
both natural and virtual touch were quite discriminable with
an average accuracy of 56% and 61%, respectively, in
decoding the joint parameters corresponding to site, ampl-
itude, and duration. The mutual information between the true
touch type and inferred touch was 4 bits in both cases. Given
a strong short touch, the touch sites were predicted with 90%
accuracy for both virtual and natural touch. By varying the
size of the window used for decoding, it is evident that the
touch location and amplitude can be reliably decoded using
only the first 25 ms of the touch response for touches of fixed
duration. Thus, most of the information on amplitude and
location is present within this initial window, and a similar
window following release (figure 8(d)). This corroborates
with results that found that the time points 12–14 ms after
touch onset are the most important for touch location
decoding accuracy [32].

Virtual touch responses to different touch conditions
were not only discriminable from each other, but were also
separable along the same boundaries as natural touch
responses. When virtual touch responses were classified
according to their similarity to corresponding natural touch
means, the resulting classification rate (52%) matched that of
natural touch responses. This demonstrates that our micro-
stimulation evoked responses were not only informative by
exhibiting high parameter discriminability, but were natural
by showing preferential similarity to the natural touch coun-
terparts. Similarly, when the accuracy of virtual touch
responses were measured using non-matched touch labels
(figure 5(e)), the scores were significantly worse.

Information transfer is the motivation behind many dis-
crimination studies wherein isolated patterning parameters are
studied psychometrically. In another approach by [44],
information rate is specifically optimized by posing micro-
stimulation patterning as a channel coding problem, designing
a transduction filter that maximizes the mutual information
between external stimuli and the neural response (in a neural
model of the thalamocortical system). This framework could,
however, lead to encoders with high information transfer but
very unnatural spatiotemporal mappings. Our method, in
contrast, does not optimize for information transfer explicitly,

but produces responses that are discriminable if such infor-
mation was evident in the natural responses. In fact, the vir-
tual touches carried approximately the same information rate
as the natural touches; for both natural and virtual touches, the
average information rate across animals was 5.5 bits s−1. A
future study might explore explicitly combining information
transfer and naturalness into a joint objective that could be
optimized.

Features of touch onsets, such as their amplitude and
spatial location, could be discriminated from virtual touches
with the same latency, on average, as their natural touch
counterparts. As shown in figure 8(d), this latency was
15–20 ms after touch onset, which corresponds with pre-
viously reported peak spiking latencies in the forelimb area of
somatosensory cortex [45]. Virtual touch stimuli therefore not
only provide naturalistic levels of information on touch
parameters, they do so with the same timing, as would be
expected for a biomimetic sensory prosthesis.

The discriminability of natural touch responses depended
significantly on the geometry of the electrode array. Speci-
fically, the Utah array, which distributes its channels hor-
izontally in a 2D grid across cortical surface, led to more
accurate classification than the Michigan array, whose con-
tacts span one horizontal and one laminar axis. The
improvement could be due to the Utah array’s less ambiguous
recording of somatotopic differences between touch loca-
tions, an example of which is shown in figure 6. This is
supported by a similar analysis of classification of touch
pattern conditioned on touch site that revealed no significant
difference in accuracy between the two arrays. While
responses from the Michigan probe still contain information
on touch location (see table 2), they are limited by the fact
that the probe can only resolve horizontal details along a
single axis. Interestingly, in an isolated case with a Michigan
probe (rat D in table 1), the virtual touch decoding accuracy
was much higher than that of natural touch. However, for
short strong touches in table 2, the classification rates were
comparable. This can be explained by the variability of vir-
tual touch responses being much lower than the natural
response variability—a pattern observed only in this part-
icular animal. Lower variability would lead to fewer mis-
classifications of virtual responses as long as their
relationships to the nearest natural touch means were accu-
rate. In the comparatively easier problem of classifying touch
sites alone, this variability played less of a role, and the
natural/virtual discrepancy was greatly decreased.

4.2. Emulating the neural code in the stimulation area

Some groups have shown that an encoder that mimics the
natural spiking activity of an implanted region can be
somewhat effective in terms of neural or psychophysical
readout, either by playback of recorded SUA [12], or forward
point process modeling [46, 47]. Our work differs in the sense
that the stimulation does not explicitly follow the spike rate in
the stimulated brain region, but rather is optimized to evoke
downstream responses similar to natural touch.
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In experiments, our method performed favorably com-
pared to rate-based stimulation, showing that the optimization
compensates for some spatial and dynamical effects of
microstimulation, which has been shown to activate neural
elements that are not directly measurable from single-unit
recordings, such as fibers of passage. With each pulse, it is
difficult to ascertain how many cells were activated, and it has
been shown that the projection fields of stimulating pulses—
the somatotopic topology of their downstream responses—are
offset from the receptive fields on units recorded on the same
electrodes [48]. Therefore, while rate-based microstimulation
does indeed resemble the neural code at the stimulated region,
the spatial topology of their responses as well as the temporal
trajectories could be far from the desired natural activation.
Interestingly, in post-hoc analyses, we showed that the opti-
mized control inputs qualitatively resembled the background-
subtracted VPL PSTHs in the sense that both signals exhib-
ited rapidly-adapting tuning and involved a somewhat over-
lapping set of electrode channels. However, quantitative
analyses showed that this was a weak correlation, and the two
signals were quite different spatially and temporally.

4.3. Linearity of responses

Neural responses to single-channel thalamic and cortical
microstimulation have been shown to exhibit nonlinear
effects such as paired-pulse facilitation and attenuation
[13, 31, 46] for pulses within 200 ms of each other. In our
models, the only nonlinearity was an input threshold, so these
temporal interaction effects were not modeled. It is possible
that some inaccuracies were due in part to unmodeled non-
linear effects, but if this were true, the theoretical accuracy
under our model would greatly exceed experimental accuracy.
In contrast, we observed that the theoretical accuracy was
only 5.8% more accurate than that observed experimentally,
suggesting that the model was not the primary source of error.
Although more accurate models of activation could be
trained, [27, 46, 49–51], they are more computationally
involved to control—often without assurance of optimality.

4.4. Obtaining neural templates

Subject-specific neural responses to natural stimuli would not
be available in a somatosensory prosthetic setting, since the
target population for such a device would, by definition, lack
intact somatosensory representation. This sort of problem is
certainly not unique to sensory neural prostheses. Most of the
work on motor brain-machine interfaces [52–54] uses intact
limb kinematics in non-human primates to initialize models
that map neural firing to limb kinematics and/or force. More
recently, studies on hippocampal prosthetics such as those
conducted by Berger et al require full observation of neural
firing from input and output populations to train a mapping.

Nevertheless, fully observed experiments such as these
can help identify patterns that can be generalized across
subjects—and do so with a throughput not available with
purely psychophysical methods. Although it remains to be

seen how effectively a full spatiotemporal encoder can gen-
eralize across subjects, it is already known that several tem-
poral features can generalize across somatotopic locations and
subjects. In [4] it was shown that for a simple encoder con-
sisting of a static nonlinearity, the best parameter values were
remarkably similar across subjects and electrode sites. In
addition, flutter frequency percepts have been shown to
generalize across subjects, provided that the stimulus location
contains rapidly adapting cells [2]. This studies suggest that,
given spatiotemporal patterns that produce naturalistic
responses in one subject, a simple somatotopic realignment
could sufficiently restore near-naturalistic responses in other
subjects.

4.5. Translational applicability

Techniques for optimally controlling artificial input to neural
systems to restore realistic sensory responses are only
beginning to be validated in vivo, and to our knowledge, our
study is the first application to microstimulation of somato-
sensory circuits. Although the same approach applied to the
non-human primate would provide data that could be more
relevant for neuroprosthetics, it would likely be slower and
more costly to iterate. The rat model, which exhibits several
fundamental similarities to the primate somatosensory system
[20], provides a high-throughput testbed for validating these
nascent techniques. Furthermore, the models and controllers
in this work make only broad assumptions about the under-
lying physiology—nothing that precludes immediate exten-
sion to the primate system, where species-specific refinements
could be introduced.

In the present work, ITMS patterns were optimized
separately for each touch condition, but an important goal for
future work would be to build monolithic encoders that
convert arbitrary spatiotemporal touch patterns to micro-
stimulation using a single set of parameters. These would
likely be nonlinear, fairly complex spatiotemporal models,
perhaps involving recurrent neural networks or a similarly
rich class of multi-input multi-output filters. These models are
beyond the scope of this work, but we note that separate
optimization, like the kind used in this study, provides an
upper bound on control accuracy since it is not constrained by
having to account for the full range of touch conditions.
Separately optimized microstimulation patterns could also
be used as training data for a monolithic encoder, where
spatiotemporal touch input can be functionally related to
(pre)optimized microstimulation, obtained using our methods.
This converts the potentially difficult problem of learning a
nonlinear controller into the comparatively easier task of
identifying a dynamical system [27, 49]. To emulate natural
somatosensation, future studies should explore encoding and
decoding touches at multiple skin locations and of over-
lapping duration. Most generally, trials could consist of ran-
domly distributed patterns applied spatiotemporally across the
skin surface, similar in principle to those used in visual
[55, 56] and vibrissal [57] studies.
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For human application, we envision this potentially high
dimensional optimization being performed through exhaus-
tive experiments in animal models, and simpler, lower
dimensional calibrations being subsequently fine-tuned for
human patients. For example, since the limb representation of
VPL and S1 are somatotopically organized, it is possible that
cross-hemispheric, cross-subject or cross-species general-
ization could be largely accomplished through simple inten-
sity scaling and/or spatial remapping. These calibrations
could also be optimized under a reinforcement learning fra-
mework [58] in which user-generated evaluative feedback
could drive fine adjustments to parameters over time.
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