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1. Introduction 

Rapid and robust scene understanding is a critically important goal for the 
development of Army autonomous intelligent systems to support the Army 
mission.1 Army missions take place in dynamic environments, where changing 
illumination, precipitation, and vegetation can modify saliency and context of an 
outdoor scene, obscure features, and degrade object recognition. For Army 
missions, scene understanding tools need to account for dynamic environments that 
change as a function of space and time and should be tested in mission simulating 
conditions. In addition, the impact of dynamic environments should be included in 
the scene understanding approach.2 Image features that can potentially help the 
mission are relevant. For example, important image features may be related to 
space-time coordinates, weather conditions and trends, visibility, terrain, scene 
descriptors, anomalies, and other salient features.3–5  

To explore the impact of dynamic environments on scene undersanding, we need a 
computational engine for scene exploration of new images. At this stage, we are 
evaluating different computational frameworks that may be useful to incorporate 
dynamic environments into mission driven scene understanding. One of the 
candidate engines that we are evaluating is a convolutional neural network (CNN) 
program (i.e., Theano-AlexNet6,7) installed on a Windows 10 notebook computer. 
To the best of our knowledge, an implementation of the open-source, Python-based 
AlexNet CNN on a Windows notebook computer has not been previously reported.  

In this report, we present progress toward the proof-of-principle testing of the 
candidate CNN model to examine the impact of dynamic environments on scene 
understanding model results. While we found previously5 that the CNN was able to 
determine the correct class labels for images taken from the 2,560 image training 
data set, the validation process did not appear to provide optimal results for images 
not previously seen. As a result, we performed additional trials and analysis using 
the larger ImageNet8 data set containing approximately 1.2 million images (Fig. 1). 
In Section 3, we show that the CNN achieved 79.7% validation accuracy for the 
top-5 class labels, which is in close agreement with results published by its 
developers.  

We start our discussion by presenting an overview of representative deep learning 
libraries (i.e., available open-source computational engines/frameworks) as well as 
a summary of several current CNN open-source codes. 
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Fig. 1 For Army mission activities, the impact of dynamic environments should be included 
in the scene understanding approach (e.g., space-time coordinates, weather conditions and 
trends, visibility, terrain, scene descriptors, anomalies, and other salient features) (data from 
the ImageNet8 Large Scale Visual Recognition Challenge 2012 [ILSVRC2012]) 

2. CNN Deep Learning Libraries and Open Source Codes 

CNN deep learning methods have influenced and advanced many applications in 
computer vision, especially those related to image classification.6,8 A recent paper 
by Bahrampour et al.9 presented a comparative study of 5 current deep learning 
software frameworks with regard to their capability to incorporate different types 
of CNN architectures, their hardware usage (central processing unit [CPU] and 
graphical processing unit [GPU]), and an evaluation of their training/testing speed. 
We present a summary of these open-source libraries, as well as 3 additional 
frameworks, in Table 1, to include a listing of the principal software developers, 
the primary programming language used, the Internet location of the open-source 
codes, the Internet location of installation and user’s guide documentation, and key 
reference citations. Similarly, Table 2 presents a summary of representative CNN 
open-source codes to include the candidate CNN program7 that we trained and 
validated. Note that in Table 2, some CNN codes achieve better validation accuracy 
or train at greater speeds than AlexNet6,7 in Theano10, particularly those associated 
with the Caffe11 and Computational Network Toolkit (CNTK)14,15 frameworks. 
Nevertheless, Bahrampour et al.9 commented that the Theano-based libraries and 
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codes benefit from the flexibility and ease in development using the Python 
language. In contrast, the primary programming language for Caffe and CNTK is 
C++. 

Table 1 CNN deep learning libraries: open source frameworks 

 

Table 2 CNN open-source codes 

 

3. Candidate CNN Model: Training and Validation 

In this section, we present the candidate CNN model training and validation results 
that were achieved implementing the program code on a Windows 10 notebook 
computer using a single GPU. A description of the installed software and 
dependencies was given in in a previous report5 and is therefore not repeated here. 
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The CNN was executed for 65 epoch (i.e., cycles), wherein 5,004 mini-batches of 
256 images were processed for each training cycle. Here, we used image data from 
the ImageNet8 Large Scale Visual Recognition Challenge 2012 (ILSVRC2012). A 
few example images from the training data set are shown in Fig. 1. On average, 
training on 20 mini-batches (or iterations) took approximately 172 s. As a result, 
the entire 65 cycles took approximately 32 days to complete.* Even though the 
training time was long, the CNN achieved 56.6% validation accuracy for the top-1 
class labels and 79.7% accuracy for the top-5 class labels (Fig. 2). These results are 
in close agreement with those reported by Krizhevsky et al.6 (i.e., a top-5 accuracy 
of 81.8%) and Ding et al.7 (i.e., a top-5 accuracy of 80.1%). Thus, in the next 
section, we show our initial top-5 class label results achieved from testing the CNN 
with 4 single images gleaned from the training data set. 

 

Fig. 2 Candidate CNN training and validation. Top-1 training accuracy (red line). Top-1 
validation accuracy (blue diamonds). 

4. Candidate CNN Model: Results 

In this section, we test the candidate model to examine the impact of dynamic 
environments on scene understanding model results. For the example shown in  
Fig. 3, we had the model output the top-5 most likely classification labels and 
corresponding confidence levels (i.e., top-5 probabilities) for the 4 images shown 
in Fig. 1. To do this, we modified the model code and incorporated an inference 
calculation23 to extract the desired results. We found that the CNN predicted the 
                                                 

* For comparison, Ding et al.7 reported training times of about 40–49 s per 20 iterations for 1 GPU (e.g., 
approximately 9 days to complete 65 cycles) and 24–29 s per 20 iterations for 2 GPUs. 
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correct class label for the principal object(s) shown in the test images, generally 
with high confidence. Nevertheless, a person viewing these images (e.g., a Soldier-
in-the-loop) would likely see several additional features, such those related to the 
environment that were not identified (e.g., clouds, haze, smoke plumes, sandy soil, 
rocky terrain, mountains, river water, trees, and forests). More importantly though, 
we noticed that, in Fig. 3c, low light and visibility conditions negatively affected 
the candidate model results (i.e., much lower probabilities). Hence, it is this kind of 
adverse impact on scene understanding model results that require further testing 
(e.g., with sets of new images that contain similar objects, but depict a wide variety 
of relevant dynamic environment features). 

 

Fig. 3 Candidate CNN results showing the top-5 most likely classification labels and 
corresponding top-5 confidence levels 
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5. Summary and Conclusions 

Two key aspects of scene understanding modeling are readily apparent from our 
research so far: 

1) Scene understanding tools need to account for dynamic environments to 
better support Army missions performed by autonomous intelligent 
systems, and 

2) Images depicting adverse dynamic environment features (e.g., low visibility 
and illumination) tend to negatively impact the scene understanding model 
results. 

We can conduct further testing of candidate models to quantify these aspects in 
more detail. Nevertheless, it is clear that improved or retrained models are needed 
to better address the impact of dynamic environments on mission driven scene 
understanding. 
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