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1 Relevant Findings

Contract FA7000-10-2-0003 was in direct response to Broad Agency Announcement (BAA) with
the Aeronautics Laboratory at the United States Air Force Academy. The announcement in the
BAA in which this contract was directly related is quoted from the BAA as,

Current research strengths include several complementary thrusts. Closed

loop flow control efforts focus on aero-optic and energy extraction, with

extensive effort in the development of automatic control algorithms and

techniques, experimental flow control methodologies and CFD simulations.

Work under this contract produced new, innovative and theoretical methods for developing con-
trol algorithms. In particular artificial neural networks coupled with direct adaptive control was a
new innovative solution for achieving successful control of very high dimensional, non linear dy-
namical systems. This control technique which is describedin detail throughout this manuscript
was successfully applied to a wide variety of flows. This flow control approach proved to success-
fully reduce the drag on a circular cylinder by decreasing the amount of energy in the von Kármán
street, mitigate optical abberations through a free unstable shear layer, as well as regulate and ex-
ploit the asymmetric vortex formulation behind an axi-symmetric bluff body at high incidence.
Each of these flow control applications had inherently different dynamics including periodic vor-
tex shedding, separated free unstable shear layers, and combinations thereof, which demanded a
large amount of robustness from a control design perspectives. Applications and demonstration
of successful feedback flow control where shown both experimentally and computationally. This
manuscript goes into great detail on the theoretical approach which has been adopted by the US-
AFA flow control group and then details the applications to each of the fluid dynamics problems.
The report then summarizes the business portion of the contractual agreement.

This material is based on research sponsored by the US Air Force Academy

under agreement number FA7000-10-2-0003. The U.S. Government is authorized

to reproduce and distribute reprints for Governmental purposes notwith-

standing any copyright notation thereon.

The views and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of the US Air Force Academy

or the U.S. Government.

[All information and data Herein is] approved for public release,

distribution is unlimited.
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3 Proposed Research

3.1 Approach

Classical control theory is limited when dealing with high-dimensional, extremely non-linear sys-
tems such as flow fields. New techniques need to be establishedto make use of current control
theories, while also allowing for a reasonable design process for linear, non-linear, or adaptive
control for complex flow fields. Low dimensional modeling is the first step in synthesizing control
algorithms. Computational fluid dynamic (CFD) simulations, which are numeric approximations
of the Navier Stokes equations seen in Eq 74

ρ
(

∂u
∂ t

+u ·∇u
)

=−∇p+∇ ·T+ f, (1)

are utilized to produce an open loop forcing parameter space, typically varying frequency and
amplitude of the actuation signal. Numerical reduction schemes such as principle component
analysis or proper orthogonal decomposition (POD,SPOD,BPOD,DPOD) are then used to greatly
reduce the full order system (n) to a truncated mode set (m), such thatm<< n as seen by the
following equation.

Φ(x, t) =
m

∑
i=1

ai(t)ϕi(x). (2)

The resulting mode set shows the decoupling of time and space, correspondingly modal amplitudes
(ai(t)) and spatial modes (ϕi(x)). The highest energy/most dominant modes are retained in the
truncation so that the reduced data set accurately represents the full order system. The control
engineer will recognize these time coefficients(ai(t)) as the internal states of system.

Typically, a Galerkin projection is used to project the truncated mode set onto the Navier Stokes
equations, but that creates numerous modeling errors, suchas unsatisfied boundary conditions,
numerical instabilities, and poor implementation of actuation term. The research proposed, uti-
lizes system identification techniques, such as weighted least squares, correlation functions, power
spectral density with impulse responses, neural networks (ANN-ARX), networks with wavelet ra-
dial basis transfer functions (WNARX), and other non-linear methods to formulate a state-space
system. Typically, control designers desire these system identification models to be linear-time-
invariant (LTI) state space systems. This allows for very simple control design procedures. The
problem with the LTI approximation is that fluids are not a linear system, as seen from the Navier-
Stokes equations which govern fluid flow (Eq. 74).

A linear model breaks down and insufficiently represents theflow field rendering it useless for
any type of control design. New methods or combination of methods for both system identification
and control development, from non-linear to adaptive control techniques, need to be explored.
This research proposes to investigate wavelet basis networks (WNARX) to demonstrate the full
capability of identifying complex flow response for a range of open loop parameters. The WNARX
will represent a dynamic model which can simulate off designflow cases, serve as reference signal,
and ultimately predict closed loop behavior for control design. The WNARX model uses the same
network architecture as a neural network; the only difference is radial basis functions are used as
each neuron’s transfer function. This is shown by,

Ψ(t)u,s= Ψ
(

t −u
s

)

, (3)
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whereu is the translation of the wavelet,s is the dilation, andΨ is referred to as the mother
wavelet, which is a radial basis function in this case. WNARXmodels are much better suited for
identifying the frequency rich dynamics of complex, turbulent flow fields. The overall WNARX
model is given by,

f̂ (t) =
N

∑
i=1

wiΨ(si(t −ui))+cTt + f0 (4)

wherewi are the weights,N is the number of wavelet functions,cT represent the linear connec-
tions, andf0 is the bias. This proposal will use this new system identification method to formulate
an extremely low dimensional model based from CFD simulations and POD/DPOD decomposi-
tions to accurately predict closed loop dynamics of a given flow field. This model is then used to
perform feedback simulations to condition control algorithms which can then be applied directly
to CFD simulations and experiments. Previously, this control design approach was applied to the
simple cylinder wake flow fieldFagley et al. [2009] Siegel et al. [2008]. Although successful for
the very simple flow, we desired to extend the approach to morecomplex, turbulent, flows, e.g.
free, unstable shear layer?. Initial results are promising. The WNARX method for formulating a
model has proven to be much better than the previous ANN-ARX model. Neural networks have
inherent problems. First, there is that no straight forwardmethod exists for determining the number
of hidden neurons, number of layers, or parameters of the regression vector. Training relies heavily
on trial and error to find a combination of parameters that yields acceptable results. Second, the
convergence of these networks depends heavily upon the initialization of the weighting matrices.
This can lead to drastically different results when training a single network with a given set of
parameters twice because of the initial random generation of weights. Third, a properly trained
network will behave as ablack boxin which little mathematical/physical insight can be gained.
And fourth, training times are extremely long due to multimodal error surfaces which tend to trap
the solution within local minima. Wavenets incorporate PODbased initialization of weighting ma-
trices which allow for much higher convergence times; the set radial basis functions also represent
non linear limit cycle behavior of these flows which reduces the local minima problem.

This research proposal continues model reduction work on the shear layer and looks to vali-
date the designed control laws in both computational and experimental studies. The reduced order
model control design approach proposed is extremely powerful and can be applied to many differ-
ent flow fields. The control development method is not limitedto simplified flow fields, but well
suited for highly turbulent, chaotic flows. Ultimately, thegoal of this research proposal is to refine
the method of model/controller development while applyingcurrent knowledge and techniques to
different flow fields. In accompaniment with the shear layer modeling efforts, I intend to use this
model reduction method for multiple flows and actuation interaction, such as cycloidal propeller
for wave extraction, cycloidal propeller for MAV design, shear layer with blowing and suction slot,
shear layer with plasma actuation, and modeling of structure fluid interaction.

7 Fagley
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4 Research Synopsis

4.1 Overview

Traditionally, flow fields are controlled or manipulated viapassive or open loop active control
techniques. Passive strategies make use of modifying aeronautical properties of the body to achieve
a desired flow state. These methods add no external energy to the flow and are time invariant.
Protrusions or intrusions will be added along the body’s geometry to induce some type of flow
change. These methods yield only small performance gains tocertain flow fields, but are very
easily implemented onto an aerodynamic design. A few examples of this type of flow control are
winglets, fins, or dimples on a golf ball.

The other type of flow control is active control which is broken down into two subcategories:
open and closed loop control. Open-loop strategies make useof actuators to force the flow at
a given frequency and amplitude to induce some sort of desirable change in flow state. These
actuators are typically blowing or suction slots, plasma actuators, or piezoelectric actuators. An
example of this is blowing high frequency pulses along the leading edge of an airfoil to create
small coherent vortex structures which prevents the onset of separation and inherently increases
the angle of attack at which stalling occurs.

These above methods have been exhaustively studied by fluid dynamicists. The focus of this
paper is on closed loop active flow control. Instead of the above open-loop strategies, sensors are
used to feed back vital flow characteristics such as, pressure, velocity, temperature, density mea-
surements, etc. These measurements formulate an estimate of the current flow state. This estimated
state allows for state feedback through some control algorithm which prescribes an actuation com-
mand to produce a desired flow state in the flow field. This research contains multiple tasks to
overcome for the overall success of these ideas such as: development of control algorithms, state
estimators, and strategic sensor placement. Mainly because fluid dynamics are composed of highly
complex, non-linear, stochastic processes, the development of simple, yet robust control algorithms
and state estimation methods becomes extremely difficult. The Formulation of low dimensional
models which accurately and robustly represent the flow overa given forcing parameter space is
one approach to developing such algorithms and is explored in extensive detail in the following
dissertation.

Before any type of modeling or control design efforts can be completed, a representation of
the flow field shall be selected. Flow fields are represented bytechniques such as full order gov-
erning equations (the Navier-Stokes equations), experimental setups, numerical approximations
of the governing equations (computational fluid dynamics),linearizing governing flow equations
(potential flow theory), etc. Each of these methods are well suited for flow field representation and
only depend upon the resources at hand and the relevant flow features desired in the representation.
Scaled models placed in wind tunnels accurately create desired flow fields but really lack with ease
of measurements. Measuring techniques such as hot films, particle image velocimetry, Schlieren
imagery, laser doppler velocimetry, etc. do serve as efficient means of measuring flow characteri-
zations, but these techniques are local measurements either temporally or spatially. Measurement
noise is also a significant problem for subsequent controller design, model or state estimation for-
mulation . The governing equations depicted below by the Navier Stokes equations do represent

8 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

100% of the flow physics, but really lack in solvability.

ρ
(

∂u
∂ t

+u ·∇u
)

=−∇p+∇ ·T+ f (5)

Only a handful of solutions exist to these equations. The solutions thatdo exist are mostly re-
lated to extremely over simplified flow fields which are often of little interest from an engineering
standpoint. The Navier-Stokes (NS) equations can be numerically solved, a discipline known as
computational fluid dynamics (CFD). Typically, these numeric solutions are only approximate so-
lutions to the NS equations, but they do provide extremely insightful information which can be
used for analysis, design, and simulation purposes. CFD is the process of solving coupled partial
differential equations by the means of finite difference methods, finite element methods, or finite
volume methods. The spatial domain of the flow field is discretized into small cells which make up
a volume grid or mesh. The cells are irregular shapes (i.e. rectangles, triangles, polygons, etc.) and
resolved on different spatial resolutions. Direct solutions of the NS equations (DNS) for complex
flows (large Reynolds number flows) is not computationally viable on today’s supercomputers. The
resolution of the discretization needed is proportional tothe cube of the Reynolds number (∝ Re3)
for an accurate DNS simulation. For a turbulent flow this could be on the order of 1018 cells for a
given simulation. For laminar flows this is not computationally difficult (as Reynolds numbers are
less than 2100), but as the increase of Reynolds number, the solution becomes unrealistic. Many
numeric methods to reduce computation burden while resolving the desired scales exist to accu-
rately predict turbulent, compressible, highly complex flow fields (i.e. direct numeric simulations,
large eddy simulations, detached eddy simulation, scale invariance, higher order turbulence mod-
els, combinations of methods with filters for transition areas) Meneveau and Katz [2000]. CFD
allows for an accurate means of achieving a representation of the desired flow field and is typically
the most widely used among current research approaches. Other flow representations such as Euler
equations, potential flow, panel methods are used as well.

Feedback flow control design can be broken into two main categories. Strategies which make
use of low dimensional models and strategies which use the model free approach. It is argued that
the model free approach has less chance or reaching a desiredperformance, but may be simpler
to implement, while the reduced order model approach is moretime consuming formulating the
model and simplifies control derivation.

The model free approach utilizes adaptive control techniques to feedback global flow variables
in an experimental setting to improve flow characteristics.Becker et al. [2006] This method com-
pletely abandons modeling procedures and directly closes the loop. Control laws such as adaptive
extremum seeking controllers vary open loop parameters to produce desired flow states.King et al.
[2004]Moeck et al. [2007] Typically, these controllers lack desired performance, but do prove to
be useful for initial experimental investigations.

The second entails using reduced order modeling proceduresto formulate low dimension nu-
merical models for controller development. These methods,while relatively time consuming and
numerically intensive are able to produce simple, high performing control algorithms. Current
techniques do have inherent problems with modeling and implementation of actuation, as dis-
cussed below. The focus of this paper will be on the latter method which producessmartercontrol
algorithms based on reduced order models (ROM’s).

For high performance, accurate control algorithms, an underlying model needs to be formulated
which accurately captures the desired flow features in the analyzed flow is needed. Customarily,

9 Fagley
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low dimensional modeling for flow control purposes is a threestep process.Siegel et al. [2008] A
flow field in which feedback control can improve a flow variableor achieve a certain flow state is
chosen. The first step involves acquiring flow data either by experimentation or numerical proce-
dures. Selecting the correct flow variable to model is a very important step for model development.
For example, streamwise velocities may be used to model the vortex shedding behind a cylinder,
or the pressure field may be used to model the structures of a shear layer. Once the experiments or
numeric simulations are carried out, the data is then condensed or decomposed by common tech-
niques such as the Karhunen -Loéve procedure more commonlyknown as the proper orthogonal
decomposition (POD) method (discussed in more detail in Section 4.2.2.1). The method of snap-
shots provides a powerful tool for POD which allows for a moreaccurate decomposition based
on periodic flow behavior.Sirovich [1987] The POD method allows the higher frequency/lower
energy modes to be neglected, maintaining the higher energymodes, more dominant modes. This
will dramatically reduced the order of the data. After the POD procedure the data will be in the
form,

u(x,y, t) =
∞

∑
j=1

a j(t)φ j(x,y). (6)

The third and final step is developing a numerical model for these time coefficients (a j(t)).
Traditionally, a Galerkin Model is formulated. Here the truncated mode set (φ j(x,y)) is projected
back onto the Navier-Stokes equations (F(·)) Noack et al. [2004]Rempfer [2000] Rowley et al.
[2004]Sirisup et al. [2005] Gerhard et al. [2003]. For convenience, suppose the navier stokes
equations are written as the non-linear operatorF(·)

∂u
∂ t

= F(u) u= u(x, t) t ≥ 0 x∈ N. (7)

The spatial modes are then projected onto the left and right hand sides of Equation 7, such that
(

φi(x,y),
∂u
∂ t

)

= (φi(x,y),F(u)) i = 1,2. . . . (8)

Where the set of basis functions must meet the following requirements: (1) The basis must be
complete meaning the basis must span the entire set of the original flow field. (2) The basis
columns must be linear independent. (3) The eigenfunctionsmust satisfy the boundary conditions
of the Navier-Stokes equations Rempfer [2000]. This projection will yield a set of ODE’s which
describe the evolution of time coefficients,

dai(t)
dt

= Fi(a1,a2, ...). (9)

These ODE’s will be quadratic in nature due to the convectiveterm of the Navier Stokes equations.
These equations have proven useful for analyzing stabilityof flow fields and developing simple
control algorithms. The problem is this set of equations, while mathematically accurate, is numer-
ically unstable because of the lack of satisfied boundary conditions. Also, adding the actuation
term to the set of equations in 9 tends to be very difficult. Actuation dynamics are a dominant
feature of feedback control. As in Noack et al. [2004] and Rowley et al. [2004], an actuation term
is superimposed on Equation 10, such that

dai(t)
dt

= Fi(a1,a2, ...)+ εg. (10)

10 Fagley
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Where g is assumed to be a body force acting at the nodeε. This is a very strong, and in some
flows, false assumption to make that fluid dynamics interact linearly with body forces in the flow.

An alternative approach is using system identification to produce a model for these time coeffi-
cients. System ID techniques can be broken into two main categories linear and non-linear. Linear
system ID has many widespread uses and applications. Linearmodels really allow for a very nice
analysis of the underlying system by the ability to compute stability, observability, controllability,
robust and performance margins. Common methods include butare not limited to the following:
output error methods, prediction error methods, subspace model identification methods, AR/AR-
MAX/ARX model identification methods. These linear models really fail at capturing non-linear
limit cycle/periodic behavior which isverycommon in unsteady fluid dynamics.

Fluids are governed (as discussed previously) by highly non-linear dynamics. Thus, linear
system ID presents excessive modeling errors. The alternative is adopt non-linear system ID algo-
rithms which are more difficult to formulate/train, slower to simulate, harder to analyze, but in the
end more accurate than linear techniques at modeling fluid behavior. A common approach is to
use non-linear Volterra kernel identification.Lucia et al.[2003] Balajewicz et al. [2009] For time
invariant, non-linear, continuous time systems Volterra system ID is very good at identifying non
linear behavior. To model the response,y(t), of a system due to an arbitrary input,u(t), a second
order Volterra series is formed such that,

y(t) = ho+
∫ t

0
h1(t− τ)u(τ)dτ +

∫ t

0

∫ t

0
h2(t− τ1, t− τ2)u(τ1)u(τ2)dτ1dτ2 (11)

where h1(t) is a kernel which identifies the impulse response of the system and h2(t) is the
quadratic kernel which models non-linearities. Higher order series can be expanded, but the
identification of higher order kernels increases exponentially.Lucia et al. [2003] Techniques ex-
ist to prune or numerically soothe the matrix inversion process to reduce this computational bur-
den.Griffith and G.R. [1999] The inherent problem with Volterra series is that they are strictly input
output relationships, that isy(t) = H ×u(t). The model doesn’t identify internal dynamics of the
system. Once the input becomes zero the output will go to zero. These Volterra series do have
their uses in aeroelastic systems and non-linear filter design, but are not useful in the application
to ROM development for feedback flow control Balajewicz et al. [2009].

Another alternative to non-linear system identification isusing neural networks. Network
topology ID methods are a capable of identifying strong non-linearities. They can also be modified
to calculate future outputs based on previous simulated outputs; thus having the ability to model
dynamics of a system. They are not limited to single input-single output (SISO) systems but are
capable of simulating multi-input multi-output (MIMO) systems. Theydo have some downsides.
Training is extremely sensitive, and tends to get stuck in local minima. Techniques do exist of in-
creasing training effectiveness, but backpropagation algorithms mainly rely on increasing number
of epochs and general luck in achieving global minimumLarochelle et al. [2009]. This paper will
explore the technique of using Artificial Neural Networks - Auto Regressive eXogenous Siegel
et al. [2008] (ANN-ARX) non-linear identification methods to produce an extremely low dimen-
sional model for flow state simulation, reference signals and control algorithm development. Also,
the ANN-ARX system ID method will be extended to include wavelet basis functions which are
very well suited for modeling the non-linear periodic behavior of certain flow fields.
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4.2 Theoretical Background

A closed-loop flow control system is comprised of three basiccomponents: i) a sensor or array
of sensors to sense and estimate the current flow state, ii) a controller that determines a control
signal to achieve the desired flow state, and iii) an actuatorthat introduces the predetermined
perturbation into the flow. Note that in an application, the system may have multidimensional
inputs and outputs, i.e. the sensor could be comprised of an array of sensors, and the actuator could
in fact be a combination of multiple actuators such as side byside blowing and suction slots. In
the following description of the feedback control strategies, the wake behind a circular cylinder is
considered as an illustrative example.

Model Independent Approach Involves the introduction of sensors in the wake and using a con-
trol law (usually linear) to produce a command to the actuator that forces the flow. The
advantages of this approach are that:

• No model of the flow field is required for controller design

• Direct feedback eliminates the need for a state estimator

• A simple control law may be implemented in an experimental setup with relative ease

For the circular cylinder wake problem, experimental studies have shown that linear pro-
portional feedback control based on single sensor feedbackis able to delay the onset of
the wake instability, rendering the wake stable at Reynoldsnumbers about 20% higher than
the unforced case. However, above this threshold, single-sensor feedback may suppress the
original vortex shedding mode but destabilize other modes Roussopoulos [1993]. While this
approach is relatively simple to implement experimentally, the results are very limited for
the absolutely unstable cylinder wake.

Direct Navier Stokes Approach This approach is more structured as it applies conventionaland
proven model-based control strategies such as optimal control theory to flow control prob-
lems. Abergel and Temam [1990] developed conditions for optimality for a few simple
applications. However, from a control algorithm point of view, the complexity of the flow
physics results in a control problem of very high dimensionality. Even if this strategy theo-
retically can yield optimal results, implementation in a real time system is not feasible since
it would require the solution of the Navier-Stokes equations in real time.

Low-Dimensional Approach Low-dimensional modeling is a vital building block for realizing a
structured model-based closed-loop strategy for flow control. In light of the high complexity
of the control problem, a practical procedure is needed to reduce the order by capturing
the essential physical processes in a low dimensional model. A commonly used method to
achieve this reduction in order is proper orthogonal decomposition (POD). This method is an
optimal approach in that it will capture the largest amount of the flow energy in the fewest
modes of any decomposition of the flow. POD has been successfully used to identify the
characteristic features, or modes, of a cylinder wake Gillies [1998], Siegel et al. [2008].

The major building blocks of this low-dimensional approachare a reduced-order POD model,
a state estimator and a controller. The desired POD model contains an adequate number of
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modes to enable reasonable modeling of the temporal and spatial characteristics of the large
scale coherent structures inherent in the flow Holmes et al. [1996].

For low-dimensional control schemes to be implemented, a real-time estimation of the modes
present in the flow is necessary since it is not possible to measure the whole flow field di-
rectly, especially not in real-time. Flow field data (e.g. velocity), provided by either simu-
lation or experiment, is fed into the POD procedure. The temporal amplitudes of the POD
modes are determined by applying a least squares fit of the instantaneous data to the spatial
eigenfunctions. Then, the estimation of the low-dimensional states is provided, e.g. by us-
ing a linear stochastic estimator (LSE). Sensor measurements may take the form of velocity
measurements or body-mounted pressure measurements. Thisprocess leads to the state and
measurement equations, required for design of the control system. For practical applications
it is desirable to reduce the information required for estimation to a minimum. The require-
ment for the estimation scheme then is to behave as a modal filter that ‘combs out’ the higher
modes. The main aim of this approach is to thereby circumventthe destabilizing effects of
observationspilloverBalas [1978]. Spillover has been the cause for instability in the control
of flexible structures and modal filtering was found to be an effective remedy.

To provide an overview of the feedback flow control design cycle used in this research project,
Figure 1 shows the main building blocks in the process. The main premise of this control design
approach relies on an iterative scheme which tweaks currentmethodologies to achieve adequate
flow field to controller design time along with desirable closed loop performance. The develop-
ment started with building a database of flow states based on CFD simulation results. First, the
natural (i.e. without any control input) flow field was simulated. Then, a number of simulations
were performed where periodic blowing and suction was used to introduce disturbances at a given
frequency and amplitude into the flow. The results of all these simulations were analyzed using
Proper Orthogonal decomposition (POD), which resulted in POD spatial modes as well as the POD
time coefficients for each time step of all simulations. POD modes and their adjoint amplitudes
for a forcing scenario provide important flow/forcing interaction characteristics. This interaction
is then modeled through the time coefficients with system identification techniques outlined in fol-
lowing sections. The low dimensional model is then verified given off design forcing parameter
cases. Once an acceptable model is formulated adaptive control methodologies can be applied. As
seen in Figure 1 at each design point a possible iteration path to adjust parameters to increase mod-
el/controller performance exist along paths 1 through 4. This flowchart will be strictly followed an
described within the following sections.

4.2.1 Numeric Simulation

The framework of this control design approach is based upon the use of open loop numeric simu-
lations. The simulations were performed using COBALT from Cobalt Solutions, LLC, a commer-
cial unstructured finite-volume code developed for the solution of the compressible Navier-Stokes
equations. The basic algorithm is described in Strang et al.[1999] and Grismer et al. [1998],
although substantial improvements have been made since then. The numerical method is a cell-
centered finite volume approach applicable to arbitrary cell topologies (e.g, hexahedra, prisms,
tetrahedra). The spatial operator uses the exact Riemann Solver of ?, least squares gradient calcu-
lations using QR factorization to provide second order accuracy in space, and TVD flux limiters to
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Control Algorithm
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Figure 1: Flowchart of the feedback control development process.
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limit extremes at cell faces. A point implicit method using analytic first-order Jacobians is used for
advancement of the discretized system. For time-accurate computations, a second order accurate
method with Newton sub-iterations is employed. For parallel performance, COBALT utilizes the
domain decomposition library ParMETIS [Karypis et al., 1997] to provide optimal load balancing
with a minimal surface interface between zones. Communication between processors is achieved
using Message Passing Interface (MPI), with parallel efficiencies above 95% on as many as 1024
processors Grismer et al. [1998].

The main methods for calculating complex flows with a CFD solver are Direct Numerical
Simulation (DNS), Large Eddy Simulation (LES), and Reynolds-averaged Navier Stokes (RANS).
The RANS approach is the most economical since it is designedto solve for the mean flow, but it
is subject to many modeling approximations. Since it modelsrather than resolves the bulk if not
all of the turbulent motions, this would be an inappropriatechoice for the current investigation.
DNS, on the other hand, makes no modeling assumption but is the most expensive approach since
all turbulent motions must be resolved by the grid. Since thesmallest scales of turbulence (the
Kolmogorov length scale) decrease rapidly with increasingReynolds number, this approach is
limited to relatively low Reynolds number flows. LES is less expensive than DNS since it models
the small subgrid scales of motion and resolves the rest of the turbulent motions. However, since
the large scales in the boundary layer are on the order of the boundary layer thickness (which
is quite thin for high Reynolds number flows), this method is cost prohibitive at high Reynolds
numbers for wall bounded flows.

Detached-Eddy Simulation (DES) is a by now well known hybridtechnique [Spalart, 2000]
for prediction of turbulent flows at high Reynolds numbers [see Spalart, 2000]. The motivation for
developing DES was to combine the most favorable aspects of RANS and LES, i.e. the acceptable
predictions using RANS models of thin, near wall shear layers (e.g. attached boundary layers) and
LES for resolution of time-dependent, three-dimensional large eddies (e.g. free shear layers). For
natural applications of DES, RANS is applied in the boundarylayer, while outside the boundary
layer in the separated region, LES is used. An array of flows ranging from building block appli-
cations such as the flow over a cylinder, sphere, aircraft forebody, and missile base to complex
geometries including full aircraft have been modeled successfully using DES Travin et al. [1999],
Squires et al. [2001], Constantinescu et al. [2002], Forsythe et al. [2002], Hansen and Forsythe
[2003]. These and other applications illustrate the capability of DES to accurately resolve chaotic
unsteady features in the separated regions along with a rational treatment of the attached bound-
ary layers. Recent DES predictions of the flow around complexconfigurations (all using Cobalt)
include the massively separated flow around an F-15E at 65o angle of attack reported by Forsythe
et al. [2004] (this simulation was the first eddy-resolving simulation of flow around a full aircraft
configuration), transonic shock-separated flow over an F/A-18E by Forsythe and Woodson [2003],
and vortex breakdown on an F-18C by Morton et al. [2003, 2004].

These highly successful simulations demonstrate the capabilities of the COBALT CFD solver.
In light of the aero-optics problem, it is important to note that many of the flows investigated
show features similar to the ones expected to play a significant role in the aero-optics problem. In
particular, the fully separated flow simulations can only accurately predict flight parameters such
as lift or drag in a time dependent manner if the large scale motion is computed correctly. These
same large scale structures play a significant role in the aero-optics problem as well, which made
the COBALT solver a very well suited tool for the numerical aspects of this research project.
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4.2.2 Reduced Order Modeling

4.2.2.1 Numerical Reduction A dynamical system can be written as

ρ̇(x, t) = f (x, t), (12)

wherex is defined to be a vector over finite dimensional state space,ρ is e.g. the fluid density at a
given spatial location and time,t. The right hand side of the equation is time variant, non-linear,
and described by the Navier-Stokes equations. Unforced andforced simulations provide a flow
data base. The forcing signal is limited to periodic input varying frequency and amplitude. The
range of these parameters are chosen by perturbations to thenatural shedding frequency of the flow
at a range of feasibly implementable actuation limits. Thisparameter space provides as the basis
for future investigations. The corresponding data set is designated by the matrixΩ ∈ Rn×m, where
n is the number of samples in time andm is the number of spatial grid points.

Data reduction schemes such as proper orthogonal decomposition (POD), also known as the
Karhunen-Loève process, have been used successfully to reduce the data to manageable size
Berkooz et al. [1993]. The Method of Snapshots Sirovich [1987] is used here to reduce the size of
the correlation matrix. The matrixΩ ∈Rn×m can be decomposed using singular value decomposi-
tion,

Ω =UΣV∗, (13)

whereU is an orthonormal matrix with dimensionm×m, V∗ is also an orthonormal matrix with
dimensionn×n, Σ is a diagonalm×n matrix in which then (because typicallyn < m) singular
values are arranged in decreasing order on the diagonal. Thesingular values ofΩ are also the
eigenvalues ofΩTΩ. Next, defineQ≡UΣ in Equation 13, which yields

Ω = QV∗. (14)

This can be written in summation form, as shown in Equation 15, such thatqi is theith column of
Q; likewise,vi is theith column ofV,

Ω =
m

∑
i=1

qiv
∗
i . (15)

Equation 15 is still an identity, i.e. no approximations have been introduced. In Equation 15 the
ith temporal coefficient,ai(t), is exactly equivalent to theith column ofQ. Likewise, theith spatial
mode,ϕi(x,y), is represented by theith row vector ofV∗. The systemΩ can then be written as,

Ω =
m

∑
i=1

ai(t)ϕi(x). (16)

Form′ < m the decomposition becomes,

Ω ≃
m′

∑
i=1

ai(t)ϕi(x). (17)

where now the right hand side is an approximation ofΩ. Because the singular values can be
related to the energy of the modes and are arranged from largest to smallest (σ1 > σ2 > · · · >
σn), the dominant spatial and temporal modes appear first in thematricesU andV, respectively.
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Therefore, plots of the singular values are normally shown to determine where a truncation of a
model is appropriate. For example, for the cylinder wake flowfield 98% of the energy in the flow
is contained within the first three modes. Reducingm′ to three represents a significant reduction
in the model order even though the model still maintains the dominant flow physics Siegel et al.
[2008].

The above decomposition is a good approximation for a periodic flow field, but in feedback
control, the flow is being forced through some (arbitrary) actuation and therefore not periodic,
even if it would be naturally. This means that the flow will undergo some transient development,
which results in the spatial modes (ϕi(x)) evolving over time. Siegel et al. Siegel et al. [2008] de-
vised a strategy called Double Proper Orthogonal Decomposition (DPOD) to accurately model this
transient behavior. In DPOD, the POD process is used twice tocapture the transient phenomenon
in the spatial modes. The second decomposition represents the spatial mode fluctuations over time
which capture forcing-flow interaction. The DPOD decomposition is written as,

Ω =
m′

∑
i=1

n′

∑
j=1

ai j (t)ϕi j (x). (18)

The resulting spatial modes form am′ × n′ mode set which accurately represents the unforced,
forced and flow state transitions from one to the other. For more information on the DPOD process
seeSiegel et al. [2008].

4.2.3 System Identification

The system identification step as presented in Fagley et al. [2010] is a crucial step in formulating
the low dimensional model. Numeric decomposition parameters such as: forcing parameters,
spatial domain, and numerical decomposition method (DPOD,SPOD, POD..etc.) are determined
by a parameter study. The next task for defining a reduced order model was the development of a
mathematical model which accurately represents the time coefficients of the POD mode set. The
formulation of a reduced order model which accurately relates the forcing input to the evolution of
the time coefficients would give capability to predict a flow state not present in the original dataset.
These predicted time coefficients, multiplied with the spatial modes, would yield a prediction of
the flow field at any instant in time within some confidence interval.

For model development, the Galerkin method has been typically used to project a truncated
mode set onto the Navier Stokes equations, resulting in a setof ordinary differential equations
[see e.g. Berkooz et al., 1993]. However, it has been realized that the resulting equations are
mathematically unstable, that the resulting model cannot satisfy the boundary conditions due to
POD truncation. Also a linear flow interaction with actuation is taken into account through the
body force term in the Navier-Stokes equations Rempfer [2000]. Nonetheless, these reduced order
models provide insight into the flow physics and basic controller design. Galerkin models lack
of actuation characterization poorly models the dynamics of typical actuation methods such as
blowing and suction slots or plasma actuators. The body force assumption does not capture forcing
dynamics of a blowing and suction slot in which the mass flow rate is actually changing through a
prescribed location.

These shortcomings of the Galerkin model drive this research project a different direction.
System identification techniques were used to identify a model which accurately represents the
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open loop forcing dynamics of the flow field. Writing the system in Equation 17 with the density
of the flow as the kernel,

ρ(x, t) = f (x, t,u)≃
m′

∑
i=1

ai(t,u)ϕi(x|u), (19)

wherex ∈ Rn, to ≤ t ≤ t1 and u(t|F,A) = Asin(2πFt), provides the basis for applying system
identification tools. In order to understand the evolution of the density field,ρ(x, t), in time, its
derivative must be found,

ρ̇(x, t)≃
m′

∑
i=1

[ȧi(t,u)ϕi(x|u)+ai(t,u)ϕ̇i(x|u)] . (20)

The second term,ai(t,u)ϕ̇i(x|u), drops out becauseϕ is time invariant, so all of the nonlinearities of
the system are contained within the evolution of the mode amplitudesȧi(t|u). System identification
was then used to provide a mathematical representation of the evolution of these mode amplitudes.
Here the system can be represented in state space form as

{
ȧ(t,u) = G(a(t,u))
ρ(x, t)≃ ϕ(x|u)a(t,u) (21)

whereG(a(t,u)) is an unknown, non-linear, time invariant function. In discrete time, this system
is {

a(tk+1,uk+1) = G(a(tk,uk))
ρ(x, tk)≃ ϕ(x|uk)a(tk,uk).

(22)

The modeling goal was to formulate a mathematical model which represented the time coefficients
of the numerical approximation over the open loop forcing parameter space,u(t|F,A). Nonlin-
ear auto regressive exogenous (NLARX) systems were used to identify the behavior of the mode
amplitudes, for which a regression vector was formed such that

Θ(t)≡ [u(t) . . .u(t−nu),a1(t−1) . . .a1(t−na1) . . .ai(t −1), . . .ai(t−nai )]. (23)

Nonlinear mathematical models were then trained to minimize the error between the training set
and predicted output in a least squares sense.

Many methods for nonlinear system identification exist. Previous work used artificial neural
network autoregressive exogenous (ANN-ARX) systems to identify the dynamical behavior of the
time coefficients in the forced cylinder wake Siegel et al. [2008]. Neural networks are widely
used in the scientific community for process modeling, artificial intelligence, pattern recognition,
machine learning, etc. This nonlinear system identification technique has been argued to be a
universal approximator, capable of representing any type of data trend Norgaard et al. [2003].
However, some inherent problems of ANN models exist. First,there is no straight forward method
for designing the network, including determining the number of hidden neurons, the number of
layers, or the parameters of the regression vector. Furthermore, training relies heavily on trial and
error to find a combination of parameters that yields acceptable results. Second, the convergence
of these networks depends strongly upon the initial (usually random) weights in the weighting
matrices. This can lead to drastically different results when training a single network with different
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sets of parameters. Third, a properly trained network will behave as ablack boxfrom which little
mathematical and physical insight can be gained. And fourth, training times are extremely long due
to multimodal error surfaces which tend to trap the solutionin local minima, which also contributes
to the vastly different network parameters obtained from the random data initialization.

A different way to formulate a model is by using wavelet transformations, which are known
for their ability to compress, decompose, and approximate scientific data sets accurately and effi-
ciently. They are used in many technical fields including image processing, edge detection, large
scale monitoring processes, transient detection, etc. Mathematically, themother wavelet, Ψ, can
be written as

Ψ(t)u,s= Ψ
(

t −u
s

)

, (24)

whereu denotes the shift or translation ands denotes the dilation or frequency content of the
wavelet basis function. In the current modeling approach, wavelets were used as transfer functions
to create a wavelet neural network (WNN). These wavenets were first introduced by Zhang et
al. and have been applied to many areas such as functional approximation, system identification,
adaptive control, and non-linear modeling and optimization Zhang and Benveniste [1992], Zhang
et al. [1995], Chen and Bruns [1995], M.M. Polycarpou and Weaver [1997]. An example of the
formulation of a wavelet based ARX network is Zhang and Benveniste [1992]

f̂ (t) =
N

∑
i=1

wiΨ(si(t −ui))+cTt+ f0, (25)

wherewi are the weights,Ψ is the wavelet function,N is the number of wavelet functions,cT

represents the linear connections, andf0 is the bias. The WNN is typically initialized using a
dyadic wavelet decomposition Oussar and Dreyfus [2000]. The above parameters are updated via
a gradient descent method to minimize the cost function

Jθ = ‖ f̂ (t)− f (t)‖2. (26)

Multiple techniques exist to design the architecture of such wavenets. One technique is to replace
the existing transfer function of a neural network (usuallysigmoid or signum functions) with a
radial basis wavelet. Another approach for integrating these two ideas is to use the wavenet as
a preprocessing filter for the non-linear ANN identifier. An example of this type of network is
shown in Figure 2, which was used by Angrisani et al. [1998] toidentify transients in power
signals. This approach was taken in the current research to design wavenets for feedback flow
control applications.

The fundamental WN structure used for this approach to modelthe system in Equation 22 is

â j(tk|Θ j) = (Θ j − r)PL
︸ ︷︷ ︸

linear

+
n

∑
i=1

asi f
(
bsi(Θ j − r)Q−csi

)

︸ ︷︷ ︸

scaling block

+
n

∑
i=1

awi g
(
bwi(Θ j − r)Q−cwi

)

︸ ︷︷ ︸

wavelet block

+d (27)

wherer is the mean of the regression vector,P is the linear subspace,L are the linear weights,Q is
the nonlinear subspace,asi are the scaling block coefficients,bsi are the scaling block dilations,csi

are the scaling block translations,awi are the wavelet block coefficients,bwi are the wavelet block
dilations,cwi are the wavelet block translations.
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Figure 2: Training method for Wavenet ARX system which updates frequency and ANN parame-
ters during single back propagation iteration Angrisani etal. [1998].

Moreover,f(x) is the scaling function. Here, the scaling function was chosen to be a class of
radial basis function such that

f(x) = e−
1
2‖x‖2

2 ∋ f : Rn → R. (28)

Likewise,g(x) is the wavelet basis, which is also a radial basis function inthe form

g(x) =
(
‖x‖0−‖x‖2

2

)
e−

1
2‖x‖2

2 ∋ g : Rn → R. (29)

Examples of these basis functions are shown in Figure 3. Notice that these are continuous functions
with defined derivatives over an infinite domain.

The linear and nonlinear subspace matrices (P andQ, respectively, in Equation 27) were initial-
ized by a principal component analysis based on an optimal representation of the system linearities
in the linear block as well as the nonlinear block. Given a setof initial parameters for the WN,
the model simulation was performed and the global error of the training data was determined as
a j(t)− â j(t). The parameters of the WN were then updated via a gradient descent method to
minimize the error.

A graphical representation of this network is shown in Figure 4. The regression vector is
presented to the three blocks as discussed above. The network simulates the estimated output for
the entire training set, computes the error and updates the network parameters in Equation 27.
Wavelets as a set of basis functions, represented in Equation 27, allow for a basis which represents
a variable frequency domain (by the adjustment of the dilation parameter,bwi ). The frequency rich,
nonlinear limit cycle behavior of the two dimensional shearlayer was accurately represented by
the set of wavelet basis,[(g)(x)( f )(x)], as shown below.

A number of parameters needed to be determined to find a suitable wavenet model which
accurately represented the density states of the flow field. The first parameter was the composition
of the regression vector,Θ j . This regression vector was composed of previous time histories of
simulated mode amplitudes and current and previous inputs to the system. The total time history
encapsulated by the regression vector determined the amount of memory the model had. However,
large regression vectors drastically increase training times and may possibly increase the final
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Figure 3: Example of wavelet transfer functionsf (x) for given scaling, dilation, and translation
parameters.

Figure 4: Graphical representation of the current wavenet approach for identifying the evolution
of time coefficients. Back propagation was used to update parameters in Equation 27 in a least
squares fashion.
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simulation error. For periodic systems, typical time histories should approximately include one
fourth of a period of the predicted output.

4.2.4 Feedback Control

4.2.4.1 State Estimation The estimator design process is extremely important. The main idea
is described in?. The state estimator will relate an array of surface mountedsensor signals, de-
fined asp(xs, t), to the flow state which is modeled by the time coefficients of aPOD truncation
(af

j (t) in equation 17) (Note: thef superscript designates that the parameter wasin flow and thes

superscript designates that the parameter wason surface). The goal here is to take an experimen-
tally feasible number of surface mounted sensors (pressuretransducers for example) and through a
mathematical modeling technique, formulate a mapping of sensor signals to the flow state. Having
access to the current flow state allows for state feedback flowcontrol. The process to developing
this mathematical relation is describe below.

4.2.4.2 Sensor PlacementA heuristic approach to sensor placement is used in this study. Lo-
cations correlated spatially to desired flow features (e.g.vortex shedding, vortex pairing, boundary
layer growth, separation points, etc.) are chosen and defined as (xs) within the numeric simulation.
A surface POD analysis,

p(xs, t)≃
k

∑
p=1

as
p(t)ϕs

p(xs), (30)

yields surface POD modesφs
p(xs). The resulting locations of the maxima and minima of the sur-

face modes show where the largest variability of the signal occurs; hence, they indicate preferred
locations for sensorsCohen et al. [2003b]. The corresponding surface POD analysis allows for the
reduction of the number of sensors needed to accurately estimate the surface POD mode ampli-
tudes.

The surface time coefficients (a linear pre-filter) are then computed by solving forap(t) in
equation (30), given a particular simulation, using

as
p(t) = p(xs, t)ϕs

p
−1(xs). (31)

The matrixϕs
p(xs) provides the linear subspace, withdim(as

p(xs))≤ dim(xs), on which the sensor
signals are projected. The state vector is then given by

θ(xs|t) =

[
p(xs, t)ϕs

p
−1(xs)

p(xs, t)

]

, (32)

which will be estimated using state estimation methods. Theestimator will yield a model for the
POD time coefficients in which the flow state is estimated by the linear or non-linear mapping of
the state vector through the functionG,

af
j (t)≃G(θ(xs|t)). (33)

In the following, the most prevalent estimation techniquesfor feedback flow control are outlined.
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4.2.4.3 Linear Stochastic Estimation Linear stochastic estimation (LSE) is chosen as the
baseline estimation method. Since flow fields of interest aretypically highly non-linear, the perfor-
mance of this method usually tends to be poor. The LSE method is also a static estimator, meaning
no time histories of the sensor signals are used to improve the mapping performance. Nevertheless,
a linear analysis is always important because it serves as a benchmark comparison for the more
complex, non-linear system ID methods. For the LSE method, the estimated state ˆaf

j (t) is obtained
from a linear mapping through matrixL whereL ∈ Rn×m with m is the dimension of the sensor
measurements,n the dimension of the state space. The LSE operator is given by,

âf
j (t) = Lθ(xs|t). (34)

The observation matrix,L, is obtained by correlation of the data, such that

Li j E(θ(xs|t)iθ(xs|t) j) = E(af
i (t)θ(xs|t) j), (35)

whereE(.) is the expected value. This can also be written as,

L = BA−1 whereB= E(af (t)θ(xs|t)
T) andA= E(θ(xs|t)θ(xs|t)

T), (36)

Noting that the span ofL is limited to the number of sensors. Likewise, the number of states must
be smaller than the number of sensors for this estimation method. This method allows for very
quick computation and simple set up within simulation and experimental settings. LSE is highly
sensitive to noise and requires a large array of sensors to provide accurate estimates.

4.2.4.4 Artificial Neural Network Estimation Artificial neural network estimators (ANNE)
are a powerful non-linear system identification methodCohen et al. [2007]. A two layer feed for-
ward network is used in this study to map the sensor signals tothe current flow state. The first layer
implements thetanh transfer function while the second layer consists of linearneurons. Previous
time histories of the sensor data are used in the ANNE effort such that the estimation is autore-
gressive (AR). The regression vectorx is formulated by concatenating current and previous state
vectors,

x(t)≡








θ(xs, t)
θ(xs, t− t1)

...
θ(xs, t− tn)







. (37)

The regression vector is then presented to the network whichcan be written as

âf
j (t) =WO tanh(WI x(t)+bI)+bO, (38)

whereWI ,WO are the input and output matrices, respectively, andbI andbO are the input and output
biases. During network training, the global error for a given training data set is estimated and the
weighting matrices along with the bias weights are updated via the gradient descent method to
minimize the estimation error.
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4.2.4.5 Wavenet Estimation Wavenet estimation (WNE) methods combine the network archi-
tecture of the above ANNE method with wavelet basis functions. Wavenets were first introduced
by Zhang et al. and have been applied to many areas such as functional approximation, system
identification, adaptive control, and non-linear modelingand optimization.Zhang and Benveniste
[1992], Zhang et al. [1995], Chen and Bruns [1995], M.M. Polycarpou and Weaver [1997] Multiple
techniques exist to design the architecture of such wavenets. One technique is to replace the trans-
fer functions of a neural network with a wavelet basis function. Another approach for integrating
these two ideas is to use the wavenet as a preprocessing filterfor the non-linear artificial neural net
(ANN) identifier. In this research, a combination of these two methods is used. The model struc-
ture is decomposed into three blocks, a linear block, a preprocessing scaling block, and a wavelet
block. The AR model is then trained to accurately estimate the frequency rich, highly non-linear
POD modal amplitudes. The fundamental WN structure to modelthe systemaf

j (t) =G(x(t)) is

âf
j (t) = (x− r)PL+

n

∑
i=1

asi f (bsi(x− r)Q−csi )+
n

∑
i=1

awi g(bwi(x− r)Q−cwi)+d, (39)

wherer is the mean regression vector,P is the linear subspace,Q is the non linear subspace,L
are the linear coefficients,ani are the wavelet coefficients,bni are the wavelet dilations,cni are the
wavelet translations, andf(x) is the scaling function. In this investigation, the scalingfunctions
were chosen to be a class of radial basis function such that

f(x) = e−
1
2‖x‖2

2 ∋ f : Rn → R. (40)

Likewise,g(x), the wavelet basis, is also a radial basis function of the form

g(x) =
(
‖x‖0−‖x‖2

2

)
e−

1
2‖x‖2

2 ∋ g : Rn → R. (41)

The linear and non-linear subspace matrices (P andQ, respectively, equation 39) are initialized
by a principal component analysis based on an optimal representation of the system linearities
in the linear block as well as the non linearity block. Given aset of initial parameters for the
WN, the model simulation is performed and the global error ofthe training data is determined
asa j(t)− â j(t). The parameters of the WN are then updated via a gradient descent method to
minimize the cost function

Jθ = ‖af
j (t)− âf

j (t)‖
2. (42)

4.2.4.6 Adaptive Control A feedback law needs to be developed to control the model as seen
in (99). This equation is written again as follows,

{
ȧ(t,u) = G(a(t,u))
ρ(x, t)≃ ϕ(x|u)a(t,u) (43)

The WNARX model estimates a given flow state based on forcing input and dynamics of the system
as seen by (27). The closed loop goal is to regulate (i.e. force a particular state to zero); thus,
reducing active vortex shedding and achieving a desired closed loop flow state. Direct adaptive
control law was chosen to close the loop. This method of control allows for unforseen uncertainties
when scaling the controller up to feedback CFD simulations and experiments.
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The ROM in (27) allows for relatively short simulation timesto pre-condition an adaptive
controller. Adaptive control theory demands a linear system to prove stability. The model in (27)is
highly non-linear. Linearizing would lose many of the flow effects which were desired in the model
in the first place. To develop an adaptive strategy, satisfy stability and bounded trajectory issues,
the model can be written as, {

ẋ = Ax+Bu
y =Cx

(44)

Even though flow fields are highly non-linear and linearization is often a poor approximation, there
is still information to be learned from the linear model. Suppose the adaptive control goal is to have
the output of the plant go to zero, commonly known as output regulation, that is

y−−→t→∞0. (45)

Suppose there exists aG∗ which moves the system along some ideal trajectory, such that the closed
loop system can be written as

ẋ = (A+BG∗)
︸ ︷︷ ︸

Ac

x. (46)

Of courseG∗ is unknown so assume that G can be composed into an ideal portion with a pertur-
bation, that isG = G∗+∆G. The system input then becomesu = G∗y+∆Gy. The closed loop
system then appears as, 





ẋ = Acx+B∆Gy
︸︷︷︸

w
y =Cx

(47)

Here a Lyapunov energy function can be defined asV(x) ≡ 1
2xTPx with P a positive definite,

symmetric matrix. The derivative along a trajectory is given byV̇(x) =∇V f(x) = xTP[Acx+Bw].
With some algebraic manipulation the following relation can be found,

V̇(x) =
1
2

xT [PAc+AT
c P

]
x+xTPBw. (48)

The famous Lyapunov equation is seen here

PAc+AT
c P=−Q, (49)

which states that if a solution (−Q) to the matrix equation above exists then the derivative along
trajectories will be less than zero (V̇(x) ≤ 0) and the resulting equilibrium point will bestable.
Equation 48 can be expressed as,

V̇(x) =−
1
2

xTQx+yTw with PB=CT . (50)

This energy function obviously shows a dissipation term (−1
2xTQx) and a generation term (yTw).

The goal of our adaptive system will be to cancel out this external power term with feedback
control. That is∆G needs to be designed such that theV̇(∆G) =−yTw, to ensure we have a stable
system.

V̇(x∆G) = V̇(x)+V̇(∆G) =−
1
2

xTQx+yTw−yTw ≤ 0 ∀ x. (51)
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Define a new energy functionV(∆G) ≡ 1
2tr(∆Gγ−1∆GT) with γ > 0. The derivative along

trajectories is calculated to be
V̇(∆G) = tr(∆̇Gγ−1∆GT). (52)

Now, it was found to be thaṫ∆G=−yyTγ so that,

V̇(∆G) = tr(−yyTγγ−1∆GT) =−tr(−yyT∆GT) =−tr(wTy) =−wTy. (53)

Which satisfies our condition in Equation 51. In summary adaptive feedback control will be stable
if the following criteria is satisfied.

∥
∥
∥
∥

PAc+AT
c P=−Q

PB=CT (54)

These conditions are also satisfied if the system is strict positive real (SPR) with no non-minimum
phase zeroes. Simply written as,

ASPR⇐⇒CB> 0&Minimum phase open loop system (55)

This process is done exactly the same for discrete time systems; the only difference is that for
strict positive realness, the so called Kalman-Yacubovic equations Fuentes and Balas [2000] must
be satisfied. Which are (for someε > 0),

ATPA−P=−Q=−
(
2εP+LTL

)

ATPB=CT −LTW
D+DT =WTW+BTPB.

(56)

The main difference here is that the D term cannot be zero for strict positive real discrete system.
The analysis above for continuous time is analogous to the discrete time system.
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5 Applications

5.1 Cylinder Wake

The DPOD ANN-ARX adaptive control design approach was first successfully used on a much
simpler flow field, the cylinder wake. The overall goal of thisproject was to actuate the cylin-
der through an oscillating displacement to reduce the Von-Kárman vortex street. Decreasing the
strength of these vortices reduces the amount of energy put into the wake of the flow; thus, mini-
mizing the drag upon the cylinder. This project was taken from theoretical formulation to numerical
simulation to reduced order modeling techniques to experimentation validation. The cylinder wake
allowed for a benchmark flow for the development of this dynamic model/control design approach.
More comprehensive results can be seen in Fagley et al. [2009], Siegel et al. [2008].

The Von-Kárman vortex street creates an oscillating lift force on the cylinder. This lift force
well represents the natural vortex shedding frequency and strength. The natural shedding frequency
for this wake was approximately 5.6 Hz. Figure 5 shows a forcing simulation, with a frequency
equal to that of the natural shedding frequency, of the cylinder wake in which the forcing was
started at exactly 180o out of phase from the lift force. As seen in the figure, the liftforce goes
through a transient period whilst the drag decreases. The flow then begins to lock in with the
forcing and the drag returns to the initial value. This transient phenomenon is important to see
because it shows that open loop forcing can produce a desirable flow state for a short period of
time; thus, giving feedback control a promising outcome.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

 

 
Displacement [y/D]
Drag [N]
Lift [N]

Figure 5: Actuation of cylinder wake 180o out of phase. The resulting transient period is seen
between 3.25 to 4s. The reduction of drag is directly relatedto the magnitude of the limit cycle of
the lift force.

Forcing parameter cases as seen in Figure 8 were simulated with CFD software such asCobalt
Solutions. The simulations were then put through the DPOD process. TheDPOD spatial modes
are seen in Figure 6 and the DPOD time coefficients are seen in Figure 7. The spatial modes
in the first column of Figure 6 are themain modes, that is they are a result of the first POD
decomposition. The spatial modes in the second column of Figure 6 are theshift modeswhich
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Figure 6: A transient forced DPOD spatial mode set using one shift mode for each main mode, the
first 3 x 2 DPOD modes are shown. Iso-contours of streamwise velocity are shown, solid lines are
positive, dashed lines negative.

show the transient affect as discussed above. The mode set was reduced to 3× 2 set based on
energy profile analysis. This mode set contains nearly 99.8%of the flow Siegel et al. [2008]. Once
the DPOD temporal and spatial mode sets are formulated, theyare validated for off design flow
cases. Errors for this validation are on the order of 0.5%→ 1%. This is a very acceptable range of
error percentages. Once the DPOD mode set is validated, the time coefficients, as seen in Figure 7,
for the selected training data are then concatenated and thedynamic ANN-ARX model is trained.
Choosing an adequate training data is an important modelingstep for feedback flow control. At
first training data in which the flow locked-in with forcing actuation was used to formulate the
model. This model had poor close loop dynamical behavior andthe training data needed to be
revised. More cases were added, as seen in Figure 8 and, more importantly, more transient cases
were added in which the flow field didn’t lock in with the actuation. These lower amplitude forcing
cases produced very long, non-linear transients. The modelthen accurately predicted closed loop
behavior as discussed later.

The neural network topology is an important factor for realizing the non-linear behavior of the
data to be identified. Typically, neural networks consist ofthree layers: input, hidden and output.
Activation functions are also determined for each of the neurons. The sigmoid function is the most
commonly used function due to the continuity of the functionfor back propagation derivation train-
ing algorithms. Other parameters are also important for thefunctionality of the network model.
The number of neurons allows the network to fit more complicated non-linear trends. Eventhough,
the more neurons a network contains the more likely the modelwill be overtrainedand poorly
simulate off-design data. Also, training times will be greatly increased. The number of past inputs
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Figure 7: Mode Amplitudesai j of the open loop forced simulationff0 = 1 and A
D = 0.25. Forcing

activated attT = 18 and stopped attT = 33, after 15 full forcing cycles.The first 3 x 2 DPOD mode
amplitudes are shown.
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Figure 8: Training data set used for ANN-ARX identification.Lower amplitude forcing near
natural frequency produced slow, large transients.
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Table 1: ANN-ARX 3x2 model parameters
Input # Past Inputs Sampling Delay Total Time History

Re Number 1 10 10
Actuator Position 4 2 8

a1,1 1 1 1
a2,1 3 8 24
a3,1 3 8 24
a1,2 1 1 1
a2,2 1 12 12
a3,2 1 12 12

and time histories of previous simulated outputs also is a crucial design factor. A new feature was
added which allows for a time tapped delay so everynth point will be sampled. This gives for
a much larger time history while keeping the number of inputslower which yields much shorter
training times. All of these parameters were adjusted, trained, and repeated until a proper model
was found. The parameters can be seen in the Table 1.
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Figure 9: Off design validation of ANN-ARX model. Forcing case for f− fo
f = 0 and y

Dcyl
= 10%.

Red lines show the simulation result of the model and the bluelines are the actual CFD data.

The model is also validated for off design actuation. As shown below in Figure 9, the 3x2 ANN-
ARX model does an excellent job of simulating the mode amplitudes for an off design actuation
case with forcing off− fo

f = 0 and y
Dcyl

= 10%.
The adaptive feedback control algorithm in section 2.2.1 was designed and modea2,1 was

fed back to the vertical cylinder position. Once the gain aggressiveness (γ) in equation 2.25 was
properly conditioned and correspondingly good results were seen with the ANN-ARX closed loop
simulation (i.e. reduction of modea2,1) were seen the same control algorithm was plugged into
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a CFD simulation. The CFD simulation shows qualitatively accurate results when compared to
the ANN-ARX model. Thus proving that the model does capture the close loop dynamics of the
cylinder wake flow field.
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Figure 10: Closed loop simulation of the 3x2 ANN-ARX model(left). CFD closed loop simula-
tion(right). Similar dynamics are shown between each of themodels.

The CFD simulation allows for the ability to analyze flow characteristics such as pressures,
velocities, densities, etc. Here the surface pressures of the cylinder can be integrated around the
surface to give resulting lift forces and more importantly drag force. Figure 11 shows a reduction
of drag on the cylinder up to 16%. Thus, proving the control development strategy successful for
simple flow fields.
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Figure 11: CFD closed loop simulation using direct adaptivecontrol. Drag force reduction (left)
and actuation input/cylinder position (right).
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5.2 Aero Optics

Aero-optical systems are designed for the transmission of light beams through aerodynamic flow
fields. For optical design purposes, the flow has to be considered as a time-varying optical ele-
ment due to density variations of the fluid in the beam path, which lead to changes in the optical
path length (OPL). The correlation between density fluctuations and variations in the gas refrac-
tive index, whose integral is the optical path length, is described by the Gladstone-Dale relation,
which states a linear relationship where the proportionality constant is the Gladstone-Dale constant
McMackin et al. [1997], Jumper and Fitzgerald [2001].

Aero-optical aberrations can be loosely grouped into two categories. The first, associated with
the large scales in the flow field, includes boresight (tracking) errors. Some of these errors could
be alleviated by current adaptive optical systems because of their relatively large length scales and
slow time scales. The second category includes errors such as beam spreading, scintillation and
reduction of resolution, contrast, etc., due to the small scale turbulent motion in the flow. Although
recently there have been some indications that the large scale motion can also cause errors typically
associated with small scales, this classification still seems appropriate. In the past, corrections for
these aberrations in aero-optical systems were based on compensation using optical components.
This approach led to the development of highly complex adaptive optical systems. While truly
impressive results have been achieved for telescopes used in astronomy, which have to correct for
aberrations due to the earth’s atmosphere, state-of-the-art adaptive optical systems have only met
limited success on airborne applications. To a large extent, this is due to the vastly different length
and time scales, compared to terrestrial astronomy applications, present on envisioned airborne
optical platforms. One of the problems is that all adaptive optical systems rely on mechanically
moving some component (usually a mirror surface) to adapt tobeam distortions due to the flow
field. Current systems are still limited in their bandwidth,frequency, and field-of-vision and are
unable to correct for disturbances of all length and time scales. The same limitations apply to wave
front sensors, and although new wave front sensors are beingdeveloped to analyze distortions in
aero-optical applications, they still suffer from limitations that make them only marginally usable
in environments comparable to the one in airborne applications Trolinger et al. [2005].

A relatively new approach to understanding and controllingthe optical aberrations observed in
applications is to look at directly controlling the flow fieldto minimize the strength of the structures
responsible for the optical distortions. If control is possible, and recent research Seidel et al.
[2005], Siegel et al. [2005a] has shown initial successes inthis research area, the aberrations could
be reduced, possibly overcoming a significant hurdle on the way to the implementation of airborne
optical systems. In this context, two fundamentally different ideas of flow control are currently
being explored. The first is open-loop active flow control (AFC), which introduces small amplitude
disturbances at sensitive locations in the flow, which will then be amplified using the flow’s inherent
instabilities and thus can lead to large global changes in flow behavior. The best known example
of this technique is the delay of separation on airfoils at large angles of attack by introducing
small disturbances upstream of the separation point that keep the flow attached by energizing
the boundary layer. However, even AFC is not able to react dynamically to changing operating
conditions. Furthermore, AFC relies on creating disturbances, which in the context of aero-optics
applications is detrimental to improving system performance. The problems outlined above led to
the development of a second idea for flow control: feedback (closed-loop) flow control. The key
components of the feedback system are flow sensors, the stateestimator, a controller module and
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the actuators. The information obtained from sensors, which observe instantaneous, localized flow
quantities, is analyzed in the state estimator. The reduceddata is then supplied to the controller
module to determine an output signal that is used to drive theactuators. It has been shown that
using feedback flow control, it is possible to achieve goals such as the suppression of the von
Kármán vortex street Siegel et al. [2005a] that are not achievable using active open loop control.
Also, feedback flow control is typically more efficient than active flow control due to its ability to
optimize the forcing input to match the current flow state. Furthermore, feedback flow control is
tolerant against environmental changes, since it senses the actual, instantaneous flow field rather
than operating on assumed states. And finally, because feedback control is used on demand, it does
not have a detrimental effect in other flow regimes. These properties make feedback flow control
superior to active flow control despite the increased complexity.

For the aero-optical problem, two different approaches forimplementing AFC have been in-
vestigated to date. The first, developed by Jumper and co-workers [see e.g. Gordeyev et al., 2005],
is based on the idea that regularizing the flow will yield a flowfield that is more deterministic
with respect to its unsteadiness. This is achieved by forcing the flow with a known disturbance
signal (frequency, phase, and amplitude). The knowledge ofthe resulting structure of the flow
field, including the (approximate) strength and phase of thelarge, most optically active struc-
tures, simplifies the task of the adaptive optics system, which targets the now known distortions.
While this approach has been shown to yield good results, it also strengthens the large structures,
which is counterproductive when the goal is to minimize their optical aberrations. The second
approach, which was developed by Glezer and co-workers Oljaca and Glezer [1997], Vukasinovic
et al. [2004], hinges on the observation that the large, and therefore low frequency, coherent struc-
tures in the flow field can be destroyed by high frequency forcing. Although they have shown
successful reduction of the large structures and their associated optical distortions, it stands to
reason that increasing the energy contained in the small structures is detrimental to the optical
performance because it strengthens exactly those structures that provide the high frequency, small
scale aberrations that are outside the realm of correction of current adaptive optical systems.

In contrast to the above mentioned open-loop AFC research, feedback flow control was used in
this project to control the unsteady structures in the flow field. The underlying assumption is that if
the large, coherent structures can be successfully weakened, their aberrations will diminish as well.
In addition, when energy is extracted from the large structures, the energy available to create small
scales is diminished, delaying the development of turbulence. This notion has been successfully
demonstrated for the Kármán vortex street, where successful control of the shedding frequency
also yielded an amplitude reduction in higher harmonics Siegel et al. [2003a, 2005a]. It is this
combination of effects that holds the promise of successfully controlling the optical aberration due
to the flow over the aperture of airborne optical platforms.

As outlined above, systems currently in use suffer from aberrations that are outside the capabil-
ities of state-of-the-art adaptive optics systems. To alleviate the tasks to be borne by the adaptive
optical system has the potential to provide a highly sought after functionality. The renewed interest
in these systems, with much more stringent requirements foraccuracy, requires novel methods to
reduce the detrimental effect of the flow over the aperture.
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Figure 12: Turbulent shear layer Van Dyke [1982].

5.2.1 Technical approach

The core technologies for this aero-servo-optics project,aimed at reducing optical aberrations in
airborne platforms, were derived from a combination of the fluid dynamics, controls, and optics
research areas, with a strong emphasis on fluid dynamics and controls. The optical performance of
the proposed aerodynamic control system was judged using the well-known correlation between
the fluid density and index-of-refraction fields in gases. The underlying assumption was that as
long as reliable data of the density field is available (through simulations or experiments), a good
representation of the optical properties should be achievable.

From a fluid dynamics point of view, shear layers develop large, coherent structures due to
their inherent inviscid instability. As shown in Figure 12,there are several stages in this devel-
opment. First, large, laminar, S-shaped structures are generated behind a splitter plate. After the
initial growth of these structures, smaller structures develop due to further instability mechanisms,
eventually leading to small scale turbulence. However, as shown in the figure, even when the flow
is turbulent, the large coherent structures persist. It is these structures that are responsible for
the large boresight errors in aero-optical applications. However, because of their large size and
relatively low frequency, an adaptive optical system can correct for their effect if their amplitude
and phase are known. Another important aspect to note in Figure 12 is that the turbulent motion
develops as a consequence of the primary flow instability that creates the S-shaped shear layer
structures. This is in accordance with observations of the energy cascading from large to small
scales Pope [2000].

For the aero-servo-optics project, this energy cascade is of crucial importance: If feedback
flow control is able to reduce the strength of the primary shear layer structures, it follows that
there is less energy in these disturbances and therefore less energy is available to generate small
scale turbulent structures, resulting in significantly reduced optical aberrations on all scales. An
effect similar to the one outlined above, namely the reduction of the amplitude of high frequency
disturbances by controlling a lower frequency, has been observed in low Reynolds number wake
flows Cohen et al. [2003a].

There were certain aspects of the investigations that lent themselves to investigations using
simulations, while other aspects were explored more easilyand efficiently in the experiment. For
example, only small portions of the flow can be measured simultaneously in the experiment since
the sensing options are limited. Thus, meaningful sensor locations can be derived much more
easily from simulation results since the entire flow field data with all its variables is available.
However, in order to vary flow and actuation parameters, a newsimulation needs to be performed
for each set of parameters, with the associated cost and timerequirements. In contrast, once the
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experimental hardware is in place, flow and actuation parameters can be varied easily and quickly.
Thus this type of investigation is best performed using experiments. In summary, by using both
experiment and computation in parallel, the fastest possible progress was achieved.

To provide an overview of the feedback flow control design cycle used in this research project,
Figure 1 shows the main building blocks in the process. The development started with building a
database of flow states based on CFD simulation results. First, the natural (i.e. without any control
input) flow field was simulated. Then, a number of simulationswere performed where periodic
blowing and suction was used to introduce disturbances at a given frequency and amplitude into
the flow (see Section 5.2.2.4). The results of all these simulations were analyzed using Proper
Orthogonal Decomposition (POD), which resulted in POD spatial modes as well as the POD time
coefficients for each time step of all simulations.

These POD modes and time coefficients were then used for the development of a reduced order
model (ROM). In the present effort, a wavenet ARX topology was chosen (see Section 4.2.2.1).
Once the model performance was validated against the original CFD data, state-of-the-art feedback
controller design tools were used to develop a controller. Iterative testing (iteration loop “1” in
Figure 1) lead to a controller design that achieved the predefined control goal of minimizing the
optical distortion for a given aperture.

In addition, the POD spatial modes were scrutinized for flow state estimation purposes. Sensors
placement studies, which were used to determine the number and locations of flow sensors, were
performed using the computed flow quantities on the wall behind the backward facing step (see
Section 4.2.4.2). With the sensors chosen, a flow state estimator was developed. This estimator
determined theglobal flow statebased on the sensor readings, i.e. it established field data from
only the sensor information.

At this stage, the flow state estimator and the controller were introduced into the CFD simu-
lations and feedback controlled simulations were performed. The results of this simulation were
scrutinized to investigate the effect of the control input on the flow field, as well as their effect on
the overall figure of merit, the OPD. As indicated in Figure 1,multiple iteration paths were open at
this point. Path “2” in Figure 1 could be taken if the results indicated that the controller, designed
using the wavenet model, is not performing well. It could also be possible that the findings indi-
cate problems with the wavenet itself, which would be remedied using iteration path “3”. Finally,
the research design is flexible enough to also allow inclusion of feedback controlled data into the
POD database to improve the fidelity of both model and controller development. All steps outlined
above will be described in detail in this report.

5.2.1.1 Basic flow parameters Several parameters had to be considered to arrive at flow con-
ditions that on the one hand result in large enough (i.e. measurable) density changes, but that, on
the other hand, do not result in vortex shedding frequenciesthat were too high to be measured suc-
cessfully. In addition, the slower the flow, the easier it is to implement a feedback control system.
These considerations resulted in the following key experimental parameters:

• Mach number Ma= 0.3 at the inflow

• Step height H= 0.15m

• Free stream velocity at stepU∞ = 140m/s
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5.2.1.2 Optical definitions The optical properties of the fluid forming the shear layer behind
the backward facing step were evaluated based on the Gladstone Dale relation

n(x,y,z, t) = 1+kGDρ(x,y,z, t), (57)

wheren is the fluid’s index of refraction,kGD is the Gladstone-Dale constant,kGD = 2.289×
10−4m3/kg, andρ is the fluid density. The optical path length (OPL) can be obtained by integrating
the index of refraction along the beam path,L,

OPL(x,y,z, t) =
∫ L

0
n(x,y,z, t) dl = L+kGD

∫ L

0
ρ(x,y,z, t) dl. (58)

Since the differences in OPL over a given aperture are typically on the order of the wave length of
the beam, it is common to express the wave front distortion asthe optical path difference (OPD),
which is defined as the local, instantaneous OPD minus the spatial mean over the aperture. As-
suming the beam propagates in the y-direction, this can be expressed as

OPD(x,z, t;y) = OPL(x,z, t;y)−OPL(x,z, t;y)
xz
. (59)

These equations were used when analyzing the CFD results because the density fieldρ(x,y,z, t) is
computed directly from the governing equations.

5.2.2 Numerical Simulation

The exact geometry for the simulations of a free shear layer was developed in conjunction with the
design of the experiment. Comparisons to experimental dataperformed at USAFA aeronautics lab-
oratory of the unforced flow field data were performed to validate the accuracy of the simulations
and to judge the necessary grid resolution to resolve the relevant flow features. In particular, the
optical path difference (OPD) was used as the main optical figure-of-merit. It should be noted that
once a time accurate, spatial density distribution is available from the computations, calculating
the index of refraction field and the resulting OPD is possible with a small computational effort
compared to the CFD simulations. During the course of this study, Mani et al. [2008] published
an article outlining the resolution requirements determined by their aero-optical simulations. They
concluded that the resolution requirements for an aero-optic simulation match the ones for a well
resolved LES simulation.

To build a database of flow states that would be used to define the reduced order model for
the flow field, unforced simulations were performed first. In asecond step, open loop active flow
control (AFC), which in the simulations was implemented using an externally controlled blowing/-
suction boundary condition (see below), was studied and thedata was added to the development
cycle of the database. These forcing cases were particularly valuable for describing the transient
flow features present during the initial development of the open loop forced shear layer as well
as the vortex pairing that occurred when forcing was initiated. The results from the simulations
provided a comprehensive database of the free shear layer, which was used to develop feedback
control strategies as well as to compare the effectiveness of feedback control applied to the aero-
optics problem.
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(a) 2D Grid (b) B/S slot

Figure 13: a)Two-dimensional CFD grid. b) Grid at the step showing the blowing/suction slot.

5.2.2.1 Grid generation The experimental ramp geometry was used in the simulations.The
grids for the simulations were generated using the SimCenter software developed at Mississippi
State University Marcum and Weatherill [1995]. Since the geometry is essentially two-dimensional,
a planar grid was generated first and then this grid was extruded in the spanwise direction. The
step height wasH = 0.15m, and the ramp lengthLR= 0.85m. To ensure that no disturbances reach
the outflow boundary, the domain length wasLx = 4m downstream of the step. The domain height
matched the experimental setup in the USAFA wind tunnel,Ly = 0.85m.

The main difference to the experimental geometry was that the forcing chamber (see Figure 19)
was not included in the simulations. Instead, only a short section of the slot (b= 1mm) was mod-
eled and a blowing and suction boundary condition was applied at the base of the slot. Figure 13
shows the final two-dimensional grid. A zoomed view of the step with the blowing/suction slot is
given in Figure 13. The grid spacing at the step was defined to be ∆x= 0.1mm. This grid contains
approximately 58,000 nodes and 90,000 elements. Grid clustering was used on the bottom wall
and in the region of interest in the free shear layer. In orderto resolve the blowing and suction slot
geometry, the grid also had to be refined near the step edge. The boundary layer grid spacing was
chosen such that the finaly+ value at the step wasy+ ≃ 1.

For the three-dimensional simulations, this grid was extruded in the spanwise direction. The
spanwise step size was chosen as∆z= 1mm. Solutions at various domain widths (Lz/H = 1,2,3,4)
were computed to ensure that the pertinent shear layer dynamics were captured in the simulations.
Figure 14 shows the geometry for the caseLz/H = 2.

In addition to the grid for the CFD simulations, a grid for thebeam propagation was devel-
oped. The beam domain size was chosen as 0< x/H < 3, −1 < y/H < 0.5, and spanned the
whole spanwise domain, which represents a sufficiently large domain to investigate various optical
apertures while being able to maintain reasonable resolution. 46× 81×41 points were used in
the x-, y-, and z-directions, respectively. The grid was designed as a structured grid with one grid
direction aligned with the predominant beam direction. This approach facilitated the computation
of the OPL and OPD (see Equations 58 and 59) since the path integral was along grid lines. For
the interpolation of the CFD data onto the beam grid, the ’tap’ capabilities in COBALT were used.
Taps were initially designed as measurement locations, butfor the current research, using taps to
extract the flow field on the beam grid ensured that the numerical methods for integration of the
Navier-Stokes equations and interpolation were consistent.
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Figure 14: Three dimensional domain with CFD grid,Lz/H = 2.

5.2.2.2 Results Figure??shows the comparison of the mean flow u-velocity profiles atx/H =
0,0.5,1,2,3,4 obtained from experiments (symbols) and simulations (lines). The separating bound-
ary layer had a thickness ofδ99 ≃ 8mm, which for a fully turbulent boundary layer corresponds
to Reθ ≃ 8500. As the shear layer develops, at downstream positionsx/H < 2, the shear layer in
the simulations is not spreading as quickly as measured in the experiments. Further downstream
at x/H = 3 the profiles are in very good agreement and atx/H = 4 the simulation results show
a slightly larger shear layer thickness. This increased spreading rate in the simulation data was
attributed to the behavior of the DES turbulence model as theseparating flow transitions from a
RANS based boundary layer calculation to a Large Eddy Simulation. The initial lack of structures
in the flow led to reduced shear layer growth. As the structures developed, the growth rate matched
the experimental and theoretical results well, but furtherdownstream, the grid resolution is insuffi-
cient to maintain the coherent structures in the flow and numerical diffusion results in an increased
spreading rate.

Instantaneous results of the simulations are show in Figure15. In Figure 15a, the flow struc-
tures are visualized using an iso-surface of the Q vortex identification criterion Jeong and Hussain
[1995] colored by pressure. At this instant, the shear layer(Kelvin-Helmholtz) vortices are starting
to form approximately one step height downstream of the separation point, with increased span-
wise coherence one wavelength further downstream. The instantaneous isosurface of density is
shown in Figure 15b. Comparing the Q-vortex structures withthe density isosurface shows that
there is a very strong correlation.

Furthermore, it is interesting to note that the density isosurface shows only the large scale struc-
tures while suppressing the smaller scales at the step as well as in the recirculation region below
the shear layer. This is due to the deeper “pressure well”, and the concomitant drop in density,
inside the largest structures. For feedback flow control that targets the coherent motion in the shear
layer, this behavior of the density field is highly desirablebecause density behaves like a filter
and density isosurfaces identify the flow structures of interest. In addition, since the optical path
length is a linear function of density, density is in fact thequantity of interest for the aero-optics
problem. This is shown in Figure 16, where the flow structures, identified using the Q-criterion
Jeong and Hussain [1995], are shown in grey and the OPD is plotted in color at the top of the beam
grid. Comparing the OPD results and the density isosurface plotted in Figure 15 shows a strong
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(a) Q= 2 ·106 1/s2 isosurface. (b) ρ = 0.95kg/m3 isosurface.

Figure 15: Instantaneous representation of the structuresin the flow field. Iso surfaces colored by
pressure.

Figure 16: Instantaneous flow structures visualized using an isosurfaceQ= 5 ·105 1/s2 and OPD
(color).

correlation between the “valleys” in the wave front (negative values of OPD shown in blue) and the
location of the flow structures. The initial vortex sheddingfrequency for the shear layer can be esti-
mated from theory based on St= Fθ/U∞ = 0.012 Hasan [1992] to beFn ≃ 2000Hz. Using probes
at y/H = 0 and various streamwise positions, the frequencies with the highest amplitudes ranged
aroundF ≃ 400Hz (Figure 17), indicating that vortex pairings had occurred upstream of the probe
locations [see Seidel et al., 2009, for more details]. Whilethe total simulation time was too short
for a detailed spectral analysis, the results provided a good indication of the frequency of the natu-
rally occurring structures. The results were also in good agreement with the results obtained from
the experiments. Because the extent in the streamwise direction spanned by the density probes was
commensurate with the area of interest for optical performance, this frequency provided an approx-
imate target frequency to investigate the effect of open loop forcing on the optically relevant shear
layer structures. To further analyze the flow field and the structures in the shear layer, the simu-
lation data was reduced using Proper Orthogonal Decomposition Sirovich [1987], Berkooz et al.
[1993], Holmes et al. [1996]. The u-velocity, v-velocity, and density were analyzed to examine
which of these quantities provided a meaningful representation of the flow structures with a focus
on the coherent structures in the shear layer. Figure 18 shows the first six spatial modes (plotted
in pairs to show the traveling vortex nature of the shear layer structures) and their corresponding
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Figure 17: Density spectra betweenx/H = 0 andx/H = 2.6. Unforced.

time coefficients for the full length of time available in thedata set. Figure 18a shows that the
u-velocity POD modes do not have any discernable spatial structure, which is also reflected in the
lack of a dominant frequency in the time coefficients (Figure18b). In contrast, the first two pairs
of POD modes of the v-velocity (Figure 18c and d) exhibit a distinct, highly coherent structure that
is indicative of traveling waves. The periodic character ofthe time coefficients corroborates that
these POD modes capture the vortex street in the shear layer.The same holds for the density POD
modes (Figure 18e and f) that identify the shear layer structures and their spanwise distortions. It
is interesting to note that the POD of both the v-velocity anddensity show the strongest peaks in
the shear layer while the smaller scales in the recirculation zone below are suppressed; in contrast,
the u-velocity POD modes include these structures. Furthermore, the dominant mode pairs of both
the v-velocity and density, modes 1-2 and 3-4, show the same frequency content but are not pe-
riodic, corroborating the fact that the spectral peak around the dominant frequency is very broad
in the natural flow. Another important point to note is the strong spanwise coherence of modes
1-2 of both the v-velocity and density. This indicates that the dominant structures, as measured
by the magnitude of the singular values obtained from the PODprocedure (not shown), are indeed
spanwise “rollers”, even in the unforced, three-dimensional flow. Forcing, as described in the next
section, only increases this spanwise coherence.
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Table 2: Summary of computed forcing cases.
400Hz 600Hz 800Hz 1000Hz

A/U∞ = 0.3 x x x x
A/U∞ = 0.2 x x x x
A/U∞ = 0.1 x x x x
A/U∞ = 0.05 x x x x
A/U∞ = 0.01 x x x x

While this POD analysis was not exhaustive (other quantities, e.g. vorticity, could be analyzed),
it showed that either the v-velocity or the density are well suited for developing a reduced order
model for control purposes for this research program. From an aero-optics perspective, the den-
sity is clearly the best quantity for model and feedback controller development due to its direct
influence on the optical properties of the flow.

5.2.2.3 Actuation Since the forcing chamber was not part of the backward facingstep flow
geometry, it was modeled in a separate simulation to verify that the slot exit velocity was uniform
in the spanwise direction. The geometry model is shown in Figure 19a. The geometry included a
section of the backward facing step and extended approximately three step heights in the upstream
and downstream directions and to three step heights above the slot to ensure that the boundary
conditions do not influence the exhaust velocity distribution. In Figure 19a, the red circles indicate
the speaker exits. When the speakers are driven by a single frequency, periodic blowing and suction
results at the slot exit. The peak blowing stroke is shown in Figure 19b, where the color represents
the wall pressure in the forcing duct and the velocity is shown by arrows at the forcing slot exit. The
results indicate a slight spanwise pressure variation (∆p/p≃ 1%) from the center of the chamber
to its spanwise edges. The exit velocity is shown to be essentially uniform (the variations seen in
the figure are due to vectors in the slot boundary layer).

5.2.2.4 Open loop forcing Numerous open-loop forced simulations were performed to provide
data for the development of reduced order models for feedback flow control (see Section 5.2.3).
These open-loop data have to span the range in the amplitude-frequency parameter space that
will be utilized by the controller. To provide these data sets, simulations with different forcing
parameters have been performed and analyzed.

From the unforced data it was determined that the vortical structures in the shear layers nat-
urally occur atFn ≃ 400Hz atx/H = 2. This frequency formed the basis for a study where the
blowing and suction actuation was used in a frequency range from Ff = 400Hz toFf = 1000Hz
and an amplitude ranging betweenA/U∞ = 0.01 andA/U∞ = 0.3, resulting in the time dependent
blowing and suction velocityuf (t) = Asin(2π f t). A table of all the computed cases is given in
Table 2; representative results from this part of the investigation are shown in this section.

When forcing is applied atFf = 400Hz,A/U∞ = 0.1 (Figure 20), the density spectra taken
at the five downstream locationsx/H = 0,0.6,1.3,2,2.6 show that the flow initially amplifies the
forcing frequency throughx/H = 2. At x/H = 2.6, the amplitude starts to decay. In addition,
the first harmonic atF = 800Hz is amplified betweenx/H = 1.3 andx/H = 2. No subharmonic
frequency is discernable in the data. When forcing atFf = 600Hz,A/U∞ = 0.1 (Figure 21), the
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(a) (b)

(c) (d)

(e) (f)

Figure 18: POD modes and time coefficients for a),b) u-velocity, c),d) v-velocity, e),f) density.
Unforced case.
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(a) Geometry model (b) CFD results

Figure 19: Blowing and suction slot analysis. Pressure distribution in the blowing suction duct
(color) and velocity vectors at the slot exit.

Figure 20: Density spectra betweenx/H = 0 andx/H = 2.6, F = 400Hz,A/U∞ = 0.1.

fundamental is strongly amplified betweenx/H = 0 andx/H = 0.6 and decays downstream. In
addition, the first subharmonic frequencyFs = 300Hz is amplified as well and decays very slowly
downstream ofx/H = 1.3. Finally, forcing atFf = 800Hz,A/U∞ = 0.1 (Figure 22) shows the
largest amplitude response close to the slot of the three forcing cases and a rapid growth of the
fundamental. Downstream ofx/H = 0.6 it decays and the subharmonic starts to develop, indicating
vortex pairing in this region.

Performing POD on the density results in the modes shown in Figure 23 for a forcing frequency
of f f = 400Hz. In the figure, POD mode isosurfacesρ̂ = 0.005kg/m3 are shown. The dominant
modes 1 and 2 show the developing shear layer vortex street. Modes 3 and 4, which develop further
downstream, are representative of the spanwise distortionof the main shear layer structures. The
time coefficients, Figure 23c, clearly show the forcing frequency in modes 1 and 2.

For forcing atFf = 600Hz, the POD modes of density are shown in Figure 24 (the same
isosurface level as in Figure 23 is plotted). The development of the POD modes is similar to
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Figure 21: Density spectra betweenx/H = 0 andx/H = 2.6, F = 600Hz,A/U∞ = 0.1.

Figure 22: Density spectra betweenx/H = 0 andx/H = 2.6, F = 800Hz,A/U∞ = 0.1.
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(a) Modes 1 and 2 (b) Modes 3 and 4 (c) POD time coefficients

Figure 23: POD density modes and time coefficients,F = 400Hz,A/U∞ = 0.1.

(a) Modes 1 and 2 (b) Modes 3 and 4 (c) POD time coefficients

Figure 24: POD density modes and time coefficients,F = 600Hz,A/U∞ = 0.1.

theFf = 400Hz case, although the emergence of the modes was shifted upstream due to the higher
frequency, in accordance with theory Ho and Huerre [1984]. The time coefficients exhibit the
same behavior as in the previous case, but the subharmonic character of modes 3 and 4 is more
pronounced. Finally, forFf = 800Hz, the POD results are shown in Figure 25. The figure shows
that the vortical structures develop a very short distance downstream of the step (located at the
inflow boundary of the box shown in the figures), but the growthsaturates quickly and the highly
coherent structures begin to show three-dimensional distortions (as indicated by POD modes 3 and
4) further downstream. The time coefficients show that modes1 and 2 are the most periodic of all
investigated forcing cases and that modes 3 and 4 oscillate at the first subharmonic frequency. In
all cases, as pointed out for the unforced case, the density POD modes represent only the structures
in the shear layer and not the smaller scale motion in the recirculation region, which is beneficial
for the development of a reduced order model of this flow.

The optical properties of the flow field were analyzed using the beam grid described above. As
for the unforced case, the density field on this grid was integrated from the wall through the shear
layer and the effect of open loop, periodic forcing was assessed. Figure 26 shows instantaneous
plots of the flow structures and the OPD. There is a strong correlation between the structures in the
shear layer and the OPD results, as was observed for the unforced flow. However, when forcing
is introduced, the structures in the flow exhibit increased spanwise coherence due to the spanwise
uniform forcing.

The three-dimensional simulations described above all showed that the dominant dynamics
in the shear layer behind the backward facing step are essentially two-dimensional, at least in
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(a) Modes 1 and 2 (b) Modes 3 and 4 (c) POD time coefficients

Figure 25: POD density modes and time coefficients,F = 800Hz,A/U∞ = 0.1.

(a) Ff = 400Hz, A/U∞ = 0.1 (b) Ff = 800Hz, A/U∞ = 0.1

Figure 26: Instantaneous isosurface of flow structures and associated OPD for various forcing
conditions.
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the domain investigated in this research project. Especially the POD analyses showed this two-
dimensionality in the first pair of modes, which are representative of the most dominant structures
in the flow, the Kelvin-Helmholtz vortices. While three-dimensional effects cannot be discarded
for a complete description or reconstruction of the flow fieldfrom the POD data, it is posited
that for the development of feedback flow control strategies, a two-dimensional representation of
the flow captures the relevant physical processes. This allowed for drastically reduced simulation
times and more efficient use of the computational time available to the project.

To develop the POD mode database for reduced order modeling and controller design, there-
fore, the simulations above were repeated for the two-dimensional grid. The results obtained from
these simulations were comparable to the results describedabove. Most importantly, the natural
shedding frequency matched the three-dimensional results. This is a good indicator that the insta-
bility mechanism that results in the Kelvin-Helmholtz vortices was not negatively affected by the
reduction to two dimensions. A comparison for the forced simulations showed a slightly higher
amplitude of the fluctuations for the two-dimensional simulations. This was expected since these
simulations could be viewed as ideal in the sense that they provide perfect spanwise coherence.
Another way to think of these results is that the structures are infinitely long in the spanwise di-
rection. The increased coherence of the structures did not affect the initial development of the
shear layer targeted with feedback control. However, further downstream, where the structures
start to develop spanwise distortions in the three-dimensional simulations, the two-dimensional
simulations overpredicted the strength of the structures.

The two-dimensional simulations were performed on the gridshown in Figure 13. Simulation
results for the unforced or open-loop cases will not be shownhere; results for the validation of the
feedback control strategy are presented in Section 5.3.2.2.

5.2.3 Reduced Order Modeling

5.2.3.1 Numerical Reduction The procedure in section 4.2.2.1 was precisely followed and
the following results were detected.

The quantity of greatest concern in this project is the OPD, which, as shown in Equations 57-
59, is linearly dependent on the fluid densityρ(x, t). Substituting the POD decomposition ofρ
into Equation 57 yields

n= 1+KGD

m′

∑
i=1

ai(t)ϕi(x) (60)

and the OPL (Equation 58) can be calculated as

OPL=
∫

L
n(s)ds=

∫

L

[

1+KGD

m′

∑
i=1

ai(t)ϕi(x)

]

ds (61)

or

OPL= L+KGD

m′

∑
i=1

ai(t)
∫

L
ϕi(x)ds. (62)

The OPD is then computed from Equation 59 such that

OPD=

[

L+KGD

m′

∑
i=1

ai(t)
∫

L
ϕi(x)ds

]

−

[

L+KGD

m′

∑
i=1

ai(t)
∫

L
ϕi(x)ds

]

. (63)
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Simplifying this expression gives

OPD(x, t) = KGD

m′

∑
i=1

ai(t)

[∫

L

[

ϕi(x)−ϕi(x)
]

ds

]

(64)

where the OPD spatial modes are
∫

L

(

ϕi(x)−ϕi(x)
)

ds.

Comparing this result with Equation 17 shows that the OPD PODmodes can directly be de-
rived from the density POD modes by using the definition of theOPD. This is important because
the density is readily available from the CFD simulations. Furthermore, because of this direct re-
lationship, the minimization of the time coefficients of thedensity POD modes will be regarded as
the main control goal to regulate the flow to reduce OPD fluctuations using feedback flow control.

5.2.3.2 POD Parameter Study A large parameter study was carried out to determine an ap-
propriate means for numeric decomposition. The parametersconsisted of POD vs. DPOD, spatial
domain size, and also the data sets to be used in the decomposition. The spatial domains were
defined as

X1≡ 0≤ x
H ≤ 4 −1≤ y

H ≤ 1
X2≡ 0≤ x

H ≤ 21
3 −1

3 ≤ y
H ≤ 1

3
X3≡ 11

3 ≤ x
H ≤ 22

3 −1
3 ≤ y

H ≤ 1
3

. (65)

The three spatial domains (X1, X2, X3) adequately contain the optical aperture of interest, whose
center is located atx/H = 2. The domain size study helped to determine if limiting the amount of
information in the POD kernel has a detrimental effect on themodel.

A typical forcing input for a given frequency and amplitude is shown in Figure 27. The forcing
begins from the fully developed unforced flow computed fort < 0. The first five cycles of forcing
are defined as the opening transient in which the flow starts toreact to the forcing signal. The
flow then locks in to the forcing signal for the remainder of the duration of the forcing. When the
forcing is turned off, the flow undergoes an ending transientin which the flow shifts back into its
natural state. The data sets used for the POD/DPOD study were

D1≡ Forcing
D2≡ Forcing+Un f orced
D3≡ Forcing+Un f orced+Starting/EndingTransients.

(66)

The resulting POD/DPOD model was then validated using the caseFf = 600Hz,A/U∞ = 0.05,
which had been removed from the training data sets for model validation purposes. To quantify the
reconstruction error, the root mean squared error of the local and instantaneous density field was
computed as

εrms(t) =
[

(ρ((Xi), t)− ρ̂((Xi), t))2
]1/2

, (67)

or, expressed as a percentage of the mean density,

ε(t) =
εrms(t)

ρ((Xi), t)
. (68)

The parameters for the dataset study are shown in Table 3.
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Figure 27: Typical forcing input,u(t|F,A), for an open loop simulation. Case will undergo a total
of four defined stages. Starting transient (0≤ t ≤ 0.01), Locked in (0.01≤ t ≤ 0.025), Ending
transient (0.025≤ t ≤ 0.035) and unforced (0.035≤ t ≤ 0.05).

Table 3: Summary of parameters chosen for the POD dataset, spatial domain and method study.
Case Spatial Domain Data Set ε(t)

Di Ff [Hz] A/U∞ [%] POD DPOD
1 X1 D1 400, 600, 800 2.5, 5, 10 0.58% 0.55%
2 X2 D1 400, 600, 800 2.5, 5, 10 0.67% 0.52%
3 X3 D1 400, 600, 800 2.5, 5, 10 0.45% 0.37%
4 X1 D2 400, 600, 800 2.5, 5, 10 0.57% 0.45%
5 X2 D2 400, 600, 800 2.5, 5, 10 0.66% 0.46%
6 X3 D2 400, 600, 800 2.5, 5, 10 0.45% 0.35%
7 X1 D3 400, 600, 800 2.5, 5, 10 0.54% 0.42%
8 X2 D3 400, 600, 800 2.5, 5, 10 0.65% 0.44%
9 X3 D3 400, 600, 800 2.5, 5, 10 0.44% 0.33%
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The POD mode sets were truncated to 5 modes for POD and 5x2 modes for DPOD. Therefore,
DPOD was expected to perform better at reconstruction of thedensity field than POD. The error
values in the last two columns in Table 3 show the training data selection and spatial domain choice
did influence the reconstruction error. It decreased slightly for larger, more comprehensive data
sets. Also, the reconstruction error decreased proportionally to the spatial domain, suggesting that
by limiting the spatial domain size, certain flow features that do not contribute to the shear layer
physics under investigation, such as the recirculation zone, were neglected. Most importantly, the
errors indicate that it is crucial to retain as much information about the flow field as possible, shown
by the fact that the smallest errors were obtained using dataset D3, which includes the unforced
and forced data as well as both startup and shutdown transients. However, the main outcome of
this parameter study was that the reconstruction error was not a good way to quantify which mode
set to choose as the final numeric model. All of the error values were acceptable (< 1 per cent),
which would suggest that all these parameter combinations would be adequate.

Scrutinizing the differences between POD and DPOD providesinsight into the shear layer
dynamics as forcing is applied to the flow. From theory as wellas the experimental data obtained
in this project, it is well known that the shear layer is extremely susceptible to periodic forcing.
Due to the flow’s instability, small perturbations over a wide frequency range are amplified and
result in Kelvin-Helmholtz vortices [see e.g. Oster and Wygnanski, 1982]. The shift modes for
the DPOD mode sets (ϕi,2), shown in Figures 28, 31, and 34, model the transient changefrom
the natural shedding to a forced state, but the shift modes show a change in wavelength compared
their corresponding main mode, indicating that there was not a slow shift from the natural to a
forced state. The data suggested that for the shear layer, the flow response was different because
the frequency band in which lock-in occurs is much larger than for flows such as the cylinder wake.
As seen from these DPOD modes, the shear layer structures assume a different wave length when
forced at a given frequency. The transient behavior is extremely fast, thus making the underlying
concept of DPOD questionable. In addition, the spatial modes for the DPOD decomposition lack
physical relevance.

The POD models for cases 1, 6, and 8 are shown in Figures 29, 32 and 35, respectively. The
mode sets show the mean flow and the first 2 mode pairs. As expected, there is a distinct size/wave-
length change for the 2 mode pairs. The modes in the POD mode sets also look physically viable,
unlike the DPOD mode sets. Therefore, POD, not DPOD, was chosen as the preferred modeling
approach for the shear layer.

When the reconstruction error is evaluated as a function of time, as in Equation 67, DPOD
should better represent the flow field in the transient regions whereas POD should fail to model
these transitions from one flow state to another. Figures 30,33, 36 show that this was not the case.
In fact, the reconstruction error is smaller for the POD approximation than for the DPOD one. This
corroborates the assertion that the five supplemental shiftmodes were not really modeling transient
flow effects in the shear layer.
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Figure 28: Case 1: DPOD modesϕi j for parameters shown in Table 3. Left column: Main modes
ϕi1, right column: Shift modesϕi2.
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Figure 29: Case 1: POD modesϕi for parameters shown in Table 3. a) Mean flow mode, b) and c)
first fluctuating mode pair, d)-e) first harmonic mode pair.
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Figure 30: Case 1: (Top) Reconstruction error as a function of time of numerical model, (–) POD,
(– –) DPOD. (Bottom) Forcing signal for validation case. Transient period in flow field begins
around, lock in region tot = 0.03s, ending transient untilt = 0.035s where the natural flow state
occurs.
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Figure 31: Case 6: DPOD modesϕi j for parameters shown in Table 3. Left column: Main modes
ϕi1, right column: Shift modesϕi2.
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Figure 32: Case 6: POD modesϕi for parameters shown in Table 3.

The only parameter left to choose was the spatial domain. Thespatial domain sets were chosen
to be the entire flow field behind the step (X1), just the shear layer neglecting the recirculation
zone (X2) and the shear layer over the optical aperture (X3).Because the reconstruction error, as
shown in Table 3, did not provide a reliable criterion for which spatial domain was appropriate,
the domain was chosen on a physical basis. The first spatial domain, X1, limited the ability to
capture the dynamics of interest by retaining undesirable flow physics, such as the recirculation
zone, in the domain. As shown in Figure 37, the mode amplitudes obtained for the validation case
(Ff = 600Hz,A/U∞ = 0.10) showed some low frequency content, which originated most likely
from the recirculation zone. Figure 38, the corresponding data for domain X2, exhibits much more
periodic mode amplitudes, which are representative of the structures in the shear layer.
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Figure 33: Case 6: (Top) Reconstruction error as a function of time of numerical model, (–) POD,
(– –) DPOD. (Bottom) Forcing signal for validation case. Transient period in flow field begins
aroundt = 0.005s, lock in region tot = 0.03s, ending transient untilt = 0.035s where the natural
flow state occurs.
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Figure 34: Case 8:DPOD modes (ϕi j ) for parameters shown in Table 3. (a)(c)(e)(g)(i) Main
modes(ϕi1, (b)(d)(f)(h)(k) Shift modes (ϕi2).
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Figure 35: Case 8: POD modes (ϕi) for parameters shown in Table 3.

59 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

%
 E

rr
or

0 0.01 0.02 0.03 0.04 0.05
−5

0

5

Time [s]

A
/U

∞
 x

 1
00

Figure 36: Case 8: (Top) Reconstruction error as a function of time of numerical model, (–) POD,
(– –) DPOD. (Bottom) Forcing signal for validation case. Transient period in flow field begins
around t=0.005s, lock in region to t= 0.003s, ending transient until t=0.0035s where the natural
flow state occurs.
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Figure 37: Case 1: POD mode amplitudes (ai) for parameters shown in Table 3.
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Figure 38: Case 8: POD mode amplitudes (ai) for parameters shown in Table 3.
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5.3 System Identification

Another important parameter was the size of the training data set for the model. The number
and span of training cases for the WNARX model is presented inTable 4. A total of 12 open
loop cases, all of which contained starting and ending transients from the unforced flow state and
back to it, were computed to understand the influence of actuation with varying frequency and
amplitude on the flow. The results of this investigation showed that the time coefficients reacted
almost linearly to the blowing and suction amplitude, i.e. the response of the mode amplitudes,
a j(t), scaled linearly with amplitude input. In contrast, the flowresponse was highly nonlinear
with respect to the forcing frequency. Thus, the three training data sets highlighted in Table 4 were
chosen to provide a basis space for the WNARX model. The caseFf /Fn = 1, A/U∞ = 0.10 was
chosen to be the validation case for the model. A summary of final parameters for the dynamic
model is presented in Table 5.

Table 4: Summary of cases.X: WN training cases, o: validation case.
400Hz 600Hz 800Hz

A/U∞ = 0.1 X o X

A/U∞ = 0.05 x X x
A/U∞ = 0.025 x x x
A/U∞ = 0.0125 x x x

The WNARX model was validated for an off design flow case for which the forcing signal was
turned on at simulation timet = 0s, at which point the flow goes through a transient period before
locking into the forcing frequency. The forcing was then turned off att = 0.025s (corresponding to
15 forcing periods) to reestablish the unforced flow state (see Figure 27). As seen in Figure 39, the
model captures the lock-in region of the periodic forcing very well. Once the forcing was turned
off at t = 0.025s, the model accurately predicted the type of nonlinear signal in the unforced flow.
Expecting an exact replication of the unforced time coefficients is unrealistic since the signal was
extremely nonperiodic. However, the important point is that the model of the unforced flow does
not decay to zero over time. This indicates that there is a periodic attractor to the nonlinear function
for the WNARX system. The similarities in periodic trends furthermore suggest that the attractor
is near the solution of the unforced state.

With the development of this model, the feedback control problem of the shear layer behind a
backward facing step had been transformed into the problem of designing a controller for the POD
time coefficients. At this point, the previous definition of the control goal, namely minimizing the

Table 5: Summary of parameters chosen for the WNARX model.
Modeai Wavelets Regressors

a1 a2 a3 a4 u

a1 2 4 1 0 0 1
a2 21 1 5 0 0 1
a3 10 0 0 4 2 2
a4 16 0 0 2 4 2
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Figure 39: Off design validation of the four mode WNARX modelfor flow case ofFf = 600Hz
andA/U∞ = 0.1. WNARX output (–), POD model (- -).
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Table 6: Summary of parameters chosen for surface mounted sensor estimation scheme.
Study # of Sensors Data Set Error ε(t)

A( u′
U∞

) Pressure SPOD TC LSE ANNE WNE
1-3 47 2.5% 5% 10% X - 21% 19% 12%
4-6 47 2.5% 5% 10% - X 22% 20% 12%
7-9 47 2.5% 5% 10% X X 11% 9.5% 4.6%
10-12 47 5% 10% X X 10.9% 9.6% 4.6%
13-15 8 5% 10% X X 11.2% 10.8% 4.7%
16-18 6 5% 10% X X 18.8% 16.5% 5.2%
19-21 4 5% 10% X X 20.5% 19.2% 8.1%
22-24 2 5% 10% X X 23.1% 19.9% 21%

density fluctuations in the flow field, was replaced by a much more tractable problem: Design a
controller for themodel of the POD time coefficientswhose dimensionality is orders of magnitude
less than that of the underlying CFD flow field data. Finding a model that described a flow field that
was not included in the model design with the fidelity shown was a major step toward developing
successful feedback flow control strategies for the free shear layer flow.

5.3.1 Feedback Control

5.3.1.1 State Estimation A parameter study was conducted for the state estimator formulation.
Because the density of the fluid cannot be directly measured on the surface behind the step, pressure
variations, which directly correlate to the density fluctuations in the flow (with the assumption of
constant temperature), were chosen as viable surface measurements. Five forcing cases, which
contained starting and ending transients (see Table 2) wereused as state estimator training data.
The caseFf = 600Hz,A/U∞ = 0.1 (Table 2) was reserved for validation purposes. It should be
noted that the error of the training data is bounded above by the error of the validation case, that is

‖eTrain‖ ≤ ‖eVal‖, (69)

for all cases. Therefore, the error of the validation case will suffice to determine the performance
of the estimation method. Table 2 shows that the estimator was interpolating between cases; the
accuracy of the estimator outside thetraining regionhas not been verified.

Determining the appropriate parameters for the state estimator began by defining the physical
locations of the sensors. The floor behind the step from 0≤ xs≤ 2.5H contained a total of 47 pos-
sible sensor locations. All three estimation methods (LSE,ANNE, WNE) were applied to the full
state sensor array (i.e.dim(xs) = 47) to determine the best performance of the estimation methods.
The sensor array was then down-sampled to the minimum numberof sensors (i.e.dim(xs) = 2) and
incrementally increased until the error converged to the full state sensor estimation performance.
The parameters of the training methods for ANNE and WNE were held constant throughout this
study. A total time history of 25 time steps was used in the formulation of the regression vector
(i.e. n= 25 in Equation 38). The results are summarized in Table 6.

Figure 40a) shows the error in the estimation of mode 1 as a function of the number of sensors.
The results indicate that all of the methods rapidly converge to approximately their final perfor-
mance level with the use of 8 sensors spaced equally betweenx/H = 0.25 andx/H = 2. More
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Figure 40: Estimation error for validation caseFf = 600Hz,A/U∞ = 0.1. a) Root mean squared
error of mode 1,a1(t), all estimators. b) Root mean squared error of modes 1-4 using the wavenet
estimator (WNE).

interestingly, the wavenet estimation method resulted in only half the error of the other methods
( 4.5 per cent fordim(xs) = 8). In Figure 40b), the errors for all four modes as computed using the
WNE estimator are plotted as a function of the number of sensors. The plot indicates that while the
error increased somewhat for the higher modes, all modes were converged when using only eight
sensors.

The results obtained with the full state sensor array along with surface POD time coefficients
(Study 10-12) are shown in Figure 41. This is thebestpossible result given the amount of infor-
mation and infinite training time. The conclusion of this study represented a trade off between the
number of sensors needed for precise estimation and the wavenet training time. The goal was to
have the minimal number of sensors for accurate estimation while maintaining a physically feasible
sensor configurations.

Figure 42 shows the estimation results for only two sensors in the sensor configuration. From
the error computations, it is clear that the estimators needlarger sensor arrays for accurate estima-
tions of the flow field. Figure 43 is the optimal sensor configuration which was determined to be an
array of eight sensors betweenxs/H = 0.25 andx/H = 2. RMS errors were on the order of 5 per
cent for this sensor configuration, which was equivalent to the error of the estimation using the full
state sensor estimate. Figure 44 shows a comparison of the actual time coefficients computed from
Equation 17 with the simulated WNE computed from Equation 27using the eight sensors. The
estimator captures both the phase, frequency, and amplitude of the flow states for the validation
case. At this point the density field could be reconstructed with an error of less than 5 per cent of
the original flow field using only eight sensors by combining surface POD (Equation 17) and the
flow state estimate (Equation 27) within the forcing parameter space.

5.3.2 Adaptive Control

Direct adaptive feedback control [see Fagley et al., 2009, for more details] was chosen to close the
feedback loop. Adaptability allows for uncertainties whenscaling the controller for validation in
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Figure 41: Estimation using full sensor array of forcing validation case (Ff = 600Hz,A/U∞ = 0.1).
Forcing on for first half of simulation, off for second. a) Study 10: LSE estimations (ε = 10.9%)
b) Study 11: ANNE estimations (ε = 9.6%) c) Study 12: WNE estimations (ε = 21%).
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Figure 42: Estimation using smallest sensor array of forcing validation case (Ff = 600Hz,A/U∞ =
0.1). Forcing on for first half of simulation, off for second. a)Study 22: LSE estimations (ε =
23.1%) b) Study 23: ANNE estimations (ε = 19.9%) c)Study 24: WNE estimations (ε = 4.6%).
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Figure 43: Estimation using full sensor array of forcing validation case (Ff = 600Hz,A/U∞ = 0.1).
Forcing on for first half of simulation, off for second. a) Study 13: LSE estimations (ε = 11.2%)
b) Study 14: ANNE estimations (ε = 10.8%) c) Study 15: WNE estimations (ε = 4.6%).
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Figure 44: Comparison of first four POD time coefficients for the validation caseFf = 600Hz,
A/U∞ = 0.1. —, CFD results,−·−, WNE with eight sensors. Forcing was active fort < 0.025s.

CFD simulations and experiments. The basic equations describing direct adaptive control are

U = Geey

Ġe =−eyeT
y γe,

(70)

whereGe is the gain matrix,γe is the adaptability weight, andey is the error between output and
desired reference signal,

ey = â−are f . (71)

For multi input multi output (MIMO) systems,ey andγe are matrices of sizenout×nin. Also, the
gain matrix is of sizenin ×nout. The derivative must be approximated numerically, becauseno
analytic solution exists. Here, the fourth order Adams-Bashforth method,

Ġe≃
Gen+1−Gen

∆t
=

(

eyn+
1
2

∇eyn−1+
5
12

∇2eyn−2+
3
8

∇3eyn−3

)

, (72)

was utilized to determine the gain matrix derivative. The feedback parameters associated with
this control strategy are primarily which mode is used for feedback and the adaptability weights
which are typically less than one. Stability of this type of control system is only proven for linear
systems Fuentes and Balas [2000]. Stability margins cannotbe shown for our nonlinear system of
equations with adaptive control; however, stable simulations provide empirical evidence.

5.3.2.1 Feedback control of the WNARX model Developing the components for a closed
loop simulation is a multi-step iterative process. The model developed above provides accurate
predictions of the mode amplitudes when the flow is forced within a given frequency and parameter
range, including starting and ending transients. However,it remains to be seen if the model is
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Figure 45: Block diagram of closed loop simulation strategy. Step 1: Design a controller for
WNARX ROM. Step 2: Apply controller to CFD simulation with state estimator to verify model
adequately predicts closed loop dynamics.

capable of adequately simulating the highly nonlinear dynamics expected for the closed loop case.
Furthermore, a feedback scenario allows for a parameter study of adaptive control algorithms.
The WNARX model allows for very quick simulation times, so that a parameter study can be
carried out very quickly. The parameters were adjusted to feed back different combinations of
modes and their derivatives along with preconditioned adaptability weights. Once desirable results
were achieved with the model in a closed loop simulation, thedesigned control algorithm with the
corresponding feedback mode combination and weights was scaled up and applied in a closed loop
CFD simulation to validate both the WNARX ROM system and the adaptive controller. A diagram
of the two parts of this approach is shown in Figure 45.

After the parameter study discussed above, it was determined that the POD mode amplitudea1
and its time derivative, ˙a1, were the best parameters to be regulated in the feedback control system.
The derivative ofa1 was computed by an implicit Euler approximation. Because this can be a poor
approximation of the derivative and its susceptibility to noise, a moving average filter was added
to smooth the estimated derivative. The initial idea was that the OPD would be reduced by simply
reducing the mode amplitudes. Feedback of statesa1 andȧ1 allowed for excellent controllability
of the mode amplitudes as shown in Figure 46. Note that by controlling mode 1, mode 2 was
controlled as well because these modes represent the traveling wave character of the shear layer
structures.

In this simulation, the open loop forced flow was used as the initial condition for the closed loop
simulation to create periodicity in the flow and to improve startup performance of the controller
when the loop was closed. Figure 46 shows the time coefficients for the four mode model. Periodic
forcing was applied fort < 0.015s, at which point the closed loop control was switched on for a
time period of 0.015s< t < 0.035s, when the control is turned off and unforced flow redeveloped
for t > 0.035s. As shown in the figure, the controller performs well, reducing the amplitudes of
the time coefficients to approximately 35 per cent of the unforced state. As a final step to verify
the efficacy of this control approach for aero-optical problems, the density field was reconstructed
using the closed loop simulation results of the time coefficients, shown in Figure 46, and their
corresponding spatial modes (Figure 32). The reconstructed density field,ρ(x,y, t), allows for the
evaluation of the effect of the three different forcing scenarios (unforced, open-loop forced, and
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Figure 46: Feedback results using adaptive feedback control. Periodic forcing for 0s< t < 0.015s,
closed loop simulation for 0.015s< t < 0.035s, and unforced simulation fort > 0.035s.
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Figure 47: Feedback results using adaptive feedback control. Periodic forcing for 0s< t < 0.015s,
closed loop simulation for 0.015s< t < 0.035s, and unforced simulation fort > 0.035s. Verti-
cal solid lines indicate contours ofρ ′(y, t) normalized by the maximum density fluctuation. The
Horizontal line shows the maximum density fluctuation at a given time.

feedback controlled), especially their effect on the density fluctuations. Because the density field
is three dimensional in (x,y,t)-space, it is difficult to visualize the flow field dynamics. Here, the
standard deviation of the density field was computed for visualization using

ρ ′(y, t) =

√
√
√
√ 1

Nx

Nx

∑
i=1

[

ρ(xi ,y, t)−ρ(x,y, t)
x
]2
. (73)

Note that the mean was taken in the x-direction. In effect, with these two-dimensional simulations,
perfect spanwise coherence was assumed. In Figure 47, contours of ρ ′(y) at discrete times are
plotted as vertical lines. The figure shows that the magnitude of ρ ′(y) as well as the extent of
the distortions in the y-direction were significantly reduced when feedback control was active. In
addition, max(ρ ′(y)) is plotted for all times. It corroborates the reduction of the density fluctuations
for the feedback controlled flow field.

As a final performance metric, the OPD for a beam passing through this flow field was com-
puted using Equations (57)-(59). For the 2D simulations, the aperture size was 1.5≤ x/H ≤ 2.5
with unit width. The OPD at the point of interest,x/H = 2, is plotted in Figure 48, which shows
that the OPD was drastically reduced during the closed loop portion of the simulation, both in
comparison to the periodically forced flow and to the unforced flow.

5.3.2.2 Feedback control in the CFD simulation The final validation of the controller devel-
oped during this research effort was performed by implementing the controller in the Cobalt CFD
simulations. Hooks had been added in the Cobalt CFD code during an earlier AFOSR funded
STTR project between Cobalt Solutions, LLC, and the US Air Force Academy. These hooks
make sensor information available to MatlabR© which handles the controller computations. Af-
ter the actuator output had been determined, it was passed back to the Cobalt simulation using

73 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

0 0.015 0.035 0.05
−1.5

−1

−0.5

0

0.5

1

Time (s)

D
is

ta
nc

e 
(µ

m
)

Figure 48: Calculated optical path difference atx/H = 2, y/H = 0 for the reconstructed flow field
of the closed loop simulation. Periodic forcing for 0s< t < 0.015s, closed loop simulation for
0.015s< t < 0.035s, and unforced simulation fort > 0.035s.

externally controlled blowing and suction boundary conditions. The program communication be-
tween MatlabR© and Cobalt allows for great flexibility when incorporating feedback control, filters,
state estimators, etc. within a CFD simulation. More importantly, it allows for utilization of the
exact programs developed in the previous sections, which significantly reduces the possibility of
program errors.

For the first validation step, the controller in the previoussection was directly used in the CFD
simulation in conjunction with the state estimator developed in Section 5.3.1.1. The feedback
controlled simulation proceeded as follows: First, the Cobalt simulation was advanced one time
step. The new data at the sensor locations (predetermined, see Section 4.2.4.2) was then passed
to the MatlabR© state estimator to estimate the POD mode amplitudes; the estimation was seen to
be essentially the same as what the model predicted. These POD mode amplitude estimates were
then input into the control algorithm, whose output was converted to a blowing and suction mass
flow rate for the blowing and suction slot. Finally, this information was passed back to Cobalt as a
new boundary condition value to be used in the subsequent CFDiteration.

After completing the simulation with this controller, the density field data was used to compute
the OPD. First, as before, the density fluctuations were computed and plotted using the same
method as for the WNARX validation (Figure 47). Figure 49 shows that the controller developed
using the ROM had a pronounced effect in reducing the densityfluctuations, similar to the effect
observed in the model simulation results.

The OPD results in Figure 50 show that the controller (activefor t > 0.025s) reduces the OPD,
but the reduction was slower than predicted by the WNARX model. This was most likely due to
discrepancies between the reduced order model and the CFD simulation results, indicating that
the ROM did not quite capture all the intricate nonlinear dynamics of the flow field which were
resolved in the CFD simulation. As shown in Table 5, the modelassumed that modesa1 anda2 are
completely decoupled from modesa3 anda4. This was likely the most dramatic modeling shortfall
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Figure 49: Density analysis of CFD closed loop simulation. Periodic forcing for 0s< t < 0.025s,
closed loop simulation fort > 0.025s. Vertical solid lines indicate contours ofρ ′(y, t) normalized
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at a given time.
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Figure 50: OPD as a function of time. CFD results with WNARX controller directly substituted
into CFD closed loop simulation.
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and the reason that the model did not correctly capture the nonlinear dynamics in the closed loop
simulation. Further analysis of this closed loop simulation was performed to better understand
these differences.

Figure 50 shows that it took approximately∆t = 0.025s after the controller activation for the
control to be effective in reducing the OPD. Full control wasachieved fort > 0.05s, at which
time the large amplitude oscillations due to flow transients, have convected downstream. The
OPD amplitude was reduced by approximately 50 per cent. Scrutinizing Figure 51e, the time
history of the control input, corroborates that at timet = 0.05s, the controller had started to achieve
the control goal of minimizing the POD mode 1 amplitude (Figure 51a) and reduced the forcing
amplitude to approximatelyA/U∞ ≃ 0.01, which was less than one per cent of the free stream
velocity.

The remaining POD mode time coefficients are shown in Figure 51b-d. Since POD mode 2
(Figure 51c) is the complement to mode 1 to comprise a traveling wave, it was not surprising that
its amplitude was reduced in unison with mode 1. However, modes 3 and 4 behaved differently; the
main effect of forcing on these modes seemed to be a stabilization of their oscillation frequencies
and also their amplitudes.

When this research project was started, it was believed thata reduction of the OPD would have
to be coupled to the minimization of these mode amplitudes, since each mode pair represents they
flow state created when the shear layer is forced with a given frequency. However, the results
indicate that the shear layer is far too unstable and quicklymoves away from the natural periodic
attractor when forcing is applied. A comparison of the OPD results with the POD mode amplitudes
seems to suggest that the desired flow state is in fact achieved by introducing a new periodic state
which reduces the OPD for a given aperture location and size.Because discrepancies between the
reduced order model and the CFD simulations did exist, in thefinal step of this research project,
the controller parameters in Equation 70 were adjusted by scrutinizing the CFD results directly
to increase closed loop performance, efficacy and efficiency. These results are presented in the
following.

Since it was determined from the initial feedback controlled CFD results that information about
POD modes 3 and 4 needed to capture the transient behavior better, a combination of mode ampli-
tudes and their derivatives were fed back in numerous CFD simulations to determine the optimum
combination for the adaptive control algorithm. It was found that feeding back the time coefficients
of one of the modes of the next mode pair,a3, with an aggressive adaptability weight,γe= 1, intro-
duced this periodic attractor, which effectively reduced the density fluctuations and therefore the
OPD over a given aperture. Figures 52 and 53 show the final successful closed loop simulation and
the corresponding reduction of the OPD to approximately 30 per cent of its original value. This
presents a performance improvement of almost 50 per cent over the original controller. In addition,
the fluctuation amplitude was drastically reduced when compared to the periodically forced flow as
well as when compared to the unforced flow. Scrutinizing the control signal, it was observed that
the controller introduces two harmonic frequencies into the flow, the lower of which was approxi-
matelyFf ≃ 720Hz. Interestingly, the control amplitude did not decline as the controller became
effective, as initially anticipated. In contrast, the amplitude seemed to stabilize atA/U∞ ≃ 0.04,
which was larger than for the controller obtained directly from the ROM.

The results from this closed loop simulation supported the idea that excitation of frequencies
that are unstable further upstream (closer to the step) has amuch larger effect on the OPD, even
if the aperture is located downstream, than forcing at a frequency that is commensurate with the
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Figure 51: Mode amplitudes and control output of CFD closed loop simulation.
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naturally occurring frequency at the aperture location. Itis conjectured that forcing at the higher
frequency kept the flow more periodic, thus reducing the vortex pairing tendency, which created
the largest structures and therefore the largest optical distortions. Interestingly, open loop forcing
at these higher frequencies did not show this level of performance, which was attributed to phase
and frequency differences between flow states and forcing input. Only with feedback control was
it possibly to react to these differences in the adaptive manner necessary to reduce the density
fluctuations in the shear layer.
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Figure 52: Mode amplitudes and control output of CFD closed loop simulation. The control
output is shown for the complete simulation, periodic forcing for t < 0.025s, feedback control for
0.025s< t < 0.06s, and unforced fort > 0.06s.
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Figure 53: OPD calculation of closed loop CFD simulation with adjusted controller. Periodic
forcing for 0s< t < 0.025s, closed loop simulation for 0.025< t < 0.06s, and unforced fort >
0.06s. Reduction of OPD on the order of 30% of the OPD is seen.
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5.4 Axisymmetric Bluff Body

5.4.1 Overview

Classical control theory is very limited when dealing with high-dimensional, extremely non-linear
systems such as flow fields. Flow fields are governed by the Navier Stokes equations, Eq 74, a set
of second order, non-linear partial differential equations. New techniques need to be established to
make use of current control theories, while also allowing for a reasonable design process for linear,
non-linear, or adaptive control for complex flow fields.

ρ
(

∂u
∂ t

+u ·∇u
)

=−∇p+∇ ·T+ f, (74)

The synopsis of active feedback flow control is to use a fluidicactuator on an aerodynamics
body which is able to perturb the flow away from the original state and typically cause some type
of desired response, for example increased lift coefficient, regulation of undersized loads, drag
reduction, optical effects, vortex positioning, etc. Sensors on the body measure the flow state
which is then translated into an actuation input through some control algorithm. This is shown
by an example to a forebody at high angle of attack in Figure 54. The challenges associated with
active feedback flow control are actuator placement, sensorplacement and model/control algorithm
design.

Figure 54: Flow control approach used for design and implementation of reduced order model
based control

Figure 55 shows the approach adopted by the USAFA flow controlresearch group. This frame-
work is a systematic road map to developing a reduced order model, control algorithm, and optimal
sensor placement for non-linear fluid dynamic systems. The ultimate goal of flow control research
is to develop a robust model and control algorithm for a specific flow field to provide that as a
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deliverable to the customer. The secondary goal of this flow control research is to gain physical
insight into the fluid dynamics through closing the loop.

Figure 55: Flow control approach used for design and implementation of reduced order model
based control

In the past it has been seen that the more insight and understanding of the fluidic mechanisms
at play increase the fidelity of the reduced order model and performance of the control algorithm.
For instance while closing the loop on the backward facing step, the closed loop dynamics showed
that exciting the Kelvin Helmholtz structures in a certain location actually caused them to dissipate
just afterwards. Thus, the optical abberations were able toreduced over an aperture.

The approach begins with developing a fluidic actuator. Types of actuators consist of SDBD
plasma, blowing and suction ports, synthetic jets, flow effectors, speakers, etc. Placement of actu-
ators and number of actuators is typically chosen by rules ofthumb from fluid dynamics. This is
a suboptimal approach. For future success of feedback flow control, an autonomous method needs
to be determined for actuator placement and design. This program will evaluate different technical
solutions to this issue on the forebody flow control problem.

Once the fluidic actuator is in place either in CFD or experiments, open loop dynamics are
acquired through various forms of input. Typically, step, impulse, ramp, and periodic inputs are
used to quantify the system dynamics. As shown in previous applications of feedback flow control,
these open loop dynamics are a crucial step in understandingthe flow field. The actuator to fluidic
response, i.e. the controllability of the fluidic system, isa critical relationship which is essential.
For unsteady flow fields, the state trajectories from un-actuated to actuated states and vice versa
is non-unique and highly dependent upon the initial state ofthe flow. This necessitates an optimal
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selection of open-loop forcing which pseudo-randomly captures each state trajectory. This infor-
mation will then provide for the compilation of a flow state database, which is essential for the
development of a reduced order model which accurately represents the unforced, open-loop, and
transient states near the desired controlled state. While these questions are best answered using
CFD simulations because of the detailed data available, it is impossible to interrogate the whole
parameter space this way. Experimental investigations arealso necessary to provide the crucial
survey of the parameter space to highlight regions of particular interest.

Once the open loop database is formulated, numerical decomposition techniques are used to ex-
tract pertinent dynamics. Specifically these decompositions decouple spatial and temporal modes
in an optimal fashion. For the development of Reduced Order Models (ROMs) of the flow field, a
software suite developed in the US Air Force Department of Aeronautics by the researcher will be
readily available and applied to new problems. The data analysis part of the software suite consists
of many tools such as: proper orthogonal decomposition (POD), double POD, balanced POD, dy-
namic modal decomposition (also referred to as Koopman analysis) and wavelet decompositions.

Each decomposition has unique advantages and disadvantages while the overarching goal is
the same - to extract the dynamical behavior of large scale, coherent structures in the flow while
decoupling spatial and temporal information. Extracting the desired or dominant dynamics of a
fluid field is a highly debated topic. For instance POD defines the dynamics through largest ener-
getic modes; BPOD defines the dynamical modes as a set which optimizes the observability and
controllability grammians; DPOD emphasizes an energetic mode set coupled with shift or pertur-
bation modes to the dominant modes due to actuated and un-actuated transients, and finally the
Koopman analysis extracts spatial growth and decay rates (globally unstable and stable modes) as
well as spatial frequencies (marginally stable modes). Each of these tools, while vastly different
mathematical procedures produce the same result, decoupled spatial and temporal information.
These decomposition techniques are commonly understood for unsteady flow fields, but the exten-
sion and application to deformable bodies in computationalsimulation or experimental testing has
never been attempted. It is the intent of this research program to find a suitable strategy or combi-
nation of strategies to extract the dynamics of the fluid, structure, and fluidic actuation interaction.

Once an understanding of the underlying physics of fluid structure interactions is produced,
a proper dynamic reduced order model can be developed. With this accurate system model the
optimal type and distribution of actuators and surface sensors can be determined and implemented
in both the simulations and experiments. During previous research projects, the flow control group
at USAFA has found that thelow-dimensional modeling approachis the most beneficial when it
comes to realizing a structured model-based closed-loop strategy for flow control. Assuming a
suitable mode set is determined from the previous section which represents the unforced, open-
loop, and transient states, the associated temporal dynamics need to be modeled.

A widely accepted approach to model experimental and computational periodic flows is the
Galerkin Method. A Galerkin projection is a method for obtaining approximations to a high dimen-
sional dynamical system by projecting the underlying dynamics onto a reduced order subspace. In
the application to fluid dynamics, the Navier Stokes equations are projected onto a subspace which
is spanned by an orthogonal basis which represents a majority of the system dynamics typically
obtained by POD. The resulting equations are a set of non-linear ODE’s in the form of,

ẋf = f0+Lxf (t)+Q(xf (t)
⊗

xf (t)), (75)

where the linear term is representative of the viscous term in the Navier Stokes and the quadratic
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term is representative of the convective and pressure termsin the Navier Stokes. In some instances
it is beneficial to also add a higher order cubic term to account for mean flow perturbations and
experimental noise. An extension of the Galerkin Method is the Discontinuous Galerkin Method
which may be essential for producing a stable discretization of the convective operator over un-
structured, deformable meshes.

Previously, this research investigated wavelet basis networks (WNARX) to demonstrate the full
capability of identifying complex flow response for a range of open loop parameters. The WNARX
represents a dynamic model which can simulate off design flowcases, serve as reference signal,
and ultimately predict closed loop behavior for control design. The WNARX model uses the same
network architecture as a neural network; the only difference is radial basis functions are used as
each neuron’s transfer function. This is shown by,Ψ(t)u,s = Ψ

( t−u
s

)
, whereu is the translation of

the wavelet,s is the dilation, andΨ is referred to as the mother wavelet, which is a radial basis
function in this case. WNARX models are much better suited for identifying the frequency rich
dynamics of complex, turbulent flow fields. The overall WNARXmodel is given by,

f̂ (t) =
N

∑
i=1

wiΨ(si(t −ui))+cTt + f0 (76)

wherewi are the weights,N is the number of wavelet functions,cT represent the linear connections,
and f0 is the bias. This proposal will use this new system identification method to formulate an
extremely low dimensional model based from CFD simulationsand POD/DPOD decompositions
to accurately predict closed loop dynamics of a given flow field. This model is then used to perform
feedback simulations to condition control algorithms which can then be applied directly to CFD
simulations and experiments.

Once this model (either Galerkin model, or WNARX) is validated over unforced and open-
loop parameter space, it will serve as the basis for the control strategy development. Typical
control approaches to non-linear systems can be used. For instance direct adaptive control, sliding
mode control, or model predictive control may be used to achieve stable, robust reference tracking
ability. Previous research supports that adaptive controladequately handles model uncertainties
between model and CFD closed loop simulations. This research project aims at evaluating the per-
formance and stability criterion of these three control approaches. As for differences between CFD
simulations and experimental tests, the actuation dynamics and sensor dynamics will be unique to
each environment, but the underlying control theory, flow/structure state definition, and estima-
tion algorithms will remain constant. This will allow for model and estimation development to
be based upon both numerical and experimental data. In a sense the control will be modularized
by the actuation/sensing dynamics which will provide matching CFD and experimental results in
closed loop simulation/experimentation.
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5.4.2 Open Loop Dynamics Experiment

As presented in Farnsworth et al. [2012], at the current operating conditions, the system is shown
to be proportional at an incidence of 50o. Figure 56 shows a schematic of the responsiveness
of the asymmetric state (measured as the resulting side force) to plasma actuation. The positive
x-axis represents the port forcing strength and the negative x-axis represents the starboard forc-
ing strength; the zero location is the unforced state. The unforced state of the asymmetric vortex
configuration varies based on geometry disturbances, flow conditions, misalignments, flow imper-
fections etc. Around this initial state is a dead zone in the actuator dynamics; that is, the actuation
voltage must exceed a certain limit before plasma formationtakes place. Above and below this re-
gion a linear response in asymmetric vortex state was found.At large enough forcing magnitudes
the vortex system does saturate in the fully left or right asymmetric vortex state.
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Figure 56: Representation of the forcing characteristics of the asymmetric vortex state due to
plasma actuation.

Figure 56 is experimentally verified by side force and sectional pressure measurements as de-
picted in Figure 57. The side force,Cy and sectional pressure coefficient,∆CP, at x/D = 3 vary
analogously with varying port/starboard plasma voltage which supports that time resolved pres-
sure measurements do accurately correlate with integratedforce measurements. As Figure 57 also
shows, the system responds nearly proportionally, although non-linear effects are apparent. For
instance, the dead zone in the actuation voltage range from−5kV ≤ V ≤ 5kV does exist; this is,
primarily due to the fact that plasma has not formed at these smaller voltage potentials. Also,
a hysteresis is definitely observed, that is the path along a positive voltage gradient,dV

dt > 0, is
different from the path along a negative voltage gradient,dV

dt < 0, in both time accurate (red/blue
lines) and integrated measurements (black lines). Finally, a larger gradient,d∆CP

dV is seen near the
symmetric vortex location (Cy = ∆CP = 0) , supporting the fact that a small amount of bistability
does exist at this flow condition.
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Figure 57: (a) Side force coefficient and (b) differential pressure coefficient at x/D = 3 versus the
plasma actuator voltage during the ramp modulation.

The system response in Figure 57 is well modeled by a linear system with slight non-linearities
present.

5.4.2.1 Step ResponseThe response of the asymmetric vortex state due to a plasma actua-
tion step input is used to develop a linear time invariant model. The step response test campaign
consisted of a modulated square wave at a frequency of 1 Hz fora total of 20 periods. The data
was then phase averaged over a test duration of 20 seconds to reduce measurement noise. The
amplitude of the step was at maximum operational voltage of 12 kV before the amplifier began
displaying non-linear effects. Figure 58 shows the normalized response to the step input at initial
transient times and Figure 59 for the ending transient times.

The overall time delay consists of the convective time delayfor the disturbance to reach the
sensor location, lag time for the fluid to respond, and transition time to achieve 90% of the steady-
state value. To decouple each of these sources of delay, the convective time delay is defined as
the time from which the step begins to the time at which a 10% change in the unforced steady-
state value is observed. The rise time is defined as the time from a 10% change in the unforced
steady state value to the time at which 90% of the forced steady-state value was achieved. The
time responses are then normalized by the flow through time,τ, which is defined as,

τ =
Lcone

U∞
, (77)

and was measured to be approximately 13 ms at the current operating conditions. These times
are summarized for the rising and falling transients in Table 7. The lag time or presence of non-
minimum phase are difficult issues to decouple in the dynamics so further analysis techniques are
necessary.
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Figure 58: Initial transient of the vortex state due to step input. Linear combination of pressure
measurements atx/D = 2 andx/D = 3 to estimate the side force shown in green. Blue shows the
step change of the actuation input in kV. Also, the convective delay time,Trd , is shown in cyan and
the transition/rise time,Trt , is shown in red.
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Figure 59: Ending transient of the vortex state due to step input. Linear combination of pressure
measurements atx/D = 2 andx/D = 3 to estimate the side force shown in green. Blue shows the
step change of the actuation input in kV. Also, the convective delay time,Tf d, is shown in cyan and
the transition/rise time,Tf t , is shown in red.

Table 7: Rise and fall time summary
Initial Transient (Port - Starboard) Time [t∗] Ending Transient (Starboard-Port) Time [t∗]

Delay Time Rise Time Total % Overshoot Delay Time Rise Time Total % Overshoot
Ĉy 0.6375 0.69 1.3275 18.5 % 0.6070 0.57 1.177 24.4%
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As shown in Table 7, the convective times for a port to starboard or vice versa are very consis-
tent, as expected. The rise or transition time from starboard to port is a bit faster than the transition
time from port to starboard. This is, arguably, because the initial asymmetric state prefers the port
side due to geometry imperfections, flow misalignments, etc.; thus the flow prefers transition back
to the port state and induces a restoring force, reducing transient time and also causing a larger
overshoot of the steady state value. Nonetheless, the dynamics of the asymmetric vortex problem
as shown by the step response are very well represented by a linear time invariant system.

5.4.2.2 Sinusoidal ResponseTo determine the frequency response of the system dynamics,
sinusoidal forcing is used on the port actuator and the system response is observed by the linear
combination of all of pressure measurements as given byĈy. The actuation voltage is modulated
by an offset sinusoid, by the equation,

A(t) =Vmax(sin(2πωt)+0.5).

The test durations consisted of 30 seconds with a sampling frequency of 10 kHz. An example of
forcing at a frequency of 20 Hz is shown in Figure 60. The input-output signals are shown as well
as the frequency spectrum. Figure 60b shows a large peak at the forcing frequency showing the
fluidic receptivity to the forcing. A frequency sweep was conducted over a wide frequency range
to determine the cutoff frequency as well as the magnitude and phase of the system.

The natural rise time of the fluidic response is approximately 1.1t∗ → 1.6t∗, depending upon
port to starboard actuation or vice versa, due to a unit step input as shown in section Table 7.
The natural frequency is approximately 50 Hz. This suggeststhat a pole exists near this location.
Because of this observation, the modulation frequency was chosen at discrete locations over the
range of 0.1Hz≤ ω ≤ 200Hz, to determine magnitude, phase and cutoff frequency.
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Figure 60: Pressure locationx/D = 2 (a) Time domain forcing and response data for Frequency =
20 Hz (b) Time domain forcing and response data for Frequency= 20 Hz.

For all of the forcing frequencies the data is summarized in Figure 88 where the experimental
data is plotted in red. From this frequency response information the cutoff frequency can be esti-
mated by a -3 dB attenuation point. This is computed to be approximately 50 Hz and corresponds
to a 80 degree phase lag.
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Figure 61: Experimental frequency and phase response information for sinusoidal forcing cam-
paign

5.4.2.3 Impulse Response The impulse response of the asymmetric vortex state was alsomea-
sured. For these open-loop tests the duty cycle was varied for a square modulation wave at a
frequency of 10Hz over a range of 1% to 20%. The experimental measurements are shown below
in Figure 89 for the different duty cycles. The initial flow state was shifted toCy = 0, i.e. the
symmetric state for modeling purposes. All of the impulses were initiated att = 0, so that the
flow response is aligned for each duty cycle. These measurements were phase averaged over a
100 total cycles. The results in Figure 89 are well depicted by a linear system. As the duty cycle
increases beyond 10% an amount of undershoot is seen by the vortex dynamics. This data set is
used completely as validation for the model formulation andmodel selection technique.
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Figure 62: Experimental measurements of the impulse response with varying duty cycle of the
pulse width at a maximum voltage of 1.4 kV. This data serves purely as validation data for model
development in subsequent sections.

5.4.3 Open Loop Dynamics Simulations

As presented in Farnsworth et al. [2012], at the current operating conditions, the system is shown
to be proportional at an incidence of 50o. Figure 63 shows a schematic of the responsiveness
of the asymmetric state (measured as the resulting side force) to plasma actuation. The positive
x-axis represents the port forcing strength and the negative x-axis represents the starboard forc-
ing strength; the zero location is the unforced state. The unforced state of the asymmetric vortex
configuration varies based on geometry disturbances, flow conditions, misalignments, flow imper-
fections etc. Around this initial state is a dead zone in the actuator dynamics; that is, the actuation
voltage must exceed a certain limit before plasma formationtakes place. Above and below this re-
gion a linear response in asymmetric vortex state was found.At large enough forcing magnitudes
the vortex system does saturate in the fully left or right asymmetric vortex state.
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Figure 63: Representation of the forcing characteristics of the asymmetric vortex state due to
plasma actuation.

Figure 63 is verified in CFD simulations by side force as depicted in Figure 64. The side force,
Cy varies proportionally with varying port/starboard plasmavoltage. As Figure 64 also shows, the
system responds nearly proportionally, although non-linear effects are apparent. For instance, the
dead zone in the actuation strength from−0.025g/s≤ ṁ≤ 0.025g/sdoes exist. Saturation regions
are also seen for ˙m> 0.75g/s.

The system response in Figure 64 is well modeled by a linear system with slight non-linearities
present.

5.4.3.1 Step ResponseThe response of the asymmetric vortex state due to a plasma actua-
tion step input is used to develop a linear time invariant model. The step response test campaign
consisted of a modulated square wave at a frequency of 1 Hz fora total of 20 periods. The data
was then phase averaged over a test duration of 20 seconds to reduce measurement noise. The
amplitude of the step was at maximum operational voltage of 12 kV before the amplifier began
displaying non-linear effects. Figure 65 shows the normalized response to the step input at initial
transient times and Figure 66 for the ending transient times.

The overall time delay consists of the convective time delayfor the disturbance to reach the
sensor location, lag time for the fluid to respond, and transition time to achieve 90% of the steady-
state value. To decouple each of these sources of delay, the convective time delay is defined as
the time from which the step begins to the time at which a 10% change in the unforced steady-
state value is observed. The rise time is defined as the time from a 10% change in the unforced
steady state value to the time at which 90% of the forced steady-state value was achieved. The
time responses are then normalized by the flow through time,τ, which is defined as,

τ =
Lcone

U∞
, (78)

and was measured to be approximately 13 ms at the current operating conditions. These times
are summarized for the rising and falling transients in Table 8. The lag time or presence of non-
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minimum phase are difficult issues to decouple in the dynamics so further analysis techniques are
necessary.

Table 8: Rise time summary
Initial Transient (Port - Starboard) Time [τ]

Delay Time Rise Time Total % Overshoot
Ĉy 0.62 0.39 1.01 15.5 %

When comparing CFD transient times to experimental transient times, very good agreement
exists, see Table 8 and Table 7. The simulations are slightlyfaster than the experiments ( 30%).
This is mainly due to transient dynamics of the experimentalcircuitry which is non existent in the
CFD simulation. Nonetheless, the dynamics of the asymmetric vortex problem as shown by the
step response are very well represented by a linear time invariant system.

5.4.4 Impulse Response

The impulse response of the asymmetric vortex state was alsosimulated. For these open-loop tests
the duty cycle was varied for a square modulation wave at a frequency of 10Hz over a range of
1% to 10%. The simulation results are shown below in Figure 67for the different duty cycles.
The initial flow state was shifted toCy = 0, i.e. the symmetric state for modeling purposes. All
of the impulses were initiated att = 0, so that the flow response is aligned for each duty cycle.
The results in Figure 67 are well depicted by a linear system.This data set is used completely as
validation for the model formulation and model selection technique.
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Figure 67: Impulse response of the CFD simulation varying duty cycle of the pulse width at a unity
magnitude ofCµ . This data serves purely as validation data for model development in subsequent
sections.
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Figure 64: Average side force coefficient for different forcing parameters. Port forcing corresponds
to a negative x-values while starboard forcing correspondsto a positive x-values.
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Figure 65: Side force in green shows the response due to a stepinput inCµ in blue.
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Figure 66: Initial transient of the vortex state due to step input. Side force in green shows the
response due to a step input inCµ in blue. Also, the convective delay time,Tf d, is shown in cyan
and the transition/rise time,Tf t , is shown in red.
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5.4.5 Numerical decomposition and flow state definition

To further investigate the flow field around a von Kármán tangent ogive and develop a Reduced-
Order-Model (ROM) for feedback flow-control, unsteady numerical investigations were under-
taken. The simulations are performed using Cobalt, an unstructured finite-volume code developed
for the solution of the compressible Navier-Stokes equations. The basic algorithm is described in
Strang et al.,Strang et al. [1999] although substantial improvements have been made since then.
The numerical method is a cell-centered finite volume approach applicable to arbitrary cell topolo-
gies (e.g, hexahedra, prisms, tetrahedra). The spatial operator uses a Riemann solver, least squares
gradient calculation with QR factorization to provide second order accuracy in space. A point
implicit method using analytic first-order inviscid and viscous Jacobians is used for advancement
of the discretized system. For time-accurate computations, a Newton sub-iteration scheme is em-
ployed, resulting in a method that is formally second order accurate in time. For parallel per-
formance, Cobalt utilizes the domain decomposition library ParMETIS to provide optimal load
balancing with a minimal interface between zones.Karypis et al. [1997]

5.4.5.1 Grid and Model Geometry The geometry considered in this investigation is a generic
tangent ogive with fineness ratio fr = 3.5 and a model base diameter ofD = 0.1 m. At the base
of the ogive, a 0.05 m long cylindrical section has been addedsuch that the overall length of
the model is 0.40 m. This model geometry was chosen to match anaccompanying wind tunnel
experiment.Fagley et al. [2012a] For reference, the centerof the coordinate system is at the nose of
the model. The positive x-direction extends along the body,the positive y-direction points in the
starboard direction, and the positive z-direction is up, normal to the body. For the simulations, all
the reference conditions are set to standard sea level, withan inflow Mach number of M=0.1; this
results in a Reynolds number based on the base diameter ofRe= 220,000.

The grid was generated using Simcenter/SolidMesh and had approximately 16M cells (Fig. 68).
To avoid asymmetries in the flow field as a result of an asymmetric grid, the grid was generated
around half the model and then mirrored; therefore, the gridis symmetric on the port and starboard
sides of the model. Two patches to simulate the plasma actuators used in the accompanying exper-
iment were added to the model at 90o from the model’s meridian. The start of the boundary patch
was placed 0.4 cm from the tip of the model and was 1 cm long. Allmodel boundaries were always
set to solid-wall, no-slip conditions except during the open-loop forcing investigations where one
of the actuator boundary patch (either port or starboard) was switched to a moving wall bound-
ary patch. In the open-loop simulations, the moving wall boundary patch prescribed a tangential
velocity at the wall in the direction of the freestream. A spherical farfield boundary was placed
40 diameters away from the model to minimize the influence of pressure reflections. For all the
calculations, the farfield used a modified Riemann conditionand the time step was specified at
∆t = 0.0001 s.
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(a) (b)

Figure 68: Ogive geometry and grid with simulated port actuator shown in purple: a) front view
with grid shown at the center plane of the forcing patch, b) side view of the grid along the centerline
of the model.To extract the time-resolved simulation data around the ogive body, an array of Cobalt ’taps’
was used. Figure 69 shows the tap grid used around the ogive model. The tap grid extended along
the whole body, fromx/D = 0 to x/D = 4 and 110o from the leeward meridian. The taps were
non-uniformly spaced, such that a high spatial resolution is obtained near the body, especially near
the tip of the model. In total, 37,625 taps were used to extract all the flow quantities during each
time iteration.

(a) (b)

Figure 69: Ogive geometry with tap grid: a) isometric view and b) front view.

5.4.5.2 Proper Orthogonal Decomposition For data analysis, Proper Orthogonal Decompo-
sition (POD) has been shown to be a very effective tool to characterize flow fields.Sirovich [1987],
Berkooz et al. [1993] In POD, highly complex flow fields are decomposed into spatial modes with
a corresponding time varying amplitude (or coefficients):

ϕ(x,y, t) =
K

∑
k=1

ak(t)φk(x,y) (79)
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whereϕ is a flow quantity,φk(x,y) are the spatial modes, andak(t) are the time coefficients.
While this decomposition is well suited to time periodic flowfields, it faces problems for transient
flowsSiegel et al. [2005b] and potentially aperiodic flows. In these cases, POD is based on all
the snapshots used to generate the modes, minimizing the overall error with the fewest number of
modes possible. Therefore, transients or aperiodicity in the flowfield can be missed due to the small
contribution made to the overall estimates of the spatial and temporal modes. Different additions
to the basic POD procedure have been proposed, most notably the addition of a shift mode as
introduced independently by Noack Noack et al. [2003] as well as Siegel et al.Siegel et al. [2003b]

5.4.5.3 Results Before investigating the effects of open-loop forcing on the side force gener-
ated from the asymmetric vortex state, unforced simulations were carried out where both the port
and starboard forcing patches were set to solid-wall, no-slip boundary conditions. In this config-
uration, the model is geometrically perfect such that no disturbance exists to cause the leeward
vortices to lock into an asymmetric state. Figure 70 shows the resultant side force on the model as
a function of time. As shown, the side force coefficient, Cy, fluctuates between the port (negative
Cy values) and starboard (positive Cy values) direction reaching magnitudes slightly greater than
0.5. As summarized by Bridges et al.,Bridges [2006] if the root cause of the asymmetric vortex
configuration is the result of a convective instability, numerical codes should not produce an asym-
metric wake on geometrically perfect bodies. If they do, then the potential exist that the asymmetry
is due to numerical issues and is not necessarily real; in other words, the right solution is obtained
for the wrong reasons. Figure 70 shows that the geometrically perfect model produces an average
side force of zero using the current numerical setup. To verify that the numerical code would pro-
duce an asymmetric wake when a geometrical disturbance was present, simulations were also run
with a small bump (0.5 mm diameter pin, 0.5 mm tall) placed on the port side near the tip of the
model. Figure 70 also shows the resultant side force on the model with this geometric disturbance
present. As shown, the geometric disturbance causes the side force on the model to lock into one
side (in the opposite direction of the disturbance) and the magnitude of the asymmetry increases.
Therefore, at this Reynolds number, a disturbance on the port side causes the port side vortex to
lift off the body, causing the side force in the starboard direction.
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Figure 70: Comparison of the side force coefficient on a tangent ogive forebody with and without
a geometric disturbance located near the tip of the model.
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Following the unforced simulations, open-loop simulations which modeled the plasma actuator
used in the experiments were performed. To simulate the plasma actuator, a moving wall boundary
condition was implemented, where instead of setting the tangential velocity at the wall to zero (i.e
no slip), a fixed velocity is prescribed. Therefore, downstream of the moving wall patch, a wall jet
is formed as the velocity at the wall diffuses into the rest ofthe boundary layer. The prescribed ve-
locity of the moving wall boundary patch was changed throughout a series of simulations, ranging
from 4 m/s up to 16 m/s (10 to 45 percent of freestream). While these velocities are much greater
then those generated by the plasma actuators in the experiments, the resultant wall jets downstream
of the actuator are similar.Lee et al. [2012]

Figure 71 shows the resultant side force on the model for a moving wall velocity of 12 m/s,
where the actuation is switched from the starboard to the port side every 300 ms. As shown, there
is a delay (≈ 100 ms) between the time actuation is turned on and the time when the side force fully
switches sides and locks into its new value. From the simulations, it takes approximately 50 ms
(five convective time scalesLanser and Meyn [1994]) before the side force begins to respond to the
forcing input. The other 50 ms is the approximate time it takes for the vortices on the model to
switch states. This is in contrast to experimental findings based on dynamic pressure transducers
on the model which show that the model responds to forcing from the plasma actuator within one
to two convective time scales.Farnsworth et al. [2012]

Based on the data shown in Fig. 71, the side on which forcing isapplied causes the vortex on
that side of the model to separate from the body and the side force is directed away from the side of
actuation. This is the same trend observed with the geometric disturbance introduced on the model
as well as experimental data? for a similar Reynolds number range. This indicates that at this
Reynolds number, instead of the plasma adding momentum to the flow to help keep the boundary
layer attached, it is instead creating a disturbance causing the flow to separate. This is a different
trend from Matsuno et al. Matsuno et al. [2009] who tested theuse of DBD plasma actuators on
a ogive model at a lower Reynolds numbers (≈ 50,000). During their tests, the plasma actuator
caused the lifted vortex to attach to the body; this reattachment of the lifted vortex was attributed
to the Coanda effect. At the lower Reynolds numbers tested, it is surmised that the strength of
the wall jet created by the plasma relative to the freestreamis much larger creating a Coanda type
effect, while at the higher Reynolds numbers, the jet creates a disturbance causing the flow on that
side to separate.
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Figure 71: Open-loop side force coefficient on a tangent ogive body, switching between starboard
and port forcing every 300 ms.

To illustrate the coherent vortical structures in the flowfield, Fig. 72 shows an isosurface of
Q with a moving wall velocity of 12 m/s for the starboard actuator turned on.Jeong and Hussain
[1995] As shown, at this Reynolds number, the asymmetry of the two primary vortices is small,
even though the side force coefficient is approximately -1.0at this instant. To help distinguish
between the port and starboard vortices, Fig. 72 is colored by the x-vorticity. Looking at the side
view of Fig. 72, smaller coherent structures can be seen feeding into the primary vortices, as the
flow separates off the model forming a shear layer.

Figure 72: Isosurface of Q-criteria around the ogive model with starboard actuation turned on at
12 m/s.

To investigate the effect of changing the strength of the disturbance created by the forcing
patches near the tip of the model, the moving wall velocity was varied from 4 m/s to 16 m/s in
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4 m/s intervals. A high frequency component to the side forcecan be seen in Fig. 71 and was
observed for the other moving wall velocities tested as well. Therefore to gauge the effect of
forcing on the resulting side force, the final 150 ms of each forcing cycle was used to estimate the
average side force on the model. Figure 73 shows the resulting time-averaged side force coefficient,
Cy, as a function of the set moving wall velocity. To differentiate between port and starboard
forcing, negative moving wall velocities indicate forcingon the port side, while positive moving
wall velocities indicate forcing on the starboard side. From Fig. 73, the average side force appears
proportional to the moving wall velocity, at least at this angle of attack and Reynolds number. This
same trend is seen in the companion experiments when the average side force is compared to the
applied voltage to the plasma actuation.Fagley et al. [2012a]
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Figure 73: Average side force coefficient,Cy, for different moving wall velocities. A positive
moving wall velocity indicates forcing on the starboard side, while a negative moving wall veloc-
ity indicates forcing on the port side. All forcing is tangential to the model in the downstream
direction.

5.4.5.4 Proper Orthogonal Decomposition of the Flow Field The serial dataset alternating
between port and starboard forcing at 12 m/s (see Fig.??), which was saved on the tap grid shown
in Fig. 69, was analyzed and the spatial/temporal POD modes were calculated. Figure 74 shows the
cumulative energy captured in the calculated POD modes based on the pressure field. As shown in
the inset of Fig. 74, using the pressure field for the POD analysis requires over 50 modes to capture
approximately 99 percent of the energy in the flowfield. However, the very first mode (in this case
the mean) captures 98 percent of the energy. Therefore, a large number of modes are required to
account for the fluctuations from the mean in the pressure field.

Figure 75 shows the resulting first five spatial POD modes based on the pressure from the
tap data. In this case, the first mode exactly corresponds to the mean pressure field, while the
second spatial mode accounts for the shift of the primary vortices into an asymmetric state. As
shown in Fig. 75b), a′X′-shaped pattern in the mode can be seen, especially near the rear of the
model. Therefore, when the time coefficient is positive, theport vortex is shifted away from the
ogive, while the starboard vortex is shifted towards the body. This shifting of the two primary
vortex positions is confirmed by the second POD mode time coefficient, Fig. 76, in which the time
coefficient and the model side force are clearly correlated.Note that in Fig. 76, the time coefficient
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Figure 74: Cumulative energy content captured in each POD Mode. The inset shows a zoomed in
view of the first 50 Modes energy content.

has been scaled to match the scaling of the side force coefficient. Furthermore, very similar spatial
structures were also obtained when POD modes based on total vorticity were calculated.

As for the higher spatial modes and associated time coefficients, no clear correlation between
these modes and the resultant side force has been found. However, based on the results shown
in Fig. 74, these higher order modes contribute very little to the total amount of energy contained
in the flowfield. Notice however that these higher-order modes do not appear in conjugate pairs
like POD modes from periodic flowfields which create traveling structures. This is because, while
there are minor fluctuations in the positions of the vortex, once locked into one state the vortices
tend to stay there.
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(a) (b)

(c) (d)

(e)

Figure 75: First five spatial POD modes: a) Mode 1, b) Mode 2, c)Mode 3, d) Mode 4, and e)
Mode 5.
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Figure 76: Comparison of the instantaneous side force coefficient and the 2nd POD mode time
coefficient.

As a check, POD was performed on the time-resolved simulation data. The port and starboard
data sets at a mass flow rate of 0.07 were concatenated into a single data before performing the
analysis. As shown in Figure 77, very similar results are obtained using the time-resolved data,
especially in the 1st and 2nd spatial modes, where the′X′-shaped pattern can still clearly be seen
in the 2nd mode. Furthermore, as shown in Figure 78, the 2nd mode still closely follows the side
force on the model. In this case, a large spike occurs in the 3rd POD time coefficient corresponding
to the swap in side force.
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(a) (b)
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(e)

Figure 77: First five spatial POD modes using the time-resolved simulation data: a) Mode 1, b)
Mode 2, c) Mode 3, d) Mode 4, and e) Mode 5.
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Figure 78: Comparison of the instantaneous side force coefficient and the first three POD mode
time coefficient from the time-resolved data.

105 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

Initial 

Population

Objective and

Fitness

Evaluation

End

Criteria?

Yes

No

Reproduction

Mutation

Crossover

Future

Generation

Figure 79: Procedure for genetic search algorithm.

5.4.6 Sensor placement

This section presents a numerical study on optimal sensor location and number of sensors to ade-
quately estimate both the asymmetric vortex states and transients therein. For the purpose of this
study, the flow state is defined as the side force coefficient (Cy) which entirely captures the asym-
metric vortex behavior. The side force is the desired control variable , and thus it is imperative
to have a surface sensor arrangement that accurately predicts the dynamics of this quantity. The
following sections outlay the approach used for determining surface sensor placement for the von
Kármán ogive.

5.4.6.1 Optimal Method The optimization problem is solved by using a constrained, evolu-
tionary genetic algorithm (GA). The constrained optimization problem as a stochastic search rou-
tine is designed for the problem,

min
x∈Rn

F(x), (80)

wherex is the search variable defined in space∈ Rn subject to an arbitrary functionF(x). This is
a constrained optimization problem withx subject to the constraint,

Li ≤ xi ≤Ui, (81)

whereLi is the lower bound andUi is the upper bound for our search vectorxi . This evolutionary
search based method is a classical approach for these multidimensional constrained optimizations.
The basic architecture of the GA is shown in Fig. 79. With any GA search routine an initial popu-
lation or array of potential solutions is randomly selected. The objective function is then evaluated
at each member of the population. The objective function provides a measure on how well that
member of the population performed. The fitness function transforms the result into a relative
fitness. Poorly fit members are discarded and fit members are replicated in the reproduction step.
Combinations of fit members are randomly selected and then mutated to form the next iterative
population. This process continues until a desired stop criteria is satisfied.
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In application to the problem of the von Kármán ogive, the objective function is defined as

f (xs) =Cy(t)−Cp(xs, t) (82)

whereC is the observation and computed from a least squares estimate (see below). The fitness
function is defined as the 2-norm of the objective function,

F(xs) = ‖ f (xs)‖2. (83)

The search domain (Li ≤ xi ≤ Ui, ) is restrained to the upper surface of the ogive. Symmetric
sensor placement is enforced, such that at each axial position two sensors are placed at the±θ
positions.

5.4.6.2 Linear Stochastic Estimation Linear stochastic estimation (LSE) is chosen as the
baseline estimation method. Since flow fields of interest aretypically highly non-linear, the perfor-
mance of this method usually tends to be poor for most flow fields. However, a linear analysis is
always important because it serves as a benchmark comparison for the more complex, non-linear
system ID methods. Secondly, the computational time for thelinear analysis is negligible, thus
allowing for an optimal study in terms of sensor location andnumber.

The CFD simulation provides surface pressure at any point onthe surface of the ogive. The
array of surface sensors is defined as the vector,xs. A linear mapping which estimates the state of
our flow field is sought. The observation matrixC is computed to best represent the flow state in a
least squares sense.C is computed by a matrix inversion,

C=Cy(t)p(xs|t)
−1 whereC∈ R

m×k. (84)

Future estimates can then be approximated by the matrix multiplication,

Ĉy(t) =Cp(xs, t)label(e.Pest) (85)

The performance of the linear estimation approach is quantified by the error norm of the estimate.
The error is defined as

ε = ‖Cy(t)−Cp(xs, t)‖2 (86)

This is the very basic estimation method. The linear and stationary approach provides for a means
to optimally solve for ideal surface arrangement. A surfacesensor array is sought to minimize
the error in (86). Once the sensor array is determined, the estimation method can be extended to
non-stationary, higher order, non-linear methods. The optimal arrangement of sensors in a linear
fashion will also be optimal for higher order methods as well.

5.4.6.3 Results The unforced data, shown in Fig. 80 a), indicates that while asignificant side
force coefficient,|Cy| ≈ 1, can be achieved with this geometry in simulations, it is smaller then
the experimental findings.? However, the unsteadiness of the side force coefficient around the zero
point shows that the flow is unstable with respect to the vortex state when no geometric disturbance
is present to enforce either the port or starboard asymmetric vortex states.

Fluidic actuation is introduced into the numeric simulation via two moving wall boundary
conditions at the tip of the von Kármán ogive, as shown in Fig. 68. The forcing is duty cycled
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Figure 80: a) Unforced side force coefficient. b) Forced sideforce coefficient.

between port and starboard actuators to produce both asymmetric states, deterministically within
the flow field. For both forcing situations, the unforced state of the vortices is altered resulting
in a side force comparable to experimentally measured values, such that the flow has entered into
a pseudo-steady asymmetric state, see Fig. 80 b). It was determined from this data that the data
for the unforced case would provide more difficulty for the estimation/optimal routine because
of the large number of transients between asymmetric statesas well as the reduced magnitude of
side force (i.e. smaller differential pressures from port to starboard). The unforced data was then
selected to be the training data for the optimal routine and the forced data was selected for the
validation of the resulting sensor configuration.

The sensor location are bounded to the leeward side,θ = ±110o, of the ogive over an axial
range of 1≤ x/D ≤ 4. Another spatial constraint is the sensor array must be symmetric about the
z= 0 plane to ensure symmetric sensor placement. Thus the necessary parameters to optimize
over are the axial and the azimuthal positions of a sensor pair,xs = [x1,θ1,x2,θ2, . . . ,xk,θk]

T , for
2k sensors. The bounds or constraints on the search criteria are thus,

1≤ x/D ≤ 4
0≤ θ ≤ 110o (87)

The (x,y,z) coordinates are then computed from the axial andtheta orientations, such that,

xsurf =


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(88)

where the radius at that axial location,r(x1) is computed from (??)- (??). The vectorxsurf contains
the coordinate pairs over the bounded region and mirrored about the meridian plane. The pressure
information atxs is linearly interpolated from a surface tap grid on the ogiveusing Delaunay
triangulation.
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To ensure the correct optimal method with associated parameters (i.e. population size, mutation
rate selection/deletion properties and mutations/crossover operators) were chosen for the optimal
study of sensor location and number of sensors, the entire error surface was computed for a single
sensor pair and compared to the results from the genetic algorithm. The error surface plot is shown
in Fig. 81.
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Figure 81: Error surface of a single sensor pair and optimal solution shown to be at location of
minimum error thus validating the optimal routine.

The optimal solution as computed by the above method produces xopt/D = 2.4 andθopt = 1.5
which is plotted as a green triangle in Fig. 81. This does align with the minimum of the error
surface, so the optimal method is validated for this type of minimization problem. Note also that
the error of the linear estimator becomes much worse outsidethe bounds ofx/D ≥ 3.5 andx/D ≤
1.5. This is mainly due to the dynamics of the asymmetric vortexphenomena. The strongest
asymmetries are seen in the axial region from 1.5 ≥ x/D ≤ 3.5. Also it is seen that the minimal
amount of error is at the largest azimuthal positions, i.e.θ =±110o. This indicates that the sensors
near the separation lines are critical to capture the asymmetric dynamics.

The optimal solution was repeated for 2, . . . ,6 pairs of sensors. The results are shown in Fig. 82.
As the number of sensors is increased the error of the linear estimator is decreased for the training
data. Interestingly though, the error does not decrease forthe validation data but rather increases
if more than 6 sensors (3 pairs) are used. Because experimental implementation is crucial for this
project, it was determined that a sensor array with two sensor pairs provided the best compromise.
Also, the prediction error was not significantly reduced when more sensor pairs were used. The
optimum positions for the two sensor pair array were found tobe,

x/D = [2,3.25]
θ = [±105o±98o]

(89)

Figure 83 shows the unwrapped surface of the ogive colored ingray by the mean pressure distribu-
tion for the training data ensemble. The locations of the twosensor pairs are shown in Fig. 83 as
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Figure 82: Overall error plotted versus number of sensors attheir optimal locations. Performance
of the training and validation are shown in blue and red, respectively.

green dots. Figure 83 also shows instantaneous separation locations for the port asymmetric state
(red) and instantaneous separation locations for the starboard asymmetric state (blue). This figure
shows that the critical sensing locations for estimating the asymmetric state are near the separation
locations. Also, the separation locations do slightly movedepending on which asymmetric state
is present. This small fluctuation in the separation location provides for very large fluctuations in
relative pressures at the sensor location as shown in Fig. 84for each asymmetric state.

The optimal routine found the point at which the largest differential pressure occurred just near
the separation location. The time history of the estimationresults for the training and validation
cases are shown in Fig. 85. As shown the two sensor pairs predict the asymmetric behavior for the
forced and unforced case producing less than 17% error for each case. Some high frequencies are
not captured with this sensor placement, probably due to thefact that those asymmetric pressure
changes are occurring further upstream or downstream on thebody of the ogive.

5.4.6.4 Experimental Validation The flow state estimation technique laid out in Fagley et al.
[2012b], is experimentally verified by the following technique. The estimated side force,Ĉy, as
described by Eqn.??, needs to be validated and compared to the actual force on themodel. To
compare these two signals, the force balance sensor dynamics need to be measured and modelled.
For this an impulse response to the wind tunnel model and resulting forces are measured to model
the frequency response. Figure 86a shows the frequency response of the side force measurement
due to an impulse. A multi-modal resonance is seen due to the complex orientation of strain
gauge/flexure arrangement of the 6 degree of freedom force balance; additionally, each balance
channel shows a cross coupled behavior which is also a factorfor the multi-modal resonance.
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Figure 83: Unwrapped surface of the von Kármán ogive colored by mean pressure distribution.
Red lines indicate separation locations for port forcing and blue lines indicate separation location
for starboard forcing. Optimal sensor placement is shown asgreen dots.
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Figure 84: Sensor placement as well as azimuthal pressure coefficient for port forcing (blue) and
starboard forcing (green) at axial location a)x/D = 2 and b)x/D = 3.25
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Figure 85: Time histories and estimation performance for training and validation data.

 

 

GFB(s)
CyFB

C
y

Frequency, Hz
10−3 10−2 10−1 100 101 102 103 104

10−12

10−10

10−8

10−6

10−4

10−2

100

(a)
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Figure 86: (a) Frequency spectrum of the side force measurement due to an impulse response
[blue] and 8th order AR model [green]. (b) Time domain measurement of side force coefficient
[green], estimated side force from pressure signals [blue]and estimated side force measurement
when coupled with the dynamics in the AR model [red].
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Nonetheless the spectrum shown in Figure 86b allows for modeling of the sensor dynamics.
The impulse response of this measurement device is fit by an auto-regressive system in the form,

GFB(q)CyFB(t) = e(t) (90)

whereCyFB is the measurement of the side force andGFB(q) is a frequency domain model of the
force balance. All three signals can be compared by the following equation,

CyFB ≈ GFB(s)∗C×P(xs, t). (91)

An example of these signals due to alternating port and starboard forcing is shown in Fig-
ure 86b. The green curve represents the actual side force measurement. The experimental mea-
surements of the force balance are compared directly to the pressure based estimates of the force
as shown in Eq??. Figure 86b shows the actual force measurements in green, the estimated side
force from the linear combination of pressure signals in blue, and the estimated force measurement
with the force balance dynamics included in red. As shown qualitative agreement exists between
all three signals; the determination is thus that the estimated side forceĈy is a more suitable signal
for the actual force on the model, because the sensor dynamics of the force balance are excluded.

5.4.6.5 Summary Unforced and forced CFD simulations were used to understandthe asym-
metric vortex state behavior on a von Kármán ogive. The state of the flow was modeled using the
side force coefficient. A genetic algorithm was used to solvefor optimal sensor placement and
investigate the performance as a function of number of sensors. The fitness function of the genetic
algorithm was defined as the error between the least squares approximation of the surface pressure
to the defined flow state.

An optimal arrangement of sensors was chosen which is experimentally feasible and in fact has
been experimentally implemented. The current study showedthat a total of two sensor pairs placed
at position ofx/D = [2,3.25] andθ = [±105o,±98o], accurately predicted the flow state to within
17% error for training (unforced) and validation (forced) simulations. The placement algorithm
showed that sensors placed very near the separation point were optimal. This region showed the
largest differential pressures for port and starboard asymmetric vortices, which heuristically is the
best location for flow state sensors.
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5.4.7 System dynamics and modeling

To model the system dynamics of the asymmetric vortex state behind the von Kármán ogive at high
angles of attack, open-loop experimental tests were conducted to understand system characteristics
in terms of stability/bi-stability, controllability, observability, and linear/non-linear behavior. The
flow behind an axisymmetric slender body has previously beenshown to be completely bistable at
a sufficiently large angle of attack and small Reynolds numbers. Because few tests have been con-
ducted at a Reynolds number in the range of the current experiment (Re = 156,000), determining
if a bi-stable or proportional flow regime exists is criticalin designing a suitable model structure
and control system design.

The system with the characteristics shown in Figure 56 is suitable for being modeled by a
linear system with saturation points as well as a dead zone. Therefore, standard linear system
identification methods can be used for the system identification to extract critical features such as
delay time, rise time, cut-off frequency, phase/gain margin and minimum phase behavior. Once
these critical features are well quantified, the linear system will provide the means for closed-
loop controller development. For the open-loop database, the plasma actuator voltage is varied
in different manners to fully describe and model the dynamics. In this experimental investigation
three separate campaigns were conducted to develop the open-loop database. For training the
model, a step response is measured, which contains all necessary information for a linear model
to be developed. Linear modeling methods, such as the outputerror, prediction error and subspace
identification methods are implemented to capture the dynamic response to the step input. For
validation of the developed model, both impulse and sinusoidal forcing responses are compared to
experimental validation.

Initially, due to geometric asymmetries, angular misalignments or flow imperfections the sys-
tem is in the port asymmetric state which causes a port attached vortex, i.e. a negativeCy or ∆CP.
This steady state value is removed and relative changes to the asymmetric state are analyzed. For
all modeling purposes the side force estimate,Ĉy, will be used. Also, for all of the data presented,
only the port (negative voltages) and starboard (positive voltages) actuators are employed to influ-
ence the flow state.

5.4.7.1 Modeling Techniques The system response is modeled using a linear system parametriza-
tion. The input output relationship for this system is

Y(s) = Gs(s)U(s). (92)

The structure of the model in continuous time will take the form,

Gs(s) =
N(s)
D(s)

= Keθssm+am−1sm−1+am−2sm−2 · · ·a1s+a0

sn+bn−1sn−1+bn−2sn−2 · · ·b1s+b0
(93)

for a linear system withm zeros andn poles and a pure time delay,eθs. Different system identifi-
cation techniques exist for parameterizing suitable orders G(s) and solving for coefficients of the
polynomials in numerator and denominator. The three techniques for time domain identification
which are examined in this effort are: Output Error (OE), Prediction Error (PEM), and Subspace
Identification (SSID) methods.
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5.4.7.2 Output Error Method The output error method is an autoregressive exogenous input
(arx) model structure, and the identification method is wellrepresentative of discrete time and
frequency domain data of the form,

y(k) =
B(q)
F(q)

u(k−nk)+e(t). (94)

The OE method minimizes the cost function

‖y(k)− ŷ(k|θ)‖2
2, (95)

given a parameterized vector which contains numerator order, denominator order and pure time
delay,nB,nF ,nk, respectively. The optimal parameter vector,θ̂ is given by

θ̂ = min
1
N

N−1

∑
k

‖y(k)− ŷ(k|θ)‖2
2, (96)

For this study the pure, convective time delay is estimated from the step response measurements
as shown in Table 7. Six values fornk are chosen for these formulations. The true pure delay time
is shown to be 8 ms with a sample time ofTs = 0.1 ms which corresponds to a discrete delay time
of nk = 80. Because convective time and non-minimum phase aren’t decoupled, the convective
time parameter was varied to allow for the zeros to adjust accordingly to any non-minimum phase
behavior. Both the numerator orders,nB , and denominator orders,nF , are chosen over a range from
1 to 5. With these three parameter ranges, a total of 150 OE models were compared and validated.

5.4.7.3 Prediction Error Method The prediction error method (PEM) has a model structure
given by an autoregressive moving average (arma) system, and is an iterative identification ap-
proach for multi-input multi-output time domain data with amodel structure of the form

A(q)y(k) =
B(q)
F(q)

u(k−nk)+
C(q)
D(q)

e(t). (97)

This linear time model incorporates a system disturbance term which is filtered by theC(q)
D(q) transfer

function (a type of moving average). The parametrization for this model structure consisted of a
total of six parameters as shown by,

θ =
[
na,nb,nc,nd,nf ,nk,

]T
, (98)

where each numerator and denominator order is denoted byni . Each order was varied from 1
through 5 and the delay term was set to the convective time delay computed from the step input
which was approximately 8 ms. All models were compared and validated against experimental
validation data in following sections.

5.4.7.4 Subspace Identification Method The subspace identification (SSID) method is widely
used for black box modeling of linear dynamical systems directly in the state space domain, which
are written as,

xk+1 = Axk+Buk+Kek,
yk =Cxk+Duk+ek,

(99)
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whereuk is the m-dimensional input,xk is the n-dimensional state,yk is the l-dimensional output
andK is the Kalman gain. The SSID method is highly useful for MIMO systems, because of
its numerical robustness, and its model order optimizationbased on the singular values of the
Hankel matrix. On the downside, large data sets are needed toform the block Hankel matrices,
known deterministic processes are difficult to implement, and a strong theoretical understanding
of observability and controllability is necessary. The basic premise is to form the Hankel matrices
of the input-output data set; the observability matrix,

O =
[
C CA CA2 · · ·CAn−1]T

, (100)

and the reversed controllability matrix,

C =
[
An−1B· · ·A2B AB B

]T
, (101)

are imbedded within this large input-output Hankel data matrix. An appropriate model order can
be estimated by the singular values of this Hankel matrix. Once the model order is selected, system
matrices as shown in Eq (99) can be extracted.

5.4.7.5 Model Selection Experiments The three modeling techniques described in section
5.4.7 are applied to the training data. The RMS error betweenthe predicted response and ac-
tual response serves as the figure of merit for model selection. Transient areas where the input
contained high frequency changes were weighted more heavily in the calculation of the prediction
error. The best model from each reduced order modeling technique was chosen and model order
and structure was compared. Model structure was consistentaround a 4th or 5th order model.
Also, the poles of the models tended to migrate outside the unit circle if the convective time delay
was inaccurate; this non-minimum phase behavior allowed for the discrepancy in the time delay of
the model.

The results for the best simulated model responses in comparison to experimental measure-
ments of the step response are shown in Figure 87. Initial andending transients show very good
prediction of convective delay as well as rise/fall time constants as shown in Table 7. The dynam-
ics vary slightly differently when the asymmetric state transitions from port to starboard versus
from starboard to port. The transient time from starboard toport vortex states is shorter and the
overshoot is greater, as Table 7 indicates. This is potentially because the initial state prefers the
port asymmetric state which may provide an additional restoring force to the vortex dynamics.
The linear approach taken in this paper finds the mean dynamics between each state trajectory as
shown by Figure 87. Nevertheless, each of the models replicates the asymmetric vortex dynamics
to a step input very well, thus validating the model parameterizations as well as model selection
technique.
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Figure 87: Step response comparison of OE, PEM, and SSID modeling methods. (a) Initial tran-
sient and (b) ending transient of step response of estimatedside force,Ĉy, based on pressure mea-
surements

The validation data sets were also used to evaluate model performance. The models were
calculated against both of the sinusoidal forcing and impulse forcing inputs. The response of
the asymmetric state and model responses were compared. Figure 88a shows the summary of
the frequency response data which aligns well with the raw frequency measurements. The phase
relationship is also shown in Figure 88b. To select between the three different model development

117 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

approaches, the error is minimized in the frequency domain.The prediction error technique most
adequately fits the frequency domain data, in both magnitudeand phase.

Interestingly, the cutoff frequency of the system which is determined from a−90deg phase
is approximately 1/(2τ). This means more or less that any frequencies larger than an associated
period of two flow through times will be greatly attenuated. This is shown in Figure 88a.
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Figure 88: Comparison of model frequency response and experimental measurements.

Figure 89 shows the impulse response with varying duty cycles for the experimental and sim-
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ulated output error model results. The various colors represent the different duty cycles. The
solid lines represent experimental measurements and the dashed lines represent the PEM model
prediction. All of the impulses were initiated at time equalto zero with the ending duration of
the impulse indicated by a vertical dashed line. The linear model has a slightly different gradient
during transient times and a small amount of overshoot when returning to the initial state.
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Figure 89: Validation of output error model for simulation of impulse response with varying duty
cycles. Model response is shown in dashed line and experimental measurement is shown in solid
line

5.4.7.6 Model Selection Simulations The three modeling techniques described in section 5.4.7
are applied to the step response data. The RMS error between the predicted response and actual
response serves as the figure of merit for model selection. Transient areas where the input contained
high frequency changes were weighted more heavily in the calculation of the prediction error. The
best model from each reduced order modeling technique was chosen and model order and structure
was compared. Model structure was consistent around a 4th or5th order model. Also, the poles
of the models tended to migrate outside the unit circle if theconvective time delay was inaccurate;
this non-minimum phase behavior allowed for the discrepancy in the time delay of the model.

The results for the best simulated model responses in comparison to experimental measure-
ments of the step response are shown in Figure 90. Initial andending transients show very good
prediction of convective delay as well as rise/fall time constants as shown in Table 7. The dynam-
ics vary slightly differently when the asymmetric state transitions from port to starboard versus
from starboard to port. The transient time from starboard toport vortex states is shorter and the
overshoot is greater, as Table 8 indicates. This is potentially because the initial state prefers the
port asymmetric state which may provide an additional restoring force to the vortex dynamics.
The linear approach taken in this paper finds the mean dynamics between each state trajectory as
shown by Figure 90. Nevertheless, each of the models replicates the asymmetric vortex dynamics
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to a step input very well, thus validating the model parameterizations as well as model selection
technique.
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Figure 90: Step response comparison of OE, PEM, and SSID modeling methods. (a) Initial tran-
sient and (b) ending transient of step response of estimatedside force,Ĉy, based on pressure mea-
surements

The validation data sets were also used to evaluate model performance. The models were
calculated against both of the sinusoidal forcing and impulse forcing inputs. The response of
the asymmetric state and model responses were compared. Figure 91a shows the summary of
the frequency response data which aligns well with the raw frequency measurements. The phase
relationship is also shown in Figure 91b. To select between the three different model development
approaches, the error is minimized in the frequency domain.The prediction error technique most
adequately fits the frequency domain data, in both magnitudeand phase.

Interestingly, the cutoff frequency of the system which is determined from a−90deg phase
is approximately 1/(2τ). This means more or less that any frequencies larger than an associated
period of two flow through times will be greatly attenuated. This is shown in Figure 91a.
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Figure 91: Comparison of model frequency response, both magnitude (a) and phase (b).

Figure 92 shows the impulse response with varying duty cycles for the CFD simulation results
and simulated prediction error model results. The various colors represent the different duty cy-
cles. The solid lines represent experimental measurementsand the dashed lines represent the PEM
model prediction. All of the impulses were initiated at timeequal to zero with the ending duration
of the impulse indicated by a vertical dashed line. The linear model has a slightly different gradient
during transient times and a small amount of overshoot when returning to the initial state.

121 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

τ

C
y

10%5%1%

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

Figure 92: Validation of prediction error model for simulation of impulse response with varying
duty cycles. Model response is shown in dashed line and CFD simulation results are shown in
solid line
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5.4.8 Closed loop dynamics

Now that the system dynamics in Eq 92 have been modeled, i.e. the relationship between plasma
voltage and estimated side force response is determined, the closed-loop system can be realized.
The overall design of the control diagram is shown in Figure 93. The type of control system
selected is a reference tracking feed forward approach where Gs(s) is the plant as developed in
section 5.4.7,Gc(s) is the control system, andGd(s) is the output disturbance/measurement noise.
The unforced fluid state and measurement noise is modeled by an output disturbance, which is
colored by the unforced dynamics of the sensor measurements. The output disturbance,Gd(s),
may be represented by the unforced, natural fluctuating state of the flow. An autoregressive model
is suitable for the determination of this system. The success of the feedback control scheme will
be determined if adequate disturbance rejection as well as reference tracking ability are shown.

Gs(s) +-

d

yr e uGc(s)

Gd(s)

Figure 93: Closed-loop block diagram of output disturbancemodel for controller verification.

The closed-loop system is formulated such that

Y =
[

GsGc
1+GsGd

Gd
1+GsGd

][ r
d

]

, (102)

wherer andd are the reference and disturbance inputs, respectively. The transfer function between
different input-output pairs can be analyzed for varying forms of Gc(s). For the purpose of this
paper, the design of the controller,Gc(s), is standard PID control. A PID control algorithm is
implemented because of the simplicity and ease of design. The asymmetric vortex dynamics lend
themselves very well to linear time invariant systems, so a simple control algorithm is appropriate
for control of the vortex flow behind the ogive. The control algorithm is given by

Gc(s) = Kp+Kds+
Ki

s
, (103)

whereKp, Kd, Ki are the proportional, derivative and integral terms, respectively. A standard tuning
method is adopted where the gains are varied in a systematic fashion to achieve proper closed-loop
response to a step reference input.

5.4.8.1 Closed Experimental Model Results The response ofGsGc/(1+GsGd) is shown for
varying proportional and integrator gains in Figure 94. Selected gains for the PI controller are,
Ki = 80 andKp = 1.2. The derivative term caused an instability in the transferfunction,GsGc/(1+
GsGd), purely due to the time delay in the system.
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Figure 94: (a) Closed-loop step response with varying proportional gain. (b) Closed-loop step
response with varying integral gain.
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Figure 95: Magnitude (a) and phase (b) response of open loop system,Gol = GsGc. The gain and
phase margins are computed as 2.44dBand 62◦, respectively.

The frequency response for the reference tracking and disturbance rejection capabilities are
shown in Figure 96. As shown in Figure 96a, the closed-loop system response adequately follows
reference signals up to approximately 1/(2τ) which was determined to be the cutoff frequency
in the open-loop analysis of the dynamics. Figure 96b shows the closed-loop system attenuation
of disturbances (i.e. the ability of the closed-loop systemto reduce fluctuations as a function of
frequency). Disturbances are attenuated up to a frequency of 1/(4τ) which turns out to be half of
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the cut off frequency.
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Figure 96: (a) Closed-loop system response for input reference to output response. (b) Closed-loop
system response for input disturbance to output response.

A typical time simulation is shown in Figure 98 to a time varying reference with a uniform
random disturbance input. As shown the response of the side force adequately follows a reference
signal. The controller is designed aggressively enough to have over/under shoot characteristics
with step changes. Additionally, the disturbances at lowerfrequencies are reduced in size.
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Figure 97: Time simulation of closed-loop system for varying reference and disturbance excitation.

5.4.9 Closed Experimental Results

Once the closed-loop model was fully developed and analyzed(as discussed in Section??) a ref-
erence tracking exercise was conducted with the experimental model in the wind tunnel to asses
the performance of the closed-loop controller. For these investigations an arbitrary piecewise refer-
ence waveform was generated for the controller to track, where the target side force coefficient was
changed seven times across the 15 sec. testing period to bothpositive and negative side force coef-
ficients. A PID (Proportional-Integral-Derivative) controller was developed utilizing both the port
and starboard actuators to impart control and all four time-resolved pressure transducers were used
to estimate the instantaneous side force coefficient on the body for feedback. Figure 98 displays
the performance of the experiment for the reference tracking exercise, where the experimental sig-
nal is a phase averaged result of five independent experimental tests following the same arbitrary
reference signal (also presented). For the experiments theproportional and integral gains were
0.25 and 0.000977, respectively. The derivative gain was set to zero because it was found during
the modeling that any amount of derivative gain forced the model to go unstable. Clearly, the ex-
periment was successfully able to track the reference signal in the mean of the linearly estimated
side force coefficient, however significant higher frequency fluctuations were still observed, which
the controller was unable to modify.
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Figure 98: Closed loop experimentation results with same controller from above section.

5.4.9.1 Closed Simulation Model Results The response ofGsGc/(1+GsGd) is shown for
varying proportional and integrator gains in Figure 94. Selected gains for the PI controller are,
Ki = .012 andKp = 7×10−7. The derivative term caused an instability in the transfer function,
GsGc/(1+GsGd), purely due to the time delay in the system.
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Figure 99: (a) Closed-loop step response with varying proportional gain. (b) Closed-loop step
response with varying integral gain.
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Figure 100: Magnitude (a) and phase (b) response of open loopsystem,Gol = GsGc. The gain and
phase margins are computed as 1.7dBand 67◦, respectively.

The frequency response for the reference tracking and disturbance rejection capabilities are
shown in Figure 101. As shown in Figure 101a, the closed-loopsystem response adequately fol-
lows reference signals up to approximately 1/(2τ) which was determined to be the cutoff fre-
quency in the open-loop analysis of the dynamics. Figure 101b shows the closed-loop system
attenuation of disturbances (i.e. the ability of the closed-loop system to reduce fluctuations as a
function of frequency). Disturbances are attenuated up to afrequency of 1/(4τ) which turns out to
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be half of the cut off frequency.
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Figure 101: (a) Closed-loop system response for input reference to output response. (b) Closed-
loop system response for input disturbance to output response.

A typical time simulation is shown in Figure 98 to a time varying reference with a uniform
random disturbance input. As shown the response of the side force adequately follows a reference
signal. The controller is designed aggressively enough to have over/under shoot characteristics
with step changes. Additionally, the disturbances at lowerfrequencies are reduced in size.
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Figure 102: Time simulation of closed-loop system for varying reference and disturbance excita-
tion.

5.4.9.2 Closed Simulation Results Using the unforced data, a linear prediction-error mini-
mization method was used to model the dynamics of the flowfieldfor different momentum coef-
ficients. Based on the model, a PID controller was developed to reference track a prescribed side
force trajectory. The details of the model development as well as the PID controller can be found
in Fagley et al. [submitted 2012] (experimental) as well as Porter et al. [2013] (computational).
Figure 103 shows the initial results obtained using the PID controller in conjunction with Cobalt.
A reference side force of Cy = 0.5 was used to test if the controller could reference track. For this
simulation, an aggressive gain for the proportional and integral components was used. As a result,
the side force overshoots its reference condition. At this point, the controller turns on the starboard
actuator to counteract this overshoot, creating a large oscillation in the side force. However, note
that this is exactly what was predicted in the model simulation of the controller (Fig.??). While
there is a small discrepancy in the transition time between the controller model and the CFD simu-
lation, the general overall trends are captured in the model. As shown in the model, this oscillation
from aggressive PID gains eventually damps out and the controller is able to stabilize the side force
at the desired reference. It is postulated that if the current CFD simulation were carried out farther,
the same results would be seen, especially since the overshoot of the second peak in the CFD is
smaller then the initial overshoot, indicating that it is starting to be damped out.

5.4.10 Modeling summary

The asymmetric vortex regime of a von Kármán ogive with a fineness ratio of 3.5 is experimentally
studied at a Reynolds number of 156,000. Both port and starboard plasma actuators are used to
introduce fluidic disturbances at the tip of the ogive. Thesedisturbances are amplified through the
flow’s convective instability to produce a deterministic port or starboard asymmetric vortex state
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Figure 103: Closed-loop simulation with a reference Cy = 0.5 and the corresponding Cµ out of the
port and starboard actuators.

(i.e. side force). Accurate control or manipulation of thisasymmetric vortex phenomenon holds
the potential for increased maneuverability and stabilitycharacteristics of slender flight vehicles.

Unforced and open-loop experimental tests were carried outto understand and quantify the vor-
tex dynamics. Step, impulse and sinusoidal modulation inputs provided the necessary dynamics
and diverse training and validation data sets for the formulation of a linear time invariant dynamical
model. Standard linear system identification approaches were implemented to represent the train-
ing data set. In particular, output error, prediction errorand subspace identification methods were
used to capture the asymmetric vortex dynamics. These methods were validated by time and fre-
quency domain methods. The measurements and modeling methods showed the cutoff frequency
of the flow to be around 50 Hz which is directly related to two flow through times, i.e. the time it
takes a particle to flow from the tip of the model to the base of the ogive section.

A closed-loop system was designed such that the unforced fluid dynamics and measurement
noise were modeled as an output disturbance. The predictionerror model was well suited for this
system. A PID controller was implemented in the closed loop system and designed for adequate
disturbance rejection and reference tracking performance. The closed loop transfer functions were
analyzed. A time simulation was shown in which the controller was able to guide the asymmet-
ric vortex state to an arbitrary asymmetric pressure distribution while adequately regulating the
disturbances. To improve this control design approach a predictor model would be essential to
reduce the convective time delay from the actuator to the sensor. Alternatively, the sensors would
have to be placed closer to the nose of the ogive which would reduce the amplitude of the pressure
measurements, reducing the signal to noise ratio.
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5.5 Business Summary

The business plan was divided into both a salary portion and travel portion for the senior engineer.
The projected salary portion is listed in table 9, itemized yearly for the duration of the contractual
agreement. The projected salary portion is listed in 10 for travel to one conference per year.

Table 9: Total projected salary for contract duration

Period of Performance Labor Category Rate Hours Yearly Price

8 Jan 2010 to 7 Jan 2011 Senior Engineer $35.51 1880 $66,750
8 Jan 2011 to 7 Jan 2012 Senior Engineer $39.89 1880 $75,000
8 Jan 2012 to 7 Jan 2013 Senior Engineer $42.55 1880 $80,000

Total $221,750

Table 10: Total projected travel for contract duration

Travel Expenses Flights Lodging/night Per Diem (M&IE) Registration Total

2010 Conference $800.00 $120.00 $80.00 $300.00 $2,100.00
2011 Conference $800.00 $120.00 $80.00 $300.00 $2,100.00
2012 Conference $800.00 $120.00 $80.00 $300.00 $2,100.00

Total $6,300.00

The actual costs incurred are listed in Tables 11 and 12 for salary and travel, respectively. As
shown, costs between projected and actual did differ slightly. This was mainly due to obligatory
issues during Y3.Q1 and Y3.Q2. Also, more travel was required over the course of the contractual
duration.
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