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1 Relevant Findings

Contract FA7000-10-2-0003 was in direct response to Brogeih&y Announcement (BAA) with
the Aeronautics Laboratory at the United States Air Forcad&emy. The announcement in the
BAA in which this contract was directly related is quotedrfrthe BAA as,

Current research strengths include several complementary thrusts. Closed
loop flow control efforts focus on aero-optic and energy extraction, with
extensive effort in the development of automatic control algorithms and
techniques, experimental flow control methodologies and CFD simulations.

Work under this contract produced new, innovative and thigzal methods for developing con-
trol algorithms. In particular artificial neural networksupled with direct adaptive control was a
new innovative solution for achieving successful contfolery high dimensional, non linear dy-
namical systems. This control technique which is describetktail throughout this manuscript
was successfully applied to a wide variety of flows. This flamtrol approach proved to success-
fully reduce the drag on a circular cylinder by decreasimgaimount of energy in the von Karman
street, mitigate optical abberations through a free uthsttiear layer, as well as regulate and ex-
ploit the asymmetric vortex formulation behind an axi-syetrnit bluff body at high incidence.
Each of these flow control applications had inherently déifeé dynamics including periodic vor-
tex shedding, separated free unstable shear layers, ardr@iions thereof, which demanded a
large amount of robustness from a control design perspectiApplications and demonstration
of successful feedback flow control where shown both expartally and computationally. This
manuscript goes into great detail on the theoretical agbrediich has been adopted by the US-
AFA flow control group and then details the applications toheaf the fluid dynamics problems.
The report then summarizes the business portion of theatnal agreement.

This material is based on research sponsored by the US Air Force Academy
under agreement number FA7000-10-2-0003. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the US Air Force Academy
or the U.S. Government.

[A1l information and data Herein is] approved for public release,
distribution is unlimited.

2 Publications

Z. H. Adams and C. Fagley. Novel cyclorotor pitching meckanfor operation at curtate and
prolate advance ratios. RIAA, AIAA2013.
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3 Proposed Research

3.1 Approach

Classical control theory is limited when dealing with hidimensional, extremely non-linear sys-
tems such as flow fields. New techniques need to be establishedke use of current control
theories, while also allowing for a reasonable design m®der linear, non-linear, or adaptive
control for complex flow fields. Low dimensional modelingeffirst step in synthesizing control
algorithms. Computational fluid dynamic (CFD) simulatiowhich are numeric approximations
of the Navier Stokes equations seen in Eq 74

p(%—i—u-ﬂu):—ﬂp-l—D-T—i-f, (1)

are utilized to produce an open loop forcing parameter spspecally varying frequency and
amplitude of the actuation signal. Numerical reductionesels such as principle component
analysis or proper orthogonal decomposition (POD,SPODBPPOD) are then used to greatly
reduce the full order systemm)(to a truncated mode seftn), such thatm << n as seen by the
following equation.

S0c) = 3 alh00) @

The resulting mode set shows the decoupling of time and spaespondingly modal amplitudes
(&(t)) and spatial modesp((x)). The highest energy/most dominant modes are retainecein th
truncation so that the reduced data set accurately repseenfull order system. The control
engineer will recognize these time coefficientf()) as the internal states of system.

Typically, a Galerkin projection is used to project the trated mode set onto the Navier Stokes
equations, but that creates numerous modeling errors, asicimsatisfied boundary conditions,
numerical instabilities, and poor implementation of attwraterm. The research proposed, uti-
lizes system identification techniques, such as weightest Bjuares, correlation functions, power
spectral density with impulse responses, neural netw@kNCARX), networks with wavelet ra-
dial basis transfer functions (WNARX), and other non-lingeethods to formulate a state-space
system. Typically, control designers desire these systlemtification models to be linear-time-
invariant (LTI) state space systems. This allows for verge control design procedures. The
problem with the LTI approximation is that fluids are not aeln system, as seen from the Navier-
Stokes equations which govern fluid flow (Eq. 74).

A linear model breaks down and insufficiently representdltive field rendering it useless for
any type of control design. New methods or combination otroés for both system identification
and control development, from non-linear to adaptive adrtéchniques, need to be explored.
This research proposes to investigate wavelet basis NetW@/NARX) to demonstrate the full
capability of identifying complex flow response for a rangepen loop parameters. The WNARX
will represent a dynamic model which can simulate off defligw cases, serve as reference signal,
and ultimately predict closed loop behavior for controligas The WNARX model uses the same
network architecture as a neural network; the only diffeeeis radial basis functions are used as
each neuron’s transfer function. This is shown by,

wmm:w(tﬂ), 3)

S
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whereu is the translation of the waveles,is the dilation, and¥ is referred to as the mother
wavelet, which is a radial basis function in this case. WNARXdels are much better suited for
identifying the frequency rich dynamics of complex, tudnt flow fields. The overall WNARX
model is given by,

f(t)= iwiLP(s(t —u))+c't+ fo (4)

wherew; are the weightsN is the number of wavelet functions! represent the linear connec-
tions, andfy is the bias. This proposal will use this new system identificemethod to formulate
an extremely low dimensional model based from CFD simutatiand POD/DPOD decomposi-
tions to accurately predict closed loop dynamics of a givew field. This model is then used to
perform feedback simulations to condition control aldans which can then be applied directly
to CFD simulations and experiments. Previously, this adritesign approach was applied to the
simple cylinder wake flow fieldFagley et al. [2009] Siegel kf2008]. Although successful for
the very simple flow, we desired to extend the approach to roomgplex, turbulent, flows, e.g.
free, unstable shear lay@r Initial results are promising. The WNARX method for forratihg a
model has proven to be much better than the previous ANN-ARXeh Neural networks have
inherent problems. First, there is that no straight forwaethod exists for determining the number
of hidden neurons, number of layers, or parameters of thresspn vector. Training relies heavily
on trial and error to find a combination of parameters thadgiacceptable results. Second, the
convergence of these networks depends heavily upon thalimation of the weighting matrices.
This can lead to drastically different results when trajnansingle network with a given set of
parameters twice because of the initial random generafiove@hts. Third, a properly trained
network will behave as alack boxin which little mathematical/physical insight can be gaine
And fourth, training times are extremely long due to multdaberror surfaces which tend to trap
the solution within local minima. Wavenets incorporate PE3ed initialization of weighting ma-
trices which allow for much higher convergence times; thigadial basis functions also represent
non linear limit cycle behavior of these flows which redudeslbcal minima problem.

This research proposal continues model reduction work erskiear layer and looks to vali-
date the designed control laws in both computational anéraxgntal studies. The reduced order
model control design approach proposed is extremely pohanid can be applied to many differ-
ent flow fields. The control development method is not limtiedimplified flow fields, but well
suited for highly turbulent, chaotic flows. Ultimately, theal of this research proposal is to refine
the method of model/controller development while applyengrent knowledge and techniques to
different flow fields. In accompaniment with the shear layedeling efforts, | intend to use this
model reduction method for multiple flows and actuationriat&ion, such as cycloidal propeller
for wave extraction, cycloidal propeller for MAV design eslr layer with blowing and suction slot,
shear layer with plasma actuation, and modeling of stredluid interaction.

7 Fagley
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4 Research Synopsis

4.1 Overview

Traditionally, flow fields are controlled or manipulated \passive or open loop active control
techniques. Passive strategies make use of modifying agtical properties of the body to achieve
a desired flow state. These methods add no external energpe titotv and are time invariant.
Protrusions or intrusions will be added along the body’sngeiny to induce some type of flow
change. These methods yield only small performance gaiosrtain flow fields, but are very
easily implemented onto an aerodynamic design. A few exesnpl this type of flow control are
winglets, fins, or dimples on a golf ball.

The other type of flow control is active control which is bralk#own into two subcategories:
open and closed loop control. Open-loop strategies makefuaetuators to force the flow at
a given frequency and amplitude to induce some sort of dasirghange in flow state. These
actuators are typically blowing or suction slots, plasmia@ors, or piezoelectric actuators. An
example of this is blowing high frequency pulses along tlaelileg edge of an airfoil to create
small coherent vortex structures which prevents the orfse¢maration and inherently increases
the angle of attack at which stalling occurs.

These above methods have been exhaustively studied by ffo@hdcists. The focus of this
paper is on closed loop active flow control. Instead of thevalmpen-loop strategies, sensors are
used to feed back vital flow characteristics such as, pressafocity, temperature, density mea-
surements, etc. These measurements formulate an estifntia¢ecarrent flow state. This estimated
state allows for state feedback through some control algonivhich prescribes an actuation com-
mand to produce a desired flow state in the flow field. This rebeeontains multiple tasks to
overcome for the overall success of these ideas such aslogevent of control algorithms, state
estimators, and strategic sensor placement. Mainly bedaud dynamics are composed of highly
complex, non-linear, stochastic processes, the developohsimple, yet robust control algorithms
and state estimation methods becomes extremely difficiie Hormulation of low dimensional
models which accurately and robustly represent the flow awgwen forcing parameter space is
one approach to developing such algorithms and is explorextensive detail in the following
dissertation.

Before any type of modeling or control design efforts can bmleted, a representation of
the flow field shall be selected. Flow fields are representetgdyniques such as full order gov-
erning equations (the Navier-Stokes equations), expatmhasetups, numerical approximations
of the governing equations (computational fluid dynamitisgarizing governing flow equations
(potential flow theory), etc. Each of these methods are wikkd for flow field representation and
only depend upon the resources at hand and the relevant fbuwés desired in the representation.
Scaled models placed in wind tunnels accurately createetEfow fields but really lack with ease
of measurements. Measuring techniques such as hot filntg;lpamage velocimetry, Schlieren
imagery, laser doppler velocimetry, etc. do serve as efficieeans of measuring flow characteri-
zations, but these techniques are local measurements tgthporally or spatially. Measurement
noise is also a significant problem for subsequent contrdésign, model or state estimation for-
mulation . The governing equations depicted below by thei@étestokes equations do represent

8 Fagley
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100% of the flow physics, but really lack in solvability.

p(%—i—u-ﬂu):—ﬂp—kﬂ-ﬂ-f (5)

Only a handful of solutions exist to these equations. Thatsmis thatdo exist are mostly re-
lated to extremely over simplified flow fields which are oftddittie interest from an engineering
standpoint. The Navier-Stokes (NS) equations can be noailrisolved, a discipline known as
computational fluid dynamics (CFD). Typically, these nuimmeplutions are only approximate so-
lutions to the NS equations, but they do provide extremedygimtful information which can be
used for analysis, design, and simulation purposes. CFiReipitocess of solving coupled partial
differential equations by the means of finite differencehods, finite element methods, or finite
volume methods. The spatial domain of the flow field is diszeetinto small cells which make up
a volume grid or mesh. The cells are irregular shapes (ictamgles, triangles, polygons, etc.) and
resolved on different spatial resolutions. Direct solngi@f the NS equations (DNS) for complex
flows (large Reynolds number flows) is not computationalablé on today’s supercomputers. The
resolution of the discretization needed is proportionaghtocube of the Reynolds number Re’)

for an accurate DNS simulation. For a turbulent flow this ddag on the order of 28 cells for a
given simulation. For laminar flows this is not computatindifficult (as Reynolds numbers are
less than 2100), but as the increase of Reynolds nhumberobiigosi becomes unrealistic. Many
numeric methods to reduce computation burden while resglthe desired scales exist to accu-
rately predict turbulent, compressible, highly complexfleelds (i.e. direct numeric simulations,
large eddy simulations, detached eddy simulation, scabaiance, higher order turbulence mod-
els, combinations of methods with filters for transitionaameMeneveau and Katz [2000]. CFD
allows for an accurate means of achieving a representatite alesired flow field and is typically
the most widely used among current research approachest @il representations such as Euler
equations, potential flow, panel methods are used as well.

Feedback flow control design can be broken into two main caieg, Strategies which make
use of low dimensional models and strategies which use tliehfieee approach. It is argued that
the model free approach has less chance or reaching a dpsifedmance, but may be simpler
to implement, while the reduced order model approach is rmore consuming formulating the
model and simplifies control derivation.

The model free approach utilizes adaptive control techesda feedback global flow variables
in an experimental setting to improve flow characteristi®scker et al. [2006] This method com-
pletely abandons modeling procedures and directly cldsebp. Control laws such as adaptive
extremum seeking controllers vary open loop parametersoiduyce desired flow states.King et al.
[2004]Moeck et al. [2007] Typically, these controllerskatesired performance, but do prove to
be useful for initial experimental investigations.

The second entails using reduced order modeling procetiufesmulate low dimension nu-
merical models for controller development. These methatide relatively time consuming and
numerically intensive are able to produce simple, highqrering control algorithms. Current
techniques do have inherent problems with modeling andamphtation of actuation, as dis-
cussed below. The focus of this paper will be on the lattehetvhich producesmartercontrol
algorithms based on reduced order models (ROM’s).

For high performance, accurate control algorithms, an dyitg model needs to be formulated
which accurately captures the desired flow features in tlaéyaed flow is needed. Customarily,

9 Fagley
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low dimensional modeling for flow control purposes is a thstap process.Siegel et al. [2008] A
flow field in which feedback control can improve a flow variabteachieve a certain flow state is
chosen. The first step involves acquiring flow data eithertpeamentation or numerical proce-
dures. Selecting the correct flow variable to model is a veyartant step for model development.
For example, streamwise velocities may be used to modeldtiexshedding behind a cylinder,
or the pressure field may be used to model the structures &ea Eyer. Once the experiments or
numeric simulations are carried out, the data is then caateor decomposed by common tech-
niques such as the Karhunen -Loéve procedure more comrknalyn as the proper orthogonal
decomposition (POD) method (discussed in more detail ini@ed.2.2.1). The method of snap-
shots provides a powerful tool for POD which allows for a maceurate decomposition based
on periodic flow behavior.Sirovich [1987] The POD methodwat the higher frequency/lower
energy modes to be neglected, maintaining the higher emeogles, more dominant modes. This
will dramatically reduced the order of the data. After theDP@rocedure the data will be in the
form,

w0y = 3 & 0@ ) ©)
=1

The third and final step is developing a numerical model feséhtime coefficientsa{(t)).
Traditionally, a Galerkin Model is formulated. Here thertcated mode sety(x,y)) is projected
back onto the Navier-Stokes equatiogg-{) Noack et al. [2004]Rempfer [2000] Rowley et al.
[2004]Sirisup et al. [2005] Gerhard et al. [2003]. For cameace, suppose the navier stokes
equations are written as the non-linear opergtoy

%:g(u) u=u(xt) t>0xeN. (7)

The spatial modes are then projected onto the left and rigghd Bides of Equation 7, such that

(009 5 ) = (@txy).50) i =12.... ®

Where the set of basis functions must meet the followingireqments: (1) The basis must be
complete meaning the basis must span the entire set of thmairiflow field. (2) The basis
columns must be linear independent. (3) The eigenfunctimnst satisfy the boundary conditions
of the Navier-Stokes equations Rempfer [2000]. This ptapacwill yield a set of ODE’s which
describe the evolution of time coefficients,

dad—i(:t) :Si(a]_,az,...). (9)

These ODE’s will be quadratic in nature due to the convetéu® of the Navier Stokes equations.
These equations have proven useful for analyzing stalfifyjow fields and developing simple
control algorithms. The problem is this set of equations]ewmathematically accurate, is numer-
ically unstable because of the lack of satisfied boundargitions. Also, adding the actuation
term to the set of equations in 9 tends to be very difficult. uatibn dynamics are a dominant
feature of feedback control. As in Noack et al. [2004] and Rgvet al. [2004], an actuation term
is superimposed on Equation 10, such that

da(t)

—qr = Si(as,8,..) + €9 (10)

10 Fagley
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Where g is assumed to be a body force acting at the godkhis is a very strong, and in some
flows, false assumption to make that fluid dynamics inteiaegkly with body forces in the flow.

An alternative approach is using system identification tmpce a model for these time coeffi-
cients. System ID techniques can be broken into two mairgoaites linear and non-linear. Linear
system ID has many widespread uses and applications. Linedels really allow for a very nice
analysis of the underlying system by the ability to comptdisity, observability, controllability,
robust and performance margins. Common methods includarbutot limited to the following:
output error methods, prediction error methods, subspamehidentification methods, AR/AR-
MAX/ARX model identification methods. These linear modedally fail at capturing non-linear
limit cycle/periodic behavior which igerycommon in unsteady fluid dynamics.

Fluids are governed (as discussed previously) by highlylm@ar dynamics. Thus, linear
system ID presents excessive modeling errors. The alteeriatadopt non-linear system ID algo-
rithms which are more difficult to formulate/train, slowerdimulate, harder to analyze, but in the
end more accurate than linear techniques at modeling fithdwer. A common approach is to
use non-linear Volterra kernel identification.Lucia et[2D03] Balajewicz et al. [2009] For time
invariant, non-linear, continuous time systems \oltegrstam ID is very good at identifying non
linear behavior. To model the respongé,), of a system due to an arbitrary inputt), a second
order Volterra series is formed such that,

y(t) :ho-l-/othl(t—'[)u('[)d'[-i-/ot/ot ho(t — 19,t — T2)u(T9)u(T2)dT2dT2 (11)

where hy(t) is a kernel which identifies the impulse response of the sysiad hy(t) is the
guadratic kernel which models non-linearities. Highereorderies can be expanded, but the
identification of higher order kernels increases expoaéiytiucia et al. [2003] Techniques ex-
ist to prune or numerically soothe the matrix inversion psscto reduce this computational bur-
den.Griffith and G.R. [1999] The inherent problem with Volgeseries is that they are strictly input
output relationships, that i§t) = H x u(t). The model doesn't identify internal dynamics of the
system. Once the input becomes zero the output will go to. ZEhese \olterra series do have
their uses in aeroelastic systems and non-linear filtegdebuut are not useful in the application
to ROM development for feedback flow control Balajewicz e{2009].

Another alternative to non-linear system identificatiorugng neural networks. Network
topology ID methods are a capable of identifying strong hioearities. They can also be modified
to calculate future outputs based on previous simulatepubsit thus having the ability to model
dynamics of a system. They are not limited to single inpogf& output (SISO) systems but are
capable of simulating multi-input multi-output (MIMO) ggsns. Theydo have some downsides.
Training is extremely sensitive, and tends to get stuck @alloninima. Techniques do exist of in-
creasing training effectiveness, but backpropagatioordtgns mainly rely on increasing number
of epochs and general luck in achieving global minimumLbedle et al. [2009]. This paper will
explore the technique of using Artificial Neural Networks utd Regressive eXogenous Siegel
et al. [2008] (ANN-ARX) non-linear identification methods produce an extremely low dimen-
sional model for flow state simulation, reference signatb@mtrol algorithm development. Also,
the ANN-ARX system ID method will be extended to include wiavéasis functions which are
very well suited for modeling the non-linear periodic belbawf certain flow fields.
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4.2 Theoretical Background

A closed-loop flow control system is comprised of three basimponents: i) a sensor or array
of sensors to sense and estimate the current flow state, aht@otler that determines a control
signal to achieve the desired flow state, and iii) an actuttat introduces the predetermined
perturbation into the flow. Note that in an application, tlpstem may have multidimensional
inputs and outputs, i.e. the sensor could be comprised afay af sensors, and the actuator could
in fact be a combination of multiple actuators such as sidsitdg blowing and suction slots. In
the following description of the feedback control stragsgithe wake behind a circular cylinder is
considered as an illustrative example.

Model Independent Approach Involves the introduction of sensors in the wake and usingma c
trol law (usually linear) to produce a command to the actutitat forces the flow. The
advantages of this approach are that:

e No model of the flow field is required for controller design
¢ Direct feedback eliminates the need for a state estimator
e A simple control law may be implemented in an experimentalseiith relative ease

For the circular cylinder wake problem, experimental stgdnave shown that linear pro-
portional feedback control based on single sensor feedizaakle to delay the onset of
the wake instability, rendering the wake stable at Reynoidabers about 20% higher than
the unforced case. However, above this threshold, sireglees feedback may suppress the
original vortex shedding mode but destabilize other modmssRopoulos [1993]. While this
approach is relatively simple to implement experimentdhg results are very limited for
the absolutely unstable cylinder wake.

Direct Navier Stokes Approach This approach is more structured as it applies conventimmel
proven model-based control strategies such as optimatatdheory to flow control prob-
lems. Abergel and Temam [1990] developed conditions fomugdity for a few simple
applications. However, from a control algorithm point oéwi the complexity of the flow
physics results in a control problem of very high dimensiiipaEven if this strategy theo-
retically can yield optimal results, implementation in alréme system is not feasible since
it would require the solution of the Navier-Stokes equationreal time.

Low-Dimensional Approach Low-dimensional modeling is a vital building block for rezhg a
structured model-based closed-loop strategy for flow cbniin light of the high complexity
of the control problem, a practical procedure is needed doage the order by capturing
the essential physical processes in a low dimensional m@&debmmonly used method to
achieve this reduction in order is proper orthogonal deamsitipn (POD). This method is an
optimal approach in that it will capture the largest amoutrthe flow energy in the fewest
modes of any decomposition of the flow. POD has been sucdigssfed to identify the
characteristic features, or modes, of a cylinder wake &3illL998], Siegel et al. [2008].

The major building blocks of this low-dimensional approach a reduced-order POD model,
a state estimator and a controller. The desired POD modéhic@man adequate number of

12 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

modes to enable reasonable modeling of the temporal anidisgi@racteristics of the large
scale coherent structures inherent in the flow Holmes e1894).

For low-dimensional control schemes to be implementedilatime estimation of the modes
present in the flow is necessary since it is not possible tsareahe whole flow field di-
rectly, especially not in real-time. Flow field data (e.gloetty), provided by either simu-
lation or experiment, is fed into the POD procedure. The mralpamplitudes of the POD
modes are determined by applying a least squares fit of tkenitasmieous data to the spatial
eigenfunctions. Then, the estimation of the low-dimensi@tates is provided, e.g. by us-
ing a linear stochastic estimator (LSE). Sensor measuresmeay take the form of velocity
measurements or body-mounted pressure measurementgratess leads to the state and
measurement equations, required for design of the contstés. For practical applications
it is desirable to reduce the information required for eation to a minimum. The require-
ment for the estimation scheme then is to behave as a modatfitit ‘combs out’ the higher
modes. The main aim of this approach is to thereby circumthentlestabilizing effects of
observatiorspilloverBalas [1978]. Spillover has been the cause for instabilityre control
of flexible structures and modal filtering was found to be deative remedy.

To provide an overview of the feedback flow control designewsed in this research project,
Figure 1 shows the main building blocks in the process. Thia me@mise of this control design
approach relies on an iterative scheme which tweaks cumetitodologies to achieve adequate
flow field to controller design time along with desirable @ddoop performance. The develop-
ment started with building a database of flow states basedr@h <imulation results. First, the
natural (i.e. without any control input) flow field was simi@éd. Then, a number of simulations
were performed where periodic blowing and suction was uséatitoduce disturbances at a given
frequency and amplitude into the flow. The results of all ¢heisnulations were analyzed using
Proper Orthogonal decomposition (POD), which resultedd®Rpatial modes as well as the POD
time coefficients for each time step of all simulations. POBdes and their adjoint amplitudes
for a forcing scenario provide important flow/forcing irdetion characteristics. This interaction
is then modeled through the time coefficients with systemtifleation techniques outlined in fol-
lowing sections. The low dimensional model is then verifiacey off design forcing parameter
cases. Once an acceptable model is formulated adaptivetorgthodologies can be applied. As
seen in Figure 1 at each design point a possible iteratidntpatdjust parameters to increase mod-
el/controller performance exist along paths 1 through 4s Tawchart will be strictly followed an
described within the following sections.

4.2.1 Numeric Simulation

The framework of this control design approach is based upemse of open loop humeric simu-
lations. The simulations were performed using COBALT froob@lt Solutions, LLC, a commer-
cial unstructured finite-volume code developed for the tsmhuof the compressible Navier-Stokes
equations. The basic algorithm is described in Strang €tL8B9] and Grismer et al. [1998],
although substantial improvements have been made sinoe Tttee numerical method is a cell-
centered finite volume approach applicable to arbitrary toglologies (e.g, hexahedra, prisms,
tetrahedra). The spatial operator uses the exact Riemduer®d ?, least squares gradient calcu-
lations using QR factorization to provide second order es@uin space, and TVD flux limiters to

13 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

Unforced Flow

Y

Actuator Placement

Y

Open Loop

Y

State Definition

/\

Observability Controllability
\ \
Sensor Placement Reduced Order Model

;’ _____________________________________________________________ 1
! Y Y I
I I
: Estimation Algorithm Control Algorithm :
|

. :
! I

Control System

Figure 1: Flowchart of the feedback control developmentess.
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limit extremes at cell faces. A pointimplicit method usingadytic first-order Jacobians is used for
advancement of the discretized system. For time-accucagputations, a second order accurate
method with Newton sub-iterations is employed. For pargkgformance, COBALT utilizes the
domain decomposition library ParMETIS [Karypis et al., IP® provide optimal load balancing
with a minimal surface interface between zones. Communicdtetween processors is achieved
using Message Passing Interface (MPI), with parallel efficies above 95% on as many as 1024
processors Grismer et al. [1998].

The main methods for calculating complex flows with a CFD eplare Direct Numerical
Simulation (DNS), Large Eddy Simulation (LES), and Reymseétberaged Navier Stokes (RANS).
The RANS approach is the most economical since it is desigmedlve for the mean flow, but it
is subject to many modeling approximations. Since it modaiser than resolves the bulk if not
all of the turbulent motions, this would be an inapproprieleice for the current investigation.
DNS, on the other hand, makes no modeling assumption bug imtst expensive approach since
all turbulent motions must be resolved by the grid. Sincesitmallest scales of turbulence (the
Kolmogorov length scale) decrease rapidly with increag®eynolds number, this approach is
limited to relatively low Reynolds number flows. LES is legpensive than DNS since it models
the small subgrid scales of motion and resolves the resteofuitibbulent motions. However, since
the large scales in the boundary layer are on the order of dnedary layer thickness (which
is quite thin for high Reynolds number flows), this methodastcprohibitive at high Reynolds
numbers for wall bounded flows.

Detached-Eddy Simulation (DES) is a by now well known hyledhnique [Spalart, 2000]
for prediction of turbulent flows at high Reynolds numbeee[Spalart, 2000]. The motivation for
developing DES was to combine the most favorable aspect&NfSRand LES, i.e. the acceptable
predictions using RANS models of thin, near wall shear layerg. attached boundary layers) and
LES for resolution of time-dependent, three-dimensioaajé eddies (e.g. free shear layers). For
natural applications of DES, RANS is applied in the boundayer, while outside the boundary
layer in the separated region, LES is used. An array of flowgirg from building block appli-
cations such as the flow over a cylinder, sphere, aircraébiody, and missile base to complex
geometries including full aircraft have been modeled sssftdly using DES Travin et al. [1999],
Squires et al. [2001], Constantinescu et al. [2002], Fbeswt al. [2002], Hansen and Forsythe
[2003]. These and other applications illustrate the cdipalif DES to accurately resolve chaotic
unsteady features in the separated regions along withanedtireatment of the attached bound-
ary layers. Recent DES predictions of the flow around compteigurations (all using Cobalt)
include the massively separated flow around an F-15E@a6§le of attack reported by Forsythe
et al. [2004] (this simulation was the first eddy-resolvimguation of flow around a full aircraft
configuration), transonic shock-separated flow over an FBB-by Forsythe and Woodson [2003],
and vortex breakdown on an F-18C by Morton et al. [2003, 2004]

These highly successful simulations demonstrate the ddjsbof the COBALT CFD solver.

In light of the aero-optics problem, it is important to nokat many of the flows investigated
show features similar to the ones expected to play a significde in the aero-optics problem. In
particular, the fully separated flow simulations can onlguaately predict flight parameters such
as lift or drag in a time dependent manner if the large scalkomds computed correctly. These
same large scale structures play a significant role in the-@gtics problem as well, which made
the COBALT solver a very well suited tool for the numericabasts of this research project.
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4.2.2 Reduced Order Modeling

4.2.2.1 Numerical Reduction A dynamical system can be written as

p(X,t) = f(X,t), (12)

wherex is defined to be a vector over finite dimensional state spacee.g. the fluid density at a
given spatial location and timé, The right hand side of the equation is time variant, noedim
and described by the Navier-Stokes equations. Unforcedauodd simulations provide a flow
data base. The forcing signal is limited to periodic inputyuag frequency and amplitude. The
range of these parameters are chosen by perturbationsratival shedding frequency of the flow
at a range of feasibly implementable actuation limits. Td@asameter space provides as the basis
for future investigations. The corresponding data set ssgieted by the matrie € R"™™, where

nis the number of samples in time anmds the number of spatial grid points.

Data reduction schemes such as proper orthogonal decaimopd$tOD), also known as the
Karhunen-Loeve process, have been used successfullydtwaehe data to manageable size
Berkooz et al. [1993]. The Method of Snapshots Sirovich 198 used here to reduce the size of
the correlation matrix. The matri@ € R"™™ can be decomposed using singular value decomposi-
tion,

Q=UxV", (13)

whereU is an orthonormal matrix with dimension x m, V* is also an orthonormal matrix with
dimensionn x n, Z is a diagonam x n matrix in which then (because typically < m) singular
values are arranged in decreasing order on the diagonal.sifijalar values of) are also the
eigenvalues o' Q. Next, defineQ = U3 in Equation 13, which yields

Q= QV*. (14)

This can be written in summation form, as shown in Equatiorsiibh thag; is theit" column of
Q: likewise, V; is theit" column ofV/,

inqw (15)

Equation 15 is still an identity, i.e. no approximations édeen introduced. In Equation 15 the
it" temporal coefficientg;(t), is exactly equivalent to thi€' column ofQ. Likewise, the'" spatial
mode,¢i(x,y), is represented by tHE' row vector ofvV*. The systenf) can then be written as,

Q:igmww. (16)

Form’ < mthe decomposition becomes,

m
Q= 3 atg(x) (17)

where now the right hand side is an approximatiotof Because the singular values can be
related to the energy of the modes and are arranged fromstatgemallest@, > g2 > --- >
On), the dominant spatial and temporal modes appear first imidieicesy andV, respectively.
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Therefore, plots of the singular values are normally shawddtermine where a truncation of a
model is appropriate. For example, for the cylinder wake fiehd 98% of the energy in the flow
is contained within the first three modes. Redudaingo three represents a significant reduction
in the model order even though the model still maintains thidant flow physics Siegel et al.
[2008].

The above decomposition is a good approximation for a peritbelv field, but in feedback
control, the flow is being forced through some (arbitraryjuation and therefore not periodic,
even if it would be naturally. This means that the flow will @nglo some transient development,
which results in the spatial modeg; (x)) evolving over time. Siegel et al. Siegel et al. [2008] de-
vised a strategy called Double Proper Orthogonal DecortipngDPOD) to accurately model this
transient behavior. In DPOD, the POD process is used twicapture the transient phenomenon
in the spatial modes. The second decomposition represenspatial mode fluctuations over time
which capture forcing-flow interaction. The DPOD decomposiis written as,

Q= | 18
Zijl t)¢ij (x (18)

The resulting spatial modes formmd x ' mode set which accurately represents the unforced,
forced and flow state transitions from one to the other. Falenmdormation on the DPOD process
seeSiegel et al. [2008].

4.2.3 System ldentification

The system identification step as presented in Fagley e2@L0] is a crucial step in formulating
the low dimensional model. Numeric decomposition paramsetech as: forcing parameters,
spatial domain, and numerical decomposition method (DPERDD, POD..etc.) are determined
by a parameter study. The next task for defining a reduced arddel was the development of a
mathematical model which accurately represents the tirefficents of the POD mode set. The
formulation of a reduced order model which accurately esaihe forcing input to the evolution of
the time coefficients would give capability to predict a floate not present in the original dataset.
These predicted time coefficients, multiplied with the ggdahodes, would yield a prediction of
the flow field at any instant in time within some confidencenvaé

For model development, the Galerkin method has been typigaéd to project a truncated
mode set onto the Navier Stokes equations, resulting in afsetdinary differential equations
[see e.g. Berkooz et al., 1993]. However, it has been reahlizat the resulting equations are
mathematically unstable, that the resulting model canatisfy the boundary conditions due to
POD truncation. Also a linear flow interaction with actuatis taken into account through the
body force term in the Navier-Stokes equations RempferQR(0@onetheless, these reduced order
models provide insight into the flow physics and basic cdletralesign. Galerkin models lack
of actuation characterization poorly models the dynamictypical actuation methods such as
blowing and suction slots or plasma actuators. The bodefassumption does not capture forcing
dynamics of a blowing and suction slot in which the mass flaw imactually changing through a
prescribed location.

These shortcomings of the Galerkin model drive this re$earoject a different direction.
System identification techniques were used to identify aehadhich accurately represents the
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open loop forcing dynamics of the flow field. Writing the systa Equation 17 with the density
of the flow as the kernel,

m
p(X,t): f(X,t,U)le‘aj(t,U)q&i(X“J), (19)

wherex € R", t, <t <t; andu(t|F,A) = Asin(2rFt), provides the basis for applying system
identification tools. In order to understand the evolutibrthe density field,o(x,t), in time, its
derivative must be found,

m

p(X,t) ~ Z[ai (t, u)di(x|u) +a(t, u)di(x|u)]. (20)

The second terng; (t, u) ¢i(x|u), drops out becausis time invariant, so all of the nonlinearities of
the system are contained within the evolution of the moddiamdesa; (t|u). System identification
was then used to provide a mathematical representatior @viblution of these mode amplitudes.
Here the system can be represented in state space form as

{ a(t,u) = G(a(t,u))
p(x,t) = ¢(x|u)a(t,u)

whereG(a(t,u)) is an unknown, non-linear, time invariant function. In dete time, this system
is

(21)

{ atks1, Uk1) = G(a(t, Uk)) (22)
P (X, t) = ¢ (X|ui)a(ty, Uk).-

The modeling goal was to formulate a mathematical modellvigpresented the time coefficients
of the numerical approximation over the open loop forcingapseter spacey(t|F,A). Nonlin-
ear auto regressive exogenous (NLARX) systems were usekdndify the behavior of the mode
amplitudes, for which a regression vector was formed suah th

Ot)=[u)...ut—ny),a(t—1)...a(t—ng)...at—1),...a(t—ng)l. (23)

Nonlinear mathematical models were then trained to mirentlie error between the training set
and predicted output in a least squares sense.

Many methods for nonlinear system identification exist.viengs work used artificial neural
network autoregressive exogenous (ANN-ARX) systems totifiethe dynamical behavior of the
time coefficients in the forced cylinder wake Siegel et aQ(J&]. Neural networks are widely
used in the scientific community for process modeling, aréfiintelligence, pattern recognition,
machine learning, etc. This nonlinear system identificatechnique has been argued to be a
universal approximator, capable of representing any tyfpgata trend Norgaard et al. [2003].
However, some inherent problems of ANN models exist. Aingre is no straight forward method
for designing the network, including determining the numbkhidden neurons, the number of
layers, or the parameters of the regression vector. Funibrey, training relies heavily on trial and
error to find a combination of parameters that yields actdptesults. Second, the convergence
of these networks depends strongly upon the initial (ugualhdom) weights in the weighting
matrices. This can lead to drastically different resultemwtraining a single network with different
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sets of parameters. Third, a properly trained network vahdwve as alack boxfrom which little
mathematical and physical insight can be gained. And fotndming times are extremely long due
to multimodal error surfaces which tend to trap the solutidncal minima, which also contributes
to the vastly different network parameters obtained froenrimdom data initialization.

A different way to formulate a model is by using wavelet tfansations, which are known
for their ability to compress, decompose, and approximensfic data sets accurately and effi-
ciently. They are used in many technical fields includingge@rocessing, edge detection, large
scale monitoring processes, transient detection, etchd&maatically, thanother wavelet¥, can
be written as

W= ('), (24)
whereu denotes the shift or translation asddenotes the dilation or frequency content of the
wavelet basis function. In the current modeling approa@velets were used as transfer functions
to create a wavelet neural network (WNN). These wavenet® et introduced by Zhang et
al. and have been applied to many areas such as functionabapiation, system identification,
adaptive control, and non-linear modeling and optimizabang and Benveniste [1992], Zhang
et al. [1995], Chen and Bruns [1995], M.M. Polycarpou and Veée§1997]. An example of the

formulation of a wavelet based ARX network is Zhang and Baiste [1992]

wherew; are the weightsW is the wavelet functionN is the number of wavelet functions!
represents the linear connections, agds the bias. The WNN is typically initialized using a
dyadic wavelet decomposition Oussar and Dreyfus [2000¢ dltove parameters are updated via
a gradient descent method to minimize the cost function

3o = If0) - f)]I2 (26)

Multiple techniques exist to design the architecture ohswavenets. One technique is to replace
the existing transfer function of a neural network (usuallymoid or signum functions) with a
radial basis wavelet. Another approach for integratingé¢hivo ideas is to use the wavenet as
a preprocessing filter for the non-linear ANN identifier. Axample of this type of network is
shown in Figure 2, which was used by Angrisani et al. [1998jdentify transients in power
signals. This approach was taken in the current researckdigm wavenets for feedback flow
control applications.

The fundamental WN structure used for this approach to mibeetystem in Equation 22 is

4;(t9)) = (9; —rPL-|—Zlas (bs(®j—r)Q—cs +Zlawg (©j—rQ—cw)+d (27)

linear

scallng block Wavelet block

wherer is the mean of the regression veciis the linear subspack,are the linear weight) is
the nonlinear subspacay are the scaling block coefficientsy are the scaling block dilationss
are the scaling block translatiorg, are the wavelet block coefficients,, are the wavelet block
dilations,c,, are the wavelet block translations.
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Figure 2: Training method for Wavenet ARX system which upddtequency and ANN parame-
ters during single back propagation iteration Angrisaralef1998].

Moreover,f(x) is the scaling function. Here, the scaling function was eha® be a class of
radial basis function such that

f(x) =e 2IXE 5 f:R" S R. (28)
Likewise, g(x) is the wavelet basis, which is also a radial basis functighéform
g(x) = (IIXlo—[Ix|3) e 2¥E 5 g: R" - R. (29)

Examples of these basis functions are shown in Figure 3chltiat these are continuous functions
with defined derivatives over an infinite domain.

The linear and nonlinear subspace matri¢ear{dQ, respectively, in Equation 27) were initial-
ized by a principal component analysis based on an optimedsentation of the system linearities
in the linear block as well as the nonlinear block. Given addenitial parameters for the WN,
the model simulation was performed and the global error eftthaining data was determined as
aj(t) —4j(t). The parameters of the WN were then updated via a gradiesedesethod to
minimize the error.

A graphical representation of this network is shown in Feggdr The regression vector is
presented to the three blocks as discussed above. The ketirarlates the estimated output for
the entire training set, computes the error and updatesédtveork parameters in Equation 27.
Wavelets as a set of basis functions, represented in Equaiicallow for a basis which represents
a variable frequency domain (by the adjustment of the ditgpiarametety,, ). The frequency rich,
nonlinear limit cycle behavior of the two dimensional shiegrer was accurately represented by
the set of wavelet basi§g) (x)(f)(x)], as shown below.

A number of parameters needed to be determined to find a kuievenet model which
accurately represented the density states of the flow fidld.fifst parameter was the composition
of the regression vecto®;. This regression vector was composed of previous time fiestof
simulated mode amplitudes and current and previous inptitsetsystem. The total time history
encapsulated by the regression vector determined the darabroremory the model had. However,
large regression vectors drastically increase trainingesi and may possibly increase the final
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Figure 3: Example of wavelet transfer functioh&) for given scaling, dilation, and translation
parameters.
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Figure 4: Graphical representation of the current wavepptaach for identifying the evolution
of time coefficients. Back propagation was used to updatenpaters in Equation 27 in a least
squares fashion.

21 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

simulation error. For periodic systems, typical time hig® should approximately include one
fourth of a period of the predicted output.

4.2.4 Feedback Control

4.2.4.1 State Estimation The estimator design process is extremely important. The idea

is described ir?. The state estimator will relate an array of surface mous&tsor signals, de-
fined asp(xs,t), to the flow state which is modeled by the time coefficients BIGD truncation
(ajf (t) in equation 17) (Note: thé superscript designates that the parameteriviisw and the®
superscript designates that the parameteravesurfacg. The goal here is to take an experimen-
tally feasible number of surface mounted sensors (pressureducers for example) and through a
mathematical modeling technique, formulate a mappingmg@esignals to the flow state. Having
access to the current flow state allows for state feedbaclcdiotwol. The process to developing
this mathematical relation is describe below.

4.2.4.2 Sensor PlacementA heuristic approach to sensor placement is used in thiystiad
cations correlated spatially to desired flow features (eogtex shedding, vortex pairing, boundary
layer growth, separation points, etc.) are chosen and dedings) within the numeric simulation.
A surface POD analysis,

k
PO 1)~ S a8(t)$5(%), (30)
p=1

yields surface POD modegs(xs). The resulting locations of the maxima and minima of the sur-
face modes show where the largest variability of the signalics; hence, they indicate preferred
locations for sensorsCohen et al. [2003b]. The corresmgnslirface POD analysis allows for the
reduction of the number of sensors needed to accuratelpa&stithe surface POD mode ampli-
tudes.

The surface time coefficients (a linear pre-filter) are themputed by solving foay(t) in
equation (30), given a particular simulation, using

a%(” = p(Xs,t)dJS_l(Xs). (31)

The matrix¢;(xs) provides the linear subspace, withm(aj(xs)) < dim(xs), on which the sensor
signals are projected. The state vector is then given by

s—1
Bl = | POI% 0|, 2)

which will be estimated using state estimation methods. ddienator will yield a model for the
POD time coefficients in which the flow state is estimated leylthear or non-linear mapping of
the state vector through the functih

a] (t) = G(O(x|t))- (33)

In the following, the most prevalent estimation technigisedeedback flow control are outlined.
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4.2.4.3 Linear Stochastic Estimation Linear stochastic estimation (LSE) is chosen as the
baseline estimation method. Since flow fields of interestyguieally highly non-linear, the perfor-
mance of this method usually tends to be poor. The LSE methaldo a static estimator, meaning
no time histories of the sensor signals are used to imprevmtpping performance. Nevertheless,
a linear analysis is always important because it serves anehimark comparison for the more
complex, non-linear system ID methods. For the LSE methadestimated stalzqf (t) is obtained
from a linear mapping through matrixwhereL € R™™ with mis the dimension of the sensor
measurements), the dimension of the state space. The LSE operator is given by

4] (t) = LO(xslt). (34)
The observation matrix,, is obtained by correlation of the data, such that
LiiE(B(xs|)i0(xs[t)) = E(a (1) O(xs]t);). (35)
whereE(.) is the expected value. This can also be written as,
L =BA whereB=E(a’(t)8(xst)") andA = E(8(xs|t)8(xs|t)T), (36)

Noting that the span df is limited to the number of sensors. Likewise, the numbetatkes must
be smaller than the number of sensors for this estimatiomadet This method allows for very
quick computation and simple set up within simulation anpesimental settings. LSE is highly
sensitive to noise and requires a large array of sensoretidagraccurate estimates.

4.2.4.4 Artificial Neural Network Estimation Atrtificial neural network estimators (ANNE)
are a powerful non-linear system identification method@aéteal. [2007]. A two layer feed for-
ward network is used in this study to map the sensor signaéietourrent flow state. The first layer
implements théanhtransfer function while the second layer consists of limearrons. Previous
time histories of the sensor data are used in the ANNE eftarh shat the estimation is autore-
gressive (AR). The regression vectois formulated by concatenating current and previous state
vectors,

0 (Xs,t)

wt)= | Ut 37)

0 (xs,t —tp)

The regression vector is then presented to the network vdaiclbe written as
4 (t) = Wo tanh(Wix(t) + by ) + bo, (38)

whereW, Wo are the input and output matrices, respectively,l@rahdbg are the input and output
biases. During network training, the global error for a giveining data set is estimated and the
weighting matrices along with the bias weights are updatadhe gradient descent method to
minimize the estimation error.
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4.2.45 Wavenet Estimation Wavenet estimation (WNE) methods combine the network archi
tecture of the above ANNE method with wavelet basis funstioWavenets were first introduced
by Zhang et al. and have been applied to many areas such amhat@pproximation, system
identification, adaptive control, and non-linear modelamgl optimization.Zhang and Benveniste
[1992], Zhang et al. [1995], Chen and Bruns [1995], M.M. Ralypou and Weaver [1997] Multiple
techniques exist to design the architecture of such wasefete technique is to replace the trans-
fer functions of a neural network with a wavelet basis fumetiAnother approach for integrating
these two ideas is to use the wavenet as a preprocessingdiltae non-linear artificial neural net
(ANN) identifier. In this research, a combination of these twethods is used. The model struc-
ture is decomposed into three blocks, a linear block, a pogssing scaling block, and a wavelet
block. The AR model is then trained to accurately estimageftthquency rich, highly non-linear
POD modal amplitudes. The fundamental WN structure to mﬂirmskystena]f (t) =G(x(t)) is

8(0) = (r)PL+ 3 2af (B3 (-1)Q =)+ 5 Aug(bu(x—r)Q—cy) +d. (29

wherer is the mean regression vectét,is the linear subspace€) is the non linear subspack,
are the linear coefficients,, are the wavelet coefficientb,, are the wavelet dilations;, are the
wavelet translations, anfix) is the scaling function. In this investigation, the scalfogctions
were chosen to be a class of radial basis function such that

fx) =e 2XE 5 R" SR (40)
Likewise, g(x), the wavelet basis, is also a radial basis function of theafor
9x) = (IXlo—|x|3) e 2ME 5 g: R" - R. (41)

The linear and non-linear subspace matriéearfdQ, respectively, equation 39) are initialized
by a principal component analysis based on an optimal reptason of the system linearities
in the linear block as well as the non linearity block. Givesed of initial parameters for the
WN, the model simulation is performed and the global errothef training data is determined
asa;j(t) —aj(t). The parameters of the WN are then updated via a gradieneniestethod to
minimize the cost function

Jo = laj (t) —aj ()| (42)

4.2.4.6 Adaptive Control A feedback law needs to be developed to control the modeleas se
in (99). This equation is written again as follows,

= G(a(t,u))
p(x,t) ~ ¢ (xuja(t,u)

The WNARX model estimates a given flow state based on forcipgtiand dynamics of the system
as seen by (27). The closed loop goal is to regulate (i.e.efarparticular state to zero); thus,
reducing active vortex shedding and achieving a desiresedidoop flow state. Direct adaptive
control law was chosen to close the loop. This method of cbatiows for unforseen uncertainties
when scaling the controller up to feedback CFD simulatiorsexperiments.

(43)
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The ROM in (27) allows for relatively short simulation timé&s pre-condition an adaptive
controller. Adaptive control theory demands a linear syste prove stability. The model in (27)is
highly non-linear. Linearizing would lose many of the floiesfts which were desired in the model
in the first place. To develop an adaptive strategy, satisfyilty and bounded trajectory issues,
the model can be written as,

X = Ax+Bu
{ y =Cx (44)
Even though flow fields are highly non-linear and linearizais often a poor approximation, there
is still information to be learned from the linear model. $ape the adaptive control goal is to have
the output of the plant go to zero, commonly known as outpgulegion, that is
y—0. (45)

t—o

Suppose there exist<a which moves the system along some ideal trajectory, su¢hhbalosed
loop system can be written as

%= (A+BG.)x. (46)
Ac

Of courseG, is unknown so assume that G can be composed into an ideabpaviih a pertur-
bation, that isG = G, + AG. The system input then becomes= G.y + AGy. The closed loop
system then appears as,

X = AcX + BAGy
- (47)

y =CX

Here a Lyapunov energy function can be defined/és) = %XTPX with P a positive definite,
symmetric matrix. The derivative along a trajectory is gibg'V (x) = OV f(x) = x" P[Acx + Bw].
With some algebraic manipulation the following relatiom dee found,

- 1
V(X) = éxT [PAc+ALP] x+ X PBw. (48)
The famous Lyapunov equation is seen here

PA.+AlP=—Q, (49)

which states that if a solution{Q) to the matrix equation above exists then the derivativaglo
trajectories will be less than zerd/(x) < 0) and the resulting equilibrium point will b&table
Equation 48 can be expressed as,

V(x) = —%XTQX-i-yTW with PB=C'. (50)

This energy function obviously shows a dissipation tem%xTQx) and a generation terny (w).
The goal of our adaptive system will be to cancel out this xtepower term with feedback
control. That isAG needs to be designed such thatW{&G) = —yw, to ensure we have a stable
system.

V(XAG) =V (x)+V (AG) = —%XTQx+yTW—yTW <0Vx. (51)
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Define a new energy functiov(AG) = %tr(AGy‘lAGT) with y > 0. The derivative along
trajectories is calculated to be .
V(AG) =tr(AGy 1AGT). (52)

Now, it was found to be thatG = —yyTy so that,
V(AG) =tr(—yy yy 1AGT) = —tr(—yy"AGT) = —tr(wTy) = —w'y. (53)

Which satisfies our condition in Equation 51. In summary &slageedback control will be stable
if the following criteria is satisfied.

'pP— _
Farian o

These conditions are also satisfied if the system is strgitige real (SPR) with no non-minimum
phase zeroes. Simply written as,

Aspr<= CB > 0&Minimum phase open loop system (55)

This process is done exactly the same for discrete timersgstde only difference is that for
strict positive realness, the so called Kalman-Yacubogita¢ions Fuentes and Balas [2000] must
be satisfied. Which are (for songe> 0),

ATPA—P=-Q=—(26P+L"L)
ATPB=CT —LTW (56)
D+D" =W'W +BTPB.

The main difference here is that the D term cannot be zerdiffiat positive real discrete system.
The analysis above for continuous time is analogous to twete time system.
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5 Applications

5.1 Cylinder Wake

The DPOD ANN-ARX adaptive control desigh approach was figstcessfully used on a much
simpler flow field, the cylinder wake. The overall goal of tipi®ject was to actuate the cylin-
der through an oscillating displacement to reduce the Vamiéan vortex street. Decreasing the
strength of these vortices reduces the amount of energynfmuthie wake of the flow; thus, mini-
mizing the drag upon the cylinder. This project was takemftbeoretical formulation to numerical
simulation to reduced order modeling techniques to expartation validation. The cylinder wake
allowed for a benchmark flow for the development of this dyicamodel/control design approach.
More comprehensive results can be seen in Fagley et al. [28@9el et al. [2008].

The Von-Karman vortex street creates an oscillating éifcé on the cylinder. This lift force
well represents the natural vortex shedding frequency @edgth. The natural shedding frequency
for this wake was approximately 5.6 Hz. Figure 5 shows a fgy@imulation, with a frequency
equal to that of the natural shedding frequency, of the dglinvake in which the forcing was
started at exactly 180out of phase from the lift force. As seen in the figure, theftifice goes
through a transient period whilst the drag decreases. Thetfen begins to lock in with the
forcing and the drag returns to the initial value. This tifansphenomenon is important to see
because it shows that open loop forcing can produce a desiital state for a short period of
time; thus, giving feedback control a promising outcome.

0.1 T T " T
Displacement [y/D]
- — -Drag [N]
0.08f — Lift [N]
0.06
004» ~A\'A\WNVNVJM\/-AJJ\V/V\AV/L\’M/\v,vnv",\vﬂv_7
0.02} : 1
1 et
_002 L L L L L L L L L
25 3 35 4 45 5 55 6 65 7 75

Time [s]

Figure 5: Actuation of cylinder wake 18®ut of phase. The resulting transient period is seen
between 3.25 to 4s. The reduction of drag is directly relédetie magnitude of the limit cycle of
the lift force.

Forcing parameter cases as seen in Figure 8 were simulate€#D software such aSobalt
Solutions The simulations were then put through the DPOD process.DR@D spatial modes
are seen in Figure 6 and the DPOD time coefficients are seeigine=7. The spatial modes
in the first column of Figure 6 are thmain modesthat is they are a result of the first POD
decomposition. The spatial modes in the second column afr€i§ are theshift modeswvhich

27 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

Mode Mode

yiD
()
yiD
@
A

y/D
S

15

1

g2 o0
-0.5
-1
-1.5

Figure 6: A transient forced DPOD spatial mode set using biferaode for each main mode, the
first 3 x 2 DPOD modes are shown. Iso-contours of streamwieeie are shown, solid lines are
positive, dashed lines negative.
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show the transient affect as discussed above. The mode setedaced to X 2 set based on
energy profile analysis. This mode set contains nearly 9@@8%e flow Siegel et al. [2008]. Once
the DPOD temporal and spatial mode sets are formulated,ateeyalidated for off design flow
cases. Errors for this validation are on the order.680— 1%. This is a very acceptable range of
error percentages. Once the DPOD mode set is validatedpthebefficients, as seen in Figure 7,
for the selected training data are then concatenated ardy/tteanic ANN-ARX model is trained.
Choosing an adequate training data is an important modsteyfor feedback flow control. At
first training data in which the flow locked-in with forcingtaation was used to formulate the
model. This model had poor close loop dynamical behaviorthedraining data needed to be
revised. More cases were added, as seen in Figure 8 and, mooetantly, more transient cases
were added in which the flow field didn’t lock in with the actioat These lower amplitude forcing
cases produced very long, non-linear transients. The ntbdelaccurately predicted closed loop
behavior as discussed later.

The neural network topology is an important factor for raalj the non-linear behavior of the
data to be identified. Typically, neural networks consisthoée layers: input, hidden and output.
Activation functions are also determined for each of theraes. The sigmoid function is the most
commonly used function due to the continuity of the funcfimrback propagation derivation train-
ing algorithms. Other parameters are also important forfuhetionality of the network model.
The number of neurons allows the network to fit more compdidaion-linear trends. Eventhough,
the more neurons a network contains the more likely the madebe overtrainedand poorly
simulate off-design data. Also, training times will be ghgancreased. The number of past inputs
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Figure 7: Mode Amplitudes;; of the open loop forced simulatiofg =1 and% = 0.25. Forcing

activated at- = 18 and stopped gt = 33, after 15 full forcing cycles.The first 3 x 2 DPOD mode
amplitudes are shown.
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Figure 8: Training data set used for ANN-ARX identificatiohower amplitude forcing near
natural frequency produced slow, large transients.
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Table 1: ANN-ARX 3x2 model parameters

Input # Past Inputg Sampling Delay| Total Time History
Re Number 1 10 10
Actuator Position 4 2 8
ai1 1 1 1
a1 3 8 24
az 1 3 8 24
o 1 1 1
a o 1 12 12
agz o 1 12 12

and time histories of previous simulated outputs also isiaial design factor. A new feature was
added which allows for a time tapped delay so ewg#Pypoint will be sampled. This gives for
a much larger time history while keeping the number of inpoger which yields much shorter
training times. All of these parameters were adjustednéci and repeated until a proper model
was found. The parameters can be seen in the Table 1.
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Figure 9: Off design validation of ANN-ARX model. Forcingseafor f_ff° =0 and%yI = 10%.

Red lines show the simulation result of the model and the lnhes are the actual CFD data.

The model is also validated for off design actuation. As sibelow in Figure 9, the 3x2 ANN-
ARX model does an excellent job of simulating the mode amg@éts for an off design actuation
case with forcing off‘f—fo =0 and%yI = 10%.

The adaptive feedback control algorithm in section 2.2.% wesigned and mod& ; was
fed back to the vertical cylinder position. Once the gainraggivenessyj in equation 2.25 was
properly conditioned and correspondingly good resultsevgeren with the ANN-ARX closed loop
simulation (i.e. reduction of mod& ;) were seen the same control algorithm was plugged into
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a CFD simulation. The CFD simulation shows qualitativelgwate results when compared to
the ANN-ARX model. Thus proving that the model does captheediose loop dynamics of the
cylinder wake flow field.
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Figure 10: Closed loop simulation of the 3x2 ANN-ARX modef{). CFD closed loop simula-
tion(right). Similar dynamics are shown between each ohtleels.

The CFD simulation allows for the ability to analyze flow cheteristics such as pressures,
velocities, densities, etc. Here the surface pressurdseafytiinder can be integrated around the
surface to give resulting lift forces and more importantigglforce. Figure 11 shows a reduction
of drag on the cylinder up to 16%. Thus, proving the contrelatigoment strategy successful for
simple flow fields.
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Figure 11: CFD closed loop simulation using direct adaptivetrol. Drag force reduction (left)
and actuation input/cylinder position (right).
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5.2 Aero Optics

Aero-optical systems are designed for the transmissioigbf beams through aerodynamic flow
fields. For optical design purposes, the flow has to be coresidas a time-varying optical ele-
ment due to density variations of the fluid in the beam path¢clwlead to changes in the optical
path length (OPL). The correlation between density fluabugtand variations in the gas refrac-
tive index, whose integral is the optical path length, iscdiégd by the Gladstone-Dale relation,
which states a linear relationship where the proportitywabnstant is the Gladstone-Dale constant
McMackin et al. [1997], Jumper and Fitzgerald [2001].

Aero-optical aberrations can be loosely grouped into twegmries. The first, associated with
the large scales in the flow field, includes boresight (tnragkerrors. Some of these errors could
be alleviated by current adaptive optical systems becaubeio relatively large length scales and
slow time scales. The second category includes errors subleam spreading, scintillation and
reduction of resolution, contrast, etc., due to the smallsturbulent motion in the flow. Although
recently there have been some indications that the larde sedion can also cause errors typically
associated with small scales, this classification stilieeappropriate. In the past, corrections for
these aberrations in aero-optical systems were based opermation using optical components.
This approach led to the development of highly complex adeagiptical systems. While truly
impressive results have been achieved for telescopes misetronomy, which have to correct for
aberrations due to the earth’'s atmosphere, state-ofrtteaptive optical systems have only met
limited success on airborne applications. To a large extieistis due to the vastly different length
and time scales, compared to terrestrial astronomy apiolitss present on envisioned airborne
optical platforms. One of the problems is that all adaptipéaal systems rely on mechanically
moving some component (usually a mirror surface) to adapetom distortions due to the flow
field. Current systems are still limited in their bandwidtitgquency, and field-of-vision and are
unable to correct for disturbances of all length and timéesca he same limitations apply to wave
front sensors, and although new wave front sensors are devejoped to analyze distortions in
aero-optical applications, they still suffer from limitas that make them only marginally usable
in environments comparable to the one in airborne apptinatirrolinger et al. [2005].

A relatively new approach to understanding and controliiregoptical aberrations observed in
applications is to look at directly controlling the flow figl@minimize the strength of the structures
responsible for the optical distortions. If control is pb$s, and recent research Seidel et al.
[2005], Siegel et al. [2005a] has shown initial success#sigresearch area, the aberrations could
be reduced, possibly overcoming a significant hurdle on @nete the implementation of airborne
optical systems. In this context, two fundamentally défarideas of flow control are currently
being explored. The first is open-loop active flow control AFwhich introduces small amplitude
disturbances at sensitive locations in the flow, which Wit be amplified using the flow’s inherent
instabilities and thus can lead to large global changes w ffilehavior. The best known example
of this technique is the delay of separation on airfoils ajdaangles of attack by introducing
small disturbances upstream of the separation point thepp kiee flow attached by energizing
the boundary layer. However, even AFC is not able to reacanyoally to changing operating
conditions. Furthermore, AFC relies on creating distudesnwhich in the context of aero-optics
applications is detrimental to improving system perforg@anThe problems outlined above led to
the development of a second idea for flow control: feedbaldséal-loop) flow control. The key
components of the feedback system are flow sensors, theestatetor, a controller module and
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the actuators. The information obtained from sensors, wbiiserve instantaneous, localized flow
guantities, is analyzed in the state estimator. The reddegéalis then supplied to the controller
module to determine an output signal that is used to driveatteators. It has been shown that
using feedback flow control, it is possible to achieve goalshsas the suppression of the von
Karman vortex street Siegel et al. [2005a] that are notexelble using active open loop control.
Also, feedback flow control is typically more efficient thastige flow control due to its ability to
optimize the forcing input to match the current flow statertfkermore, feedback flow control is
tolerant against environmental changes, since it senseactinal, instantaneous flow field rather
than operating on assumed states. And finally, becausedelkedbntrol is used on demand, it does
not have a detrimental effect in other flow regimes. Thesegnaes make feedback flow control
superior to active flow control despite the increased coriiyle

For the aero-optical problem, two different approachedrfgglementing AFC have been in-
vestigated to date. The first, developed by Jumper and cken®fsee e.g. Gordeyev et al., 2005],
is based on the idea that regularizing the flow will yield a flis@d that is more deterministic
with respect to its unsteadiness. This is achieved by fgrthe flow with a known disturbance
signal (frequency, phase, and amplitude). The knowledgleftesulting structure of the flow
field, including the (approximate) strength and phase ofléinge, most optically active struc-
tures, simplifies the task of the adaptive optics systemc¢hvtargets the now known distortions.
While this approach has been shown to yield good resulttsatsirengthens the large structures,
which is counterproductive when the goal is to minimize ithogitical aberrations. The second
approach, which was developed by Glezer and co-workers®§ad Glezer [1997], Vukasinovic
et al. [2004], hinges on the observation that the large, hedttore low frequency, coherent struc-
tures in the flow field can be destroyed by high frequency fayciAlthough they have shown
successful reduction of the large structures and theirczstsal optical distortions, it stands to
reason that increasing the energy contained in the smalitates is detrimental to the optical
performance because it strengthens exactly those stesdiuat provide the high frequency, small
scale aberrations that are outside the realm of correcfionroent adaptive optical systems.

In contrast to the above mentioned open-loop AFC reseagelpbiack flow control was used in
this project to control the unsteady structures in the flold fi€he underlying assumption is that if
the large, coherent structures can be successfully wedktrer aberrations will diminish as well.
In addition, when energy is extracted from the large stmgstithe energy available to create small
scales is diminished, delaying the development of turtmderhis notion has been successfully
demonstrated for the Karman vortex street, where sufidesentrol of the shedding frequency
also yielded an amplitude reduction in higher harmonicg@&iet al. [2003a, 2005a]. It is this
combination of effects that holds the promise of succelystointrolling the optical aberration due
to the flow over the aperture of airborne optical platforms.

As outlined above, systems currently in use suffer fromabiens that are outside the capabil-
ities of state-of-the-art adaptive optics systems. Tovadte the tasks to be borne by the adaptive
optical system has the potential to provide a highly soufiat &unctionality. The renewed interest
in these systems, with much more stringent requirementadouracy, requires novel methods to
reduce the detrimental effect of the flow over the aperture.
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Figure 12: Turbulent shear layer Van Dyke [1982].

5.2.1 Technical approach

The core technologies for this aero-servo-optics progoted at reducing optical aberrations in
airborne platforms, were derived from a combination of thedfldynamics, controls, and optics
research areas, with a strong emphasis on fluid dynamicsaamticbts. The optical performance of

the proposed aerodynamic control system was judged usengyéfi-known correlation between

the fluid density and index-of-refraction fields in gases.e Timderlying assumption was that as
long as reliable data of the density field is available (tigtosimulations or experiments), a good
representation of the optical properties should be achleva

From a fluid dynamics point of view, shear layers developdaapherent structures due to
their inherent inviscid instability. As shown in Figure liBere are several stages in this devel-
opment. First, large, laminar, S-shaped structures arergiad behind a splitter plate. After the
initial growth of these structures, smaller structuresefigy due to further instability mechanisms,
eventually leading to small scale turbulence. Howeverhasvs in the figure, even when the flow
is turbulent, the large coherent structures persist. lhésé structures that are responsible for
the large boresight errors in aero-optical applicationewelver, because of their large size and
relatively low frequency, an adaptive optical system camem for their effect if their amplitude
and phase are known. Another important aspect to note i is that the turbulent motion
develops as a consequence of the primary flow instability ¢heates the S-shaped shear layer
structures. This is in accordance with observations of tiexgy cascading from large to small
scales Pope [2000].

For the aero-servo-optics project, this energy cascadé esucial importance: If feedback
flow control is able to reduce the strength of the primary sli@ger structures, it follows that
there is less energy in these disturbances and theref@ehesgy is available to generate small
scale turbulent structures, resulting in significantlyueetl optical aberrations on all scales. An
effect similar to the one outlined above, namely the reductif the amplitude of high frequency
disturbances by controlling a lower frequency, has beeerbsd in low Reynolds number wake
flows Cohen et al. [2003a].

There were certain aspects of the investigations that f@rhselves to investigations using
simulations, while other aspects were explored more easityefficiently in the experiment. For
example, only small portions of the flow can be measured sanabusly in the experiment since
the sensing options are limited. Thus, meaningful sensmations can be derived much more
easily from simulation results since the entire flow fieldadaith all its variables is available.
However, in order to vary flow and actuation parameters, asiewlation needs to be performed
for each set of parameters, with the associated cost andr¢iquérements. In contrast, once the
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experimental hardware is in place, flow and actuation par@sean be varied easily and quickly.
Thus this type of investigation is best performed using grpents. In summary, by using both
experiment and computation in parallel, the fastest péspitogress was achieved.

To provide an overview of the feedback flow control designeysed in this research project,
Figure 1 shows the main building blocks in the process. Theldpment started with building a
database of flow states based on CFD simulation resultg, fhesnatural (i.e. without any control
input) flow field was simulated. Then, a number of simulatisrese performed where periodic
blowing and suction was used to introduce disturbances atem drequency and amplitude into
the flow (see Section 5.2.2.4). The results of all these sitimris were analyzed using Proper
Orthogonal Decomposition (POD), which resulted in PODigpatodes as well as the POD time
coefficients for each time step of all simulations.

These POD modes and time coefficients were then used for Yetogenent of a reduced order
model (ROM). In the present effort, a wavenet ARX topologyswhosen (see Section 4.2.2.1).
Once the model performance was validated against the atiGiRD data, state-of-the-art feedback
controller design tools were used to develop a controll@rative testing (iteration loop “1” in
Figure 1) lead to a controller design that achieved the fireed control goal of minimizing the
optical distortion for a given aperture.

In addition, the POD spatial modes were scrutinized for fltatesestimation purposes. Sensors
placement studies, which were used to determine the numiddoaations of flow sensors, were
performed using the computed flow quantities on the wall melihe backward facing step (see
Section 4.2.4.2). With the sensors chosen, a flow state &stirwas developed. This estimator
determined thelobal flow statebased on the sensor readings, i.e. it established field data f
only the sensor information.

At this stage, the flow state estimator and the controllerevetroduced into the CFD simu-
lations and feedback controlled simulations were perfaknine results of this simulation were
scrutinized to investigate the effect of the control inpattioe flow field, as well as their effect on
the overall figure of merit, the OPD. As indicated in Figurenlltiple iteration paths were open at
this point. Path “2” in Figure 1 could be taken if the resuftdicated that the controller, designed
using the wavenet model, is not performing well. It couldbde possible that the findings indi-
cate problems with the wavenet itself, which would be remeédising iteration path “3”. Finally,
the research design is flexible enough to also allow inciusideedback controlled data into the
POD database to improve the fidelity of both model and coetrdevelopment. All steps outlined
above will be described in detail in this report.

5.2.1.1 Basic flow parameters Several parameters had to be considered to arrive at flow con-
ditions that on the one hand result in large enough (i.e. oralke) density changes, but that, on
the other hand, do not result in vortex shedding frequertbesvere too high to be measured suc-
cessfully. In addition, the slower the flow, the easier ibisnhplement a feedback control system.
These considerations resulted in the following key expental parameters:

e Mach number Ma= 0.3 at the inflow
e Step height H=0.15m

e Free stream velocity at stéfg, = 140m/s
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5.2.1.2 Optical definitions The optical properties of the fluid forming the shear laydnibe
the backward facing step were evaluated based on the GlexdBtle relation

n(x,y,zt) = 1+kepp(X,y,z 1), (57)

wheren is the fluid’s index of refractionkgp is the Gladstone-Dale constatkp = 2.289x
10-*m?3/kg, andp is the fluid density. The optical path length (OPL) can be inleigby integrating
the index of refraction along the beam pdth,

L L
OPL(xy.zt) = [ nxyztdi=L+keo [ plxyzt)dL. (58)
0 0

Since the differences in OPL over a given aperture are tilpioa the order of the wave length of

the beam, it is common to express the wave front distortiath@®ptical path difference (OPD),
which is defined as the local, instantaneous OPD minus th&abkpaean over the aperture. As-
suming the beam propagates in the y-direction, this can peesged as

OPD(x,zt;y) = OPL(x,zt;y) — OPL(X, z,t;y)xz. (59)

These equations were used when analyzing the CFD resulisfethe density field(x,y,zt) is
computed directly from the governing equations.

5.2.2 Numerical Simulation

The exact geometry for the simulations of a free shear lagsrdeveloped in conjunction with the
design of the experiment. Comparisons to experimentalgiafarmed at USAFA aeronautics lab-
oratory of the unforced flow field data were performed to \atkdthe accuracy of the simulations
and to judge the necessary grid resolution to resolve tlevant flow features. In particular, the
optical path difference (OPD) was used as the main opticatdigf-merit. It should be noted that
once a time accurate, spatial density distribution is awé from the computations, calculating
the index of refraction field and the resulting OPD is possilith a small computational effort
compared to the CFD simulations. During the course of thidystMani et al. [2008] published
an article outlining the resolution requirements deteedihy their aero-optical simulations. They
concluded that the resolution requirements for an aeri@-gphulation match the ones for a well
resolved LES simulation.

To build a database of flow states that would be used to defmeettituced order model for
the flow field, unforced simulations were performed first. lsegaond step, open loop active flow
control (AFC), which in the simulations was implementedgsan externally controlled blowing/-
suction boundary condition (see below), was studied andi#te was added to the development
cycle of the database. These forcing cases were partigwaltiable for describing the transient
flow features present during the initial development of tperoloop forced shear layer as well
as the vortex pairing that occurred when forcing was iretlatThe results from the simulations
provided a comprehensive database of the free shear lagah was used to develop feedback
control strategies as well as to compare the effectivenefgedback control applied to the aero-
optics problem.
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Figure 13: a)Two-dimensional CFD grid. b) Grid at the stepvaihg the blowing/suction slot.

5.2.2.1 Grid generation The experimental ramp geometry was used in the simulatidhs.
grids for the simulations were generated using the SimCetéware developed at Mississippi
State University Marcum and Weatherill [1995]. Since thergetry is essentially two-dimensional,
a planar grid was generated first and then this grid was extrud the spanwise direction. The
step height wabl = 0.15m, and the ramp lengtlir = 0.85m. To ensure that no disturbances reach
the outflow boundary, the domain length wgs= 4m downstream of the step. The domain height
matched the experimental setup in the USAFA wind tuningk- 0.85m.

The main difference to the experimental geometry was tlegftiting chamber (see Figure 19)
was not included in the simulations. Instead, only a shati@e of the slot f = 1mm) was mod-
eled and a blowing and suction boundary condition was aghali¢he base of the slot. Figure 13
shows the final two-dimensional grid. A zoomed view of thestéth the blowing/suction slot is
given in Figure 13. The grid spacing at the step was defineé fixb= 0.1mm This grid contains
approximately 58,000 nodes and 90,000 elements. Griderlngtwas used on the bottom wall
and in the region of interest in the free shear layer. In otdeesolve the blowing and suction slot
geometry, the grid also had to be refined near the step edgebdiundary layer grid spacing was
chosen such that the fingt value at the step was™ ~ 1.

For the three-dimensional simulations, this grid was aldtlin the spanwise direction. The
spanwise step size was chosehas- 1mm. Solutions at various domain widths (H = 1,2,3,4)
were computed to ensure that the pertinent shear layer dgaavere captured in the simulations.
Figure 14 shows the geometry for the chggH = 2.

In addition to the grid for the CFD simulations, a grid for theam propagation was devel-
oped. The beam domain size was chosen asx§H < 3, —1 < y/H < 0.5, and spanned the
whole spanwise domain, which represents a sufficientleldamain to investigate various optical
apertures while being able to maintain reasonable resolut16x 81 x 41 points were used in
the x-, y-, and z-directions, respectively. The grid wadglesd as a structured grid with one grid
direction aligned with the predominant beam direction.sTdpproach facilitated the computation
of the OPL and OPD (see Equations 58 and 59) since the patirahigas along grid lines. For
the interpolation of the CFD data onto the beam grid, the tapabilities in COBALT were used.
Taps were initially designed as measurement locationgobubhe current research, using taps to
extract the flow field on the beam grid ensured that the numemethods for integration of the
Navier-Stokes equations and interpolation were condisten
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Figure 14: Three dimensional domain with CFD gitig/H = 2.

5.2.2.2 Results Figure??shows the comparison of the mean flow u-velocity profiles/ bt =
0,0.5,1, 2, 3,4 obtained from experiments (symbols) and simulations¢ljnThe separating bound-
ary layer had a thickness @dbg ~ 8mm, which for a fully turbulent boundary layer corresponds
to Rey ~ 8500. As the shear layer develops, at downstream positidtis< 2, the shear layer in
the simulations is not spreading as quickly as measureceiexperiments. Further downstream
atx/H = 3 the profiles are in very good agreement and/&t = 4 the simulation results show
a slightly larger shear layer thickness. This increasedagping rate in the simulation data was
attributed to the behavior of the DES turbulence model aséparating flow transitions from a
RANS based boundary layer calculation to a Large Eddy SitimmaThe initial lack of structures
in the flow led to reduced shear layer growth. As the strustdexeloped, the growth rate matched
the experimental and theoretical results well, but furth@wnstream, the grid resolution is insuffi-
cient to maintain the coherent structures in the flow and miealediffusion results in an increased
spreading rate.

Instantaneous results of the simulations are show in Figjirdn Figure 15a, the flow struc-
tures are visualized using an iso-surface of the Q vortextifieation criterion Jeong and Hussain
[1995] colored by pressure. At this instant, the shear l@gelvin-Helmholtz) vortices are starting
to form approximately one step height downstream of thersg¢ipa point, with increased span-
wise coherence one wavelength further downstream. Tharitssteous isosurface of density is
shown in Figure 15b. Comparing the Q-vortex structures withdensity isosurface shows that
there is a very strong correlation.

Furthermore, itis interesting to note that the densityusfage shows only the large scale struc-
tures while suppressing the smaller scales at the step dssviel the recirculation region below
the shear layer. This is due to the deeper “pressure wellf,the concomitant drop in density,
inside the largest structures. For feedback flow contrdlttrgets the coherent motion in the shear
layer, this behavior of the density field is highly desirabkrause density behaves like a filter
and density isosurfaces identify the flow structures ofrgge In addition, since the optical path
length is a linear function of density, density is in fact theantity of interest for the aero-optics
problem. This is shown in Figure 16, where the flow structuigsntified using the Q-criterion
Jeong and Hussain [1995], are shown in grey and the OPD teg@lot color at the top of the beam
grid. Comparing the OPD results and the density isosurfémtéed in Figure 15 shows a strong
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(@) Q=2-10°1/< isosurface. (b) p = 0.95kg/m? isosurface.

Figure 15: Instantaneous representation of the structurtke flow field. I1so surfaces colored by
pressure.

Figure 16: Instantaneous flow structures visualized usimig@surfaceQ = 5-10° 1/s*> and OPD
(color).

correlation between the “valleys” in the wave front (negatialues of OPD shown in blue) and the
location of the flow structures. The initial vortex sheddiregjuency for the shear layer can be esti-
mated from theory based on StF 0 /U, = 0.012 Hasan [1992] to b, ~ 2000Hz. Using probes
aty/H = 0 and various streamwise positions, the frequencies withihhest amplitudes ranged
aroundF ~ 400Hz (Figure 17), indicating that vortex pairings had goed upstream of the probe
locations [see Seidel et al., 2009, for more details]. Wihiketotal simulation time was too short
for a detailed spectral analysis, the results provided a gudication of the frequency of the natu-
rally occurring structures. The results were also in goaéagent with the results obtained from
the experiments. Because the extent in the streamwisdidmespanned by the density probes was
commensurate with the area of interest for optical perforceathis frequency provided an approx-
imate target frequency to investigate the effect of opep foocing on the optically relevant shear
layer structures. To further analyze the flow field and thecstires in the shear layer, the simu-
lation data was reduced using Proper Orthogonal Decomposirovich [1987], Berkooz et al.
[1993], Holmes et al. [1996]. The u-velocity, v-velocitypcadensity were analyzed to examine
which of these quantities provided a meaningful represemtaf the flow structures with a focus
on the coherent structures in the shear layer. Figure 18shmfirst six spatial modes (plotted
in pairs to show the traveling vortex nature of the shearrlayictures) and their corresponding
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Figure 17: Density spectra betweefH = 0 andx/H = 2.6. Unforced.

time coefficients for the full length of time available in thata set. Figure 18a shows that the
u-velocity POD modes do not have any discernable spatiattsire, which is also reflected in the
lack of a dominant frequency in the time coefficients (Figl®®). In contrast, the first two pairs
of POD modes of the v-velocity (Figure 18c and d) exhibit didet, highly coherent structure that
is indicative of traveling waves. The periodic charactethaf time coefficients corroborates that
these POD modes capture the vortex street in the shear Tay@same holds for the density POD
modes (Figure 18e and f) that identify the shear layer strestand their spanwise distortions. It
is interesting to note that the POD of both the v-velocity dedsity show the strongest peaks in
the shear layer while the smaller scales in the recircuiatane below are suppressed; in contrast,
the u-velocity POD modes include these structures. Furtbe, the dominant mode pairs of both
the v-velocity and density, modes 1-2 and 3-4, show the saeggi€éncy content but are not pe-
riodic, corroborating the fact that the spectral peak adoilne dominant frequency is very broad
in the natural flow. Another important point to note is theosty spanwise coherence of modes
1-2 of both the v-velocity and density. This indicates thg tlominant structures, as measured
by the magnitude of the singular values obtained from the p@edure (not shown), are indeed
spanwise “rollers”, even in the unforced, three-dimenaidlow. Forcing, as described in the next
section, only increases this spanwise coherence.
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Table 2: Summary of computed forcing cases.

400Hz | 600Hz| 800Hz | 1000Hz
A/U, =0.3 X X X X
A/U, =0.2 X X X X
A/U,=0.1 X X X X
A/U,=0.05| x X X X
A/U,=001| x X X X

While this POD analysis was not exhaustive (other quasti@ey. vorticity, could be analyzed),
it showed that either the v-velocity or the density are weitexd for developing a reduced order
model for control purposes for this research program. Froraexo-optics perspective, the den-
sity is clearly the best quantity for model and feedback ler development due to its direct
influence on the optical properties of the flow.

5.2.2.3 Actuation Since the forcing chamber was not part of the backward fastag flow
geometry, it was modeled in a separate simulation to vemndy the slot exit velocity was uniform
in the spanwise direction. The geometry model is shown inféid 9a. The geometry included a
section of the backward facing step and extended approglynidiree step heights in the upstream
and downstream directions and to three step heights abevsldhto ensure that the boundary
conditions do not influence the exhaust velocity distritmtiin Figure 19a, the red circles indicate
the speaker exits. When the speakers are driven by a siegledncy, periodic blowing and suction
results at the slot exit. The peak blowing stroke is shownguie 19b, where the color represents
the wall pressure in the forcing duct and the velocity is shbwarrows at the forcing slot exit. The
results indicate a slight spanwise pressure variailqyy p ~ 1%) from the center of the chamber
to its spanwise edges. The exit velocity is shown to be esdlgriniform (the variations seen in
the figure are due to vectors in the slot boundary layer).

5.2.2.4 Openloop forcing Numerous open-loop forced simulations were performedduige
data for the development of reduced order models for feddtbaw control (see Section 5.2.3).
These open-loop data have to span the range in the ampfitegi@ency parameter space that
will be utilized by the controller. To provide these datassesimulations with different forcing
parameters have been performed and analyzed.

From the unforced data it was determined that the vorticattires in the shear layers nat-
urally occur atF, ~ 400Hz atx/H = 2. This frequency formed the basis for a study where the
blowing and suction actuation was used in a frequency raraye F; = 400Hz toF; = 1000Hz
and an amplitude ranging betweapU,, = 0.01 andA/U., = 0.3, resulting in the time dependent
blowing and suction velocitys (t) = Asin(2rft). A table of all the computed cases is given in
Table 2; representative results from this part of the ingatibn are shown in this section.

When forcing is applied & = 400Hz,A/U. = 0.1 (Figure 20), the density spectra taken
at the five downstream locatiomgH = 0,0.6,1.3,2, 2.6 show that the flow initially amplifies the
forcing frequency throught/H = 2. At x/H = 2.6, the amplitude starts to decay. In addition,
the first harmonic aF = 800Hz is amplified betweex/H = 1.3 andx/H = 2. No subharmonic
frequency is discernable in the data. When forcingsat 600Hz,A/U. = 0.1 (Figure 21), the
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(a) Geometry model (b) CFD results

Figure 19: Blowing and suction slot analysis. Pressureidigion in the blowing suction duct
(color) and velocity vectors at the slot exit.
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Figure 20: Density spectra betweefH = 0 andx/H = 2.6, F = 400Hz,A/U,, = 0.1.

fundamental is strongly amplified betwerfH = 0 andx/H = 0.6 and decays downstream. In
addition, the first subharmonic frequerneéy= 300Hz is amplified as well and decays very slowly
downstream ok/H = 1.3. Finally, forcing atF;y = 800Hz,A/U. = 0.1 (Figure 22) shows the
largest amplitude response close to the slot of the threenfpicases and a rapid growth of the
fundamental. Downstream gfH = 0.6 it decays and the subharmonic starts to develop, indiatin
vortex pairing in this region.

Performing POD on the density results in the modes showrguargi23 for a forcing frequency
of ff = 400Hz. In the figure, POD mode isosurfages- 0.005kg/m3 are shown. The dominant
modes 1 and 2 show the developing shear layer vortex stremted3 and 4, which develop further
downstream, are representative of the spanwise distasfitire main shear layer structures. The
time coefficients, Figure 23c, clearly show the forcing treqgcy in modes 1 and 2.

For forcing atF; = 600Hz, the POD modes of density are shown in Figure 24 (theesam
isosurface level as in Figure 23 is plotted). The develognoérthe POD modes is similar to
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(a) Modes 1 and 2 (b) Modes 3 and 4 (c) POD time coefficients

Figure 23: POD density modes and time coefficieRts; 400Hz,A/U., = 0.1.

Density Mode 1, Mode 2

(a) Modes 1 and 2 (b) Modes 3and 4 (c) POD time coefficients

Figure 24: POD density modes and time coefficieRts; 600Hz,A/U., = 0.1.

theF; = 400Hz case, although the emergence of the modes was shite@am due to the higher
frequency, in accordance with theory Ho and Huerre [1984)e Time coefficients exhibit the
same behavior as in the previous case, but the subharmaaiaater of modes 3 and 4 is more
pronounced. Finally, foF; = 800Hz, the POD results are shown in Figure 25. The figure shows
that the vortical structures develop a very short distarmendtream of the step (located at the
inflow boundary of the box shown in the figures), but the grosadturates quickly and the highly
coherent structures begin to show three-dimensionalrtiists (as indicated by POD modes 3 and
4) further downstream. The time coefficients show that mddmsd 2 are the most periodic of all
investigated forcing cases and that modes 3 and 4 oscillaite dirst subharmonic frequency. In
all cases, as pointed out for the unforced case, the der@iyrRodes represent only the structures
in the shear layer and not the smaller scale motion in theadeition region, which is beneficial
for the development of a reduced order model of this flow.

The optical properties of the flow field were analyzed usiregltbam grid described above. As
for the unforced case, the density field on this grid was natiegl from the wall through the shear
layer and the effect of open loop, periodic forcing was asses Figure 26 shows instantaneous
plots of the flow structures and the OPD. There is a strongtairon between the structures in the
shear layer and the OPD results, as was observed for thecenffiow. However, when forcing
is introduced, the structures in the flow exhibit increageahsvise coherence due to the spanwise
uniform forcing.

The three-dimensional simulations described above allvellahat the dominant dynamics
in the shear layer behind the backward facing step are eaemivo-dimensional, at least in
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Figure 25: POD density modes and time coefficieRts; 800Hz,A/U, = 0.1.

(a) Fr = 400Hz A/U, = 0.1 (b) Ft = 800HZ A/U. =0.1

Figure 26: Instantaneous isosurface of flow structures asdc@ated OPD for various forcing
conditions.
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the domain investigated in this research project. Esdgdia® POD analyses showed this two-
dimensionality in the first pair of modes, which are représtve of the most dominant structures
in the flow, the Kelvin-Helmholtz vortices. While three-dimsional effects cannot be discarded
for a complete description or reconstruction of the flow fislmn the POD data, it is posited
that for the development of feedback flow control strategaetsvo-dimensional representation of
the flow captures the relevant physical processes. Thiwatldor drastically reduced simulation
times and more efficient use of the computational time abbslto the project.

To develop the POD mode database for reduced order modelohgantroller design, there-
fore, the simulations above were repeated for the two-dsio@al grid. The results obtained from
these simulations were comparable to the results descabede. Most importantly, the natural
shedding frequency matched the three-dimensional rediis is a good indicator that the insta-
bility mechanism that results in the Kelvin-Helmholtz voes was not negatively affected by the
reduction to two dimensions. A comparison for the forcedwations showed a slightly higher
amplitude of the fluctuations for the two-dimensional siatigins. This was expected since these
simulations could be viewed as ideal in the sense that theyige perfect spanwise coherence.
Another way to think of these results is that the structuresr#initely long in the spanwise di-
rection. The increased coherence of the structures did ffextt dhe initial development of the
shear layer targeted with feedback control. However, @rrtfownstream, where the structures
start to develop spanwise distortions in the three-dinwmradisimulations, the two-dimensional
simulations overpredicted the strength of the structures.

The two-dimensional simulations were performed on the giiown in Figure 13. Simulation
results for the unforced or open-loop cases will not be shiogre; results for the validation of the
feedback control strategy are presented in Section 5.3.2.2

5.2.3 Reduced Order Modeling

5.2.3.1 Numerical Reduction The procedure in section 4.2.2.1 was precisely followed and
the following results were detected.

The quantity of greatest concern in this project is the OPBichy as shown in Equations 57-
59, is linearly dependent on the fluid denstigx,t). Substituting the POD decomposition of

into Equation 57 yields
m

n=1+ KGD_Zlai ()¢i(x) (60)

and the OPL (Equation 58) can be calculated as
OPL= /n(s)ds: /
L L

m
OPL=L + KGD.Z\ai(t)/Lq)i (x)ds 62)

The OPD is then computed from Equation 59 such that

m
1+ KGDZa<t>¢i<x>] ds (61)

or

OPD=

L+KGD§a;(t)/L¢i(x)ds] -

m
L+KGDZ\a;(t)/L¢i(x)ds]. (63)
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Simplifying this expression gives

0PD(1) =Ko 3 a ()| [#1% -~ B 0 (64)

where the OPD spatial modes q"[e(cpi (X) — ¢ (x)) ds

Comparing this result with Equation 17 shows that the OPD P@ides can directly be de-
rived from the density POD modes by using the definition of@HRD. This is important because
the density is readily available from the CFD simulationgrtRermore, because of this direct re-
lationship, the minimization of the time coefficients of tensity POD modes will be regarded as
the main control goal to regulate the flow to reduce OPD fluatna using feedback flow control.

5.2.3.2 POD Parameter Study A large parameter study was carried out to determine an ap-
propriate means for numeric decomposition. The parametersisted of POD vs. DPOD, spatial
domain size, and also the data sets to be used in the decdiopodihe spatial domains were
defined as

Xl= 0<A<4 -1<)<1
X2= 0<p<23 —3<f<j. (65)
X3= 13<§<25 —3<p<3

The three spatial domains (X1, X2, X3) adequately contagogptical aperture of interest, whose
center is located at/H = 2. The domain size study helped to determine if limiting threant of
information in the POD kernel has a detrimental effect onntioglel.

A typical forcing input for a given frequency and amplitudeshown in Figure 27. The forcing
begins from the fully developed unforced flow computedtferO. The first five cycles of forcing
are defined as the opening transient in which the flow startedot to the forcing signal. The
flow then locks in to the forcing signal for the remainder o tturation of the forcing. When the
forcing is turned off, the flow undergoes an ending trangiemthich the flow shifts back into its
natural state. The data sets used for the POD/DPOD study were

D1 = Forcing
D2 = Forcing+Unforced (66)
D3 = Forcing+Unforced+ Starting/ EndingTransients

The resulting POD/DPOD model was then validated using tise Ea= 600Hz, A/U,, = 0.05,
which had been removed from the training data sets for madelation purposes. To quantify the
reconstruction error, the root mean squared error of thal lmed instantaneous density field was
computed as

1/2

ms(t) = | (p(OXD.0 —p((XD,0)7] . (67)

or, expressed as a percentage of the mean density,

Erms(t)
g(t) = 5K (68)

The parameters for the dataset study are shown in Table 3.
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Figure 27: Typical forcing inputj(t|F, A), for an open loop simulation. Case will undergo a total
of four defined stages. Starting transient{@ < 0.01), Locked in (001 <t < 0.025), Ending
transient (0025<t < 0.035) and unforced (035<t < 0.05).

Table 3: Summary of parameters chosen for the POD datasgialspomain and method study.

Case Spatial Domain Data Set g(t)

Di Fi [HzZ]  A/Uo[%] | POD DPOD
1 X1 D1 400, 600,800 2.5,5,100.58% 0.55%
2 X2 D1 400,600,800 2.5,5,100.67% 0.52%
3 X3 D1 400,600,800 2.5,5,100.45% 0.37%
4 X1 D2 400,600,800 2.5,5,100.57% 0.45%
5 X2 D2 400,600,800 2.5,5,100.66% 0.46%
6 X3 D2 400,600,800 2.5,5,100.45% 0.35%
7 X1 D3 400,600,800 2.5,5,100.54% 0.42%
8 X2 D3 400, 600,800 2.5,5,100.65% 0.44%
9 X3 D3 400,600,800 2.5,5,100.44% 0.33%
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The POD mode sets were truncated to 5 modes for POD and 5x2sfard@POD. Therefore,
DPOD was expected to perform better at reconstruction oflémsity field than POD. The error
values in the last two columns in Table 3 show the training datection and spatial domain choice
did influence the reconstruction error. It decreased sligbt larger, more comprehensive data
sets. Also, the reconstruction error decreased propaitioto the spatial domain, suggesting that
by limiting the spatial domain size, certain flow featurestttio not contribute to the shear layer
physics under investigation, such as the recirculatiorezarere neglected. Most importantly, the
errors indicate that it is crucial to retain as much inforimatbout the flow field as possible, shown
by the fact that the smallest errors were obtained usingsdaia3, which includes the unforced
and forced data as well as both startup and shutdown trdaasielowever, the main outcome of
this parameter study was that the reconstruction error wha good way to quantify which mode
set to choose as the final numeric model. All of the error \&luere acceptable<(1 per cent),
which would suggest that all these parameter combinatiandd\be adequate.

Scrutinizing the differences between POD and DPOD providsight into the shear layer
dynamics as forcing is applied to the flow. From theory as aglihe experimental data obtained
in this project, it is well known that the shear layer is erigdy susceptible to periodic forcing.
Due to the flow’s instability, small perturbations over a wilequency range are amplified and
result in Kelvin-Helmholtz vortices [see e.g. Oster and Wangski, 1982]. The shift modes for
the DPOD mode setsp(>), shown in Figures 28, 31, and 34, model the transient chénoge
the natural shedding to a forced state, but the shift modas alchange in wavelength compared
their corresponding main mode, indicating that there wasanglow shift from the natural to a
forced state. The data suggested that for the shear lagefioth response was different because
the frequency band in which lock-in occurs is much largentioa flows such as the cylinder wake.
As seen from these DPOD modes, the shear layer structur@massdifferent wave length when
forced at a given frequency. The transient behavior is et fast, thus making the underlying
concept of DPOD questionable. In addition, the spatial mddethe DPOD decomposition lack
physical relevance.

The POD models for cases 1, 6, and 8 are shown in Figures 293359 respectively. The
mode sets show the mean flow and the first 2 mode pairs. As eéeicere is a distinct size/wave-
length change for the 2 mode pairs. The modes in the POD maslalse look physically viable,
unlike the DPOD mode sets. Therefore, POD, not DPOD, waserhas the preferred modeling
approach for the shear layer.

When the reconstruction error is evaluated as a functiomuod,tas in Equation 67, DPOD
should better represent the flow field in the transient regishereas POD should fail to model
these transitions from one flow state to another. Figure836 show that this was not the case.
In fact, the reconstruction error is smaller for the POD agpnation than for the DPOD one. This
corroborates the assertion that the five supplementalsbiies were not really modeling transient
flow effects in the shear layer.
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Figure 28: Case 1: DPOD modgg for parameters shown in Table 3. Left column: Main modes
¢i1, right column: Shift modesg;s.
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Figure 29: Case 1: POD modégsfor parameters shown in Table 3. a) Mean flow mode, b) and c)
first fluctuating mode pair, d)-e) first harmonic mode pair.
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Figure 30: Case 1: (Top) Reconstruction error as a functidsime of numerical model, (-) POD,
(— —) DPOD. (Bottom) Forcing signal for validation case. rigint period in flow field begins
around, lock in region to = 0.03s, ending transient unttl = 0.035 where the natural flow state

occurs.
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Figure 31: Case 6: DPOD modegsg for parameters shown in Table 3. Left column: Main modes
¢i1, right column: Shift modeg;o.
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Figure 32: Case 6: POD modg¢sfor parameters shown in Table 3.

The only parameter left to choose was the spatial domainspagal domain sets were chosen
to be the entire flow field behind the step (X1), just the shager neglecting the recirculation
zone (X2) and the shear layer over the optical aperture (B8ause the reconstruction error, as
shown in Table 3, did not provide a reliable criterion for winispatial domain was appropriate,
the domain was chosen on a physical basis. The first spatmhitio X1, limited the ability to
capture the dynamics of interest by retaining undesirable fihysics, such as the recirculation
zone, in the domain. As shown in Figure 37, the mode amplgwthtained for the validation case
(Ff = 600Hz,A/U,, = 0.10) showed some low frequency content, which originatedt rikedy
from the recirculation zone. Figure 38, the correspondig or domain X2, exhibits much more
periodic mode amplitudes, which are representative oftituetsires in the shear layer.

56 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

A/U_ x 100
2

0 0.01 0.02 0.03 0.04 0.05
Time [s]

Figure 33: Case 6: (Top) Reconstruction error as a functiasime of numerical model, (-) POD,
(— —) DPOD. (Bottom) Forcing signal for validation case. rigint period in flow field begins
aroundt = 0.005s, lock in region tat = 0.03s, ending transient unttl= 0.035 where the natural

flow state occurs.

57 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

(a) Modea;;

g

(c) Modeay;

0.3| 0.3

0.2 0.2

01l 0.1
SORvI | |
-0.1] -0.1

-0.2] -0.2

-0.3] -0.3

0 0.5 1 15 2 0

x/H

(e) Modeas;

==

(i) Modeas; () Modeas;

Figure 34: Case 8:DPOD modegij) for parameters shown in Table 3. (a)(c)(e)(g)(i) Main
modesi1, (b)(d)(f)(h)(k) Shift modesd;»).
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Figure 35: Case 8: POD modeg ) for parameters shown in Table 3.
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Figure 36: Case 8: (Top) Reconstruction error as a functiasime of numerical model, (-) POD,
(— —) DPOD. (Bottom) Forcing signal for validation case. rigint period in flow field begins
around t=0.005s, lock in region to t= 0.003s, ending tramsimtil t=0.0035s where the natural

flow state occurs.
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Figure 37: Case 1: POD mode amplitudag for parameters shown in Table 3.
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Figure 38: Case 8: POD mode amplituda3 for parameters shown in Table 3.
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5.3 System ldentification

Another important parameter was the size of the training dat for the model. The number
and span of training cases for the WNARX model is presentethbiie 4. A total of 12 open
loop cases, all of which contained starting and ending teawts from the unforced flow state and
back to it, were computed to understand the influence of &otuavith varying frequency and
amplitude on the flow. The results of this investigation sedwhat the time coefficients reacted
almost linearly to the blowing and suction amplitude, itee tesponse of the mode amplitudes,
aj(t), scaled linearly with amplitude input. In contrast, the flmgponse was highly nonlinear
with respect to the forcing frequency. Thus, the three tngidata sets highlighted in Table 4 were
chosen to provide a basis space for the WNARX model. The Egd&, = 1, A/U, = 0.10 was
chosen to be the validation case for the model. A summary af fiarameters for the dynamic
model is presented in Table 5.

Table 4: Summary of caseg.: WN training cases, o: validation case.

400Hz | 600Hz | 800Hz
A/U, = 0.1 v 0 v
A/U, = 0.05 X v X
A/Us, = 0.025 X X X
A/U, =0.0125| X X X

The WNARX model was validated for an off design flow case forahitihe forcing signal was
turned on at simulation time= 0s, at which point the flow goes through a transient periodreef
locking into the forcing frequency. The forcing was themtat off att = 0.025s (corresponding to
15 forcing periods) to reestablish the unforced flow stage &gure 27). As seen in Figure 39, the
model captures the lock-in region of the periodic forcingyweell. Once the forcing was turned
off att = 0.025s, the model accurately predicted the type of nonlingaasin the unforced flow.
Expecting an exact replication of the unforced time coeffits is unrealistic since the signal was
extremely nonperiodic. However, the important point ig th@ model of the unforced flow does
not decay to zero over time. This indicates that there isi@gierattractor to the nonlinear function
for the WNARX system. The similarities in periodic trendsthermore suggest that the attractor
is near the solution of the unforced state.

With the development of this model, the feedback controbfem of the shear layer behind a
backward facing step had been transformed into the probfelmsigning a controller for the POD
time coefficients. At this point, the previous definition bétcontrol goal, namely minimizing the

Table 5: Summary of parameters chosen for the WNARX model.
Modea; Wavelets Regressors

a a a3 a U

a1 2 4 1 0 0 1
ap 21 1 5 0 0 1
ag 10 0O 0 4 2 2
a 16 0O 0 2 4 2
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Figure 39: Off design validation of the four mode WNARX mod&l flow case off; = 600Hz
andA/U, = 0.1. WNARX output (=), POD model (- -).
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Table 6: Summary of parameters chosen for surface mountsadisestimation scheme.

Study | # of Sensors Data Set | Errorg(t)
A(L) Pressure SPODTC LSE ANNE WNE

1-3 47 2.5% 5% 10% v - 21% 19% 12%
4-6 47 2.5% 5% 10% - v 22% 20% 12%
7-9 47 2.5% 5% 10% v v 11% 9.5% 4.6%
10-12 a7 5% 10% v v 10.9% 9.6% 4.6%
13-15 8 5% 10% v v 11.2% 10.8% 4.7%
16-18 6 5% 10% v v 18.8% 16.5% 5.2%
19-21 4 5% 10% v v 20.5% 19.2% 8.1%
22-24 2 5% 10% v v 23.1% 19.9% 21%

density fluctuations in the flow field, was replaced by a muchemiactable problem: Design a
controller for themodel of the POD time coefficientdhose dimensionality is orders of magnitude
less than that of the underlying CFD flow field data. Findingaael that described a flow field that
was not included in the model design with the fidelity showrs wanajor step toward developing
successful feedback flow control strategies for the frearslager flow.

5.3.1 Feedback Control

5.3.1.1 State Estimation A parameter study was conducted for the state estimatoiatian.
Because the density of the fluid cannot be directly measurédessurface behind the step, pressure
variations, which directly correlate to the density fludiomas in the flow (with the assumption of
constant temperature), were chosen as viable surface reeasnis. Five forcing cases, which
contained starting and ending transients (see Table 2) uszé as state estimator training data.
The case~; = 600HzA/U, = 0.1 (Table 2) was reserved for validation purposes. It shoeld b
noted that the error of the training data is bounded abovééetror of the validation case, that is

HeTrain” < ”e\/alHa (69)

for all cases. Therefore, the error of the validation cadeswffice to determine the performance
of the estimation method. Table 2 shows that the estimatsrimarpolating between cases; the
accuracy of the estimator outside tin@ining regionhas not been verified.

Determining the appropriate parameters for the state atinbegan by defining the physical
locations of the sensors. The floor behind the step freax9 < 2.5H contained a total of 47 pos-
sible sensor locations. All three estimation methods (LASENE, WNE) were applied to the full
state sensor array (i.dim(xs) = 47) to determine the best performance of the estimationoasth
The sensor array was then down-sampled to the minimum nuafisensors (i.edim(xs) = 2) and
incrementally increased until the error converged to thlestate sensor estimation performance.
The parameters of the training methods for ANNE and WNE weittd bonstant throughout this
study. A total time history of 25 time steps was used in thenfdation of the regression vector
(i.,e.n=25in Equation 38). The results are summarized in Table 6.

Figure 40a) shows the error in the estimation of mode 1 asaifumof the number of sensors.
The results indicate that all of the methods rapidly consdmapproximately their final perfor-
mance level with the use of 8 sensors spaced equally betwétr= 0.25 andx/H = 2. More
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Figure 40: Estimation error for validation caBe= 600Hz,A/U, = 0.1. a) Root mean squared
error of mode 1a;(t), all estimators. b) Root mean squared error of modes 1-4) tsewavenet
estimator (WNE).

interestingly, the wavenet estimation method resultedniy balf the error of the other methods
(4.5 per cent fodim(xs) = 8). In Figure 40b), the errors for all four modes as computgdgithe
WNE estimator are plotted as a function of the number of ssngde plot indicates that while the
error increased somewhat for the higher modes, all modes eagverged when using only eight
sensors.

The results obtained with the full state sensor array aloitlg surface POD time coefficients
(Study 10-12) are shown in Figure 41. This is thesstpossible result given the amount of infor-
mation and infinite training time. The conclusion of thisdstwepresented a trade off between the
number of sensors needed for precise estimation and thenettraining time. The goal was to
have the minimal number of sensors for accurate estimatiolewaintaining a physically feasible
sensor configurations.

Figure 42 shows the estimation results for only two sensotse sensor configuration. From
the error computations, it is clear that the estimators heger sensor arrays for accurate estima-
tions of the flow field. Figure 43 is the optimal sensor configian which was determined to be an
array of eight sensors betwergyH = 0.25 andx/H = 2. RMS errors were on the order of 5 per
cent for this sensor configuration, which was equivalenhgodrror of the estimation using the full
state sensor estimate. Figure 44 shows a comparison ofttined ime coefficients computed from
Equation 17 with the simulated WNE computed from Equatioruging the eight sensors. The
estimator captures both the phase, frequency, and amgpldtithe flow states for the validation
case. At this point the density field could be reconstructed an error of less than 5 per cent of
the original flow field using only eight sensors by combiningface POD (Equation 17) and the
flow state estimate (Equation 27) within the forcing paramspace.

5.3.2 Adaptive Control

Direct adaptive feedback control [see Fagley et al., 2069nfore details] was chosen to close the
feedback loop. Adaptability allows for uncertainties wissaling the controller for validation in
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Figure 41: Estimation using full sensor array of forcingdation casef; = 600Hz,A/U, = 0.1).
Forcing on for first half of simulation, off for second. a) 8u10: LSE estimationss(= 10.9%)
b) Study 11: ANNE estimationg (= 9.6%) c) Study 12: WNE estimations & 21%).
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Figure 42: Estimation using smallest sensor array of forealidation caseR; = 600Hz,A/U =
0.1). Forcing on for first half of simulation, off for second. &judy 22: LSE estimationg (=
23.1%) b) Study 23: ANNE estimations & 19.9%) c)Study 24: WNE estimations & 4.6%).
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Figure 43: Estimation using full sensor array of forcingdation casef; = 600Hz,A/U, = 0.1).
Forcing on for first half of simulation, off for second. a) 8yul13: LSE estimationss(= 11.2%)
b) Study 14: ANNE estimationg (= 10.8%) c) Study 15: WNE estimations & 4.6%).
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Figure 44: Comparison of first four POD time coefficients foe tvalidation cas&; = 600Hz,
A/U, =0.1. —, CFD results;- - —, WNE with eight sensors. Forcing was active for 0.025.

CFD simulations and experiments. The basic equationsibdesgdirect adaptive control are

U = Gegy

Ge = _Q/e;/r Ye, (70)

whereGe is the gain matrixye is the adaptability weight, ang| is the error between output and
desired reference signal,

& = &— aref. (71)

For multi input multi output (MIMO) systemsg, and ), are matrices of sizagy x nin. Also, the
gain matrix is of sizeni, x ngyt. The derivative must be approximated numerically, because
analytic solution exists. Here, the fourth order AdamstBagh method,

) G -G 1 5 3
Ge >~ % = (Q/n + QDQ/n—l + 1—2D2®n—2 + 553Q/n—3) , (72)

was utilized to determine the gain matrix derivative. Thedleack parameters associated with
this control strategy are primarily which mode is used fadigack and the adaptability weights
which are typically less than one. Stability of this type ohtrol system is only proven for linear
systems Fuentes and Balas [2000]. Stability margins cdmehown for our nonlinear system of
eqguations with adaptive control; however, stable simaietiprovide empirical evidence.

5.3.2.1 Feedback control of the WNARX model Developing the components for a closed
loop simulation is a multi-step iterative process. The nhaldweloped above provides accurate
predictions of the mode amplitudes when the flow is forcetiwia given frequency and parameter
range, including starting and ending transients. Howeve@emains to be seen if the model is
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Step 1: ROM Closed Loop

a(t)

Step 2: CFD Closd Loop

Figure 45: Block diagram of closed loop simulation strate@tep 1. Design a controller for
WNARX ROM. Step 2: Apply controller to CFD simulation withagé estimator to verify model
adequately predicts closed loop dynamics.

capable of adequately simulating the highly nonlinear dyica expected for the closed loop case.
Furthermore, a feedback scenario allows for a parametey sitiadaptive control algorithms.
The WNARX model allows for very quick simulation times, satla parameter study can be
carried out very quickly. The parameters were adjusted ¢d teack different combinations of
modes and their derivatives along with preconditioned tadality weights. Once desirable results
were achieved with the model in a closed loop simulationgsgned control algorithm with the
corresponding feedback mode combination and weights vedsdsap and applied in a closed loop
CFD simulation to validate both the WNARX ROM system and ttiegive controller. A diagram
of the two parts of this approach is shown in Figure 45.

After the parameter study discussed above, it was detedhtiva the POD mode amplitude
and its time derivativeg;, were the best parameters to be regulated in the feedbatioksystem.
The derivative oh; was computed by an implicit Euler approximation. Becaugedan be a poor
approximation of the derivative and its susceptibility tmse, a moving average filter was added
to smooth the estimated derivative. The initial idea wasttiia OPD would be reduced by simply
reducing the mode amplitudes. Feedback of stafesda; allowed for excellent controllability
of the mode amplitudes as shown in Figure 46. Note that byrelliny mode 1, mode 2 was
controlled as well because these modes represent theitigavedive character of the shear layer
structures.

In this simulation, the open loop forced flow was used as tiiaicondition for the closed loop
simulation to create periodicity in the flow and to improvargip performance of the controller
when the loop was closed. Figure 46 shows the time coeffefenthe four mode model. Periodic
forcing was applied fot < 0.015s, at which point the closed loop control was switchedavraf
time period of 0015s< t < 0.035s, when the control is turned off and unforced flow redswed
fort > 0.035s. As shown in the figure, the controller performs wellue@ng the amplitudes of
the time coefficients to approximately 35 per cent of the to®d state. As a final step to verify
the efficacy of this control approach for aero-optical peoi$, the density field was reconstructed
using the closed loop simulation results of the time coeffits, shown in Figure 46, and their
corresponding spatial modes (Figure 32). The reconstidgasity field,p(x,y,t), allows for the
evaluation of the effect of the three different forcing saeos (unforced, open-loop forced, and
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Figure 46: Feedback results using adaptive feedback doR&dodic forcing for @ <t < 0.015s,
closed loop simulation for.015 < t < 0.035s, and unforced simulation fdr> 0.035s.
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Figure 47: Feedback results using adaptive feedback doRtdodic forcing for 8 <t < 0.015s,
closed loop simulation for.015s< t < 0.035s, and unforced simulation for- 0.035s. Verti-
cal solid lines indicate contours @f (y,t) normalized by the maximum density fluctuation. The
Horizontal line shows the maximum density fluctuation atwegitime.

feedback controlled), especially their effect on the dgritictuations. Because the density field
is three dimensional in (x,y,t)-space, it is difficult to wadize the flow field dynamics. Here, the
standard deviation of the density field was computed foraligation using

12

Nx
p'(yt) = J Nile [p(xi,y,t) —pxyt) | - (73)

Note that the mean was taken in the x-direction. In effedh #iese two-dimensional simulations,
perfect spanwise coherence was assumed. In Figure 47,uterdbp’(y) at discrete times are
plotted as vertical lines. The figure shows that the mageitoido’(y) as well as the extent of
the distortions in the y-direction were significantly reddavhen feedback control was active. In
addition, maxp’(y)) is plotted for all times. It corroborates the reduction & tiensity fluctuations
for the feedback controlled flow field.

As a final performance metric, the OPD for a beam passing ¢gfirdhis flow field was com-
puted using Equations (57)-(59). For the 2D simulations,aperture size was3< x/H < 2.5
with unit width. The OPD at the point of interest/H = 2, is plotted in Figure 48, which shows
that the OPD was drastically reduced during the closed laofign of the simulation, both in
comparison to the periodically forced flow and to the unfdriiew.

5.3.2.2 Feedback control in the CFD simulation The final validation of the controller devel-
oped during this research effort was performed by implemgrhe controller in the Cobalt CFD
simulations. Hooks had been added in the Cobalt CFD codaglam earlier AFOSR funded
STTR project between Cobalt Solutions, LLC, and the US AircEcAcademy. These hooks
make sensor information available to Matflwhich handles the controller computations. Af-
ter the actuator output had been determined, it was passddidahe Cobalt simulation using
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Figure 48: Calculated optical path differencexatl = 2, y/H = 0 for the reconstructed flow field
of the closed loop simulation. Periodic forcing for Q¢ < 0.015s, closed loop simulation for
0.015s< t < 0.035s, and unforced simulation for- 0.035s.

externally controlled blowing and suction boundary coiodis. The program communication be-
tween Matlaf® and Cobalt allows for great flexibility when incorporatireetiback control, filters,
state estimators, etc. within a CFD simulation. More imaoittty, it allows for utilization of the
exact programs developed in the previous sections, whgsfifiantly reduces the possibility of
program errors.

For the first validation step, the controller in the previgastion was directly used in the CFD
simulation in conjunction with the state estimator develbpn Section 5.3.1.1. The feedback
controlled simulation proceeded as follows: First, the &bbimulation was advanced one time
step. The new data at the sensor locations (predetermieedsection 4.2.4.2) was then passed
to the Matlaf® state estimator to estimate the POD mode amplitudes; thea&in was seen to
be essentially the same as what the model predicted. TheBenkRide amplitude estimates were
then input into the control algorithm, whose output was ested to a blowing and suction mass
flow rate for the blowing and suction slot. Finally, this immation was passed back to Cobalt as a
new boundary condition value to be used in the subsequentiteFdion.

After completing the simulation with this controller, thertsity field data was used to compute
the OPD. First, as before, the density fluctuations were coetpand plotted using the same
method as for the WNARX validation (Figure 47). Figure 49whdahat the controller developed
using the ROM had a pronounced effect in reducing the deflaitjuations, similar to the effect
observed in the model simulation results.

The OPD results in Figure 50 show that the controller (adtve > 0.025s) reduces the OPD,
but the reduction was slower than predicted by the WNARX rhod@lkis was most likely due to
discrepancies between the reduced order model and the G@RiDasion results, indicating that
the ROM did not quite capture all the intricate nonlinear ayics of the flow field which were
resolved in the CFD simulation. As shown in Table 5, the madelimed that modes anday are
completely decoupled from modaganda,. This was likely the most dramatic modeling shortfall
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Figure 49: Density analysis of CFD closed loop simulatioetiédic forcing for Os< t < 0.025s,
closed loop simulation far > 0.025s. Vertical solid lines indicate contoursa@fy,t) normalized
by the maximum density fluctuation. The Horizontal line skdfie maximum density fluctuation
at a given time.
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Figure 50: OPD as a function of time. CFD results with WNARXtoller directly substituted
into CFD closed loop simulation.
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and the reason that the model did not correctly capture thénear dynamics in the closed loop
simulation. Further analysis of this closed loop simulatwas performed to better understand
these differences.

Figure 50 shows that it took approximatély = 0.025s after the controller activation for the
control to be effective in reducing the OPD. Full control vahieved fort > 0.05s, at which
time the large amplitude oscillations due to flow transieh&s/e convected downstream. The
OPD amplitude was reduced by approximately 50 per cent. ti@aumg Figure 51e, the time
history of the control input, corroborates that at timse0.05s, the controller had started to achieve
the control goal of minimizing the POD mode 1 amplitude (FegGla) and reduced the forcing
amplitude to approximatel/U. ~ 0.01, which was less than one per cent of the free stream
velocity.

The remaining POD mode time coefficients are shown in Figdted Since POD mode 2
(Figure 51c) is the complement to mode 1 to comprise a trageliave, it was not surprising that
its amplitude was reduced in unison with mode 1. However,es@and 4 behaved differently; the
main effect of forcing on these modes seemed to be a stahwlizaf their oscillation frequencies
and also their amplitudes.

When this research project was started, it was believedtheduction of the OPD would have
to be coupled to the minimization of these mode amplitudaseseach mode pair represents they
flow state created when the shear layer is forced with a gikesuency. However, the results
indicate that the shear layer is far too unstable and quitidyes away from the natural periodic
attractor when forcing is applied. A comparison of the OPguts with the POD mode amplitudes
seems to suggest that the desired flow state is in fact achigvetroducing a new periodic state
which reduces the OPD for a given aperture location and Bieeause discrepancies between the
reduced order model and the CFD simulations did exist, irfitteg step of this research project,
the controller parameters in Equation 70 were adjusted hytiszing the CFD results directly
to increase closed loop performance, efficacy and efficiefityese results are presented in the
following.

Since it was determined from the initial feedback contieb{@¥=D results that information about
POD modes 3 and 4 needed to capture the transient behaver, datombination of mode ampli-
tudes and their derivatives were fed back in numerous CFDlations to determine the optimum
combination for the adaptive control algorithm. It was fduhat feeding back the time coefficients
of one of the modes of the next mode pay, with an aggressive adaptability weighg,= 1, intro-
duced this periodic attractor, which effectively reduclkd tlensity fluctuations and therefore the
OPD over a given aperture. Figures 52 and 53 show the finagssftd closed loop simulation and
the corresponding reduction of the OPD to approximately &0gent of its original value. This
presents a performance improvement of almost 50 per centloweriginal controller. In addition,
the fluctuation amplitude was drastically reduced when amexbto the periodically forced flow as
well as when compared to the unforced flow. Scrutinizing il signal, it was observed that
the controller introduces two harmonic frequencies inwftow, the lower of which was approxi-
matelyFs ~ 720Hz. Interestingly, the control amplitude did not deelas the controller became
effective, as initially anticipated. In contrast, the aiygle seemed to stabilize Ay/U., ~ 0.04,
which was larger than for the controller obtained directonfi the ROM.

The results from this closed loop simulation supported tlea ithat excitation of frequencies
that are unstable further upstream (closer to the step) nasca larger effect on the OPD, even
if the aperture is located downstream, than forcing at aueegy that is commensurate with the
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Figure 51: Mode amplitudes and control output of CFD closegbIsimulation.
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naturally occurring frequency at the aperture locations ttonjectured that forcing at the higher
frequency kept the flow more periodic, thus reducing theexopairing tendency, which created
the largest structures and therefore the largest optistdrdiions. Interestingly, open loop forcing
at these higher frequencies did not show this level of peréorce, which was attributed to phase
and frequency differences between flow states and forcimgtirOnly with feedback control was
it possibly to react to these differences in the adaptivermaamecessary to reduce the density
fluctuations in the shear layer.
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Figure 52: Mode amplitudes and control output of CFD clossaplsimulation. The control
output is shown for the complete simulation, periodic fogcfort < 0.025s, feedback control for
0.025s< t < 0.06s, and unforced fdr> 0.06s.
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Figure 53: OPD calculation of closed loop CFD simulationhaaidjusted controller. Periodic
forcing for Os < t < 0.025s, closed loop simulation for.025< t < 0.06s, and unforced fot >
0.06s. Reduction of OPD on the order of 30% of the OPD is seen.
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5.4 Axisymmetric Bluff Body
5.4.1 Overview

Classical control theory is very limited when dealing witghrdimensional, extremely non-linear
systems such as flow fields. Flow fields are governed by thee&tokes equations, Eq 74, a set
of second order, non-linear partial differential equasioNew techniques need to be established to
make use of current control theories, while also allowingafoeasonable design process for linear,
non-linear, or adaptive control for complex flow fields.

p(%—i—u-ﬂu) =—0Op+0-T+f, (74)

The synopsis of active feedback flow control is to use a fluddituator on an aerodynamics
body which is able to perturb the flow away from the originakstand typically cause some type
of desired response, for example increased lift coefficieggulation of undersized loads, drag
reduction, optical effects, vortex positioning, etc. S®¥sson the body measure the flow state
which is then translated into an actuation input througheaontrol algorithm. This is shown
by an example to a forebody at high angle of attack in FigureT® challenges associated with
active feedback flow control are actuator placement, sgri@oement and model/control algorithm
design.

Actuators

O  Sensors
L o

)

(8]
QO

.

Controller

Mode

Filter |e= Controller <= Bt

Figure 54: Flow control approach used for design and impteat®n of reduced order model
based control

Figure 55 shows the approach adopted by the USAFA flow corgsalarch group. This frame-
work is a systematic road map to developing a reduced orddehoontrol algorithm, and optimal
sensor placement for non-linear fluid dynamic systems. Timaate goal of flow control research
is to develop a robust model and control algorithm for a dpefiow field to provide that as a
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deliverable to the customer. The secondary goal of this flomtrol research is to gain physical
insight into the fluid dynamics through closing the loop.

Fluidic actuation <€ 4,
b
Open loop dynamics
¢ J
Numerical decomposition
b
' Flow state definition ,‘
/\
Sensor placement/state estimation J System ID K— 2 )
2 ' b )
Experimental validation )(— Controller ‘
' ¥
Closed loop CtD/Experiment Model simulation ‘ 71/‘
v
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End )

Figure 55: Flow control approach used for design and impteaai®n of reduced order model
based control

In the past it has been seen that the more insight and undénsgeof the fluidic mechanisms
at play increase the fidelity of the reduced order model ambpeance of the control algorithm.
For instance while closing the loop on the backward facieg,ghe closed loop dynamics showed
that exciting the Kelvin Helmholtz structures in a certaindtion actually caused them to dissipate
just afterwards. Thus, the optical abberations were akiedoced over an aperture.

The approach begins with developing a fluidic actuator. $ygfeactuators consist of SDBD
plasma, blowing and suction ports, synthetic jets, flowatffes, speakers, etc. Placement of actu-
ators and number of actuators is typically chosen by rulebuwhb from fluid dynamics. This is
a suboptimal approach. For future success of feedback flotvalpan autonomous method needs
to be determined for actuator placement and design. Thggranowill evaluate different technical
solutions to this issue on the forebody flow control problem.

Once the fluidic actuator is in place either in CFD or expentagopen loop dynamics are
acquired through various forms of input. Typically, stappulse, ramp, and periodic inputs are
used to quantify the system dynamics. As shown in previopBagtions of feedback flow control,
these open loop dynamics are a crucial step in understatttgritpw field. The actuator to fluidic
response, i.e. the controllability of the fluidic systemaisritical relationship which is essential.
For unsteady flow fields, the state trajectories from unatetilito actuated states and vice versa
is non-unique and highly dependent upon the initial stath@flow. This necessitates an optimal
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selection of open-loop forcing which pseudo-randomly cegst each state trajectory. This infor-
mation will then provide for the compilation of a flow statetalaase, which is essential for the
development of a reduced order model which accurately septs the unforced, open-loop, and
transient states near the desired controlled state. Winileet questions are best answered using
CFD simulations because of the detailed data availabls,ithpossible to interrogate the whole
parameter space this way. Experimental investigationsae necessary to provide the crucial
survey of the parameter space to highlight regions of pddidnterest.

Once the open loop database is formulated, numerical deasitign techniques are used to ex-
tract pertinent dynamics. Specifically these decompasstaecouple spatial and temporal modes
in an optimal fashion. For the development of Reduced Ordadd¥s (ROMSs) of the flow field, a
software suite developed in the US Air Force Department abAautics by the researcher will be
readily available and applied to new problems. The datayarsgbart of the software suite consists
of many tools such as: proper orthogonal decomposition (P@&uble POD, balanced POD, dy-
namic modal decomposition (also referred to as Koopmaryaisaland wavelet decompositions.

Each decomposition has unique advantages and disadvantége the overarching goal is
the same - to extract the dynamical behavior of large scaleerent structures in the flow while
decoupling spatial and temporal information. Extracting tlesired or dominant dynamics of a
fluid field is a highly debated topic. For instance POD defitesdynamics through largest ener-
getic modes; BPOD defines the dynamical modes as a set whichings the observability and
controllability grammians; DPOD emphasizes an energetiderset coupled with shift or pertur-
bation modes to the dominant modes due to actuated and uatedttransients, and finally the
Koopman analysis extracts spatial growth and decay ratesglly unstable and stable modes) as
well as spatial frequencies (marginally stable modes).hEdichese tools, while vastly different
mathematical procedures produce the same result, decbspétial and temporal information.
These decomposition techniques are commonly understoachbeady flow fields, but the exten-
sion and application to deformable bodies in computatisimllation or experimental testing has
never been attempted. It is the intent of this research progo find a suitable strategy or combi-
nation of strategies to extract the dynamics of the fluidicttire, and fluidic actuation interaction.

Once an understanding of the underlying physics of fluidcstine interactions is produced,
a proper dynamic reduced order model can be developed. Wghatcurate system model the
optimal type and distribution of actuators and surface @e&nsan be determined and implemented
in both the simulations and experiments. During previogsaech projects, the flow control group
at USAFA has found that thiew-dimensional modeling approach the most beneficial when it
comes to realizing a structured model-based closed-laapegty for flow control. Assuming a
suitable mode set is determined from the previous sectianhwutepresents the unforced, open-
loop, and transient states, the associated temporal dgeareed to be modeled.

A widely accepted approach to model experimental and coatipatal periodic flows is the
Galerkin Method. A Galerkin projection is a method for obhtag approximations to a high dimen-
sional dynamical system by projecting the underlying dyiearanto a reduced order subspace. In
the application to fluid dynamics, the Navier Stokes equatere projected onto a subspace which
is spanned by an orthogonal basis which represents a nyapdrihe system dynamics typically
obtained by POD. The resulting equations are a set of n@ali®DE’s in the form of,

i = fo-+Lx¢ (t) + Qx5 (t) ) xs (1)), (75)

where the linear term is representative of the viscous tarthe Navier Stokes and the quadratic
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term is representative of the convective and pressure tierthe Navier Stokes. In some instances
it is beneficial to also add a higher order cubic term to actémmmean flow perturbations and

experimental noise. An extension of the Galerkin Methodhés@iscontinuous Galerkin Method

which may be essential for producing a stable discretinatiothe convective operator over un-

structured, deformable meshes.

Previously, this research investigated wavelet basisors\(WNARX) to demonstrate the full
capability of identifying complex flow response for a rangepen loop parameters. The WNARX
represents a dynamic model which can simulate off design ¢lses, serve as reference signal,
and ultimately predict closed loop behavior for controligas The WNARX model uses the same
network architecture as a neural network; the only diffeeeis radial basis functions are used as
each neuron’s transfer function. This is shownBt), s =¥ (t%“) whereu is the translation of
the wavelets is the dilation, and¥ is referred to as the mother wavelet, which is a radial basis
function in this case. WNARX models are much better suiteddentifying the frequency rich
dynamics of complex, turbulent flow fields. The overall WNAR¥del is given by,

f(t)= _iwiw(s-(t —u))+ct+ fo (76)

wherew; are the weightd\ is the number of wavelet functions, represent the linear connections,
and fp is the bias. This proposal will use this new system identiicamethod to formulate an
extremely low dimensional model based from CFD simulatiamd POD/DPOD decompositions
to accurately predict closed loop dynamics of a given flovdfi@his model is then used to perform
feedback simulations to condition control algorithms whaan then be applied directly to CFD
simulations and experiments.

Once this model (either Galerkin model, or WNARX) is valeldtover unforced and open-
loop parameter space, it will serve as the basis for the gbstrategy development. Typical
control approaches to non-linear systems can be used. $tance direct adaptive control, sliding
mode control, or model predictive control may be used toechstable, robust reference tracking
ability. Previous research supports that adaptive comitiequately handles model uncertainties
between model and CFD closed loop simulations. This reBgagject aims at evaluating the per-
formance and stability criterion of these three controlrapphes. As for differences between CFD
simulations and experimental tests, the actuation dyreamd sensor dynamics will be unique to
each environment, but the underlying control theory, flomitsure state definition, and estima-
tion algorithms will remain constant. This will allow for rdel and estimation development to
be based upon both numerical and experimental data. In & seasontrol will be modularized
by the actuation/sensing dynamics which will provide matghCFD and experimental results in
closed loop simulation/experimentation.
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5.4.2 Open Loop Dynamics Experiment

As presented in Farnsworth et al. [2012], at the currentaipey conditions, the system is shown
to be proportional at an incidence of 50Figure 56 shows a schematic of the responsiveness
of the asymmetric state (measured as the resulting side)ftmgplasma actuation. The positive
X-axis represents the port forcing strength and the negatiaxis represents the starboard forc-
ing strength; the zero location is the unforced state. THeraoed state of the asymmetric vortex
configuration varies based on geometry disturbances, floditons, misalignments, flow imper-
fections etc. Around this initial state is a dead zone in tteator dynamics; that is, the actuation
voltage must exceed a certain limit before plasma format&as place. Above and below this re-
gion a linear response in asymmetric vortex state was foAhthrge enough forcing magnitudes
the vortex system does saturate in the fully left or rightnasetric vortex state.

A

Saturétion limits

Flow response

Forcing amplitude

5 \< Deaf zong.: InltlaL;I state
| ' A L

Figure 56: Representation of the forcing characteristiche asymmetric vortex state due to
plasma actuation.

Figure 56 is experimentally verified by side force and seati@ressure measurements as de-
picted in Figure 57. The side forc€, and sectional pressure coefficieACp, at x/D = 3 vary
analogously with varying port/starboard plasma voltagéctvisupports that time resolved pres-
sure measurements do accurately correlate with integfateel measurements. As Figure 57 also
shows, the system responds nearly proportionally, althowan-linear effects are apparent. For
instance, the dead zone in the actuation voltage range #bkv <V < 5kV does exist; this is,
primarily due to the fact that plasma has not formed at thesaller voltage potentials. Also,

a hysteresis is definitely observed, that is the path alongséiye voltage gradient‘é—\t’ >0, is
different from the path along a negative voltage gradi%\ﬁt,< 0, in both time accurate (red/blue

lines) and integrated measurements (black lines). Finallgrger gradient‘,’ﬁ\(;P is seen near the
symmetric vortex locationQy, = ACp = 0) , supporting the fact that a small amount of bistability
does exist at this flow condition.
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Figure 57: (a) Side force coefficient and (b) differentisdgsure coefficient at x/D = 3 versus the
plasma actuator voltage during the ramp modulation.

The system response in Figure 57 is well modeled by a lineesywith slight non-linearities
present.

5.4.2.1 Step ResponseThe response of the asymmetric vortex state due to a plastna-ac
tion step input is used to develop a linear time invariant eho@he step response test campaign
consisted of a modulated square wave at a frequency of 1 Ha total of 20 periods. The data
was then phase averaged over a test duration of 20 secondducer measurement noise. The
amplitude of the step was at maximum operational voltage2dk\ before the amplifier began
displaying non-linear effects. Figure 58 shows the nornealiresponse to the step input at initial
transient times and Figure 59 for the ending transient times

The overall time delay consists of the convective time détathe disturbance to reach the
sensor location, lag time for the fluid to respond, and ttarstime to achieve 90% of the steady-
state value. To decouple each of these sources of delayptiveative time delay is defined as
the time from which the step begins to the time at which a 10%ngk in the unforced steady-
state value is observed. The rise time is defined as the tiome & 10% change in the unforced
steady state value to the time at which 90% of the forced gtetade value was achieved. The
time responses are then normalized by the flow through tm&hich is defined as,

Lcone
T= 77
o (77)

and was measured to be approximately 13 ms at the currerdtopgeconditions. These times

are summarized for the rising and falling transients in &ahl The lag time or presence of non-
minimum phase are difficult issues to decouple in the dynasacfurther analysis techniques are
necessary.
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Figure 58: Initial transient of the vortex state due to stgpui. Linear combination of pressure
measurements afD = 2 andx/D = 3 to estimate the side force shown in green. Blue shows the
step change of the actuation input in kV. Also, the convedtiglay timeT.q, is shown in cyan and
the transition/rise timely;, is shown in red.
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Figure 59: Ending transient of the vortex state due to stpptinLinear combination of pressure
measurements afD = 2 andx/D = 3 to estimate the side force shown in green. Blue shows the
step change of the actuation input in kV. Also, the convedtiglay timeT:q, is shown in cyan and
the transition/rise timely, is shown in red.

Table 7: Rise and fall time summary

Initial Transient (Port - Starboard) Time] Ending Transient (Starboard-Port) Timé][
Delay Time| Rise Time| Total | % Overshoot Delay Time| Rise Time| Total | % Overshoot
Cy 0.6375 0.69| 1.3275| 18.5% 0.6070 0.57| 1.177| 24.4%
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As shown in Table 7, the convective times for a port to starthoa vice versa are very consis-
tent, as expected. The rise or transition time from stabtzaport is a bit faster than the transition
time from port to starboard. This is, arguably, becausertliai asymmetric state prefers the port
side due to geometry imperfections, flow misalignments; #tas the flow prefers transition back
to the port state and induces a restoring force, reducimgigat time and also causing a larger
overshoot of the steady state value. Nonetheless, the dgsafithe asymmetric vortex problem
as shown by the step response are very well represented igaa time invariant system.

5.4.2.2 Sinusoidal ResponseTo determine the frequency response of the system dynamics,
sinusoidal forcing is used on the port actuator and the sysésponse is observed by the linear
combination of all of pressure measurements as giveﬁyby'he actuation voltage is modulated
by an offset sinusoid, by the equation,

A(t) = Vimax(sin(2mwt) +0.5).

The test durations consisted of 30 seconds with a sampkagiéncy of 10 kHz. An example of

forcing at a frequency of 20 Hz is shown in Figure 60. The inpuitiput signals are shown as well
as the frequency spectrum. Figure 60b shows a large peak &briting frequency showing the

fluidic receptivity to the forcing. A frequency sweep was doated over a wide frequency range
to determine the cutoff frequency as well as the magnitudepiase of the system.

The natural rise time of the fluidic response is approxinyatelt* — 1.6t*, depending upon
port to starboard actuation or vice versa, due to a unit stpptias shown in section Table 7.
The natural frequency is approximately 50 Hz. This suggistisa pole exists near this location.
Because of this observation, the modulation frequency Wwasen at discrete locations over the
range of 01Hz < w < 200Hz, to determine magnitude, phase and cutoff frequency.

1k ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 4
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Figure 60: Pressure locatioriD = 2 (a) Time domain forcing and response data for Frequency =
20 Hz (b) Time domain forcing and response data for Frequery Hz.

For all of the forcing frequencies the data is summarizedguie 88 where the experimental
data is plotted in red. From this frequency response inftiondhe cutoff frequency can be esti-
mated by a -3 dB attenuation point. This is computed to becgpmately 50 Hz and corresponds
to a 80 degree phase lag.
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Figure 61: Experimental frequency and phase responsemiatawn for sinusoidal forcing cam-
paign

5.4.2.3 Impulse Response The impulse response of the asymmetric vortex state wasradse
sured. For these open-loop tests the duty cycle was varied gmuare modulation wave at a
frequency of 181z over a range of 1% to 20%. The experimental measurementbanerelow

in Figure 89 for the different duty cycles. The initial flonagé was shifted t€, = 0, i.e. the
symmetric state for modeling purposes. All of the impulseseninitiated at = 0, so that the
flow response is aligned for each duty cycle. These measumtsnagere phase averaged over a
100 total cycles. The results in Figure 89 are well depicted bnear system. As the duty cycle
increases beyond 10% an amount of undershoot is seen by tfex dynamics. This data set is
used completely as validation for the model formulation aratiel selection technique.
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Figure 62: Experimental measurements of the impulse resspuwiith varying duty cycle of the
pulse width at a maximum voltage of 1.4 kV. This data serveslgwas validation data for model

development in subsequent sections.

5.4.3 Open Loop Dynamics Simulations

As presented in Farnsworth et al. [2012], at the currentaipey conditions, the system is shown
to be proportional at an incidence of 50Figure 63 shows a schematic of the responsiveness
of the asymmetric state (measured as the resulting side)ftwgplasma actuation. The positive
X-axis represents the port forcing strength and the negatiaxis represents the starboard forc-
ing strength; the zero location is the unforced state. THeraed state of the asymmetric vortex
configuration varies based on geometry disturbances, floditons, misalignments, flow imper-

fections etc. Around this initial state is a dead zone in ttteator dynamics; that is, the actuation
voltage must exceed a certain limit before plasma formata&as place. Above and below this re-
gion a linear response in asymmetric vortex state was foAhthrge enough forcing magnitudes

the vortex system does saturate in the fully left or rightasetric vortex state.
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Figure 63: Representation of the forcing characteristiche asymmetric vortex state due to
plasma actuation.

Figure 63 is verified in CFD simulations by side force as digpién Figure 64. The side force,
C, varies proportionally with varying port/starboard plasvasétage. As Figure 64 also shows, the
system responds nearly proportionally, although nonaliredfects are apparent. For instance, the
dead zone in the actuation strength frei.0259/s < m < 0.0259/sdoes exist. Saturation regions
are also seen fan> 0.759/s.

The system response in Figure 64 is well modeled by a lineaesywith slight non-linearities
present.

5.4.3.1 Step ResponseThe response of the asymmetric vortex state due to a plastna-ac
tion step input is used to develop a linear time invariant ehod@he step response test campaign
consisted of a modulated square wave at a frequency of 1 Ha total of 20 periods. The data
was then phase averaged over a test duration of 20 secondducer measurement noise. The
amplitude of the step was at maximum operational voltage2dk\ before the amplifier began
displaying non-linear effects. Figure 65 shows the norpealiresponse to the step input at initial
transient times and Figure 66 for the ending transient times

The overall time delay consists of the convective time détaythe disturbance to reach the
sensor location, lag time for the fluid to respond, and ttarstime to achieve 90% of the steady-
state value. To decouple each of these sources of delayptiveative time delay is defined as
the time from which the step begins to the time at which a 10%ngk in the unforced steady-
state value is observed. The rise time is defined as the tiome & 10% change in the unforced
steady state value to the time at which 90% of the forced gtetade value was achieved. The
time responses are then normalized by the flow through tm&hich is defined as,

Lcone
= 78

and was measured to be approximately 13 ms at the currerdtofgeconditions. These times
are summarized for the rising and falling transients in &bl The lag time or presence of non-
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minimum phase are difficult issues to decouple in the dynasucfurther analysis techniques are
necessary.

Table 8: Rise time summary
Initial Transient (Port - Starboard) Time][
Delay Time| Rise Time| Total | % Overshoot
Cy 0.62 0.39] 1.01| 155%

When comparing CFD transient times to experimental tramgimes, very good agreement
exists, see Table 8 and Table 7. The simulations are slifgdbgr than the experiments ( 30%).
This is mainly due to transient dynamics of the experimetitalitry which is non existent in the
CFD simulation. Nonetheless, the dynamics of the asymmetritex problem as shown by the
step response are very well represented by a linear timeamiaystem.

5.4.4 Impulse Response

The impulse response of the asymmetric vortex state wasaadated. For these open-loop tests
the duty cycle was varied for a square modulation wave atquéecy of 181z over a range of
1% to 10%. The simulation results are shown below in Figuréo8Zhe different duty cycles.
The initial flow state was shifted 16, = O, i.e. the symmetric state for modeling purposes. All
of the impulses were initiated &t= 0, so that the flow response is aligned for each duty cycle.
The results in Figure 67 are well depicted by a linear sysfEnis data set is used completely as
validation for the model formulation and model selectiochtgique.
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Figure 67: Impulse response of the CFD simulation varyirtg dycle of the pulse width at a unity
magnitude ofC,. This data serves purely as validation data for model deveémt in subsequent
sections.
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Figure 64: Average side force coefficient for different fagcparameters. Port forcing corresponds

to a negative x-values while starboard forcing correspdodspositive x-values.
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Figure 66: Initial transient of the vortex state due to stgpui. Side force in green shows the
response due to a step inputGp in blue. Also, the convective delay time&;q, is shown in cyan
and the transition/rise tim@yt, is shown in red.
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5.4.5 Numerical decomposition and flow state definition

To further investigate the flow field around a von Karmargtmt ogive and develop a Reduced-
Order-Model (ROM) for feedback flow-control, unsteady nuiced investigations were under-
taken. The simulations are performed using Cobalt, an wetsired finite-volume code developed
for the solution of the compressible Navier-Stokes equatid he basic algorithm is described in
Strang et al.,Strang et al. [1999] although substantiaravgments have been made since then.
The numerical method is a cell-centered finite volume apgregplicable to arbitrary cell topolo-
gies (e.g, hexahedra, prisms, tetrahedra). The spatiedtmpeises a Riemann solver, least squares
gradient calculation with QR factorization to provide sedmrder accuracy in space. A point
implicit method using analytic first-order inviscid and adsis Jacobians is used for advancement
of the discretized system. For time-accurate computatimiNewton sub-iteration scheme is em-
ployed, resulting in a method that is formally second ordmugate in time. For parallel per-
formance, Cobalt utilizes the domain decomposition Ip@arMETIS to provide optimal load
balancing with a minimal interface between zones.Karypad.§1997]

5.4.5.1 Grid and Model Geometry The geometry considered in this investigation is a generic
tangent ogive with fineness ratips+ 3.5 and a model base diameter@f= 0.1 m. At the base
of the ogive, a 0.05 m long cylindrical section has been adsiexh that the overall length of
the model is 0.40 m. This model geometry was chosen to mat@cewsmpanying wind tunnel
experiment.Fagley et al. [2012a] For reference, the cafitdie coordinate system is at the nose of
the model. The positive x-direction extends along the btuy positive y-direction points in the
starboard direction, and the positive z-direction is upnmad to the body. For the simulations, all
the reference conditions are set to standard sea levelawithflow Mach number of M=0.1; this
results in a Reynolds number based on the base diameRa-e£220,000.

The grid was generated using Simcenter/SolidMesh and hadx@mately 16M cells (Fig. 68).
To avoid asymmetries in the flow field as a result of an asymmetid, the grid was generated
around half the model and then mirrored; therefore, theigrsgmmetric on the port and starboard
sides of the model. Two patches to simulate the plasma acsuased in the accompanying exper-
iment were added to the model at®¥@om the model's meridian. The start of the boundary patch
was placed 0.4 cm from the tip of the model and was 1 cm longmalilel boundaries were always
set to solid-wall, no-slip conditions except during the p@op forcing investigations where one
of the actuator boundary patch (either port or starboard) svatched to a moving wall bound-
ary patch. In the open-loop simulations, the moving wallrmary patch prescribed a tangential
velocity at the wall in the direction of the freestream. A spbal farfield boundary was placed
40 diameters away from the model to minimize the influencere$gure reflections. For all the
calculations, the farfield used a modified Riemann condiéind the time step was specified at
At =0.0001 s.
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Figure 68: Ogive geometry and grid with simulated port atctuahown in purple: a) front view
with grid shown at the center plane of the forcing patch, t¢ siew of the grid along the centerline

of t% @8?'5& the time-resolved simulation data around theeoody, an array of Cobalt 'taps’
was used. Figure 69 shows the tap grid used around the ogigtelnithe tap grid extended along
the whole body, fromx/D = 0 to x/D = 4 and 110 from the leeward meridian. The taps were
non-uniformly spaced, such that a high spatial resolusabtained near the body, especially near

the tip of the model. In total, 37,625 taps were used to ekath¢he flow quantities during each
time iteration.

(@) (b)

Figure 69: Ogive geometry with tap grid: a) isometric vievddn) front view.

5.4.5.2 Proper Orthogonal Decomposition For data analysis, Proper Orthogonal Decompo-
sition (POD) has been shown to be a very effective tool toadtarize flow fields.Sirovich [1987],
Berkooz et al. [1993] In POD, highly complex flow fields are dieposed into spatial modes with
a corresponding time varying amplitude (or coefficients):

K
P(xy,t) = kz a(t) @(x,y) (79)
=1
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where ¢ is a flow quantity,¢k(x,y) are the spatial modes, arg(t) are the time coefficients.
While this decomposition is well suited to time periodic fléelds, it faces problems for transient
flowsSiegel et al. [2005b] and potentially aperiodic flows. these cases, POD is based on all
the snapshots used to generate the modes, minimizing thallomeor with the fewest number of
modes possible. Therefore, transients or aperiodicityerflowfield can be missed due to the small
contribution made to the overall estimates of the spatidltamporal modes. Different additions
to the basic POD procedure have been proposed, most noteblyddition of a shift mode as
introduced independently by Noack Noack et al. [2003] as ageSiegel et al.Siegel et al. [2003b]

5.4.5.3 Results Before investigating the effects of open-loop forcing oe Hide force gener-
ated from the asymmetric vortex state, unforced simulatiwere carried out where both the port
and starboard forcing patches were set to solid-wall, ipkslundary conditions. In this config-
uration, the model is geometrically perfect such that neudimnce exists to cause the leeward
vortices to lock into an asymmetric state. Figure 70 showselsultant side force on the model as
a function of time. As shown, the side force coefficien}, fluctuates between the port (negative
C, values) and starboard (positivg €alues) direction reaching magnitudes slightly greatanth
0.5. As summarized by Bridges et al.,Bridges [2006] if thetrcause of the asymmetric vortex
configuration is the result of a convective instability, rermoal codes should not produce an asym-
metric wake on geometrically perfect bodies. If they donttiee potential exist that the asymmetry
is due to numerical issues and is not necessarily real; ieratbrds, the right solution is obtained
for the wrong reasons. Figure 70 shows that the geometripalffect model produces an average
side force of zero using the current numerical setup. Tdyérat the numerical code would pro-
duce an asymmetric wake when a geometrical disturbance igasrd, simulations were also run
with a small bump (0.5 mm diameter pin, 0.5 mm tall) placedlmnort side near the tip of the
model. Figure 70 also shows the resultant side force on tleehvath this geometric disturbance
present. As shown, the geometric disturbance causes théosk on the model to lock into one
side (in the opposite direction of the disturbance) and tagnitude of the asymmetry increases.
Therefore, at this Reynolds number, a disturbance on thespi® causes the port side vortex to
lift off the body, causing the side force in the starboarection.
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Figure 70: Comparison of the side force coefficient on a tahggive forebody with and without
a geometric disturbance located near the tip of the model.
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Following the unforced simulations, open-loop simulasi@rhich modeled the plasma actuator
used in the experiments were performed. To simulate thenalastuator, a moving wall boundary
condition was implemented, where instead of setting thgeatial velocity at the wall to zero (i.e
no slip), a fixed velocity is prescribed. Therefore, doweatn of the moving wall patch, a wall jet
is formed as the velocity at the wall diffuses into the reghefboundary layer. The prescribed ve-
locity of the moving wall boundary patch was changed thraugfa series of simulations, ranging
from 4 m/s up to 16 m/s (10 to 45 percent of freestream). Whigsé velocities are much greater
then those generated by the plasma actuators in the expesirtige resultant wall jets downstream
of the actuator are similar.Lee et al. [2012]

Figure 71 shows the resultant side force on the model for amgowvall velocity of 12 m/s,
where the actuation is switched from the starboard to thegide every 300 ms. As shown, there
is a delay & 100 ms) between the time actuation is turned on and the tine@wte side force fully
switches sides and locks into its new value. From the sinwulgt it takes approximately 50 ms
(five convective time scalesLanser and Meyn [1994]) befoeestde force begins to respond to the
forcing input. The other 50 ms is the approximate time it tata@ the vortices on the model to
switch states. This is in contrast to experimental findingselol on dynamic pressure transducers
on the model which show that the model responds to forcing fitee plasma actuator within one
to two convective time scales.Farnsworth et al. [2012]

Based on the data shown in Fig. 71, the side on which forciagjdied causes the vortex on
that side of the model to separate from the body and the side f®directed away from the side of
actuation. This is the same trend observed with the geatrdisiiurbance introduced on the model
as well as experimental dafafor a similar Reynolds number range. This indicates thahiat t
Reynolds number, instead of the plasma adding momentunetfativ to help keep the boundary
layer attached, it is instead creating a disturbance cgubmflow to separate. This is a different
trend from Matsuno et al. Matsuno et al. [2009] who testedusee of DBD plasma actuators on
a ogive model at a lower Reynolds numbets50,000). During their tests, the plasma actuator
caused the lifted vortex to attach to the body; this reatteait of the lifted vortex was attributed
to the Coanda effect. At the lower Reynolds numbers testad,surmised that the strength of
the wall jet created by the plasma relative to the freestrsamuch larger creating a Coanda type
effect, while at the higher Reynolds numbers, the jet ceeatdisturbance causing the flow on that
side to separate.
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Figure 71: Open-loop side force coefficient on a tangentegady, switching between starboard
and port forcing every 300 ms.

To illustrate the coherent vortical structures in the flolgfid-ig. 72 shows an isosurface of
Q with a moving wall velocity of 12 m/s for the starboard at¢twaurned on.Jeong and Hussain
[1995] As shown, at this Reynolds number, the asymmetry efttvo primary vortices is small,
even though the side force coefficient is approximately &t.€his instant. To help distinguish
between the port and starboard vortices, Fig. 72 is coloyetthd x-vorticity. Looking at the side
view of Fig. 72, smaller coherent structures can be seenrfgedto the primary vortices, as the
flow separates off the model forming a shear layer.

Figure 72: Isosurface of Q-criteria around the ogive mod#h wtarboard actuation turned on at
12 m/s.

To investigate the effect of changing the strength of théudisnce created by the forcing
patches near the tip of the model, the moving wall velocity waried from 4 m/s to 16 m/s in
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4 m/s intervals. A high frequency component to the side faae be seen in Fig. 71 and was
observed for the other moving wall velocities tested as.wé&herefore to gauge the effect of
forcing on the resulting side force, the final 150 ms of eachifg cycle was used to estimate the
average side force on the model. Figure 73 shows the regtiltne-averaged side force coefficient,
Cy, as a function of the set moving wall velocity. To differené between port and starboard
forcing, negative moving wall velocities indicate forcing the port side, while positive moving
wall velocities indicate forcing on the starboard side.rirféig. 73, the average side force appears
proportional to the moving wall velocity, at least at thigjnof attack and Reynolds number. This
same trend is seen in the companion experiments when thagevside force is compared to the
applied voltage to the plasma actuation.Fagley et al. [2D12
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Figure 73: Average side force coefficie®, for different moving wall velocities. A positive
moving wall velocity indicates forcing on the starboardesid/hile a negative moving wall veloc-
ity indicates forcing on the port side. All forcing is tangiahto the model in the downstream

direction.

5.4.5.4 Proper Orthogonal Decomposition of the Flow Field The serial dataset alternating
between port and starboard forcing at 12 m/s (seeFgwhich was saved on the tap grid shown
in Fig. 69, was analyzed and the spatial/temporal POD moeées @alculated. Figure 74 shows the
cumulative energy captured in the calculated POD modegllmasthe pressure field. As shown in
the inset of Fig. 74, using the pressure field for the POD amahgquires over 50 modes to capture
approximately 99 percent of the energy in the flowfield. Hosvethe very first mode (in this case
the mean) captures 98 percent of the energy. Thereforega tarmber of modes are required to
account for the fluctuations from the mean in the pressure fiel

Figure 75 shows the resulting first five spatial POD modesdasethe pressure from the
tap data. In this case, the first mode exactly correspondsetaniean pressure field, while the
second spatial mode accounts for the shift of the primaryices into an asymmetric state. As
shown in Fig. 75b), &X’-shaped pattern in the mode can be seen, especially neaahefrthe
model. Therefore, when the time coefficient is positive, fibet vortex is shifted away from the
ogive, while the starboard vortex is shifted towards theybothis shifting of the two primary
vortex positions is confirmed by the second POD mode timeficait, Fig. 76, in which the time
coefficient and the model side force are clearly correldt&de that in Fig. 76, the time coefficient
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Figure 74: Cumulative energy content captured in each PODeM®he inset shows a zoomed in
view of the first 50 Modes energy content.

has been scaled to match the scaling of the side force ceetffidturthermore, very similar spatial
structures were also obtained when POD modes based ondotiaity were calculated.

As for the higher spatial modes and associated time coeffg;i@o clear correlation between
these modes and the resultant side force has been found. veloveased on the results shown
in Fig. 74, these higher order modes contribute very litiléhie total amount of energy contained
in the flowfield. Notice however that these higher-order nsodie not appear in conjugate pairs
like POD modes from periodic flowfields which create travglatructures. This is because, while
there are minor fluctuations in the positions of the vortexgeolocked into one state the vortices
tend to stay there.
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Figure 75: First five spatial POD modes: a) Mode 1, b) Mode 2Ma)le 3, d) Mode 4, and e)
Mode 5.
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Figure 76: Comparison of the instantaneous side force ceeifiand the 2nd POD mode time
coefficient.

As a check, POD was performed on the time-resolved simulaaba. The port and starboard
data sets at a mass flow rate of 0.07 were concatenated inhgla siata before performing the
analysis. As shown in Figure 77, very similar results arexmiad using the time-resolved data,
especially in the 1st and 2nd spatial modes, wheréXhshaped pattern can still clearly be seen
in the 2nd mode. Furthermore, as shown in Figure 78, the 2rderstill closely follows the side
force on the model. In this case, a large spike occurs in th@&@D time coefficient corresponding
to the swap in side force.
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Figure 77: First five spatial POD modes using the time-rexbsimulation data: a) Mode 1, b)
Mode 2, ¢) Mode 3, d) Mode 4, and e) Mode 5.
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10

Figure 78: Comparison of the instantaneous side force caftiand the first three POD mode
time coefficient from the time-resolved data.

105 Fagley



KC Engineering, Inc. April 8, 2013 FA7000-10-2-0003.Final

Begin
Algorithm

Initial
Population

Future
Generation

Objective and
Fitness
Evaluation

Crossover

Mutation

Reproduction
A

Figure 79: Procedure for genetic search algorithm.

5.4.6 Sensor placement

This section presents a numerical study on optimal sensatit; and number of sensors to ade-
guately estimate both the asymmetric vortex states andiéats therein. For the purpose of this
study, the flow state is defined as the side force coeffic@@ptvihich entirely captures the asym-
metric vortex behavior. The side force is the desired comaaable , and thus it is imperative
to have a surface sensor arrangement that accurately fgrélaicdynamics of this quantity. The
following sections outlay the approach used for deterngisinrface sensor placement for the von
Karman ogive.

5.4.6.1 Optimal Method The optimization problem is solved by using a constrained|we
tionary genetic algorithm (GA). The constrained optimizatproblem as a stochastic search rou-
tine is designed for the problem,

min F(x), (80)

XeRN

wherex is the search variable defined in spa®" subject to an arbitrary functioR(x). This is
a constrained optimization problem withsubject to the constraint,

Li <x <Uj, (81)

wherel; is the lower bound and; is the upper bound for our search vectorThis evolutionary
search based method is a classical approach for these imd@tidional constrained optimizations.
The basic architecture of the GA is shown in Fig. 79. With aysgarch routine an initial popu-
lation or array of potential solutions is randomly select€de objective function is then evaluated
at each member of the population. The objective functiowiges a measure on how well that
member of the population performed. The fitness functionsfi@ms the result into a relative
fithess. Poorly fit members are discarded and fit members plieated in the reproduction step.
Combinations of fit members are randomly selected and thdatedito form the next iterative
population. This process continues until a desired stdpraiis satisfied.
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In application to the problem of the von Karman ogive, thgaotive function is defined as

f(xs) =Cy(t) —Cp(xs,t) (82)

whereC is the observation and computed from a least squares est{ses below). The fitness
function is defined as the 2-norm of the objective function,

F(%s) = [If(xs)]2 (83)

The search domairL{ < x; < U, ) is restrained to the upper surface of the ogive. Symmetric
sensor placement is enforced, such that at each axial gositio sensors are placed at thé
positions.

5.4.6.2 Linear Stochastic Estimation Linear stochastic estimation (LSE) is chosen as the
baseline estimation method. Since flow fields of interestyguieally highly non-linear, the perfor-
mance of this method usually tends to be poor for most flowdieldowever, a linear analysis is
always important because it serves as a benchmark compdoisthe more complex, non-linear
system ID methods. Secondly, the computational time folittear analysis is negligible, thus
allowing for an optimal study in terms of sensor location andhber.

The CFD simulation provides surface pressure at any poirithersurface of the ogive. The
array of surface sensors is defined as the vexto# linear mapping which estimates the state of
our flow field is sought. The observation mat@xs computed to best represent the flow state in a
least squares sensgis computed by a matrix inversion,

C =Cy(t)p(xgt) "t whereC e R™K. (84)
Future estimates can then be approximated by the matrixpticdition,
Cy(t) = Cp(xs,t)label(e.Pest) (85)

The performance of the linear estimation approach is gfieaifby the error norm of the estimate.
The error is defined as

€ = [|Cy(t) —Cp(xs,t) |2 (86)

This is the very basic estimation method. The linear andostaty approach provides for a means
to optimally solve for ideal surface arrangement. A surfaessor array is sought to minimize
the error in (86). Once the sensor array is determined, ti@ason method can be extended to
non-stationary, higher order, non-linear methods. Thewgtarrangement of sensors in a linear
fashion will also be optimal for higher order methods as well

5.4.6.3 Results The unforced data, shown in Fig. 80 a), indicates that whdgaificant side
force coefficient,|Cy| ~ 1, can be achieved with this geometry in simulations, it isien then
the experimental finding8 However, the unsteadiness of the side force coefficientarthe zero
point shows that the flow is unstable with respect to the x@tate when no geometric disturbance
is present to enforce either the port or starboard asymenaidrtex states.

Fluidic actuation is introduced into the numeric simulatia two moving wall boundary
conditions at the tip of the von Karman ogive, as shown i F88. The forcing is duty cycled
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Figure 80: a) Unforced side force coefficient. b) Forced fidee coefficient.

between port and starboard actuators to produce both asymstates, deterministically within
the flow field. For both forcing situations, the unforced etat the vortices is altered resulting
in a side force comparable to experimentally measured sakueh that the flow has entered into
a pseudo-steady asymmetric state, see Fig. 80 b). It wasrde&sl from this data that the data
for the unforced case would provide more difficulty for théiraation/optimal routine because
of the large number of transients between asymmetric séastegell as the reduced magnitude of
side force (i.e. smaller differential pressures from porstarboard). The unforced data was then
selected to be the training data for the optimal routine dwedforced data was selected for the
validation of the resulting sensor configuration.

The sensor location are bounded to the leeward $lde,+11(, of the ogive over an axial
range of 1< x/D < 4. Another spatial constraint is the sensor array must bersinic about the
z= 0 plane to ensure symmetric sensor placement. Thus thesaeggsarameters to optimize
over are the axial and the azimuthal positions of a sensoxpai [X1, 61,%2, 62, ..., Xk, Gk]T, for
2k sensors. The bounds or constraints on the search critertaas,

1<x/D<4
0< 6 <110 (87)
The (x,y,z) coordinates are then computed from the axiaklaeth orientations, such that,
[ X1 i [ X1 i
Y1 r(x1)cog 61)
z r(xy)sin(6
Xsurf = Xl _ ( 1) ( 1) (88)
2 X1
Y2 r(x1)cog 61)
| 2 | | r(xg)sin(—6y) |

where the radius at that axial locatiaifx; ) is computed from%?)- (??). The vectos,s contains
the coordinate pairs over the bounded region and mirroredtahe meridian plane. The pressure
information atxs is linearly interpolated from a surface tap grid on the ogimsing Delaunay
triangulation.
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To ensure the correct optimal method with associated pdess.e. population size, mutation
rate selection/deletion properties and mutations/cressaperators) were chosen for the optimal
study of sensor location and number of sensors, the entive ®irface was computed for a single
sensor pair and compared to the results from the genetidthligo The error surface plot is shown
in Fig. 81.

1 2 6 [rad]

x/D

Figure 81: Error surface of a single sensor pair and optimlaiti®n shown to be at location of
minimum error thus validating the optimal routine.

The optimal solution as computed by the above method prediyge’D = 2.4 andBypt = 1.5
which is plotted as a green triangle in Fig. 81. This doesnaligth the minimum of the error
surface, so the optimal method is validated for this type ofimization problem. Note also that
the error of the linear estimator becomes much worse outlselbounds ok/D > 3.5 andx/D <
1.5. This is mainly due to the dynamics of the asymmetric vogbgnomena. The strongest
asymmetries are seen in the axial region fro® x/D < 3.5. Also it is seen that the minimal
amount of error is at the largest azimuthal positions,A.e. +11(°. This indicates that the sensors
near the separation lines are critical to capture the asyrmaynamics.

The optimal solution was repeated for 2 , 6 pairs of sensors. The results are shown in Fig. 82.
As the number of sensors is increased the error of the lirstgnator is decreased for the training
data. Interestingly though, the error does not decreasthéovalidation data but rather increases
if more than 6 sensors (3 pairs) are used. Because expeahmaplementation is crucial for this
project, it was determined that a sensor array with two sguaios provided the best compromise.
Also, the prediction error was not significantly reduced wingore sensor pairs were used. The
optimum positions for the two sensor pair array were founieto

x/D = [2,3.25)

6 — [£105 + 98 (89)

Figure 83 shows the unwrapped surface of the ogive colorgthiynby the mean pressure distribu-
tion for the training data ensemble. The locations of the $&sor pairs are shown in Fig. 83 as
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Figure 82: Overall error plotted versus number of sensatiseat optimal locations. Performance
of the training and validation are shown in blue and red,eesyely.

green dots. Figure 83 also shows instantaneous separatiations for the port asymmetric state
(red) and instantaneous separation locations for theadadasymmetric state (blue). This figure
shows that the critical sensing locations for estimatirgasymmetric state are near the separation
locations. Also, the separation locations do slightly mdepending on which asymmetric state
is present. This small fluctuation in the separation locagimvides for very large fluctuations in
relative pressures at the sensor location as shown in Fitpr&ach asymmetric state.

The optimal routine found the point at which the largestediéhtial pressure occurred just near
the separation location. The time history of the estimatesults for the training and validation
cases are shown in Fig. 85. As shown the two sensor pairscptediasymmetric behavior for the
forced and unforced case producing less than 17% error &br é@se. Some high frequencies are
not captured with this sensor placement, probably due tdeittethat those asymmetric pressure
changes are occurring further upstream or downstream dooithe of the ogive.

5.4.6.4 Experimental Validation The flow state estimation technique laid out in Fagley et al.
[2012Db], is experimentally verified by the following techne. The estimated side forcré,, as
described by Eqn??, needs to be validated and compared to the actual force omadel. To
compare these two signals, the force balance sensor dymaeed to be measured and modelled.
For this an impulse response to the wind tunnel model andtiegdiorces are measured to model
the frequency response. Figure 86a shows the frequencynespf the side force measurement
due to an impulse. A multi-modal resonance is seen due todh®lex orientation of strain
gauge/flexure arrangement of the 6 degree of freedom foreadeg additionally, each balance
channel shows a cross coupled behavior which is also a famttire multi-modal resonance.
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Figure 83: Unwrapped surface of the von Karméan ogive euldsy mean pressure distribution.
Red lines indicate separation locations for port forcing blue lines indicate separation location
for starboard forcing. Optimal sensor placement is showgresn dots.
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Figure 84: Sensor placement as well as azimuthal pressefécoent for port forcing (blue) and
starboard forcing (green) at axial locationxdp = 2 and b)x/D = 3.25
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Nonetheless the spectrum shown in Figure 86b allows for fimgef the sensor dynamics.
The impulse response of this measurement device is fit by rragressive system in the form,

GFB(q)CYFB(t) = e(t> (90)

whereC,, is the measurement of the side force @k(q) is a frequency domain model of the
force balance. All three signals can be compared by thevialig equation,

Cyep ® Geg(S) #*C x P(Xs,t). (91)

An example of these signals due to alternating port and séadbforcing is shown in Fig-
ure 86b. The green curve represents the actual side forceumd@aent. The experimental mea-
surements of the force balance are compared directly torsspre based estimates of the force
as shown in EQ?. Figure 86b shows the actual force measurements in greeestimated side
force from the linear combination of pressure signals ireb&nd the estimated force measurement
with the force balance dynamics included in red. As shownigli®@e agreement exists between
all three signals; the determination is thus that the eséithside force, is a more suitable signal
for the actual force on the model, because the sensor dyesartibe force balance are excluded.

5.4.6.5 Summary Unforced and forced CFD simulations were used to underdtameésym-
metric vortex state behavior on a von Karman ogive. Theegifithe flow was modeled using the
side force coefficient. A genetic algorithm was used to sédveoptimal sensor placement and
investigate the performance as a function of number of sen3be fithess function of the genetic
algorithm was defined as the error between the least squapes@mation of the surface pressure
to the defined flow state.

An optimal arrangement of sensors was chosen which is expatally feasible and in fact has
been experimentally implemented. The current study shakagd total of two sensor pairs placed
at position ofx/D = [2,3.25 and6 = [+105°, +98°], accurately predicted the flow state to within
17% error for training (unforced) and validation (forcednslations. The placement algorithm
showed that sensors placed very near the separation paiatopémal. This region showed the
largest differential pressures for port and starboard asgtnc vortices, which heuristically is the
best location for flow state sensors.
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5.4.7 System dynamics and modeling

To model the system dynamics of the asymmetric vortex setiab the von Karman ogive at high
angles of attack, open-loop experimental tests were cdadwec understand system characteristics
in terms of stability/bi-stability, controllability, olesvability, and linear/non-linear behavior. The
flow behind an axisymmetric slender body has previously ls&éemn to be completely bistable at
a sufficiently large angle of attack and small Reynolds nusdgecause few tests have been con-
ducted at a Reynolds number in the range of the current expati(Re = 156,000), determining
if a bi-stable or proportional flow regime exists is critialdesigning a suitable model structure
and control system design.

The system with the characteristics shown in Figure 56 itablé for being modeled by a
linear system with saturation points as well as a dead zorerefore, standard linear system
identification methods can be used for the system ideniificad extract critical features such as
delay time, rise time, cut-off frequency, phase/gain nmaggid minimum phase behavior. Once
these critical features are well quantified, the lineareyswill provide the means for closed-
loop controller development. For the open-loop databdseptasma actuator voltage is varied
in different manners to fully describe and model the dynamin this experimental investigation
three separate campaigns were conducted to develop thelagelatabase. For training the
model, a step response is measured, which contains allseygaaformation for a linear model
to be developed. Linear modeling methods, such as the oeitprt prediction error and subspace
identification methods are implemented to capture the dynaesponse to the step input. For
validation of the developed model, both impulse and sirdeddorcing responses are compared to
experimental validation.

Initially, due to geometric asymmetries, angular misaiigmts or flow imperfections the sys-
tem is in the port asymmetric state which causes a port &taebrtex, i.e. a negativ@, or ACp.
This steady state value is removed and relative changeg tasymmetric state are analyzed. For
all modeling purposes the side force estimége,will be used. Also, for all of the data presented,
only the port (negative voltages) and starboard (positdliages) actuators are employed to influ-
ence the flow state.

5.4.7.1 Modeling Techniques The system response is modeled using a linear system paizanet
tion. The input output relationship for this system is

Y(s) = Gs(s)U(S). (92)
The structure of the model in continuous time will take theafp

N g1 ogn=2_
GS(S) _ (S) :Keessm-i-am 1S+ am_os™ 1S+ aqg

D(s) '+ b1 1+ bp_2s" 2 - - bys+ by

(93)

for a linear system witim zeros and poles and a pure time delasfS. Different system identifi-
cation techniques exist for parameterizing suitable ar@¢s) and solving for coefficients of the
polynomials in numerator and denominator. The three teghes for time domain identification
which are examined in this effort are: Output Error (OE),dfegon Error (PEM), and Subspace
Identification (SSID) methods.
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5.4.7.2 Output Error Method The output error method is an autoregressive exogenous inpu
(arx) model structure, and the identification method is wefiresentative of discrete time and
frequency domain data of the form,

B(q)
k) = —<u(k—ny) +e(t). 94
V) = £ Uk = + et (94)

The OE method minimizes the cost function
ly(k) —9(k|6)|3, (95)

given a parameterized vector which contains numeratorrodégmominator order and pure time
delay,ng, ng, ng, respectively. The optimal parameter vectbis given by

6 = min< Z ly(k) = (K| B)]15, (96)

For this study the pure, convective time delay is estimata the step response measurements
as shown in Table 7. Six values fog are chosen for these formulations. The true pure delay time
is shown to be 8 ms with a sample timelgf= 0.1 ms which corresponds to a discrete delay time
of ng = 80. Because convective time and non-minimum phase arecdugided, the convective
time parameter was varied to allow for the zeros to adjustraagly to any non-minimum phase
behavior. Both the numerator ordeng,, and denominator orders,, are chosen over a range from
1 to 5. With these three parameter ranges, a total of 150 OEelmaekre compared and validated.

5.4.7.3 Prediction Error Method The prediction error method (PEM) has a model structure
given by an autoregressive moving average (arma) systethisaan iterative identification ap-
proach for multi-input multi-output time domain data witlmendel structure of the form

AQ)y(K) = %u(k— o + %e(t» ©7)

This linear time model incorporates a system disturbarroe wehich is filtered by thé:% transfer

function (a type of moving average). The parametrizatiaritics model structure consisted of a
total of six parameters as shown by,

9 = [nav nb7 n07 nd7 nf ) nk7 ] T 9 (98)

where each numerator and denominator order is denoted. bizach order was varied from 1
through 5 and the delay term was set to the convective timeydmimputed from the step input
which was approximately 8 ms. All models were compared anidated against experimental
validation data in following sections.

5.4.7.4 Subspace Identification Method The subspace identification (SSID) method is widely
used for black box modeling of linear dynamical systemsatliyen the state space domain, which
are written as,

X1 = Ax+ Buc+ Ke, (99)
Yk = CX+ Duy + &,
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whereu is the m-dimensional inpuk is the n-dimensional statg, is the I-dimensional output
andK is the Kalman gain. The SSID method is highly useful for MIMgtems, because of
its numerical robustness, and its model order optimizatiased on the singular values of the
Hankel matrix. On the downside, large data sets are needinothe block Hankel matrices,
known deterministic processes are difficult to implement] a strong theoretical understanding
of observability and controllability is necessary. Theibgsemise is to form the Hankel matrices
of the input-output data set; the observability matrix,

0 =[C CACR...cAY1]"T (100)
and the reversed controllability matrix,
¢ =[A"1B...AB AB B', (101)

are imbedded within this large input-output Hankel datarma®n appropriate model order can
be estimated by the singular values of this Hankel matrixcédhe model order is selected, system
matrices as shown in Eq (99) can be extracted.

5.4.7.5 Model Selection Experiments The three modeling techniques described in section
5.4.7 are applied to the training data. The RMS error betwbherpredicted response and ac-
tual response serves as the figure of merit for model sefecfloansient areas where the input
contained high frequency changes were weighted more lyaavte calculation of the prediction
error. The best model from each reduced order modeling tgabrwas chosen and model order
and structure was compared. Model structure was consiatennd a 4th or 5th order model.
Also, the poles of the models tended to migrate outside titecinole if the convective time delay
was inaccurate; this non-minimum phase behavior allowethtodiscrepancy in the time delay of
the model.

The results for the best simulated model responses in cosopato experimental measure-
ments of the step response are shown in Figure 87. Initiakanihg transients show very good
prediction of convective delay as well as rise/fall time stamts as shown in Table 7. The dynam-
ics vary slightly differently when the asymmetric statensi@ions from port to starboard versus
from starboard to port. The transient time from starboargddd vortex states is shorter and the
overshoot is greater, as Table 7 indicates. This is potgnbacause the initial state prefers the
port asymmetric state which may provide an additional resgoforce to the vortex dynamics.
The linear approach taken in this paper finds the mean dyisdmeivveen each state trajectory as
shown by Figure 87. Nevertheless, each of the models répdiche asymmetric vortex dynamics
to a step input very well, thus validating the model paramzdéons as well as model selection
technique.
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Figure 87: Step response comparison of OE, PEM, and SSID Imgdeethods. (a) Initial tran-
sient and (b) ending transient of step response of estinsadedorce Cy, based on pressure mea-
surements

The validation data sets were also used to evaluate mod&rpemce. The models were
calculated against both of the sinusoidal forcing and ire@dbrcing inputs. The response of
the asymmetric state and model responses were comparedre FB§a shows the summary of
the frequency response data which aligns well with the raguency measurements. The phase
relationship is also shown in Figure 88b. To select betwheritiree different model development
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approaches, the error is minimized in the frequency domEnue. prediction error technique most
adequately fits the frequency domain data, in both magnandephase.

Interestingly, the cutoff frequency of the system which ésedmined from a-90deg phase
is approximately 1(2t). This means more or less that any frequencies larger thassatiated
period of two flow through times will be greatly attenuatethislis shown in Figure 88a.
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Figure 88: Comparison of model frequency response and iexpetal measurements.

Figure 89 shows the impulse response with varying duty syidethe experimental and sim-
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ulated output error model results. The various colors prethe different duty cycles. The
solid lines represent experimental measurements and #ieeddines represent the PEM model
prediction. All of the impulses were initiated at time eqt@lzero with the ending duration of

the impulse indicated by a vertical dashed line. The linead@hhas a slightly different gradient

during transient times and a small amount of overshoot wlenming to the initial state.

Figure 89: Validation of output error model for simulatiohimpulse response with varying duty
cycles. Model response is shown in dashed line and expetan@easurement is shown in solid
line

5.4.7.6 Model Selection Simulations The three modeling techniques described in section 5.4.7
are applied to the step response data. The RMS error betlwegrddicted response and actual
response serves as the figure of merit for model selecti@msient areas where the input contained
high frequency changes were weighted more heavily in theutation of the prediction error. The
best model from each reduced order modeling technique wesealand model order and structure
was compared. Model structure was consistent around a 4tharder model. Also, the poles

of the models tended to migrate outside the unit circle ifdbevective time delay was inaccurate;
this non-minimum phase behavior allowed for the discrepamthe time delay of the model.

The results for the best simulated model responses in cosopato experimental measure-
ments of the step response are shown in Figure 90. Initiakanihg transients show very good
prediction of convective delay as well as rise/fall time stamts as shown in Table 7. The dynam-
ics vary slightly differently when the asymmetric statensi@ions from port to starboard versus
from starboard to port. The transient time from starboargddd vortex states is shorter and the
overshoot is greater, as Table 8 indicates. This is potgnbacause the initial state prefers the
port asymmetric state which may provide an additional resgoforce to the vortex dynamics.
The linear approach taken in this paper finds the mean dyisdoeiwveen each state trajectory as
shown by Figure 90. Nevertheless, each of the models répdiche asymmetric vortex dynamics
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to a step input very well, thus validating the model paramzaéons as well as model selection
technique.

15

—— Simulations
—— OE Model

—— PEM Model
—— SSID Model

0.5

Figure 90: Step response comparison of OE, PEM, and SSID Imgdeethods. (a) Initial tran-
sient and (b) ending transient of step response of estinsadedorce Cy, based on pressure mea-
surements

The validation data sets were also used to evaluate modigrpemce. The models were
calculated against both of the sinusoidal forcing and irs@dbrcing inputs. The response of
the asymmetric state and model responses were comparedre Fl@ja shows the summary of
the frequency response data which aligns well with the raguency measurements. The phase
relationship is also shown in Figure 91b. To select betwhkeritiree different model development
approaches, the error is minimized in the frequency domEie. prediction error technique most
adequately fits the frequency domain data, in both magnandephase.

Interestingly, the cutoff frequency of the system which ésedmined from a-90deg phase
is approximately 1(27). This means more or less that any frequencies larger thassatiated
period of two flow through times will be greatly attenuatethislis shown in Figure 91a.
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Figure 91: Comparison of model frequency response, botminate (a) and phase (b).

Figure 92 shows the impulse response with varying duty syfdethe CFD simulation results
and simulated prediction error model results. The varialsrs represent the different duty cy-
cles. The solid lines represent experimental measureraadtthe dashed lines represent the PEM
model prediction. All of the impulses were initiated at tiegual to zero with the ending duration
of the impulse indicated by a vertical dashed line. The limeadel has a slightly different gradient
during transient times and a small amount of overshoot wlenming to the initial state.
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Figure 92: Validation of prediction error model for simutat of impulse response with varying
duty cycles. Model response is shown in dashed line and CFDlation results are shown in
solid line
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5.4.8 Closed loop dynamics

Now that the system dynamics in Eq 92 have been modeledheeaetationship between plasma
voltage and estimated side force response is determined)dbed-loop system can be realized.
The overall design of the control diagram is shown in FiguBe 9he type of control system
selected is a reference tracking feed forward approachen®gs) is the plant as developed in
section 5.4.7G¢(s) is the control system, ar@y(s) is the output disturbance/measurement noise.
The unforced fluid state and measurement noise is modeled loytput disturbance, which is
colored by the unforced dynamics of the sensor measurem@&his output disturbancéq(s),
may be represented by the unforced, natural fluctuating efdhe flow. An autoregressive model
is suitable for the determination of this system. The sucoeshe feedback control scheme will
be determined if adequate disturbance rejection as wedifasance tracking ability are shown.

g, Gq(s

[ O Ge(s)—Y— Gs(s—(HY

Figure 93: Closed-loop block diagram of output disturbamoelel for controller verification.

The closed-loop system is formulated such that

GsGe G r
Y= [ T76:Gs  T7G:Gg ] { d } ’ (102)

wherer andd are the reference and disturbance inputs, respectivedytrahsfer function between
different input-output pairs can be analyzed for varyingrfe of G¢(s). For the purpose of this

paper, the design of the controlléd.(s), is standard PID control. A PID control algorithm is
implemented because of the simplicity and ease of desiga.asiimmetric vortex dynamics lend
themselves very well to linear time invariant systems, siongke control algorithm is appropriate
for control of the vortex flow behind the ogive. The contr@aithm is given by

K.
Ge(s) = Kp + Kgs+ EI (103)

whereKp, Ky, Kj are the proportional, derivative and integral terms, respely. A standard tuning
method is adopted where the gains are varied in a systeraatioh to achieve proper closed-loop
response to a step reference input.

5.4.8.1 Closed Experimental Model Results The response dBsGc/(1+ GsGq) is shown for
varying proportional and integrator gains in Figure 94.e8tdd gains for the PI controller are,
Ki =80 andK, = 1.2. The derivative term caused an instability in the tranfsfection, GsG¢/ (1+
GsGyg), purely due to the time delay in the system.
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Figure 94: (a) Closed-loop step response with varying pitopmal gain. (b) Closed-loop step
response with varying integral gain.
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Figure 95: Magnitude (a) and phase (b) response of open lsipm,Gy = GsG¢. The gain and

phase margins are computed a44B and 62, respectively.

The frequency response for the reference tracking andrbestge rejection capabilities are
shown in Figure 96. As shown in Figure 96a, the closed-logpesy response adequately follows
reference signals up to approximately(2r) which was determined to be the cutoff frequency
in the open-loop analysis of the dynamics. Figure 96b shbeslosed-loop system attenuation
of disturbances (i.e. the ability of the closed-loop systemeduce fluctuations as a function of
frequency). Disturbances are attenuated up to a frequdricy(4r) which turns out to be half of
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the cut off frequency.
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(b) Disturbance rejection

Figure 96: (a) Closed-loop system response for input ret@réo output response. (b) Closed-loop
system response for input disturbance to output response.

A typical time simulation is shown in Figure 98 to a time vawyireference with a uniform
random disturbance input. As shown the response of the side &dequately follows a reference
signal. The controller is designed aggressively enoughate lover/under shoot characteristics
with step changes. Additionally, the disturbances at Idnezruencies are reduced in size.
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Figure 97: Time simulation of closed-loop system for vagyieference and disturbance excitation.

5.4.9 Closed Experimental Results

Once the closed-loop model was fully developed and analfegediscussed in Secti&?) a ref-
erence tracking exercise was conducted with the experaherdadel in the wind tunnel to asses
the performance of the closed-loop controller. For thegestigations an arbitrary piecewise refer-
ence waveform was generated for the controller to trackrevtie target side force coefficient was
changed seven times across the 15 sec. testing period tpdsitive and negative side force coef-
ficients. A PID (Proportional-Integral-Derivative) coolier was developed utilizing both the port
and starboard actuators to impart control and all four tiesslved pressure transducers were used
to estimate the instantaneous side force coefficient onalg for feedback. Figure 98 displays
the performance of the experiment for the reference trgokercise, where the experimental sig-
nal is a phase averaged result of five independent expeafriests following the same arbitrary
reference signal (also presented). For the experimentpriyortional and integral gains were
0.25 and 0.000977, respectively. The derivative gain watseero because it was found during
the modeling that any amount of derivative gain forced thelehto go unstable. Clearly, the ex-
periment was successfully able to track the reference kigriae mean of the linearly estimated
side force coefficient, however significant higher frequefhwctuations were still observed, which
the controller was unable to modify.
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Figure 98: Closed loop experimentation results with sanmérotier from above section.

5.4.9.1 Closed Simulation Model Results The response 06sG¢/(1+ GsGy) is shown for
varying proportional and integrator gains in Figure 94.e8tdd gains for the PI controller are,
Ki =.012 andKp = 7 x 10~7. The derivative term caused an instability in the transfecfion,
GsGe/(1+ GsGg), purely due to the time delay in the system.
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Figure 99: (a) Closed-loop step response with varying pitogrwal gain. (b) Closed-loop step
response with varying integral gain.
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Figure 100: Magnitude (a) and phase (b) response of opersigipm G, = GsG¢. The gain and
phase margins are computed agdB and 67, respectively.

The frequency response for the reference tracking andrbestge rejection capabilities are
shown in Figure 101. As shown in Figure 101a, the closed-kygpem response adequately fol-
lows reference signals up to approximatel(2r) which was determined to be the cutoff fre-
guency in the open-loop analysis of the dynamics. Figurébl€dows the closed-loop system
attenuation of disturbances (i.e. the ability of the clek®p system to reduce fluctuations as a
function of frequency). Disturbances are attenuated udrecmency of ¥(41) which turns out to
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be half of the cut off frequency.
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Figure 101: (a) Closed-loop system response for inputeafss to output response. (b) Closed-
loop system response for input disturbance to output resgpon

A typical time simulation is shown in Figure 98 to a time vawyireference with a uniform
random disturbance input. As shown the response of the side &dequately follows a reference
signal. The controller is designed aggressively enoughate lover/under shoot characteristics
with step changes. Additionally, the disturbances at Idnezruencies are reduced in size.
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Figure 102: Time simulation of closed-loop system for vagyreference and disturbance excita-
tion.

5.4.9.2 Closed Simulation Results Using the unforced data, a linear prediction-error mini-
mization method was used to model the dynamics of the flowf@ldifferent momentum coef-
ficients. Based on the model, a PID controller was developedference track a prescribed side
force trajectory. The details of the model development dsagethe PID controller can be found
in Fagley et al. [submitted 2012] (experimental) as well agd? et al. [2013] (computational).
Figure 103 shows the initial results obtained using the RiBtroller in conjunction with Cobalt.
A reference side force of(C= 0.5 was used to test if the controller could reference track tlftie
simulation, an aggressive gain for the proportional aneigreal components was used. As a result,
the side force overshoots its reference condition. At thiatpthe controller turns on the starboard
actuator to counteract this overshoot, creating a largélatsan in the side force. However, note
that this is exactly what was predicted in the model simafatf the controller (Fig??). While
there is a small discrepancy in the transition time betwhertontroller model and the CFD simu-
lation, the general overall trends are captured in the ma@deshown in the model, this oscillation
from aggressive PID gains eventually damps out and thealtartrs able to stabilize the side force
at the desired reference. Itis postulated that if the ct @D simulation were carried out farther,
the same results would be seen, especially since the owrshthe second peak in the CFD is
smaller then the initial overshoot, indicating that it iaréihg to be damped out.

5.4.10 Modeling summary

The asymmetric vortex regime of a von Karman ogive with ariess ratio of 3.5 is experimentally
studied at a Reynolds number of 156,000. Both port and stadbglasma actuators are used to
introduce fluidic disturbances at the tip of the ogive. Thdiseurbances are amplified through the
flow’s convective instability to produce a deterministiatpor starboard asymmetric vortex state
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Figure 103: Closed-loop simulation with a referenge=00.5 and the corresponding,®ut of the
port and starboard actuators.

(i.e. side force). Accurate control or manipulation of th/mmetric vortex phenomenon holds
the potential for increased maneuverability and stabdlitgracteristics of slender flight vehicles.

Unforced and open-loop experimental tests were carrietbautderstand and quantify the vor-
tex dynamics. Step, impulse and sinusoidal modulationtsiptovided the necessary dynamics
and diverse training and validation data sets for the foatmh of a linear time invariant dynamical
model. Standard linear system identification approaches ingplemented to represent the train-
ing data set. In particular, output error, prediction eand subspace identification methods were
used to capture the asymmetric vortex dynamics. These iethere validated by time and fre-
guency domain methods. The measurements and modeling dsethowed the cutoff frequency
of the flow to be around 50 Hz which is directly related to twavlihrough times, i.e. the time it
takes a particle to flow from the tip of the model to the basédefdgive section.

A closed-loop system was designed such that the unforcetidignamics and measurement
noise were modeled as an output disturbance. The predetionmodel was well suited for this
system. A PID controller was implemented in the closed loggiesn and designed for adequate
disturbance rejection and reference tracking performanice closed loop transfer functions were
analyzed. A time simulation was shown in which the control@s able to guide the asymmet-
ric vortex state to an arbitrary asymmetric pressure thstion while adequately regulating the
disturbances. To improve this control design approach digta@ model would be essential to
reduce the convective time delay from the actuator to themerlternatively, the sensors would
have to be placed closer to the nose of the ogive which wodldaethe amplitude of the pressure
measurements, reducing the signal to noise ratio.
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5.5 Business Summary

The business plan was divided into both a salary portion @weltportion for the senior engineer.
The projected salary portion is listed in table 9, itemizedny for the duration of the contractual
agreement. The projected salary portion is listed in 10rfordl to one conference per year.

Table 9: Total projected salary for contract duration
Period of Performance Labor Category Rate Hours Yearly Prie
8 Jan 2010to 7 Jan 2011 Senior Engineer $35.51 1880  $66,750

8 Jan 2011 to 7 Jan 2012 Senior Engineer $39.89 1880  $75,000
8 Jan 2012 to 7 Jan 2013 Senior Engineer $42.55 1880  $80,000

Total $221,750

Table 10: Total projected travel for contract duration

Travel Expenses  Flights Lodging/night Per Diem (M&IE) Rsation Total
2010 Conference $800.00 $120.00 $80.00 $300.00 $2,100.00
2011 Conference $800.00 $120.00 $80.00 $300.00 $2,100.00
2012 Conference $800.00 $120.00 $80.00 $300.00 $2,100.00
Total $6,300.00

The actual costs incurred are listed in Tables 11 and 12 farysand travel, respectively. As
shown, costs between projected and actual did differ $jigfihis was mainly due to obligatory
issues during Y3.Q1 and Y3.Q2. Also, more travel was reguineer the course of the contractual
duration.
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