SYM-AM-16-033

P M

PROCEEDINGS

OF THE
THIRTEENTH ANNUAL

ACQUISITION RESEARCH
SYMPOSIUM

WEDNESDAY SESSIONS
VOLUME 1

Achieving Better Buying Power for Mobile Open
Architecture Software Systems Through Diverse
Acquisition Scenarios

Walt Scacchi, Senior Research Scientist, Institute for Software Research, UC
Irvine
Thomas Alspaugh, Project Scientist, Institute for Software Research, UC Irvine

Published April 30, 2016

Approved for public release; distribution is unlimited.
Prepared for the Naval Postgraduate School, Monterey, CA 93943.

GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY
\\v/ NAVAL POSTGRADUATE SCHOOL

S ACQUISITION RESEARCH PROGRAM
(NPS ,

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

[ACQUISITION RESEARCH PROGRAM
e &7 GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY
\\v/ NAVAL POSTGRADUATE SCHOOL

Panel 6. Considerations in Software Modeling and
Design

Wednesday, May 4, 2016

1:45 p.m. — Chair: John Zangardi, Deputy Assistant Secretary of the Navy for Command,
3:15 p.m. Control, Communications, Computers, Intelligence, Information Operations,
and Space

Achieving Better Buying Power for Mobile Open Architecture Software
Systems Through Diverse Acquisition Scenarios

Walt Scacchi, Senior Research Scientist, Institute for Software Research,
UC Irvine

Thomas Alspaugh, Project Scientist, Institute for Software Research, UC
Irvine

Architecting Out Software Intellectual Property Lock-In: A Method to
Advance the Efficacy of BBP

Maj Chris Berardi, USAF; Bruce Cameron, Lecturer, MIT; Daniel
Sturtevant, CEO, Silverthread, Inc.; Carliss Baldwin, Professor, Harvard
Business School; and Edward Crawley, Professor, MIT

Navy Mobile Apps Acquisition: Doing It in Weeks, Not Months or Years

Jacob Aplanalp, Assistant Program Manager, My Navy Portal, PEO EIS;
Dave Driegert, Senior Technical Advisor, PEO EIS; Kevin Burnett,

Technical Manager, PEO EIS; and Kenneth Johnson, Technical Director,
PEO EIS

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -162 -

Achieving Better Buying Power for Mobile Open
Architecture Software Systems Through Diverse
Acquisition Scenarios

Walt Scacchi—is Senior Research Scientist and research faculty member at the Institute for
Software Research, University of California, Irvine. He received a PhD in information and computer
science from UC Irvine in 1981. From 1981-1998, he was on the faculty at the University of Southern
California. In 1999, he joined the Institute for Software Research at UC Irvine. He has published more
than 170 research papers, and has directed more than 65 externally funded research projects. In
2011, he served as co-chair for the 33rd International Conference on Software Engineering—Practice
Track, and in 2012, he served as general co-chair of the 8th IFIP International Conference on Open
Source Systems. [wscacchi@ics.uci.edu]

Thomas Alspaugh—is a Project Scientist at the Institute for Software Research, University of
California, Irvine. His research interests are in software engineering, requirements, and licensing.
Before completing his PhD, he worked as a software developer, team lead, and manager in industry,
and as a computer scientist at the Naval Research Laboratory on the Software Cost Reduction, or A-
7, project. [thomas.alspaugh@acm.org]

Abstract

The U.S. Defense community denotes an ecosystem of system or software component
producers, system integrators, and customer organizations. For a variety of reasons this
community now embraces the need to utilize open source software (OSS) and proprietary
closed source software (CSS) in the system capabilities or software components it acquires,
design, develops, deploys, and sustains. But the long-term transition to agile and adaptive
capabilities that integrate bespoke or legacy, OSS and CSS components, has surfaced a
number of issues that require acquisition-research-led approaches and solutions. In this
paper, we identify and describe six key issues now found in the Defense software ecosystem:
(1) unknown or unclear software architectural representations; (2) how to best deal with
diverse, heterogeneous software IP licenses; (3) how to address cybersecurity requirements;
(4) challenges arising in software integration and release pipelines; (5) how OSS evolution
patterns transform software IP and cybersecurity requirements; and (6) the emergence of
new business models for software distribution, cost accounting, and software distribution. We
use the domain of command and control systems under different acquisition scenarios as our
focus to help illuminate these issues along the way. We close with suggestions for how to
resolve them.

Introduction

The U.S. Defense community, which includes the military services and civilian-
staffed agencies, is among the world’s largest acquirers of commodity and bespoke
(custom) software systems. The Defense community further extends its reach and influence
on a global basis through national treaties and international alliances through enterprises
like NATO. The Department of Defense (DoD), other government agencies, and most large-
scale business enterprises continually seek new ways to improve the functional capabilities
of their software-intensive systems while lowering acquisition costs. The acquisition of open
architecture (OA) systems that can adapt and evolve through replacement of functionally
similar software components is an innovation that can lead to lower cost systems with more
powerful functional capabilities. OA system acquisition, development, and deployment are
thus seen as an approach to realizing Better Buying Power (BPP) goals for lowering system
costs, achieving technical excellence, enabling innovation, and advancing the acquisition
workforce (Kendall, 2015).

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -163 -

Bespoke software systems are produced and integrated within the Defense
community. In addition Defense system acquisition or procurement enterprises also obtain
wares from most non-Defense industry providers of software systems, applications, or
services (i.e., the mainstream software products or services industry). The acquisitions often
entail software procurement or development contracts valued in the millions to hundreds-of-
millions of dollars (Myers & Obendorf, 2001). At this scale of endeavor and economic value,
certain kinds of software engineering (SE) research problems arise that are not visible or are
insignificant in smaller scale SE R&D efforts.

In this paper, we focus attention to the slice of this world that focuses on the
development and deployment of software-intensive command, control, communication,
cyber and business systems (hereafter, C3CB). We further limit our focus to the most
general software elements found in C3CB system capabilities; for example, software
infrastructure components, common development technologies supporting app/widget
development, and mission-specific apps/widgets, in particular widgets produced with the
Ozone Widget Framework (Conley et al., 2014). OWF (now called the Ozone Platform or
OZP) was initially developed by the NSA, though is now identified as Government OSS
(GOSS) and supported by a third-party contractor. It is widely used within the Defense and
Intelligence community. The growing importance of OZP within the Defense community has
directed focus to the production and integration of C3CB system capabilities to be
assembled using it. This focus drives open discussion of and broad exposure to emerging
research issues that arise from the production and integration (or software engineering—
SE) of software components, and these in turn raise challenges for acquisition management
and personnel. Specifically, we draw attention to issues surrounding the development,
integration, and deployment of multi-version and multi-variant software systems composed
from various open source software (OSS) and proprietary (CSS) software elements or
remote services (Scacchi, 2002, 2010), eventually including recent efforts to support Web-
compatible services and/or mobile devices in C3CB. This focus also provides exposure to
future C3CB system capabilities composed from apps acquired through various acquisition
regimes, including apps downloaded from different Defense community app stores (George,
Morris, O’'Neil, et al., 2013; George et al., 2014).

Recent Scenarios for Acquisition of OA Software Capabilities

Interest in open source software (OSS) within the U.S. Department of Defense (DoD)
and military services first appeared more than 10 years ago (Bollinger, 2003; Scacchi &
Alspaugh, 2008). More recently, it has become clear that the U.S. Defense community has
committed to a strategy of acquiring software-intensive systems across the board that
require or utilize an “open architecture” (OA) which may incorporate OSS technology or OSS
development processes that can help Defense customer organizations to achieve better
buying power (Kendall, 2015). Why? Among the reasons identified is the desire to realize
more choices among software component producers or integrators, as producers and
integrators often act in ways that lock their customer organizations into overly costly and
sometimes underperforming and difficult to sustain systems. One approach being explored
focuses attention to agile and adaptive OA software components that are acquired and
assembled (integrated) as C3CB system capabilities (assembled capabilities or AC) that are
acquired and shared by multiple parties via independent “lines of efforts” acting within an
ecosystem of producers, integrators, and consumer organizations (Reed et al., 2014;
Scacchi & Alspaugh, 2015). The goals of the AC approach include a shorter delivery and
update cycle for mission components and an improved cybersecurity posture. We explain
this approach as follows.

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -164 -

The AC approach contemplates independent acquisition lines of effort for different
types of OA software components that can be acquired from independent providers:

e Mission Components enable C3CB processes and present common
operating picture data to end-users. Mission components may be realized as
apps/widgets that may be deployed on mission-specific platforms, including
those operating on secured Web/mobile devices.

e Common Development Technology provides AC development tools and
common run-time applications servers that support the mission components.
The servers are bundled with Shared Infrastructure, as follows.

¢ Shared Infrastructure Components combine local/remote application servers
and data repositories with networking services and platforms.

Assembled capabilities therefore represent alternative configurations of mission-
specific components that are produced with common development technology for
deployment on shared infrastructure technology platforms.

Independent Lines of Effort (LOEs) by single or multi-party acquisition for mission
components, common development technologies, or shared infrastructure components, are
expected to greatly accelerate development and fielded deployment. This acceleration
entails tradeoffs in increased dependency and risk management. Independent LOEs enable
at least three alternative scenarios for acquiring OA C3CB system capabilities.

1. Use current strategy and acquisition capabilities. Here there is no focus on
AC that utilizes mission components, common development technologies, or
shared infrastructure components.

2. Augment deployed systems with mission components and common
technologies. Augmentation is either for (a) new mission functionality; (b)
modernization “in place” so that part of the original system is deprecated as
the new mission components are delivered; or (c) infrastructure replacement
over parts of original system that may be combined with modernization
efforts.

3. Focus efforts on production, integration, security assurance, and deployment
of mission components that use common technologies and shared
infrastructure, and that can be assembled into different ACs. This can entail
production, integration, and delivery of all mission components in one
contract vehicle; or alternatively, the delivery of mission components
partitioned across multiple acquisition contract vehicles, so as to spread and
manage risk, while insuring multi-party buy-in commitment.

The following efforts provide examples where these alternative C3CB acquisition
scenarios can be considered. First, the Air Force’s Theater Battle Management Core
System—Force Level (TBMCS-FL), which manages air tasking orders and airspace
management, among other things, is being harvested for current operational capabilities.
These capabilities can then be encapsulated and delivered as mission components for other
C3CB systems, using OZP widgets and supporting common technologies. The C2A0S C2IS
acquisition scenario also intends to deliver harvested functionality as mission components.
Air Force AOC (Air Operations Center) is planning to include C2A0S C2IS as the
replacement for TBMCS-FL, and will use the Navy ACS (hence indicating the need for multi-
party acquisition agreements). This in turn implies the need for Joint C2, and needs to be
copied to all Services. It represents an opportunity to reduce duplicate activities for
producing equivalent C3CB system capabilities. Second, the Army’s Distributed Common
Ground System (DCGS-A) currently uses mission components for visualization (over 300

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE - 165 -

widgets available). DCGS-A will incorporate metadata mission components that utilize the
DCGS Integration Backbone (DIB). Third and last, the Navy is deploying CANES and ACS
(Agile Core Services) shared infrastructure to its fleet as a modernization effort (Guertin,
Sweeney, & Schmidt, 2015).

There are now a number of policy directives within the Defense community that
formally recognize that OSS system elements can be treated as commercial-off-the-shelf
(COTS) components, and that bespoke software system development projects will utilize an
OA, unless otherwise justified and approved. Thus, developing contemporary C3CB that
incorporate both OSS and new/legacy CSS elements are “business as usual.” However,
many legacy Defense community system capability producers are hesitant about how best
to engineer such OA/OSS systems. For example, does an OA system imply/require that its
software architecture be explicitly modeled, be accessible for sharing/reuse (e.g., as a
Reference Model), and be modeled in a form/notation that is amenable to architectural
analysis and computational processing (“Software Architecture,” 2016)? Therefore, we can
begin to identify what kinds of SE research issues can be observed and investigated within
the Defense community associated with its transition to OA systems and OSS software
elements, specifically for Web and Mobile devices within the realm of C3CB.

OA, Open APIs, OSS, and CSS

OA C3CB system capabilities are assembled with mission components, common
development technologies, and infrastructure. Infrastructure components are broadly
construed to include non-mission specific software functionality or operations. Such
components can include computer operating systems, Web servers, database management
systems, cloud services, mobile device management middleware, and others, along with
desktop, mobile, or smartphone-based Web browsers, word processors, email and
calendaring, text/voice chat, and end-user media players. Example infrastructure
components include the U.S. Army’s Common Operating Environment (COE), the Navy’s
Consolidated Afloat Networks and Enterprises Services (CANES) Afloat Core Services
(ACS) (Guertin, Sweeney, & Schmidt, 2015), and similar elements in the Joint Intelligence
Environment.

Common development technologies are common software development tools,
libraries, or frameworks used to implement the necessary software functionality so that new
or legacy mission components can be integrated into mission-specific software capabilities.
Software technology frameworks (or common implementation libraries) like Oracle Java 8,
Ozone Platform, OpendDK (OSS Java Development Kernel for Android app development),
and the NASA World Wind Java SDK; programming languages like Java or C++; and
scripting languages like Javascript may be utilized as common development technologies
for developing mission components. Other software production capabilities like the Navy
Tactical Cloud and CANES integrate both infrastructure and common development tools like
Hadoop, MapReduce, and other mission data analysis tools for the Tactical Cloud, and the
Agile Core Services and Java for CANES.

Mission components represent a hybrid assortment of (a) simple widgets—small, thin
apps similar in spirit to those acquired and downloaded from online app stores (like a clock,
calculator, dictionary, sticky note, or unit converter); (b) singular widgets—more substantial
functional components either created new (bespoke) or extracted from legacy systems that
must run on a specific local computing platform (e.g., shipboard fire control system); or (c)
compound widgets—hosted in a cloud and run as a remote cloud service over a
single/multi-tiered client-server software architecture (e.g., Google Maps, NASA World

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE - 166 -

Wind), and thus potentially accessible and usable on a Web/mobile computing platform
(Google Chrome Web browser running on a secure Android mobile device).

OA seems to simply suggest software system architectures incorporating OSS/CSS
infrastructure, common development technologies, and mission components that all utilize
open application program interfaces (APIs). But not all software system architectures
incorporating OSS/CSS components and open APIs will produce an OA, since whether an
architecture is an OA depends on (a) how/why OSS/CSS and open APIs are located within
it; (b) how OSS/CSS and open APIs are implemented, embedded, or interconnected within
it; (c) whether the copyright (Intellectual Property) licenses assigned to different OSS/CSS
components encumber all/part of the architecture into which they are integrated; and (d)
choices among alternative architectural configurations and APIs that may or may not
produce an OA (cf. Scacchi & Alspaugh, 2008). This can lead to situations in which
acquisition contracts stipulate a software-intensive system with an OA and OSS/CSS
components, but the resulting software system may or may not embody an OA. This can
occur when the architectural design of a system constrains the system requirements: if not
all requirements can be satisfied by a given system architecture, if requirements stipulate
specific types or instances of OSS/CSS (e.g., Web browsers, content management servers),
if an architecture style (Bass, Clements, & Kazman, 2003) is implied by given system
requirements, or if requirements are implied by the choice to incorporate legacy software
capabilities with one architectural style that are to be wrapped within mission-specific
widgets with a different architectural style.

Application domain of interest: C3CB with Web/Mobile Devices Utilizing Widgets
C3CB are common information system applications that support modern military operations
at a regional, national, or global level. These applications may be focused to address
common military mission planning, mapping, resource status tracking and scheduling,
mission performance, and monitoring activities through application sub-systems. However,
closely related C3CB systems applications are also in common use within civilian/public
safety agencies, public infrastructure/utility operations, live television and sports event
broadcasting, massively multi-player online game operations centers, and even in
international motorsports racing competition events like Formula 1. So the study of software
production and system integration issues arising in the Defense community can inform
awareness of similar issues in other non-Defense software system domains, and vice versa.

Modern C3CB applications are increasingly expected/planned to be composed from
best-available software components, whether OSS or CSS, utilizing bespoke or legacy
software capabilities. Furthermore, as smartphones, tablets and laptop computers are being
brought into the workplace, so too is interest increasing within the Defense community in
supporting the acquisition and development of Web-compatible widgets and mobile apps,
provided through an emerging ecosystem of component producers and system integrators,
for configuration into secure OA C3CB software system capabilities (George et al., 2014;
Reed et al., 2012; Reed et al., 2014; Scacchi & Alspaugh, 2013a; Scacchi &Alspaugh,
2015). Common software elements for such systems include Web browsers open to
extensions like custom mission-specific Map widgets, and remote content servers, email and
calendaring, word processing, local/networked file servers, and operating systems. The data
processed by the software may be of high-relevance to military missions/operations, or may
just be the daily grind of data manipulated by “productivity” applications which most of us
use routinely to perform/enact our work assignments. Security has been mostly addressed
through system isolation or “air gaps” to the outside world due, for example, to airborne or
afloat capability deployments. But this is no longer common practice, and cybersecurity
concerns have risen to the top of functional and non-functional requirements for all such

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE - 167 -

C3CB applications. New OA systems are now required to be secure by design, by
implementation, and through release, deployment and evolution, as well as subject to
independent testing and certification. Secure OA designs can then entail different schemes
for encapsulating different (sets of) components, use of virtualization schemes, shims and
wrappers, encrypting data transfers and storage, and configuring multi-level system access
capabilities. But we have found examples in which different OA system designs and
configurations propagate security obligations, and privacy protections and access rights are
either mediated or nullified by different software component IP licenses or system updates.

OA Ecosystems Within the Defense Community

In our view, a software ecosystem is a network of software component producers,
system integrators, and customer organizations. In the Defense community, producers and
integrators are commonly industrial entities (defense contractors), while customer
organization are military program offices. Figure 1 presents an abstract view of a software
ecosystem that associates software components or apps with their producers, system
architectures with system integrators, and delivered component or integrated application
systems with their customers. We also add annotations to indicate that each component or
app has its own software IP license, and that integrated systems delivered to customers
come with some composition of IP license obligations and rights propagated through the
system’s OA.

Producer Producer e

Component Component
or or
Application Application

(License)(License) Integrators

Independent System In-House
Government -
Software Integration System
ARCHITECTURE Vendors Contractors Consultants Integrators
Component Component
or or - Ke
Application Application ey |

Unit of
Rights and Rights and Producer of Software
obligations obllgations Software -
(Uts sicense)

//_\‘“-\
c G Intermediary Conit:_mer
onsumer nsumer p
In Network Software

Figure 1. An Abstract Software Ecosystem Rendered as a Network of Software
Component Producers, Integrators of Systems/AC, and End-User
Consumer Organizations

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE - 168 -

There is growing interest within the Defense community in transitioning to acquiring
complex software system capabilities via an agile and adaptive ecosystem (Reed et al.,
2012; Reed et al., 2014; Scacchi & Alspaugh, 2015), where components may be sourced
from alternative producers or integrators, allowing for more competition, and ideally lowering
costs and improving the quality of software elements that arise from a competitive
marketplace (Kendall, 2015). But this adaptive agility to mix, match, reuse, mashup, swap,
or reconfigure integrated systems, or to accommodate end-user architecting (Garlan et al.,
2012) as in-house integrations of mission components, requires that systems be compatible
with or designed to utilize an OA. Consequently, we can identify six kinds of emerging
research challenges or issues for software capability acquisition that we have observed
within the U.S. Defense community as they move to produce, integrate, deploy and evolve
OA systems for C3CB system capabilities that utilize contemporary OSS and
bespoke/legacy CSS components. These issues center around (1) unclear representations
of OA software system capabilities, (2) how best to accommodate diverse intellectual
property licenses when combining bespoke/legacy OSS/CSS mission components, (3) how
to accommodate diverse and complicated cybersecurity requirements, (4) technical
challenges arising from alternative ways to integrate and deploy diverse software
components, (5) how to accommodate many different paths within the Defense community
that drive software component evolution, and (6) how to estimate and manage the costs of
acquiring, deploying, and sustaining diverse software-based mission components and C3CB
system capabilities. These are examined in the next section.

With this background and sets of concepts for understanding a simplified view of the
world of C3CB software systems, we now turn to identify and examine a set of issues that
are now recurring in the acquisition, design, development, and deployment of such systems.

Emerging Issues in Developing and Deploying OA C3CB Systems Within
Different Acquisition Scenarios

There are at least six kinds of emerging research challenges or issues for software
capability acquisition that we have observed within the U.S. Defense community as it moves
to OA systems for C3CB system capabilities.

Unknown or Unclear OA Solutions

An OA entails a documented representation of software capability described in an
architectural description language that specifies component types, component
interconnections and connector types, open APIs, and their properties and
interrelationships. The common core of a C3CB system OA resembles most enterprise
business systems, as C3CB are a kind of management information system for navigating,
mapping, tracking resources; scheduling people and other resources; producing plans and
documentation; and supporting online email, voice, or video communications. Figure 2
depicts an OA representation that can also serve as a “reference model” for a C3CB
software product line (Womble et al., 2011). Figure 3 further expands the sub-architecture of
software components that denote configurations of mission-specific components as widgets.
Thus, C3CB system capabilities can compose or reuse multiple or nested OA reference
models.

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -169 -

0 Web Browser i Word Processor i Email & Calendar |
t User Interface n i :

User Interface User Interface

Figure 2. OA Reference Model for Common Software Component Types
Note. This is an OA reference model for common software component types including
widgets interconnected within integrated C3CB system capability. Components come from
producers that are assembled into OA C3CB capabilities by system integrators.

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -170 -

' Web Browser I
i Simple Widget i Singular Widget i Compound Widget
- User Interface (I User Interface - User Interface it
e i R e
' {_Widget Connector 1 ; _ Widget Connector 2 | {_Widget Connector 3}
\i Simple W|dget 11 Singular Widget Compound Widget !
Y S 4 """""" yVoUUUTUTTTTTTTT i
5 { */ Inter- W;Hgiéf !
e —— i ______ '::?’:‘{”!9!’5‘2_ _______________________ 1
" Network : {Network\ | Network |
. Protocol | | Protocol | ' Protocol !
______ - e e
. Server [« . Server |! Server |

------------ . \---.-..;—---- \.....,...§.......-

Figure 3. OA Reference Model for Common Types of Software Widget
Components
Note. This figure is an OA reference model for common types of software widget components
that can be connected and integrated to realize mission-specific C3CB system capabilities,
within the overall OA shown on the left-side in Figure 2. Servers may be secured Web
content servers, app servers, databases, or file system servers/repositories.

The next piece of the OA challenge we are studying is the envisioned transition with
the Defense community to C3CB system capabilities being composed by end-user system
integration architects (Garlan et al., 2012) working within/for customer organizations, or
potentially extended by end-users deployed in the field. This is the concept that surrounds
the transition to discovering software components, apps, or widgets in Defense customer
organization app stores (George et al., 2013; George et al., 2014). These app stores are
modeled after those used in distributing and acquiring software apps for Web-based or
mobile devices, operated by Apple, Google, Microsoft, and others. How the availability of
such Defense mission capability app stores will transform the way C3CB systems are
produced, or even if legacy Defense industry contractors will produce them, remains to be
seen. Said differently, how app stores transform OA software ecosystem networks, business
models, and cybersecurity practices is an emerging challenge for acquisition and SE
research in the Defense community.

Another kind of challenge arises when acquiring new or retrofitting legacy C2
software system applications that lack an open or explicit architectural representation
identifying major components, interfaces, interconnections and remote services (if any).
Though OA reference models and architectural description languages are in use within the
SE research community, contemporary C3CB generally lack such descriptions or

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -171 -

representations that are open, sharable, or reusable. This may be the result of legacy
business practices in the Defense community that see detailed software architecture
representations as proprietary IP rather than as open, sharable technical data, even when
OSS components are included or when applications sub-systems are entirely made of OSS
code. An alternative explanation reveals that complex software systems like common Web
browsers (Mozilla Firefox, Google Chrome, Apple Safari, Microsoft Internet Explorer) have
complex architectures that integrate millions of SLOC that are not well understood, and that
entail dozens of independently-developed software elements with complex APIs and IP
licenses that shift across versions (Scacchi & Alspaugh, 2012). For such systems the effort
to produce an explicit OA reference model is itself a daunting architectural discovery,
component/sub-system extraction, restructuring/refactoring, and continuous software
evolution task (Choi & Scacchi, 1990; Kazman & Carriere, 1998). Thus, new ways and
means for extracting software components interconnections and interfaces and transforming
them into higher-level architectural representations of mission-specific apps/widget
configurations are needed.

Harvesting legacy source/executable binary code entails many software engineering
challenges that constrain acquisition efforts. First, legacy code provides too much technical
detail and comparatively little abstraction of overall system configuration, composition,
components and interconnection/dependencies. Second, incongruent computational system
models (e.g., legacy data-flow versus publish-subscribe widgets) or hybrid OA AC arise
when transitioning legacy system software elements into new widget-based mission
components. Third, there is a general inability to visualize or analyze (test, selectively
execute, translate into another programming language, etc.) overall system configurations,
interconnections, or interfaces. Fourth, lacking these three, the potential for general software
reuse is limited to executable code reuse, which is the lowest common denominator for
reuse. Such reuse results in substantial blocks of unused code that cannot be easily
removed due to indiscernible interdependencies. Last, when configuring mission
components that entail legacy C2 software applications wrapped for integration as widgets,
different architectural styles can inadvertently be mixed (e.g., dataflow architecture for
legacy C2 software, and publish-subscribe architecture for configured mission widgets),
which in turns raises the potential for architectural mismatches (Velasco-Elizondo et al.,
2013) that may be difficult to determine or detect during system integration, especially when
such integration activities are performed by end-user/consumer organizations.

Heterogeneously Licensed OA Software Capabilities

OSS components are subject to widely varying copyright, end-user license
agreements, digital civil rights, or other IP protections. The Open Source Institute recognizes
dozens of OSS licenses are in use, though the top 10 represents more than 90% of the
open source ecosystem (Scacchi & Alspaugh, 2012). This is especially true for OSS
components or application systems that incorporate source code from multiple, independent
OSS development projects, such as found in contemporary Web browsers like Firefox and
Chrome which incorporate components from dozens of OSS projects, most with diverse
licenses (Scacchi & Alspaugh, 2012). This means that C3CB system capabilities that entail
configuration of OSS/CSS components are subject to complex software IP obligations and
rights that may defy tracking, or entail contradictory legal obligations or rights (Alspaugh,
Scacchi & Asuncion, 2010). Determining overall IP obligations for such systems is generally
beyond the scope of expertise for software developers, as well as most corporate lawyers.
Furthermore, we have observed many ways in which IP licenses interact within an OA
software system, such that different architectural design choices that configure the same set
of software components result in different overall system obligations and rights.
Understanding multiple license interaction and IP mismatches is far too confusing for most

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -172 -

acquisition professionals and Program Office decision-makers and a source of legal
expense, or alternatively expensive indemnification insurance policies by the software
producers or system integrators.

One complication that can be anticipated here arises when component types are
replaced with versioned component instance alternatives (Scacchi & Alspaugh 2012).
Consider the situation where a Web Browser (e.g., Firefox 40.0.3 or Chrome 47.0.2526.111
(64-bit); etc.) component has a specific IP license (e.g., Mozilla Public License 2.0 or GPL
3.0) associated with the versioned instance, which in turn may be viewed by system
integrators as enabling/limiting an integrated system’s architectural design, depending on
how different components are interconnected in ways that may or may not propagate (un-)
desirable IP obligations and rights—a concern that arises frequently when using
components subject to the GPL (Scacchi & Alspaugh, 2008). As we have learned in
practice, corporate lawyers employed by Defense contractors or in government agencies do
not have solutions for how to resolve such complexities, except via costly overall liability
indemnification schemes, and efforts to distribute integrated systems with many IP
obligations and few rights that effectively make an integrated open source system closed.
This in turn can defeat the potential opportunities and benefits for commitment to OA
systems that integrate OSS components.

Bespoke/legacy software components for OA AC design, integration and delivery
within widgets will be subject to their bespoke/legacy IP obligations. This may include limits
on the right to extract, restructure, or reengineer their architecture (cf. Choi & Scacchi, 1990;
Kazman & Carriere, 1998) into open source formats. Similarly, IP licenses associated with
OSS or new CSS components may impinge on their integration with these legacy
components, or may limit disclosure of their interfaces that would allow more open
integration of alternative software AC configurations developed by different Defense
community component producers (Scacchi & Alspaugh, 2012).

Nonetheless, in our view, OA software ecosystems are defined, delimited, and
populated with niches that locate specific integrated system solutions (Scacchi & Alspaugh,
2012). Furthermore, we see that these niches effectively have virtual IP licenses that must
be calculated via the obligations and rights that propagated across integrated system
component licenses via union, intersection, and subsumption relations among them
(Alspaugh & Scacchi, 2012). Such calculation may appear to be daunting, and thus begs for
a simpler, tractable, and computationally enforced scheme that can scale to large systems
composed from many components, as well as be practically usable by C3CB system
capability producers, integrators, and acquisition professionals. In such a scheme,
OSS/CSS licenses could formalize IP obligations as operational requirements (i.e.,
computationally enforceable, at the integrated system level) instantiated by system
integration architects (Alspaugh, Scacchi, & Asuncion, 2010; Alspaugh & Scacchi, 2013).
Similarly, customer/user rights are then non-functional requirements that can be realized
and validated as access/update capabilities propagated across the integrated system
(Alspaugh & Scacchi, 2013).

Cybersecurity for OA Software Capabilities

Cybersecurity is a high priority requirement in all C3CB systems, applications, AC,
and platforms (Scacchi & Alspaugh, 2013c; Scacchi & Alspaugh, 2013d). No longer is
cybersecurity something to be addressed after C3CB systems are developed and
deployed—cybersecurity must be included throughout the design, development,
deployment, and evolution of C3CB. However, the best ways and means for addressing
cybersecurity requirements are unclear, and oftentimes somewhat at odds with one another
depending on whether cybersecurity capability designs are specific to a C3CB platform

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -173 -

(e.g., operating system or processor virtualization; utilization of low-level operating system
access control or capability mechanisms); component producer (secure programming
practices and verification testing); system integrator (e.g., via use secure data
communications protocols and data encryption); customer deployment setting (mobile:
airborne or afloat; fixed: offices, briefing rooms, operations centers); end-user authentication
mechanisms; or acquisition policy (e.g., reliance on third-party audit, certification, and
assurance of system cybersecurity). However, in reviewing these different arenas for
cybersecurity, we have found that the cybersecurity requirements or capabilities can be
expressed in much the same way as IP licenses: using concise, testable formal expressions
of obligations and rights. Some examples follow (capital letters are placeholders that denote
specified system, service, or component contexts):

e The obligation that a user must verify his/her authority by password or other
specified authentication process.

e The obligation that all components connected to specified component C must
grant it the capability to read and update data in compartment T.

¢ The obligation to reconfigure a system in response to detected threats, when
given the right to select and include different component versions, or
executable component variants.

o The right that a user or software component may read and update data in
compartment T using the licensed component.

e The right that may allow replacement of a specified component C with some
other vetted component.

These examples show how cybersecurity requirements can be expressed or
paraphrased in restricted natural language (e.g., using a domain-specific language) into
composite specifications that denote “security licenses” (Alspaugh, Scacchi & Asuncion,
2010; Alspaugh & Scacchi, 2012). In this way, it should be possible to develop new software
analysis tools whose purpose is to interpret cybersecurity obligations as operational
constraints (executable) or provided capabilities (access control or update privileges),
through mechanisms analogous to those used for analyzing software licenses (Alspaugh,
Scacchi & Asuncion, 2010; Alspaugh & Scacchi, 2012), and show how component or sub-
system-specific obligations and rights can be propagated across a system’s architecture.

We similarly envision the ability for OA system capabilities to be produced and
integrated according to different cybersecurity requirements, depending on where and how
they are deployed (Scacchi & Alspaugh, 2013d). For example, in Figure 4 we show one
possible layout of software components that confines different sub-configurations within
different virtual machines. These virtual machines may also be hierarchically nested, as is
the case when mission-specific widgets that entail legacy C2 applications must be securely
confined at run time in order to access remote servers, in contrast to a secured Web
browser running on a secured mobile device.

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -174 -

Word Processor
User Interface

' Web Browser
H User Interface

Email & Calendar
User Interface

""" T———

Figure 4. A Configuration of Security Confinement Vessels that Encapsulate
Infrastructure Software Components and Mission-Specific Widgets for the
OA Shown in Figures 2 and 3

Last, the inclusion of OSS or new CSS components within future OA C3CB software
systems or AC will be amenable to current approaches to cybersecurity assurance, as we
have outlined before (Scacchi & Alspaugh, 2013d). Mission components can be assessed
for cybersecurity characteristics, and assembled, without triggering reaccreditation.
Similarly, evolutionary support for field-deployed AC can allow rapid substitution of mission
components that enable rapid, agile response to cybersecurity issues in mission
components. However, legacy CSS components which were developed and deployed
before current cybersecurity assurance challenges will need to rely on “air-gap” interfaces at
deployment time that may be vulnerable to aggressive exploits delivered through mobile
devices.

Consequently, we believe that cybersecurity can be addressed in the future using
explicit, computational OA representations that are attributed with both IP and cybersecurity
obligations and rights.

Software Component Build, Release, Deployment (BRD) Processes

C3CB applications represent complex software systems that are often challenging to
produce, especially when conceived as bespoke systems. To no surprise, acquisition of
these systems often requires a development life cycle approach, though some system
elements may be fully-formed components that are operational as packaged software (e.g.,
commercial database management systems, Web browsers, Web servers, user interface
development kits/frameworks). C3CB development is rarely clean-sheet and less likely to be
so in the future. As a result, component-based system development approaches are
expected to dominate, thus relegating system integrators (or even end-users) to perform any
residual source code development, inter-app integration scripting, or intra-app extension

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -175 -

script development. But software process challenges arise along the way (Scacchi &
Alspaugh, 2013b).

First is again the issue noted earlier of whether there is an explicit, open-source OA
design representation, preferably one that is not just a diagram, but instead is expressed in
an architectural design language. With only a diagram or less, then is little or no guidance
for how to determine whether a resulting software implementation is verifiable or compliant
with its OA requirements or acquisition policies, such as provision or utilization of
standardized, open APIs to allow increased software reuse, selection of components from
alternative producers, or post-deployment extensions (Kendall, 2015).

Second is the issue arising from system development practices based on utilization
of software components, integrated sub-systems, or turnkey application packages. These
software elements come with their own, possibly unknown requirements that are
nonetheless believed to exist and be knowable with additional effort (Alspaugh & Scacchi,
2013). They also come with either OSS code or CSS executables, along with their
respective APls. These components must be configured to align with the OA specification.
Consequently, software tool chains or workflow automation pipelines are utilized to build and
package internal/external executable, version-controlled software releases. We have found
many diverse automated software process pipelines are used across and sometimes within
software integration activities (Scacchi & Alspaugh, 2013b). These pipelines take in OSS
code files, dependent libraries, or repositories (e.g., GitHub) and build executable version
instances that are then subjected to automated testing regimes that include simple “smoke
tests” and extensive regression testing. Successful builds eventually turn into packaged
releases that may or not be externally distributed and deployed as ready-to-install
executables. While this all seems modest and tractable, when one sees the dozens of
different OSS tools used in different combinations across different target platforms it
becomes clear that what is simple when small becomes a complex SE activity when the
scale of deployment increases.

Another complication, which is nhow beginning to be recognized within and across
BRD processes and process automation pipelines, arises in determining when and how
different BRD tool chain versions/configurations can mediate cybersecurity requirements in
the target system being built. We have seen cases in which software builds and deployed
releases are assumed to integrate to functionally equivalent CSS components, but which
are then not included in releases due to IP restrictions. We have also observed and reported
how functionally equivalent variants as well as functionally similar versions may or may not
be produced by BRD tool chains, either by choice or by unintentional consequence. This, in
our opinion, gives rise to the need for explicit open-source models of BRD process
automation pipelines that can be analyzed, tested, reused, and shared to determine whether
release versions/variants can be verified and/or validated to produce equivalent/similar
releases that preserve prior cybersecurity obligations and usage rights.

Last, mixing new OSS and CSS components with legacy apps wrapped within
widgets will complicate build and release processes and obscure deployment processes.
Legacy apps encapsulated within mission-specific widgets will commonly need to
dynamically link executable binary components, which in turn increases the challenges in
their testing and cybersecurity assurance, both during development and during field
deployment. In order to mitigate these technical challenges while enabling more agile
software component system integration, multi-component OA configurations should explicitly
declare pre/post conditions on acceptable input/output parameter values, along with
exceptional values, that in turn can be independently verified or validated.

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -176 -

Software Component Evolution Practices Transmitted Across the OA
Ecosystem

Software evolution is among the most-studied of SE processes. While formerly
labeled as “software maintenance,” a profitable activity mediated through maintenance
contracts from software producers to customers, the experience of OSS development
projects and practices suggest a transition to a world of continuous software development—
one that foreshadows the emergence of continuous SE processes, or software life cycles
that just keep cycling until interest falters or spins off into other projects. OSS development
projects rely on OSS tools that themselves are subject to ongoing development,
improvement, and extension, as are the software platforms, libraries, code-sharing
repositories, and end-user applications utilized by OSS developers to support their
development work. Developers entering, progressing, or migrating within/across OSS
projects further diversify the continuous development of the most successful and widely
used OSS components/apps. This dynamism in turn produces many ways for OSS systems
or OA systems that incorporate OSS components to evolve.

Figure 5 portrays different software evolution patterns, paths, and practices we have
observed arising with new C3CB applications (Scacchi and Alspaugh 2012). Here we see
paths from a currently deployed, executable system release, to a new deployed release—
something most of us now accept as routine as software updates are propagated across the
Internet from producers, through integrators, to customers and end-users.

Component replaced by
newer version

Component replaced by
different component

Same component accessed
through different interface

Connector replaced by
different kind of connector

Topological configuration
changed

Component license replaced
by newer version
Component license replaced
by different one

Figure 5. Different Paths and Mechanisms Through Which OA Software Systems
Can Evolve
(Scacchi & Alspaugh, 2012)

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -177 -

Integrated OA systems can evolve through upgrades of functionally equivalent
component variants (patches) as well as through substitution of functionally similar software
components sourced from other producers or integrators. In Figure 6, we show a generic
situation that entails identifying how an OA consistent with that depicted in Figure 2 may
accommodate the substitution and replacement of a locally installed word processor
application with a remote Web-based word processing software services (for example,
Google Docs or Microsoft Office 365). This capability is a result of utilizing an OA that
constitutes a reference model aligned with a vendor-neutral software product line. This is
also a capability sought by customer organizations, and sometimes encouraged by software
producers to accommodate their evolving business models (discussed below). While the OA
remains constant, the location of the component has moved from local to remote/virtual, as
has its evolutionary path. Similarly, the cybersecurity of the local versus remote component
has changed in ways that are unclear, and entail a different, evolved assurance scheme.

~ B e i i o

Google Google Gnome
Docs Calendar ||Evolution

MPL|GPL 0 Goog| Googl Appl
(LéPL I)(Spers GPL (ODQE)(ooge)(.)(e)(MsEua)(Apple

ToS ToS License

Firefox Opera ||AbiWord Fedora ||Windows (0150, 4

Design-time
architecture:
Browser,
WP,
calendar
Instance Instance Instance Instance
architecture: architecture: architecture: architecture:
Firefox, Firefox, Firefox, Opera,
AbiWord, or Google Cal., or Google Cal., oF Google Docs, OR -
Evolution, Google Docs, Google Docs, Evolution,
Fedora Fedora Windows 0OSX

GPL,
Google ToS

MPL, Google
ToS, MS
EULA

GPL

Opera EULA.,
Google ToS,
Apple Lic.

Figure 6. Alternative Configurations of Integrated Instance Releases of
Components Consistent With the OA in Figure 2 That Are Treated as
Functionally Equivalent by Customer Organizations
(Scacchi & Alspaugh, 2012)

Next, any common development technology used to support production or
integration of mission components with shared infrastructure components must recognize
that these technologies and components are all subject to independent, mostly autonomous
evolution practices within the Defense community. For example, OZP is currently
undergoing evolution, including its migration to Java 8 sourced by Oracle, and this move will

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -178 -

may disrupt the correct operation of widgets already produced using Java 7 common
development technologies. Similarly, new OSS and CSS components will evolve due to
practices arising in the competitive marketplace, while legacy mission components wrapped
within widgets will have obscure or opaque evolution practices that are locked into legacy
Defense community component providers. Legacy components will also limit how their
encapsulating widgets evolve, potentially due to architectural mismatches or dependencies
to legacy systems that are no longer supported, operational, or compatible with current
platform technologies (Velasco-Elizondo et al., 2013).

Overall, the evolution of software components, component licenses, component
interconnects and interconnections, and interconnected component or AC configurations are
now issues that call for research efforts to help make such patterns, paths, and practices
more transparent, tractable, manageable, and scalable within an OA software ecosystem,
as well as customers seeking the benefits of openness, sharing, and reuse.

New Business Models for Acquisition of Software Components and Widgets

The last issue we address is the newest in this set of six for consideration for new
acquisition research. While the field of acquisition research and practice has long paid
attention to software economics, the challenges of software cost estimation are evolving in
light of new business models being put into practice by software producers and system
integrators. In the past, software development projects were often managed by a single
contractor responsible for both software production and system integration. Costs could be
assessed through augmentation to internal business accounting practices (e.g., budgeting,
staffing workloads, time-sheet reports, project schedules, etc.). But a move to OA
ecosystems means that multiple producers can participate, and OA schemes accommodate
switching among providers while a system is being integrated, deployed, or evolved in the
field. This in turn coincides with new ways and means to electronically distribute software
updates, components, or applications, as well as new ways to charge for software. OSS
components may be acquired and distributed at “no cost,” but their integration and evolution
are charged as service subscription, or as time-effort billings.

We have already seen other alternatives for costing or charging for software that
include franchising; enterprise licensing; metered usage; advertising supported;
subscription; free component, paid service/support fees; federated reciprocity for shared
development; collaborative buying; donation; sponsorship; free/open source software (e.g.,
Government OSS—GOSS); and others. So how are customer organizations, especially in
the Defense community where software cost estimation practices are routine, supposed to
estimate the development or sustaining costs of the software components or integrated
systems they acquire and evolve, especially when an OA system allows for producers
whose components come with different costing/billing schemes? This is an open problem for
both acquisition research and software engineering practice.

Overall, new OSS and CSS components are experiencing a rapid diversification of
acquisition cost models and practices, while legacy components are generally tied to single-
source contractors as a result of utilizing legacy components as a cost-avoidance practice.
All of the preceding five factors further obfuscate how to estimate or measure software
component/AC development costs, schedules, or time to delivery/usage. So acquisition
costs of systems that mix and match new OSS and bespoke CSS components, together
with legacy CSS components, will be difficult to cost-estimate or cost-manage. This in turn
will limit the efficacy of BBP 3.0 practices for such systems.

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -179 -

Discussion and Conclusions

Our study reported in this paper identifies a set of technical issues and risks that can
dilute the cost-effectiveness of Better Buying Power efforts. It similarly suggests that current
acquisition practices aligned with BBP can also give rise to acquisition management
activities that can dominate and overwhelm the costs of OA system development. This
adverse condition can arise through app/widget vetting, new software business models,
opaque and/or underspecified acquisition management processes, and the evolving
interactions of new software development and deployment techniques. Unless proactive
investment in acquisition research and development can give rise to worked examples,
open-source models, and new acquisition management system technologies, the likelihood
of acquisition management dominating agile development and adaptive deployment of
component-based OA C2 system capabilities is unsettling.

Our research identified and analyzed how new software component technologies like
OSS infrastructure components, common development technology components, and
mission-specific widgets for Web-based and/or mobile devices, along with their intellectual
property (IP) license and cybersecurity requirements, engineering and evolution processes,
and cost estimating practices interact to drive down (or drive up) total system costs across
the system acquisition life cycle. The availability of such new scientific knowledge and
technological practices can give rise to more effective expenditures of public funds and
improve the effectiveness of future software-intensive systems used in government and
industry. Thus, a goal of this paper was to explore new ways and means for achieving cost-
sensitive acquisition of OA software systems, as well as identifying factors that can further
decrease or increase the costs of such systems.

We identified and examined six areas for research arising at the intersection of
software engineering and acquisition that now confront the Defense community (and
perhaps other industries as well). These six issues areas include (1) the lack of architecture
representations and schemes for discovering or specifying OA system designs; (2) OA
systems that integrate components or applications subject to diverse, heterogeneous IP
licenses; (3) how to manage the cybersecurity of OA systems during system design,
development, and deployment; (4) software process challenges and evolving disruptions in
seemingly mundane process automation pipelines; (5) software evolution patterns, path,
and practices in OA ecosystems; and (6) how new business models are upending software
cost estimation practices and outcomes. All of these research areas are readily
approachable, and research results are likely to have significant practical value, both within
the Defense community and beyond.

These issue areas were investigated and addressed in the domain of command,
control, communication, cyber and business systems (C3CB). We believe all are tractable,
yet dense and sufficient for deep sustained research study, as well as for applied research
in search of near-term to mid-term practical results.

In related work (Scacchi & Alspaugh, 2015), we have called for specific R&D
investments into the development of open source, domain-specific languages for specifying
open architecture representations (or architectural description languages) that are
formalizable and computational, as well as supporting annotations for software license
obligations and rights. While ADLs have been explored in the SE research community, the
challenges of how software architectures mediate software component licenses and cyber
security requirements are an open issue, with practical consequences. Similarly, ADL
annotations that assign costs or cost models in line with new software business models are
an open problem area. We have also called for R&D investment in new SE tools or support
environments who purpose is to provide automated analysis and support of OA systems IP

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -180 -

and cybersecurity obligations and rights, as new requirements for industrial practice in large-
scale software acquisition, design, development, deployment, and evolution. Such
environments are the automated tools that could be used to model, specify, and analyze
dynamically configurable, component-based OA software systems expressed using the
open source architectural representation schemes or ADLs noted here.

Our research identifies and analyzes how OA CBC3 system capabilities can utilize
software components and mission-specific widgets, with diverse IP license and
cybersecurity requirements, and how new software business models can interact to affect
total system costs across the system acquisition life cycle. The availability of such new
scientific knowledge and technological practices can give rise to more effective expenditures
of public funds and improve the effectiveness of future software-intensive systems used in
Defense community, as well as elsewhere within government and industry. Hopefully, this
paper serves to help throw light into how software engineering and acquisition research can
inform and add benefit to software practices within the Defense community through ways
and means that further advance Better Buying Power opportunities and outcomes.

References

Alspaugh, T. A., & Scacchi, W. (2012, September). Security licensing. In Proceedings of the
Fifth International Workshop on Requirements Engineering and Law (pp. 25-28).

Alspaugh, T. A., & Scacchi, W. (2013). Ongoing software development without classical
requirements. In Proceedings of the 21st IEEE International Conference of
Requirements Engineering (pp.165-174). Rio de Janeiro, Brazil.

Alspaugh, T. A., Scacchi, W., & Asuncion, H. (2010). Software licenses in context: The
challenge of heterogeneously licensed systems. Journal of the Association for
Information Systems, 11(11), 730-755.

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice (2nd ed.).
New York, NY: Addison-Wesley Professional.

Bollinger, T. (2003, January 2). Use of free and open-source software (FOSS) in the U.S.
Department of Defense. MITRE.

Choi, S. C., & Scacchi, W. (1990). Extracting and restructuring the design of large systems.
IEEE Software, 7(1), 66—71.

Conley, K., Brockman, B., Diercks, P., George, A., Lam, W., Lozano, A., Palnter, R. &
Tolentino, G. (2014, June). Achieving information dominance: Unleashing the Ozone
Widget Framework. In Proceedings of the 19th International Conference of Command
and Control Research & Technology Symposium (ICCRTS; Paper 109). Arlington, VA.

Garlan, D., Dwivedi, V., Ruchkin, I., & Schmerl, B. (2012). Foundations and tools for end-
user architecting. In D. Garlan and R. Calinescu (Eds.), Large-scale complex IT
systems. Development, operation and management, Lecture Notes in Computer
Science (pp. 157-182), Springer, 7539.

George, A., Galdorisi, G., Morris, M., & O’Neil, M. (2014, June). DoD application store:
Enabling C2 agility. In Proceedings of the 19th International Command and Control
Research and Technology Symposium (Paper-104). Alexandria, VA.

George, A., Morris, M., Galdorisi, G., Raney, C., Bowers, A., & Yetman, C. (2013, June).
Mission composable C3 in DIL information environments using widgets and app stores.
In Proceedings of the 18th International Command and Control Research and
Technology Symposium (Paper-036). Alexandria, VA.

George, A., Morris, M., & O’Neil, M. (2014). Pushing a big rock up a steep hill: Lessons
learned from DoD applications storefront. In Proceedings of the 11th Annual Acquisition

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -181-

Research Symposium (Vol. 1; pp. 306-317). Monterey, CA: Naval Postgraduate
School.

Guertin, N. H., Sweeney, R., & Schmidt, D. C. (2015, May). How the Navy can use open
systems architecture to revolutionize capability acquisition: The naval OSA strategy can
yield multiple benefits (NPS-AM-15-004). In Proceedings of the 12th Annual Acquisition
Research Symposium. Monterey, CA: Naval Postgraduate School.

Kazman, R., & Carriere, S. J. (1998). Playing detective: Reconstructing software
architecture from available evidence. Journal of Automated Software Engineering, 6(2),
107-138.

Kendall, F. (2015, April 9). Implementation directive for Better Buying Power 3.0
[Memorandum].

Meyers, B. C., & Obendorf, P. (2001). Managing software acquisition: Open systems and
COTS products. New York, NY: Addison-Wesley.

Reed, H., Benito, P., Collens, J., & Stein, F. (2012, June). Supporting agile C2 with an agile
and adaptive IT ecosystem. In 17th International Command and Control Research and
Technology Symposium (ICCRTS; Paper-044). Fairfax, VA.

Reed, H., Nankervis, J., Cochran, J., Parekh, R., & Stein, F. (2014, June). Agile, adaptive IT
ecosystem: Results, outlook, and recommendations. In Proceedings of the 19th
International Command and Control Research and Technology Symposium (ICCRTS;
Paper-011). Arlington, VA.

Scacchi, W. (2002). Understanding the requirements for developing open source software
systems, |IEE Proceedings—Software, 149(1), 24-39.

Scacchi, W. (2009). Understanding requirements for open source software. In K. Lyytinen,
P. Loucopoulos, J. Mylopoulos, & W. Robinson (Eds.), Design requirements
engineering: A ten-year perspective (LNBIP 14; pp. 467—494). Springer-Verlag.

Scacchi, W. (2010). The future of research in free/open source software development. In
Proceedings of the ACM Workshop on the Future of Software Engineering Research
(FOSER; pp. 315-319), Santa Fe, NM.

Scacchi, W., & Alspaugh, T. (2012, July). Understanding the role of licenses and evolution in
open architecture software ecosystems. Journal of Systems and Software, 85(7), 1479—
1494.

Scacchi, W., & Alspaugh, T. (2013a, May). Streamlining the process of acquiring secure
open architecture software systems. In Proceedings of the 10th Annual Acquisition
Research Symposium (pp. 608-623). Monterey, CA: Naval Postgraduate Schoool.

Scacchi, W., & Alspaugh, T. (2013b, May). Processes in securing open architecture
software systems. In Proceedings of the 2013 International Conference Software and
System Processes (pp. 126—135). San Francisco, CA.

Scacchi, W., & Alspaugh, T. (2013c, June). Challenges in the development and evolution of
secure open architecture command and control systems. In Proceedings of the 18th
International Command and Control Research and Technology Symposium (Paper-
098). Alexandria, VA.

Scacchi, W., & Alspaugh, T.A. (2013d). Advances in the acquisition of secure systems
based on open architectures. In Journal of Cybersecurity & Information Systems, 1(2),
2-16.

Scacchi, W., & Alspaugh, T. (2015, May). Achieving Better Buying Power through
acquisition of open architecture software systems for web and mobile devices (NPS-

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -182-

AM-15-005). In Proceedings of thel2th Annual Acquisition Research Symposium.
Monterey, CA: Naval Postgraduate School.

Software architecture. (n.d.). In Wikipedia. Retrieved from
https://en.wikipedia.org/wiki/Software architecture

Velasco-Elizondo, P., Dwivedi, V., Garlan, D., Schmerl, B., & Fernandes, J. M. (2013).
Resolving data mismatches in end-user compositions. End-user development. Springer
Berlin Heidelberg, 120-136.

Womble, B., Schmidt, W., Arendt, M., & Fain, T. (2011). Delivering savings with open
architecture and product lines. In Proceedings of the 8th Acquisition Research
Symposium (pp. 8—13). Monterey, CA: Naval Postgraduate School.

Acknowledgments

This report was supported by grant #N00244-16-1-004 from the Acquisition
Research Program at the Naval Postgraduate School, Monterey, CA. No endorsement,
review, or approval implied. This paper reflects the views and opinions of the authors, and
not necessarily the views or positions of any other persons, group, enterprise, or
government agency.

ACQUISITION RESEARCH PROGRAM:
CREATING SYNERGY FOR INFORMED CHANGE -183 -

t pRAESTANTl RGC TmM
1 90 9

\

ACQUISITION RESEARCH PROGRAM

GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY
NAVAL POSTGRADUATE SCHOOL

555 DYER ROAD, INGERSOLL HALL

MONTEREY, CA 93943

www.acquisitionresearch.net

Achieving Better Buying Power for
Mobile Open Architecture Software
Systems Through Diverse Acquisition
Scenarios

Walt Scacchi and Thomas Alspaugh

INSTITUTE for SOFTWARE RESEARCH
$/° UNIVERSITY of CALIFORNIA + IRVINE

Overview

Background

Case Study: Multi-party acquisition of components for a secure
Open Architecture C2 systems within an agile, adaptive
software ecosystem

Emerging R&D challenges in acquiring secure, component-
based OA C2 systems

Emerging challenges in achieving Better Buying Power via
component-based OA systems

Conclusions

Institute for Software Research, UCI

Background

* New ways and means for acquisition,
development, and deployment of C2/C3CB
systems.

- Development and deployment of
assembled capabilities (AC) across the
Defense open architecture (OA) software
ecosystem

* Who is pursuing AC for C2/C3BC system
capabilities?

Institute for Software Research, UCI

Transforming to multi-party acquisition of
software elements within OA ecosystems

Mobile Reciprocity Multi-Party Interactions

Can | use

Customer/end-user organizations now looking for ways to reduce
acquisition cost and effort through shared development/use of common
OA software system components (apps, widgets).

C3CB Software Component Types

* Mission Components enable C3CB processes and present common
operating picture data to end-users.

- Mission components realized as apps/widgets that may be
deployed on mission-specific platforms including secured
Web/mobile devices.

« Common Development Technology Components provide AC
development tools and common run-time applications servers that
support the mission components, where these servers are bundled
with Shared Infrastructure.

» Shared Infrastructure Components combine local/remote application
servers and data repositories with networking services and
deployment platforms.

Sample of producers for mission components
common technologies, infrastructure components

MISSION

SERVICES

ital
% Bga“sabning'

NORTHROP GRUMMAN

ES

ORACLE

% softws;

SIERRA
NEVADA
CORPORATION

MODUS OPERANDI 9

3.3.1.1 Image Rectfication

E SYSTEMS

3.4.1.8 Topgraphical Survey
3.4.1.9 Automatic
a

X Avyiture

3.3.1.1 Image Rectification
3.3.1.5 Image Chipping

3,181 Sensor Observation

3.12.1 Define Workfiows
33.1.2 FMV Geopracessing

3311 image Recifeation
3312 P Gecprocessing
3313 ACH Procassing

3415 Image Regitation
33.1.4 st Servies gt

34,19 Automane Torget Recegniten

3134 S sy SENSING H 51301 Procosing
313 Saraor Soscesior

13.3.1.3 AOI Processing Recognition|
3.3.1.3A0! Processing 3.3.1.5 Image Chipping 3.4.1.11 GEO-Calculations|
3431 Entty Actiy Pattems T ————— 3.2.1 Assel Management 3.4.5.2 Production Warkliow 3.4.5.1 Reporting Services. 335 MASINT Processing 34.2.1 SIGINT Analysis 33.6.1 Target Management
3.4.3.2 Ideniity R W 3.4.5.2 Production Workflow 3.3.6.7 BDAICDA 3.1.2.4 Task Summary
344 5|'|'meh»esmu\15|s - 3.4.5.3 Dighal Production 3.4.1.1 Change Detection 3.4.4 MASINTIAG! Analysis| 3.1.3.5 Target Planning
34,65 Link Analysis NORTHROP UMMAN Mark = 31.2 Workflow Management 2.4.1.2 Tranguiaten 3.4.6.3 Mission Pianning/Farce Execution Support
GR THERM@PYLAE ® MarkLogic e s A3 et o pocs
X THERMOEVTAR 2413 Remcion
3.4.1.5 DPPDB Mensuration
e NI S 241 roR
HPIXIA THETUS i exéetEartty QPalantir i
corparation esri = riverpe

3473 v B Fron
548k St 3 toon ey
34 o JAHWVEIMMIW

3.4.6.1 Tmelines Analysis 3431 Entiy Actvy Paitems 3152 Senser Catioging 3.4.7.2 Scenario Generation
. 3351 Twow et 11 GeCaganon

3451 Services 321.4 Sensor Alrtig 3.4.7.3 Model Buiding 183 T 3451 Raportng Servees 3 e Sometats 3.4.7.3 Model Buiding
5.4.6.2 Stuctured Analyi Teehniques o 3483 Mason Flacing’
Ex o 3387 B0ACDA 3453 Digeal Productn) 248 4 waama Emect Purrung| Force Execution Suppest

P! it 71 Change et 3451 Trrwiows N
ST ose s ST et
4. A Budding 3413 Fusvcion 35 8A0a Dissamewion and ey 2543 ToarLna Rapareng
ol ine Battereia " 351

3.4.7 Modeling & Simulation

COMMON

SERVICES

@esri

222 Geographic Visualization

2.2.3 Analytics Visualization
22.3.1 Analylic Rendering
2232 Comman Cperating Picture
2.3.1.1 Content Search
2.3.1.3 Retrieve Content

@ Digital
W#Z Reasoning

2231 Anaptic Rendering

2.5.1.1 Entity Extraction

2.5.1.2 Entity Association
25.1.3 Categorize Content

cohes/ve :
Lnrcgmtmns

2.3.1.1 Content Search
23.1.3 Retrieve Content
2:3.1.2 Brokerea Search
2.4.1.3 Data Transformation
2513

2.4.1.3 Data Transformation

d-Tech

22.1.2 Widget Framework

riverbed

2.6.3 Workspace Management

2.5.1.4 Data Commenting
2.62.2 Data Object Processing

S software

2.3.1.1 Content Sear

Optensity

2.3.1.1 Content Search
2.3.1.3 Retrieve Content

NORTHROP GRUMMAN

ES

2232 Gommon Operating Prcture

MODUS OPERANDI

@

222 Web Coverage.
2223 Web Feature
v

2.3.1.1 Content Searc
2312 Brokere Search

sensing

22.1.2 Widget Framework
2221 szmnhm \mnrmanwn Display
2.3 Web Feal

22.2.5 Weather Visuaization
22.3.1 Analytic Rendering
2.23.2 Gomman Operating Picture
2.1.3.1 Instant Messaging

.-MarkLogiC'

2.3 Data Discovery
262 Database Management

2.2.3.2 Common Operating Picture 2.1.2.1 Deskiop Sharing 2.4.1.1 Schema vasdation 2413 Cata Transtormation 23 1 3 Retrievs Gontent
2:3.1.1 Content Search 2.2.2.1 Geographic Information Display 2:4.1:2 Daa Vaidaton 221 Wieb Visuaizationlfs 3 1 4 Deliver Content 2813 Uanaged
23150 2;“ —_— 315
213.1.2 Brokered Search 4.1.2 Data Validation
2316 Query Management ey B B e B et a2 4.1.3 Data Transformation
2.4.1.4 Schema Transformation iy e 415 Image
2.6.1.4 Object Foiders 22.1.2 Widget Framework. 21 2821 522 Video Mandlor
2224 Web Map 251 Cuery Management 223 Analytics Visunization |2 5.2 3 Audio Monitor
2.3.1.1 Content Searen 2.3.1.7 Query Resuits Management 26.1.1 Content Repository
ol 3 Gecorapne inormation Dispiay

“NZsLAYE
2411 Schema vaidation
2414 Scner Transiomaton
2413 0w Transtomaten
2.4.1.4 Data Validation

¥ falconlogic

2.1.22 Whiteboard
2.22.4 Web Map
22.3.2 Common Operating Picture

2.3.1.4 Deliver Content
2.4.1.3 Data Transtormation

BAE SYSTEMS

261
26,22 Gota Ot Processin|
26210m onec g

2631 Manage w
2632 5o winspece

2522 visea warie

2.2.2.1 Geographic information Display
2.2.2.5 Weather Visualization

23.1.1 Content Sear
2.3.1.2 Brokered Search
2.3.1.3 Relrieve Content

n
2.2.3.2 Common Operating Plcture
2:3.1.7 Query Results Management

QPalantir

S ENVITIA

26
26.1.1 Content Repository 2.3.1.2 Brokered Search|
26,12 Content Navigation 2.3.1.3 Retrieve Comen]

@CollabraSpace

Waviture

NORTHROP GRUMMAN

HPIXTA

ORACLE

2.1 wee viscatzaten

CHILIAD

@ CloudFrontGroup

B mwr,:‘:w.e ActEarth

111 Metrcs Management
1.1.1.1 Melrics Measurements Collection
1.1.1.2 Metrics Reporting
1.1.3.1 Fault Detection
1132 Fault Isclation
1.1.3.3 Site Montoring
113 Enterprise Manitoring

1.3.1.1 Service Inquiry

1.2.1.2 Credential Management
1.2.1.4 Auth Service
1.0 Federation Service Management
2411 Certificate Validation

1.2:1.1 Logal identity

2.3.1 Data Security Marking
1:2.3.2 Security Label Format Validation

Management
1.2.1. Resource Pallcy
H B vl Managemen|
1.24.1 Vunerabilty Reporting

2 Intrusion Detection

Optensity

corporation 18 EL+ il iy 2414 Scwens Transteemn
212 Wiget ramawork fp st 23110 222 1 Gacarasne namason Dssley
22:3.1 Anaiytc Rendering ovateston ontent Search
2,1.1 Information Boards. 21 Cofaboration 2.4.1.1 Schema Validation 2221 Gecgrapnic ermalon Oispay 25 Saapaphi brmaton ey P13 ey Exctcn 2:3.1.2 Brokered Searcn Frerhimdiey
21.2.3 Web Conferencing VTC 2221 uogaic noimaton DRpley MEG o Vi 224 2222 Web Corsrage 2513 Categorics Coment 2.3.1.3 Retrieve Content
2.1.3 CoBSBOEMIN: Maxkaging 2513 Uniegoltos Canle 22.21 Geographic Information Display nt Management 24 | slmgﬂumlmmn 222 e Fovee. 2613 oot Pacesns 2.3.1.5 Describe Content T2 A Hewsiond
2142 Communty o rtrsest Fns 26.11 Gontont Repasory 2224 Web Map Wb S e ey 4 Data Corn 22 tnatcs Vmueston o i it e Docrn
2.1 Ghat Mon 28280us Cbjec g 23,11 Contan Samrch 2223 Web Festure A eoatiatn - S
261 Contant Management 1.5 Describe Contenl 2.3.1.3 Retrieve Content 2224 Web Map 2.2.2 Goographic Visuaization - TN BT Menacs s e
26.1.1 Content Reposilory 23.16 Query Management 22 1.2 Widget Framework 2.3.1.1 Content Search Y 24 i Cusy Hanogsrart e Mo
2232 Gommon 2.4.1.1 Schema Transfonmation 2511 Entity Extr T e 25.1.2 Conent Havgaton
Operating Picture 2.4.1.3 Data Transtormation 2514 Data Commenting 411 Saharna v Pyl 23,13 categoae Comton. Cuta absaron ZRL8 Contel wrsarng
2.51.2 Entity Association 2614 Object Folders. 12 o PP miey e o S Tartomacon e o Py
EOEINEG BAE SYSTEMS 5 = S <
riverbed eGoteorts ‘BLavenz apigee
12,6 Cross Domain Sensing

1.2.1.1 Local Idenity Management
1.2.1.2 Credential Management
ement

1.2.1.6 Policy Enforcement Point
L 2 L 7 Policy Access Point

et 1111 Me\m.s Measwements Collection
1.2.4 Systam and Communication glgmgnin) 1251 Audt g Managems Security Token Service 12 Metrics Reporting
sction eas .1.3.3 S ng 1.24. 9 FEdErﬂlmn Service Management
4.3 Application & Websita Hosting = g 1.4.2.1 Execution Engine 14.1.1 Matchmaking 12.1.11 Ceriificale Validation B .‘.,‘,G,f el
1431 Web Cantent Delivery SR e otiicaiion Producer
1,14 Event Nolificats 1151 9! 122 LLi

1.3.1.1 Service Inquiry
1.31.3 Service Publication

1.4.2.1 Execution Engine
1.4.222 Protacol Mediation

g_ Ayiture

1.1.4.1 Nolification Producer
1.1.1.2 Metrics Reporting
1.2.1.9 Federation Service Management
1321 Service

3.1.1 Sevice Inauiry
1313 Senvice Pubi

2.1.5 Policy Decision Poirt]
1216 oy Enfrserment

MODUS OPERANDI

(<2

1.2.3.2 Security Label Format Validation

e o
s S e 21 sacey

1:2.1.1 Local Identity Managerment

1212 Crodentl Marsgement 1217 Pl Acass P
1

4.1 Nobicat
42 Notcation Brcker

it 14
1214 Authentication Servies 1.1.4'3 Nafcation Consue|

®

1.2.1.4 Authentication Service

1.2.1.9 Federation Service Management

1314 N b ot

*LinkSpace

1.1.5.1 Global Unique Identier
1.2.1.10 Atiribute Access.
1.2.1.5 Policy Dex i
121.6 Policy Enforcement Point
12.1.3 Resource Policy Management
2.1.1 Senvice Inquiry
13.1.2 Service Subscription
1:3.1.3 Service Publishing

d-Ttech

1211 Local Identty Management
1.2.1.2 Credential Management

1.2.1.7 Policy Access Point

1.2.1.11 Certificate Validation

)
FORGEROCK
12.1.1 Local ideniity Management
1.2.1.3 Resource Policy Mamnemanl
1.2.1.4 Authentication Se
1.2.15 Policy Decision Peint
12,16 Poly Enforcement Pont
12.1.7 Palicy Access Po
12118 Securty Tokon Sorvics
1.2.1.9 Federation ice

Q Palantir

1.2,1.10 Attribute Access.
1.2.1.11 Certficate Validation

11111 Mawics Massramants Codacton 1.4 Acticatin Servics
1112 Mowics Raporing 1215 Polcy Deciion Port
1131 FoutDetecson 1216 Poicy Entorcement Port
1132 Foulliclaton 1217 Pasey Access Port
1,133 318 Mow 1212 Securty Tokan Sarvice
1
b 122
121 1358

G
i2i 1

New paths for software component acquisition and
development using inter-communicating
widgets/apps acquired from online App Stores
B a2 o A @ . OZONE Woge: Framenmork Doc Adimin &

5 WVSE Widget

WVSE End of Day Summary © Soarch
Symibel Comp Open

< AMTD - 282
BA, 2498
BaC 2072
W “Hs
FDX 21
b - AT

GE 1862
=M
WFC

- _l_!l'ii
Baltimoreo "~
o Dundadtk
Columbsa |
RS \Rockvillee Silver L7
Spring Annapol
Bk W \Nnapols
i Bowe .
Aringtond @Washington
Burkp @ Alexandria
Manassas
'Woodbridge kot
Date City 3

Stafford

Frymencksbung Kina George Tlme
Ik Map dals B2012 Geogle Tarme of USE Bonort 3 mao srror

& FOX 3¢ AMTD <= MCD

Shared development of Apps and Widgets
as OA system components

CAS Sign In App Launcher Ozone Mobile Drawer Menu

Ozone Platform for Mobile Devices

Who is pursuing AC for C2/C3BC
systems?

OUSD (AT+L), DASD(A)-C3CB Working Group

Air Force — TBMCS-FL (manages ATOs, manages
Airspace)

Air Force — AOC (Air Operations Center, using
harvested components from TBMCS-FL, and CANES)

Army — DCGS-A, DIB (DCGS Integration Backbone),
and DMO (DIB Management Office)

Navy — CANES and ACS (Afloat Core Services)

Navy — PEO C4ISR Storefront and Tactical Cloud
Marketplace

DI2E

Case Study. OSS, open
architectures, and
software licenses for C2
or C3CB systems

Design-time view of an OA system

e T e e e B e s e e e e e e e B e s e e i 1 e B e e e S e e 8 e e s s el i eI e e e s e e f s it e B e B e e e e Bl e e S e el e S s s St e i e e e e et O e e sl

Web Browser ¥ Word Processor ' Email & Calendar
{__ Userinterface i Userlnterface i Userinterface |
[2 v

' _Connector 1
-~ Web Browser i Word P
.. Intra- -Application Scrlptlngf,:"ﬂ—* (
\‘::::::::_::__:I::::::::::::.— | !anrApphcaﬂon SCrIpnng
____________ APIT

. Network Protocol |
~ Web App Server ;l

- S

Software product line of functionally

similar OA system alternatives

~

IR

Google Google Gnome
Docs Calendar Evolution

Windows

CHPLlGPLlLGPL) C Opera EULA) C GPL) (Goﬂgle ToS) (Go-ogle TGS) (GPL
\ =

License

12

Product line selection of one
alternative system configuration

~ L

@Q - /Dg/
P

Design- u'me /
architectur -
Bmwser, / ,.--“'"'f
[ca.‘lg.fd // _— V
R =

arch tecture:

efox,
AbiWord,

Fedora
%

A security capability specification encapsulating the design-
time configuration via multiple virtual machine containers

P R L e

[Web Browser User] [Word Processor User] [Email & Calendar]
Interface Interface User Interface |

I\"""'"_'_'_'_'_}'_'_'_'_'_'_:""""""'""'"::Z}:::""""'""""'"_’_'_'___'f_'_'_'___'_' """"" |

. Connector 1 . Connector 2 . Connector 3

Web App Server) \ _Q_Q_e_r_g_tjp_g__s_xg’g_e_r_r__:}jc Email Server)

N e L P e T

14

Build-time view of OA design selecting
OSS product family alternatives

[Firefox User][AbiWord User][Gnome Evolution]

| Interface Interface User Interface)
1 —f 1
. XWindows | . XWindows | - XWindows |

L .

LI g

AbiWord !: Gnome Evolution |

ﬂli"r___}__________r ________ ;___q j \
| cshell scripts e

Unix System Calls«———{ Unix System Calls
\ | / B POBGHTE

15

Run-time deployment view of OA
system family member configuration

Gnome Evolution
— T email, calendar

:]-.-'-..'l :;;l.-n-ll-ﬁ. 7=

S e T . .
= .
---:

=
s S EEESSEEESEEESE RS s S AR SRS RS SRR ERE RS e ==

g B a s mmar fpma Jaas s Delslerats Decaeanis BE

- 2 B s

[}
[

L] -

j T Aol Wi Mg | = a a i = file P pew el Sl paeip

Red Hat /

: Fedora Linux
L] (]
E ; E 1wl i W LR 1 i - .'.
; & -
:E. _.' .__-_" = -l-_l-_-l--i-_-“:

Evolution-time software changes

Component replaced by
newer version

Current
system

Component replaced by

different component

Same component accessed
th rough different interface

Connector replaced by
different kind of connector

Topologlcal configuration
changed

Component license replaced
by newer version

Evolved

—
Component license replaced system
by different one

17

Evolved run-time deployment view of a functionally
similar alternative OA system configuration

L] a

L]
'El Edt Miew Higbory Bookmarks Tooks Heip Edt Wiew Higtory Hookmarks Tocls Help Ty
LT] - | il | 8| nop ovse e netpropgamepenacertant prgr v | G Y :] @ | & nirpopases gosgo comDoc hdmairBadve_E3emSgangd w (K 1
! [}
i 1 [Googke Docs - All iberms M | O A Corposed Open Architee b 4 ']
1 DGl Cabndal Documanis Meader Wel mom s

!]
L} - A
I 1 Lli'l. Lq]_‘ DCE A Compasid Open Archieciune Sofwane Share « M
L :u.- Edi Wiew |med Formal Table Took Help i
L [}
n | e N e Sy * Yerdma =qopi » B F O A~ Fr Link B AEEA ¥ 1
Ll ! A Composed Open Architeciure Sofiware Sysiem al RunsTime L}
[A e e R R R R R R R]
L 2 1
[I]
["]
1 1 1
[I L
i I

I

1

I

I

1

I

I

Gaoghs Calendar - M.
jgfie Edi Mew Higbory Bookmarks Jools Heip
L] p—
I I N
WGmal Calendar [

T = | M caenaa R

men= Web Reader moe » wsoaochi@gmail.oom | ¢

ne | By | & | Seings | Heip | Sigs ow

"Cou H{IL' calenaar Saarch my cakndars | See sk qen
1 (:

EER Monday, Apr 76, 2010

G Day Week Morh 4Days Agenda

Red Hat /
Fedora Linux

Google

1
gble Edit Yew Termnal Tebx Help

1
alenaar ' '.
1 Jraunt ot
1 '
h]
| Ty calndam I
1 m » D ivewse riflocalhost sbin]é pud
Savinge pik
weuserilocalhost spinls od .. fselioux
:—"' ' Alocalrost sbin] |
e gl lmsserElocalaont selimax]h Ls
L] 5 heckregprot compat net deny unknown 1nd texts Wls palicyvers usar
1 L] 1 comtext d1sabie tnad | rRjRCT_UnKnown
§ otings add] connit pending Bools Create enforce sosbar policy capabilitiss ralabal

Blocalhost selinux]s
T e
B3 | B invsuser@locabhost foe.. | @ GOTL - Misson - Mool | @ & Composed Openar.. | @ Google Calendar - Moz =

Challenges of securing open OA
C2/C3CB systems

Current security approaches

Mandatory access control lists, firewalls;

Multi-level security;

Authentication (including certificate authority and passwords);
Cryptographic support (including public key certificates);

Encapsulation (including virtualization), hardware confinement (memory,
storage, and external device isolation), and type enforcement capabilities;

Secure programming practices;
Data content or control signal flow logging/auditing;
Honey-pots, traps, sink-holes;

Security technical information guides (STIGs) for configuring the security
parameters for applications and operating systems;

Functionally equivalent but diverse multi-variant software executables.

Software component security assurance processes.
20

Current approaches to software
cybersecurity do not address the
challenges of continuously evolving
OA C2 systems emerging within
agile, adaptive software
ecosystems!

New business/pricing models for OA
software components

* Franchising * Federated reciprocity for
* Enterprise licensing shared development

* Metered usage « Collaborative buying
 Advertising supported » Donation

« Subscription « Sponsorship

Free component, paid (Government) open source

service fees software
 and others

Managing acquisition costs will be demanding. Acquisition workforce will
need automated assistance, else acquisition management costs will
dominate development costs for OA software components!

New practices to realize cost-effective
acquisition of OA AC systems

* Need to R&D worked examples of reference OA
system models, and component evolution alternatives.

 Need open source models of app/widget security
assurance processes and reusable cybersecurity
requirements.

* Need precise domain-specific languages (DSLs)
and automated analysis tools for continuously
assessing and continuously improving cybersecurity
and IP requirements for OA C2 systems composed
from apps/widgets.

Emerging challenges in achieving Better
Buying Power via OA software systems

* Program managers/staff may not understand how software |IP
licenses affect OA system design, and vice-versa.

« Software IP and cybersecurity obligations and rights propagate
across system development, deployment, and evolution
activities in ways not well understood by system developers,
integrators, end-users, or acquisition managers.

 Failure to understand software |IP and cybersecurity obligations
and rights propagation can reduce DoD buying power, increase
software life cycle costs, and reduce competition.

* DoD and other Government agencies would financially and
administratively benefit from engaging the development and
deployment of an (open source) automated software obligations
and rights management system for the acquisition workforce.

Conclusions

* Our research identifies how new software component
technologies, |IP and security requirements, and new
business models interact to drive-down or drive-up
acquisition costs.

 New technical risks for component-based OA software
systems can dilute the cost-effectiveness of BBP
efforts.

 Need R&D leading to automated systems that can
model and analyze OA system IP licenses and
cybersecurity requirements

- Empower OA C2 system development workforce
- ldentify and manage cost-effectiveness trade-offs

Acknowledgements

Research collaborators

« Assembled Capabilities Working Group, DASD(A)-C3CB
(2014-15).

Funding support (No endorsement, review, or approval
implied).

» Naval Postgraduate School
— Acquisition Research Program, #N00244-1-16-0004.

26

Thank you!

INSTITUTE for SOFTWARE RESEARCH
UNIVERSITY of CALIFORNIA - IRVINE

27

	SYM-AM-16-093.pdf
	Free/Open Source Software Development: Recent Research Results and Emerging Opportunities
	Overview
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	page1
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

