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Abstract

U.S. Army doctrine requires that commanders understand, visualize, and de-
scribe the infrastructure component of the Joint Operating Environment to
accomplish the Army’s missions of protecting, restoring, and developing in-
frastructure. The functionality of modern cities relies heavily on interdepend-
ent infrastructure systems such as those for water, power, and transportation.
Disruptions often propagate within and across physical infrastructure net-
works and result in catastrophic consequences. The reaction of communities
to disasters may further transfer and aggravate the burden and facilitate cas-
cading secondary disruptions. Hence, a holistic analysis framework that inte-
grates infrastructure interdependencies and community behaviors is needed
to evaluate vulnerability to disruptions and to assess the impact of a disaster.
The research for Human-Infrastructure System Assessment (HISA) for
Military Operations adopts the Capability Approach (CA) to measure and
predict the impact of potential infrastructural interdictions on the City of
Maiduguri, Borno State, Nigeria. With the CA, 10 capabilities are identi-
fied to describe the well-being levels of Maiduguri. To quantify these 10 ca-
pabilities, 16 indicators were chosen to represent them. These indicator
justifications provide the rationale for choosing the indicators for the cor-
responding capabilities and predictive modeling. Developing probabilistic
predictive models of the indicators (or their indices) allows analysis of so-
cial well-being in relationship to cascading infrastructure failure.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
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1.1

Introduction

Background

Modern cities are comprised of complex infrastructure networks, such as
those for power, water, and transportation, which interact with one an-
other and jointly function to provide resources and services to city resi-
dents. As cities continue to expand and prosper, the ever-growing
population imposes pressing challenges to the urban infrastructure sys-
tems in every aspect. Even for properly designed infrastructures that sat-
isfy people’s needs in normal-functioning scenarios, infrastructure
performance is often vulnerable to unexpected disruptions due to factors
such as natural disasters or hostile human activities. In such situations,
the performance of the city and the well-being of the society can be signifi-
cantly impacted, resulting in social disruptions related to economic loss,
humanitarian crisis, and demographic loss.

Urban infrastructure failures are likely to stimulate strong reactions from
the population. A direct consequence of most system failure is difficulty for
residents to access life-supporting resources. For example, people may
have to line up at gas stations to purchase overpriced fuel, travel a longer
distance to access water, or turn to diesel generators when the power grid
is disrupted.

In reality, infrastructure failure and community reactions are mutually de-
pendent, which further complicates the problem. For example, people may
have to travel through the transportation network to deliver or retrieve re-
sources, while some infrastructural interdependencies are realized by de-
livering commodities from one facility to another via transportation. When
congestion increases due to people’s response to system failure, the fluid-
ity of commodity flow may be compromised and the cascading effect could
be further exacerbated. Therefore, instead of allowing only one-directional
impacts from system failure to population response, the impacts of human
activities on physical system performances should also be considered.



ERDC/CERL TR-16-15

1.2

Human-Infrastructure Systems Assessment (HISA)

The HISA research project is sponsored by the U.S. Army Corps of Engi-
neers — Engineer Research Development Center (USACE-ERDC). This re-
search evaluates the effects of infrastructure disruptions on the well-being
of civilian populations. Critical infrastructure systems (e.g., communica-
tion, electricity, food security, transportation, and water) provide vital ser-
vices that support and enable societal functions. Consequently, their loss
due to disasters, terrorism, population migrations, or military operations
can potentially result in widespread, catastrophic disruptions. Of particu-
lar concern are the interdependencies between infrastructures—failures in
one system can rapidly lead to failures in other systems, in a chain reaction
that greatly exacerbates the situation. Given the physical placement and
interconnections of the various components of the infrastructure net-
works, HISA performs three calculations:

« HISA estimates the cascading physical damage on infrastructure com-
ponents (e.g. generators, storage tanks, and bridges)

« HISA translates that damage estimate into a change in available infra-
structure services.

« HISA utilizes societal traits to compute changes in safety, health, shel-
ter, and income.

For example, the failure of a critical water pump may shut down the power
plant due to the need for cooling. This failure translates into a restricted
loss of water services, but a widespread loss of electricity. The significance,
or effect, of these failures is dependent on how communities use the ser-
vices. Households unconnected to the electrical grid will not be impacted
by electrical failure. On the other hand, commercial vendors dependent on
the electrical grid to refrigerate food supplies could potentially affect re-
gional health conditions. Utilizing societal traits enables agencies to plan
for the potential effects of the loss of infrastructure services, focus efforts
towards rehabilitation, and/or create additional services.

The goal of HISA is to build a model that represents combined human-in-
frastructure systems so that the potential impacts of infrastructure
changes on social well-being in Army-relevant contexts can be explored.
This model will be designed to provide possible policy insights into how
best to protect crucial infrastructures, reserve emergency supplies, and
avoid humanitarian disasters.
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1.3

1.4

1.2.1 Maiduguri case study

Maiduguri is the capital city of Borno State in northeastern Nigeria
(11°51'N, 13°05'E), with an estimated total population of 1.2 million. Con-
current with rapid urban growth, the local government has been facing ad-
ditional severe challenges. Challenges include natural hazards such as
drought and floods that cause significant adverse effects (Odihi 1996),
both active military events and terrorist attacks that threaten people’s
daily life and the security of urban infrastructure (Ibeh 2015), and large
numbers of internally displaced persons (IDPs) fleeing into Maiduguri af-
ter terrorist attacks, which exhaust the resources in the city, resulting in
further pressure on the system (Haruna 2015). From this angle, the model
aims to better understand and interpret these pressing social concerns,
providing possible policy insights into how best to protect crucial infra-
structures, reserve emergency supplies, and avoid humanitarian disasters.

The HISA pilot study, Maiduguri, Nigeria, is a beta application of the HISA
process for a 12-square-mile region in northeastern Nigeria that includes
the municipal jurisdiction of Maiduguri. Maiduguri is located in the heart
of the rebel activity of Boko Haram and experiences frequent attacks on its
infrastructure. The Alau Reservoir is the primary source of water for Mai-
duguri residents. The shrinking of Lake Chad has also caused several con-
flicts to emerge as sources for water, food, and livelihoods disappear. The
pilot study illustrates the value of the HISA capability and validates results
by using scenarios that mimic past events.

Objective

The objective of this research is to develop and test a network interde-
pendency model that provides quantitative geospatial representations of
socioeconomic impacts of changes to or failures within an infrastructure
system, while considering that population reactions to infrastructure fail-
ures may change demand patterns, which in turn, may affect the entire
system.

Approach

This report provides a review of the reliability-based capability approach,
discusses the proposed framework, discusses the selection of capabilities
and their indicators and regressors, develops probabilistic predictive mod-
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1.5

els of the indicators (or their indices), presents the requirements of the ca-
pability assessment, and presents an illustrative example that describes
the proposed framework.

Significant work remained on operationalizing the reliability-based capa-
bility approach and transforming the methodology into practical tools. In
particular, different steps of operationalizing the capability approach are
explained through a case study example. Furthermore, probabilistic pre-
dictive models are developed for the selected capability indicators and
then the models were calibrated using the observed data available for Mai-
duguri, Nigeria. The predictive models relate the capabilities of individuals
to the three influencing resources (i.e., internal, external, and social and
material structure of the society). The developed predictive models were
used to formulate a system reliability problem. In the reliability problem,
which combinations of indicator indices can lead to different capabilities
states are explained. Specifically, this report illustrates how to define and
estimate the probability of achieving different capabilities states that are in
principle acceptable, tolerable, and intolerable. An important considera-
tion in defining the thresholds between different capabilities states is hu-
man rights that specify the minimum moral thresholds that all individuals
are entitled by virtue of their humanity. The final product, summarizing
the results of the reliability analyses, is a series of maps that show the spa-
tial distribution of each capability dimension over the given region as well
as their aggregation.

Scope
Preceding technical reports on this subject include:

Hart, Steven D., J. Ledie Klosky, Scott Katalenich, Berndt Spittka, and Erik Wright.
(2014). Infrastructure and the Operational Art: A Handbook for
Understanding, Visualizing, and Describing Infrastructure Systems.
ERDC/CERL TR-14-14. Champaign, IL: ERDC-CERL.

Myers, Natalie R., Angela M. Rhodes, Jeanne M. Roningen, Thomas A. Bozada, Lucy A.
Whalley, Susan I. Enscore, Tina M. Hurt, David A. Krooks, Ghassan K. Al-Chaar,
George W. Calfas, and Dawn A. Morrison. 2016. Understanding the Effects of
Infrastructure Changes on Sub-Populations. ERDC TR-16-3. Champaign, IL:
ERDC-CERL.

Xin Wang, Liqun Lu, , Zhaodong Wang, Yanfeng Ouyang, Jeanne Roningen, Scott
Tweddale, Patrick Edwards, and Natalie Myers. 2016. Assessing Socioeconomic
Impacts of Cascading Infrastructure Disruptions in a Dynamic Human-
Infrastructure Network. ERDC TR-16-11. Champaign, IL: ERDC-CERL.
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2 The Capability Approach to Societal
Impact of Disruptions

In order to quantify the effects the infrastructural interdictions have on so-
ciety and local populations of Maiduguri, the Capability Approach (CA)
was adopted. The CA was pioneered by the Nobel prize-winning economist
Amartya Sen and philosopher Martha Nussbaum (Murphy and Gardoni
2006, 1074; Nussbaum 2000; 2007; Robeyns 2006, 351; Sen 1989;
1999a). It has been widely used as the appropriate methodology to meas-
ure human development. Based on the CA, the United Nations Develop-
ment Programme (UNDP) has, since 1990, annually published the Human
Development Report (HDR) with Human Development Indices (HDIs) in-
dicating the human development status of countries throughout the world
(see e.g., UNDP 1990, 2000, 2010, 2015). Within the field of risk and haz-
ard research, Dr. Paolo Gardoni and Dr. Colleen Murphy have further de-
veloped the CA and introduced it to risk and hazard impact analysis (see
e.g., Gardoni and Murphy 2008, 2009, 2010, 2014; Murphy and Gardoni
2006, 2007, 2008, 2010a, 2010b, 2012a, 2012b).

The core concepts of the CA are an individual’s functionings and capabili-
ties. An individual’s functionings are “what an individual does or becomes
in [her or his] life that is of value” (Murphy and Gardoni 2006, 1074). Ex-
amples of functionings include “Being Physically Safe,” “Being Sheltered,”
Being Mobile, and “Having Access to Medical Services.” Meanwhile, capa-
bilities are the “constitutive dimensions of individual well-being and re-
flect what individuals have a genuine opportunity to do” (Gardoni and
Murphy 2014, 1210). The implementation of the CA can effectively capture
the societal impacts that resulted from the infrastructural interdictions of
interest. First, the CA avoids the narrow identification of easily-quantifia-
ble consequences, such as fatalities, injuries, damaged structures, and di-
rect economic losses. Second, the CA provides an accurate, uniform, and
consistent metric for quantifying societal impacts. Third, the CA is based
on an objective methodology, with transparent value judgments to deter-
mine the level of acceptable and tolerable risks instead of resorting to indi-
viduals’ preferences (Murphy and Gardoni 2006, 1077-1080).

In the context of risk analysis, Drs. Murphy and Gardoni developed a ca-
pabilities-based risk analysis to quantify the consequences of hazardous
scenarios. In this approach, the potential societal impact of disruptions is
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evaluated in terms of individuals’ capabilities as constitutive elements of
well-being. The capabilities of individuals refer to their genuine oppor-
tunity to become or achieve things they have reason to value. Examples in-
clude being adequately nourished, having shelter, being mobile, and
becoming educated. Such doings and beings are called functionings. The
capabilities of individuals are influenced by:

« their internal resources,
« their external resources, and
« the social and material structure of the society within which they act.

Internal resources refer to personal skills, talents, and psychological well-
being. Examples of external resources include income and wealth. Cus-
toms and traditions, laws, physical infrastructures, and language are all
examples of the social and material structures that are salient for deter-
mining the capabilities.

In order to implement the CA, two steps needed to be taken. The first step
is to identify the appropriate capabilities (e.g., Figure 1, Figure 2, and Fig-
ure 3), and the second step is to select the pertinent indicators to represent
these capabilities. The first step required the researchers to follow three
criteria, as listed below (Gardoni and Murphy 2010, 623):

« The selected capabilities need to be relevant and important.

« The minimum number of possible capabilities needs to be specified.

« Each of the selected capabilities needs to provide information that can-
not be ascertained from the other capabilities.

The CA process is accomplished by the steps listed below:

» Selection of capabilities. Identify capabilities that provide an accu-
rate picture of the societal impacts.

« Selection of indicators. Pick appropriate indicators that track the
societal impacts on the capabilities of interest.

« Scaling indicators. Scale the salient capability indicators to generate
the corresponding capability indicator indices.

« Development of predictive models for indicator indices. De-
velop regression models that can effectively forecast the changes in the
values of capability indicator indices due to societal impacts of disrup-
tions to civil infrastructure.
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« Development of an aggregated measure of capabilities. De-
velop composite measure that summarizes the changes in capability in-
dicator indices due to disruptions to civil infrastructure.

Figure 1. Capability of accessing potable water (source:: Water Scarcity, Daily Post
Nigeria, Ugwuanyi, 20 January 2015).
Wy A
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Figure 3. Capability of having access 1o electricity (source: www.news24.com).

2.1 Selecting capabilities

Through the combination of literature review, examination of quantitative
datasets, and development and qualitative analysis of the Specific, Meas-
urable, Attainable, Relevant, and Timely (SMART) documents (to be pub-
lished by ERDC-CERL in 2017), the first step was to identify the 10
capabilities in our study. According to the capabilities identified, 16 indica-
tors were selected from two Nigerian surveys to represent the 10 capabili-
ties. In order to test, as well as enhance, this process of indicator selection,
an extensive literature review was conducted, along the corresponding ca-
pability dimensions. This extensive literature review provides the rationale
for final selection of the 16 capability indicators.

Following these criteria, 10 capabilities were selected, based on scholarly
literature review, the development of SMART documents, and rounds of
pertinent academic discussions. The 10 capabilities are:

1. “Meeting the Physiological Needs,”
2. “Being Physically Safe,”

3. “Being Sheltered,”

4. “Having Access to Energy,”

5. “Earning Income,”

6. “Owning Property,”

7. “Being Mobile,”
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8. “Being Educated,”
9. “Having Access to Medical Services,” and
10. “Being Socially Connected.”

The selection of capabilities was initiated and promoted through a combi-
nation of three processes:

« brainstorming guided by the existing literature on human well-being
and capability,

« examining the availability of data that represent human capabilities,
and

« developing and qualitatively analyzing the SMART documents.

Brainstorming generated a list of 49 aspects of human well-being and ca-
pabilities such as values, language, religion or faith, gender roles, ethnic
difference, risk-taking tendency, disaster preparedness, public health, and
education. Researchers referenced the literature of capability studies (e.g.,
Knight 1989; Nussbaum 2007; Oxenham et al. 1989; Wolff and de-Shalit
2007), and then reformulated the pertinent conceptual categories to re-
flect the capability dimensions. The academic explorations into and dis-
cussions on the capability conceptualization were later condensed within a
matrix of capabilities (Table 1) that distinguished the ten identified capa-
bilities from the potential regressors for the regression model used for this
work.

Researchers then scrutinized the existing quantitative datasets that were
used to reflect the human capabilities in the communities of Maiduguri,
Nigeria. The datasets examined included Nigeria’s National Core Welfare
Indicators Survey (NBS [National Bureau of Statistics, Nigeria] 2006), the
Harmonised Nigeria Living Standards Survey (NBS 2009), and the da-
tasets covering Nigeria from the website of Integrated Public Use Micro-
data Series, International (IPUMS International) and (MPC [Minnesota
Population Center] 2016). Attention was given to what variables are ap-
plied, and to what extent the variables are applied to represent the capabil-
ity dimensions that were identified and conceptualized.

During examination of the quantitative datasets, researchers noticed that
these datasets have three limitations, as listed below:
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» There is a lack of highly pertinent variables of interest, such as crime
rate in a community to manifest the capability of “Being Physically
Safe” and the annual household income to reflect the capability of
“Earning Income.”

« A number of highly relevant variables of interest are present in sepa-
rate datasets, while the regression model used here requires them to be
in one single dataset.

« The data collected within the datasets were examined, but they had a
relatively coarse granularity, as the database of IPUMS International
only has data at the nation-state level, and the two Nigerian surveys
have data at a maximum of local government area (LGA) level, which is
lacking neighborhood, community, or household level of information.

Despite these limitations, examination of the dataset confirmed that con-
ceptualization of capability dimensions through developing a matrix of ca-
pabilities is meaningful and can be operationalized.

ERDC-CERL (Construction Engineering Research Laboratory) then devel-
oped the SMART documents in the format of questionnaires to gain in-
sight into the societal characteristics of communities (Figure 4 illustrates
the data question sequence format). The SMART documents were de-
signed to characterize five layers of infrastructure (i.e., communication,
electricity, food security, transportation, and water). Through analysis, re-
searchers confirmed strong connections between the major themes of the
SMART documents and the capability dimensions conceptualized within
the matrix of capabilities (see Table 1).

Assessing infrastructure’s impact with SMART documents follows the gen-
eral sequence shown in Figure 4, and allows for:

« Defined Socio-Cultural Data Needs — understand how society
uses infrastructure and the impact of disruptions.

« Standardized Data — standardized responses support an area-wide
understanding of the human-infrastructure environment.

« Data Guides — guides analysts in interpreting and understanding
data.

« Field Guides - instructions for observers and data collectors.

« Shareable Reports & Dashboards — visualization tools to display
and communicate data and assessments.
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2.2

Figure 4. Data question collection sequence.

SOCiocu Itural Data card: EIECtriCity Is your access to the grid legal or illicit? |

—)l Do you utilize the grid? |

Is the electricity from the grid reliable?

YES

E1. Do you have access to the
national grid?

Do you have a back-up/alternative source? |

NO

What is your source of
electricity at home?

How long does it take to get
the equipment/fuel for your
electricity?

Is the equipment/fuel for this
source readily available?

1
1
1
1
1

¥

E5. Does the institution Can you conduct repairs / How do you obtain it

utilize electricity in regular maintenance yourself?
operations?

l_I

Selecting indicators and regressors

The second step of implementing the CA was selecting the pertinent indi-
cators representing the appropriate capabilities. This process required the
researchers to meet two criteria. The selected indicator needed to be repre-
sentative of the corresponding capability and the chosen indicator needed
to be intuitively plausible (Gardoni and Murphy 2010, 624—626). In order
to ensure the representativity and plausibility of the indicators reflecting
the appropriate capabilities, 16 indicator justifications were developed
with respect to each of the selected 16 capability indicators. These 16 capa-
bility indicators correspond to the 10 capabilities that were identified (see
Table 1). Theoretically, an indicator is a “statistic of direct normative inter-
est which facilitates concise, comprehensive and balanced judgments
about the condition of major aspects of a society” (Land 1975, 15). A good
indicator needs to have high construct validity, or “the degree to which a
measure of a concept actually reflects the concept” (Stinchcombe and
Wendt 1975, 58). The indicators selected to reflect the capability dimen-
sions need to be unidimensional, occupying a single causal locus in the
corresponding theoretical domain (Stinchcombe and Wendt 1975, 60). In
addition, the indicators need to have good reliability, which refers to the
quality of being replicable when used at different times (Stinchcombe and
Wendt 1975, 60).

Based on the 10 capabilities identified and conceptualized, the 16 indica-
tors represent and measure the capabilities. These indicators differ from
the regressors. A regressor is a variable from a quantitative dataset used
and determined by the regression model as being pertinent to predicting
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the value of a capability indicator of interest. Within the study, both indi-
cators and regressors are based on the variables from the quantitative da-
tasets that were investigated. Each indicator provides a schematic of the
capability dimension it represents, and each can be derived from the varia-
bles from the same quantitative dataset to which the indicator belongs.
Any variable that is not the indicator within the dataset becomes a poten-
tial regressor for the regression model to determine. Once examined by the
regression model, a potential regressor will be either discarded from the
model or contained as a regressor for deriving the capability indicator.

Based on these understandings, the appropriate indicators representing

capability dimensions were identified from the two Nigerian surveys (NBS
2006; 2009), since these surveys provide the finest granularity among the
datasets available. Concurrently, existing literature was referenced for evi-

dence to support or disagree with the rationale for selecting capability in-
dicators. This literature evidence is also reflected within Appendix A of
this report, “Capability and Indicator Descriptions.” Bounded within the
theoretical framework delineated by the reviewed literature, 16 indicators
were selected from the two Nigerian surveys to represent the 10 identified
capabilities (Table 1). These indicators were selected based on relevancy
and the availability of data.

Table 1. Matrix of the 10 capabilities and the 16 supporting indicators.

Capability

Indicator

Meeting physiological needs

Main source of drinking water

Frequency of problems with supply of drinking water

Frequency of problems satisfying food needs

Being physically safe

Do members feel safe walking on the street at night?

Being sheltered

Frequency of problems paying house rent

Having access to energy

Source of electricity

Number of hours without electricity in previous 24 hours

Earning income

Household financial situation

Owning property

Number of household durables

Dwelling ownership

Being mobile

Time to nearest food market

Being educated

Time to nearest primary school

Frequency of problems paying school fees
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2.3

Capability

Indicator

Having access to medical
services

Time to nearest hospital

Frequency of problems paying for healthcare

Being socially connected

Can household depend on religious association during

difficult period?

Review of the capability identification and indicator selection
process

Based on the capability identification and indicator selection with the CA,
a corresponding model was developed that measures the pre-interdiction
capability level of the study area, and a logistic regression model was de-
veloped that provides the prediction of the post-interdiction capability
level of the study area—Maiduguri, Nigeria. Through comparing the pre-
interdiction and post-interdiction capability levels of the study area, the ef-
fects to the society and local populations resulting from the infrastructural
interdictions of interest were successfully quantified.

The 16 capability indicator justifications provide the rationale for the deci-
sions of selecting the pertinent indicators to represent the corresponding
10 capabilities. For each indicator, researchers present the capability that
the indicator represents, display the survey question and the correspond-
ing answers for deriving the values of the indicator, detail the pertinent in-
formation, elaborate on the logic for choosing the indicator, and identify
whether the indicator is replicable.

The societal impact is obtained by predicting the individual capability level
as influenced by the physical damage, its cascading effects, and the pro-
pensity of the society impact (i.e., the social vulnerability), which is influ-
enced by its socioeconomic characteristics.

Including the population into this analysis embraces the challenges of rep-
resenting the community and the day-to-day life of individuals within that
community. The analysis looks at indicators and regressors that affect a
given individual’s capability. The 10 capabilities analyze the well-being of
society. Each capability has an indicator or multiple indicators, based on
the determining factors, to identify the capability and the availability of
data to substantiate the determination.
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Tabandeh et al. (2016) extended the capabilities-based risk analysis to pre-
dict the capabilities of individuals by using a system reliability approach.
The overall capability of individuals is treated as a system of intercon-
nected components. Indicator indices, as proxies of specific capabilities,
are the components of the system. To determine the overall capability of
individuals, both the values of indicator indices and how those values col-
lectively determine the overall capability must be known. It is proposed to
develop empirical probabilistic predictive models for each indicator index
that relates the values of the indicator indices to a set of influencing fac-
tors. The developed probabilistic models, along with the configuration of
indicator indices in the system, can be used to formulate a system reliabil-
ity problem and predict the capabilities of individuals, for example, in the
aftermath of a disruption. Comparing the predicted values in the post-dis-
ruption condition with those measured/predicted in the pre-disruption
situation can give an estimate of the extent of the societal impact.

Concurrent with the growth of urban population and the increased rate of
development, the susceptibility of human communities to potentially dev-
astating consequences of hazards is increasing. Consequences of past dis-
asters have shown that such events can adversely impact people and
communities in which they live and result in significant loss of lives, busi-
ness interruption, direct and indirect economic loss, and various other so-
cietal impacts. Examples of such disasters over the past decade include
2005 Hurricane Katerina in the United States, 2008 Sichuan earthquake
in China, and 2011 Tohoku earthquake and tsunami in Japan. The conse-
quences of such events can simply go beyond the geographic boundaries of
the region that has been physically impacted. Also, the impact could be at
multiple scales affecting governments, institutions, economic sectors, live-
lihoods, and people. These past events have highlighted the significance of
accounting for the far-reaching societal impacts, which is crucial both for
the pre-event effective mitigation planning and the post-event optimal re-
source allocation.

Similar hazards in different communities can result in dramatically differ-
ent consequences. Furthermore, it is increasingly becoming clear that peo-
ple and groups are impacted, react, adjust, and recover in different ways
when a disruption occurs. Such differences are rooted in the societal char-
acteristics of the communities. The ultimate impact of disruptive events is
the product of dynamic interactions between the built environment (e.g.,
civil infrastructures) and the societal characteristics of the community.
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Due to the interdependencies of the infrastructure networks, the damage
to the components of each network can propagate through different layers
and result in cascading failures. The damage to the urban infrastructure
would stimulate strong reactions from the population. The extent of such
reactions and the subsequent chaos is related to the level of the realized
damage and the societal characteristics of the communities. The important
challenges in assessing the societal impact are to:

« determine what consequences are contributing and should be consid-
ered,

« develop a mathematical formulation to quantify the overall conse-
quences both in the immediate aftermath of the disruption and over
time, and

« define the acceptable and tolerable levels of the perceived conse-
quences.

The particular focus is to quantify the societal impact of disruptions to civil
infrastructure systems. To this end, researchers identified the dimensions
of well-being which are the testbed in order to quantify, compare, and ag-
gregate the ultimate impact of various disruptive events.
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3.1

Extending the Capability Approach for
Predictive Analysis

Reliability-based capability approach

The reliability-based capability approach augments the indicators and ca-
pabilities by scaling the indicators to create indicator indices, developing
probabilistic predictive models of the indicator indices, and developing an
aggregate measure of the indicator indices. Here, the theoretical back-
ground and the requirements of each step are briefly explained.

In selecting the capabilities, the main focus is on the underlying values of
the problem, based on which capabilities might become important and the
others trivial (capabilities relevance/significance). Among the set of all
pertinent and significant capabilities, the particular interest is to select the
smallest subset of capabilities that can provide all the required infor-
mation (i.e., cover all the important dimensions of well-being in relation to
the problem under study). This property is called the capability parsi-
mony. Furthermore, it is desirable that each of the selected capabilities
provides information that cannot be ascertained from the other ones. This
property is called the capabilities orthogonality. The orthogonality prop-
erty demands to avoid redundant information (i.e., selecting similar capa-
bilities) that leads to overemphasizing a subset of well-being dimensions
in a sense causing double counting.

Because capabilities are not directly measurable, indicators are selected as
proxies for each capability. More precisely, the indicators are quantifying
the achieved functionings. Hence, the selected indicators should be repre-
sentative of the corresponding capability. Furthermore, the availability of
data is an integral part of selecting the indicators. Typically, an ideal list of
indicators is initially developed and justified using the best of knowledge
available in the literature that is also supported by personal explanations.
The ideal list might then be tailored/adjusted based upon the availability
of data. The ideal list, however, could still be used as a guidance of the fu-
ture work to collect the required data.

3.1.1 Scaling indicators

Before developing the aggregate measure, the indicators are scaled to cre-
ate the indicator indices as follows in Equation (1):
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]j _Imin
I, =—— (D

max min

where I, is the indicator index j that varies in the range from o (mini-
mum achievement) to 1 (maximum achievement); / ; 1s the achievement
in indicator j; 7, ,and 7, are the boundaries that specify the absolute
minimum and maximum values of indicator ;. The scaling of the indica-
tors makes them dimensionless and provides a common ground to com-
pare and aggregate indicators with different units and different ranges of
variation.

3.1.2 Indicator predictive models

In this step, probabilistic predictive models are developed for the indicator
indices. There is a two-fold objective in developing the probabilistic pre-
dictive models: (1) relating the values of the indicator indices to their influ-
encing factors, including individuals' personal resources, wealth, social
and material structure of the community within which individuals are act-
ing, like the status of civil infrastructures (e.g., transportation network,
water distribution network, or power grid), and (2) accounting for the pre-
vailing sources of uncertainty in quantifying the indicator indices; specifi-
cally, when predicting the values of the indicator indices in the future, it is
important to acknowledge the presence of uncertainties and appropriately
treat them (for discussions on the different sources of uncertainty, see, for
example, Murphy, Gardoni, and Harris Jr. 2011). The models are cali-
brated by using the observed data. In some cases, the observed data might
also be supported by subjective information. The calibrated models can
then be used, in the context of risk analysis, to predict the new values of
indicator indices when the influencing factors change due to the impact of
a disruption. It is worth noting that the sequence of scaling the indicators
to develop indices and developing predictive models might change. For ex-
ample, in the case of categorical indicators, researchers might first develop
the predictive model of the indicator and then scale the indicator to create
the index.

3.1.3 Aggregate indicators

The last step is to aggregate the indicator indices and determine the over-
all capabilities of the units of study (e.g., individuals, households, commu-
nities, countries). Depending on the values of the indicator indices and
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3.2

their combination, the capabilities state of each unit is one of the follow-
ing:

» acceptable
« tolerable
o intolerable

A system reliability problem can be formulated and analyzed to determine
the capabilities state of each unit, accounting for the uncertainties in the
values/categories of the indicator indices. The first step in the system reli-
ability formulation is to define the states of the indicator indices (i.e., a
map from the values/categories of the indicator indices to a set of prede-
fined states). The second step is to describe what combinations of the indi-
cator indices, in terms of their states, give rise to each of the three
capabilities states. In the last step, a reliability analysis is performed for
each unit, using the developed combination schemes and the probabilistic
models of the indicator indices. The result of the reliability analysis for
each unit is the probability distribution of its capabilities states.

Methods for predictive model framework

This section explains the proposed probabilistic formulation of indicator
indices and how a Bayesian approach calibrates the models, using both the
objective and the subjective information. The objective information refers
to the observed data, and the subjective information refers to the experts’
knowledge. Finally, an explanation is given about how to formulate the re-
liability problem and develop an aggregate measure of the indicator indi-
ces that summarizes the overall impact.

3.2.1 Formulation of the probabilistic predictive models

An empirical probabilistic models were developed to predict the val-
ues/categories of the indicator indices as functions of their influencing fac-
tors. The general form of the proposed probabilistic predictive models is as
follows in Equation (2):

n

g[ll, (Xn@z)] =D 0,5+, (2)
=
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where gl (x,,0)]=mn{l(x,,0,)/[1-1,(x,,0,]}; 1,x,,0, is the pre-
dicted value of the /" indicator index; X, = (x;,....X,, ) is the set of regres-
sors (i.e., influencing factors); @, := (8,,,) is the set of unknown model
parameters that should be estimated, in which 0, :=(6,,...,6, ) ; and o, is
the model error term, in which &, is the standard deviation of the model
error and is assumed to be independent of x, (homoscedasticity assump-
tion) and &, is a standard normal random variable (normality assump-
tion). The accuracy of the model prediction depends on different factors,
including the form of the model, the quality of regressors in a sense that
having strong relation with the corresponding indicator index, and the size
of the database used for model calibration (i.e., estimating @, ).

The predictive model in Equation (2) works well for integer- or real-valued
indicators and, thus, their indices. However, in practice, there are indica-
tors that are categorical and take values only from a finite set. For such in-
dicators, the predictive model in Equation (2) does not apply; hence,
multinomial logit model was developed to predict the outcomes of the cat-
egorical indicators. The general form of the model is as follows Equation

(3):
exp(zjllezijzj) ’ ke{l,-u’Kz_l}’
1+ sziJ exp (znl_ elk/'xli )
PI:[[(Xla@l):k} - ) 1 o (3)
i _ , ke {K },
e

where P[/,(x,,®,) = k] is the probability that the indicator /, 7,(x,,®,), has
thelabel k e {1,...,K,}; X, = (X;,...,x,, ) is a set of regressors; and
0,=09,..0 ,K/_l) is the set of unknown model parameters that should be
estimated, in which 8, =(6,,,...,6,, ) . It is useful to note that ..., x,} is an
ordered set where the assigned numbers (i.e., k < {1,..., K,}) are simply la-
bels and do not show the actual gap between different ’s. Indices (i.e.,
11,(x,,0,)) can then by created by mapping the predicted indicators into
numbers in the interval [0,1].
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3.1.1 Bayesian updating and model selection

To estimate the unknown model parameters in Equations (2) and (3), a
Bayesian updating rule (Box and Tiao 2011) was used, as follows in Equa-
tion (4):

f(0,)=xL(0,)p(0,), 4)

where 7 (@,) is the posterior probability density function (PDF), repre-
senting the updated information about @, ; 1(®,) is the likelihood function
that contains the objective information about @, , gained from the ob-
served values of indicator (indices) and the regressors; p(®,) is the prior
PDF of @,, representing the previous information about @, , based on, for
example, a similar past experiment or experts knowledge; and

K= [IL(@ )p(©,)d®,]" is a normalizing constant. A significant challenge
in the Bayesian inference is computing .- . Typically, the integral

jL((E) ) p(0,)dO, is not analytically tractable, and its exact calculation is
not feasible; however, the Monte Carlo simulation methods can be used
(e.g., Gelman et al. 2014) to make approximate inference. Specifically, the
Markov chain Monte Carlo (MCMC) simulation method (Haario et al.
2006) was used to estimate the posterior statistics of the unknown model
parameters.

The likelihood function is proportional to the conditional probability of the
observed indicator (indices) given a value of @, . Because the predictive
models for the integer-/real-valued indicators (see Equation (2)) and the
categorical indicators (see, Equation (3)) are different, their likelihood
functions would be different as well. Specifically, the likelihood function of
the model in Equation (2) can be written as Equation (5):

L(@)z)oclf[%[w} 5)

where 1, := g(11,)->"" 6,x, is the prediction’s residual for the i"™ obser-

vation (e.g., individual or household). Likewise, the likelihood function of
the model in Equation (3) can be written as Equation (6):
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n K

L(®,)<[[]P[4(x.0) )=k ] (6)

where x, and 7, are the regressors and the label of the indicator 7, for
the /" observation; 1, _;, is an indicator function and defined such that
1, , =1 when 7, =t and 1,, _,, =0, otherwise.

If there is no prior information, a noninformative prior PDF can be used
such that it has no or minimal influence on the posterior PDF. Hence, the
Bayesian inference is unaffected by information external to the observa-
tions. However, in practice, there might be external information beyond
that provided by the observed data. For instance, in the case of a similar
past experiment, the estimated posterior PDF could be used in that experi-
ment as a prior PDF in the current calibration. Likewise, the expert
knowledge could be incorporated to create a subjective prior PDF.

In general, it is possible to use more than just one database for calibrating
the predictive models. In this way, both the number of observations (i.e., !
in Equations (5) and (6)) and the number of variables (i.e., candidate «’s in
Equations (2) and (3)) can be extended. Enriching the database has sev-
eral advantages, including that it: (1) increases the possibility to find varia-
bles analogous to the ideal indicators; (2) increases the flexibility in
selecting informative regressors that can sufficiently describe the variabil-
ity in the corresponding indicators (i.e., increases the model accuracy);
and (3) reduces the statistical uncertainty arises from the scarcity of data
(i.e., the sampled data would sufficiently represent the actual situation of
the population). However, in practice, there are difficulties to using such
potentials. Typically, different databases do not have similar variables or
observations; hence, the databases cannot simply be merged to create a
larger database. Furthermore, the resolution of different databases might
not be the same. There might be databases that give information at the in-
dividual level, whereas others might only provide a summary of the statis-
tics at the local community level. If the same set of variables (i.e., /; s and
«S) are available in different databases, collected at different resolution or
time periods, the updating rule of the Bayesian statistics will benefit in the
following ways. First, the predictive models are calibrated, using one of the
available databases to write £(@,) along with a noninformative p(®,) and
estimate s (@®,). Next, the calibration process is repeated with a new set of
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observations, but this time, with an informative p(@®,) that is the esti-
mated posterior distribution from the previous run. This process can be
repeated sequentially until all available databases are used.

Model selection is an integral part of developing the predictive models.
First a pool of candidate regressors is created. Similar to the selection of
the indicators, a list of ideal candidate regressors is developed that are be-
lieved to have impacts on the corresponding indicators. The ideal list in-
cludes different resources and constraints, listed earlier, that can influence
the capabilities of individuals and, thus, the corresponding indicators. The
ideal list might then be tailored based on the availability of the data. For
practical prediction purposes, it is important to select regressors that are
easily measurable/predictable at different locations and over time (e.g.,
over the region of interest in the aftermath of a disruption). Furthermore,
it is desirable to eliminate the regressors that are not statistically signifi-
cant in predicting the indicator (indices). For this purpose, a stepwise de-
letion process was used to successively eliminate one regressor, X;, at a
time, based on the posterior statistics of the coefficient, 6, . After each
elimination, the model is recalibrated with the remaining regressors. The
process is recursive up to the point that the elimination of one more re-
gressor leads to a relatively significant increase in 0; in Equation (2) or a
measure of the model error in Equation (3). The decision about the signifi-
cance of the increase in the model error or where to stop the process is
subjective, and it depends on the desired level of accuracy and the number
of regressors left in the model.

The predictive models in Equations (2) and (3) are typically calibrated by
using the data representing a stabilized situation of the society. When
these models are used to predict the values/categories of the indicator in-
dices in a chaos situation (e.g., in the aftermath of a disruption), care
should be taken about changing the values of the regressors. To explain
this point, attention is drawn to the relation between the indicator indices
and their regressors. This relation can be of two kinds: (1) causal relation,
in which a regressor is a sufficient cause to realize the indicator index, and
(2) noncausal relation, in which there is only a pattern between the meas-
ured/predicted regressor and the corresponding indicator index. When the
relation is causal, a change in the value of the regressor means a change in
the value/category of the indicator index, both in the stabilized and the
chaos situations. However, in the case of the noncausal relation, a change
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in the value of the regressor happens in a condition different from the cali-
bration one, and such a change can lead to a change in the value/category
of the indicator (index) that might not replicate the reality. Hence, in this
case, it might be reasonable not to change the values of such regressors.

3.2.2 Formulation of the reliability problem

The three capability states are defined in terms of the states of the indica-
tor indices and their combinations. Murphy and Gardoni (2008) defined
three states for the indicator indices with the same labeling as the capabil-
ity states (i.e., acceptable, tolerable, intolerable). The principles of human
rights (e.g., dignity, fairness, equality, and autonomy) can guide the de-
scription of what conditions constitute each of the acceptable, tolerable,
and intolerable states of the indicator indices. Human rights represent
moral standards that individuals in a society should not fall below (e.g.,
human right to life, health, and subsistence; Caney 2010). According to
Murphy and Gardoni (2008), the values/categories of the indicator indices
that correspond to the intolerable state are so low that no individual
should ever experience that state, regardless of its duration. To determine
the states of the indicator indices, with reference to the previous discus-
sion, first partition the values/categories of each indicator index into its
acceptable, tolerable, and intolerable states. This partitioning can be used
to determine the state of indicator indices and eventually, the capabilities
states in the immediate aftermath of a disruption. To determine the state
of the indicator indices and, thus, capabilities states over time, the effect of
recovery is accounted for. For example, the tolerable state of the indicator
indices would become intolerable if the required recovery time to improve
to the acceptable state exceeds a reference duration.

Mathematically, the indicator indices are modeled as discrete random var-
iables with three possible states. The probability of each state can be writ-
ten as Equation (7):

P(Ij = Acceptable) = P(I]_I. >l ),

Jj»acc

P(Z, = Tolerable) =P (II, <ii, ... II, 2 ii, ., T, , <t ,), (7)

Jj,acc? jtol> R, j —

j,acc? j.tol> "R, j

P(Z, = Intolerable) = P(1I, <ii, o U{l, <ii, ., 1T, 2 i, . Ty, > 1y, })
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where Z,:[0,1]xR, — {Acceptable,Tolerable,Intolerable} is the mapping func-
tion from the values of the indicator indices and the recovery time to their
states; /I, is the random indicator index j modeled by Equation (2) or (3);
i, .. €(0,1) is the acceptable threshold that delimits the acceptable and tol-
erable states of the indicator index j; i, €(0,ii, ) is the tolerable
threshold that delimits the tolerable and intolerable states of the indicator
index j; T} ; is the random recovery time to improve the state of the indi-
cator index j from the tolerable state to the acceptable one; and {; ; is the
reference recovery duration beyond which the tolerable state transforms
into the intolerable one. It is useful to note that not all the indicator indi-
ces necessarily realize all the three states. There might be indicator indices

for which only two states are defined (e.g., acceptable and intolerable).

The indicator indices can be viewed as the components of a system that are
interacting with each other to satisfy a desired objective which in this case
is the well-being of individuals. A fault-tree analysis is used to explore the
conditions that can cause an unfavorable state of the system (i.e., tolerable
or intolerable capabilities state). A fault tree is a deductive technique
which starts with the unfavorable state of the system, called the top event,
and then considers what can cause the occurrence of this state. The imme-
diate causal events are identified and connected to the top event through a
logic gate (i.e., an OR-gate or AND-gate). This deductive process then con-
tinues from each of the immediate causal events until a certain level of de-
tail is reached, called the basic events. A fault tree schematically illustrates
how the occurrence of the basic events collectively give rise to the top
event. A collection of the basic events, whose joint occurrence ensures re-
alizing the top event, is called a cut-set. A cut-set is said to be minimal if
there is no redundant basic event in the collection. In other words, a mini-
mal cut-set is no longer a cut-set if any of the basic events is removed from
the collection. The occurrence of at least one minimal cut-set is sufficient
to realize the top event. Subsequently, the probability of the top event
comes down to the calculation of the probability of occurrence of at least
one minimal cut-set from all the potential ones.

Figure 5 shows an example fault-tree where the top event is the intolerable
state of the capabilities. The immediate causal events, C ;1> C, o>+ Cringor
are the intolerable states of each capability, connected to the top event

through an OR-gate. This structure implies that the top event occurs when

at least one capability is in its intolerable state. The justification is that be-

intol *



ERDC/CERL TR-16-15 25

cause capabilities are selected to be equally important and capture differ-
ent aspects of well-being, failing to satisfy the acceptable state in each di-
mension leads to the unacceptable state (i.e., intolerable state in this
example) of the entire system. In the next step, the intolerable state of
each capability is determined in terms of the corresponding indicator indi-
ces. For instance, the causal event C,;,, occurs when at least one of the in-
dicator indices 7, 11,, or I, is in its intolerable state. Assuming a similar
situation for all the other capabilities, the overall capabilities can be mod-
eled as a series system of 1/ ; S, such that the intolerable state of any Hj
leads to the intolerable state of the overall capabilities. Accordingly, the
probability of the top event can be written as Equation (8):

P(C = Intolerable) = P [U(I = Intolerable)}, (®)

j

where C: {Z, x---x1,} = {Acceptable,Tolerable,Intolerable} is a mapping
function from the states of the indicator indices to the capabilities state.
For the purposes of calculation, reliability methods can be used to solve
Equation (8). Examples of such methods include the First-Order Reliabil-
ity Method (FORM), the Second-Order Reliability Method (SORM), or dif-
ferent simulation methods.

Figure 5. A fault-tree analysis of the intolerable state of a
series system of capability indicators (University of lllinois).
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3.3

Aggregation process

To evaluate the capabilities of individuals, first the states of each indicator
are determined. Fault-trees are created that explain the topology of the
system. Subsequently, for each community, system reliability problems are
formulated, and the probability distribution of the states of each capability
are calculated as well as the probability distribution of the overall capabil-
ity 