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Executive Summary 

Spatial forecasts from Numerical Weather Prediction (NWP) models of tactically 
significant meteorological variables to support Army operations on the battlefield 
have become an integral part of the products available for the Air Force Staff 
Weather Officer to use in providing mission planning and execution forecasts. 
These forecasts are ingested by Army tactical decision aids (TDAs). These TDAs 
fuse information on the characteristic operational weather thresholds that affect  
the performance of Army systems and missions with the spatial forecast 
information from NWP to generate spatial forecasts of these impacts for  
user-specified systems and/or missions for the time period and location of interest. 
This report presents methods that can verify spatial forecast fields of 
meteorological variables that have been filtered by the application of a threshold 
the same way as that used by the TDA. In effect, a threshold applied to a 
continuous variable field becomes a categorical forecast for which there are 
traditional and nontraditional methods for verification. This study evaluates the 
ability of the NWP model to predict a category of the spatial variable.  

Traditional methods have been developed to verify the skill of NWP to predict 
categories of continuous meteorological variables. These methods apply the 
established theoretical framework for evaluating deterministic binary forecasts. 
This framework involves defining a binary event through the application of a 
category or threshold and evaluates the forecast skill by counting the numbers of 
times the event was forecast or not and observed or not in a contingency table. 
There are numerous statistics and skill scores that can be computed from the data 
collected by this method. For this study, we obtained forecasts from the Army’s 
Weather Running Estimate–Nowcast (WRE–N), which is a version of the 
Advanced Research Weather Research and Forecasting Model adapted for 
generating short-range nowcasts and gridded observations produced by the 
National Oceanographic and Atmospheric Administration’s Global Systems 
Division using the Local Analysis and Prediction System. A tool developed by the 
National Center for Atmospheric Research (NCAR) called MET Series-Analysis 
was used to generate the skill scores and statistics at every grid point and then 
graphical products that display the spatial distribution of the scores and statistics. 

Nontraditional methods have been developed to assess the ability of NWP models 
to predict the occurrence of precipitation through the application of a  
spatial-object-based approach, which compares the attributes of the forecast areas 
of precipitation with those obtained from observations of precipitation areas. This 
method applies techniques developed for image processing and matching with the 
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goal of quantifying the degree to which the forecast object is analogous to an 
observed object. This involves the application of a threshold to the variable field 
to define the objects of interest. For this study, we used the object-based  
forecast-evaluation tool developed by NCAR called Method for Object-Based 
Diagnostic Evaluation (MODE). MODE was developed to evaluate model 
precipitation forecasts. For this study, a novel approach was taken by applying 
MODE to assess the ability of the WRE-N to predict objects in continuous 
meteorological variable fields.  

Preliminary results suggest a combination of a traditional technique for assessing 
categorical forecasts with a nontraditional object-based, forecast-evaluation 
technique has great potential in assessing forecasts of continuous variables—
especially when most TDAs rely on a specific threshold of a particular variable 
such as temperature to determine impacts on Army missions and systems. 
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1. Background 

As computing technology has advanced, the weather-forecasting task, once the 
primary role of a human forecaster in theater, has shifted to computerized 
Numerical Weather Prediction (NWP) models. Scientists around the world have 
used the Weather Research and Forecasting model (WRF) extensively for many 
applications. In this study, we have used the Advanced Research version of WRF 
(Skamarock et al. 2008) that we abbreviate as WRF–ARW. WRF–ARW includes 
Four-Dimensional Data Assimilation (FDDA) techniques that can be used to 
incorporate observations into the model so that forecast quality is improved (Deng 
et al. 2009; Stauffer and Seaman 1994). The US Army Research Laboratory 
(ARL) uses WRF–ARW as the core of its Weather Running Estimate–Nowcast 
(WRE–N) weather-forecasting model. 

The Army requires high-resolution weather forecasting to model atmospheric 
features with wavelengths on the order of 5 km or less, which imposes a 
requirement for NWP to operate on a model grid spacing on the order of 1 km or 
less in the finest, or most resolved, domain to resolve weather phenomena of 
interest to the Soldier in theater. The atmospheric flows of interest to the Army 
include mountain/valley breezes, sea breezes, and other flows induced by 
differences in land-surface characteristics. High-resolution NWP forecasts need to 
be validated against observations before their outputs can be used by applications 
such as My Weather Impacts Decision Aid (MyWIDA), an Army-developed 
decision aid used to determine atmospheric impacts on Army and Joint systems 
and operations (Brandt et al. 2013). Weather-forecast validation has always been 
of interest to the civilian and military weather-forecasting community; see, for 
example, the reviews by Ebert et al. (2013) and Casati et al. (2008) or the guides 
by Jolliffe and Stephenson (2012) or Wilks (2011). The validation of the models, 
especially high-resolution NWP, has proven to be especially difficult when 
addressing small temporal and spatial scales (NRC 2010) that characterize NWP 
for use in Army applications. Furthermore, the verification of WRE–N spatial 
fields of continuous meteorological variables that have been filtered by the 
application of a threshold to evaluate the applicability of such output for use in 
MyWIDA has not been accomplished. 

The WRF model is maintained by the National Center for Atmospheric Research 
(NCAR), which has also developed a suite of Model Evaluation Tools (MET) 
(NCAR 2013) to evaluate WRF–ARW performance. MET was developed at 
NCAR through a grant from the US Air Force 557th Weather Wing (formerly the 
Air Force Weather Agency). NCAR is sponsored by the National Science 
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Foundation. MET Series-Analysis performs categorical verification of gridded 
model output against observations that have been analyzed and placed on a grid 
matching that of the model. MET Method for Object-Based Diagnostic 
Evaluation (MODE) has been used for object-based spatial verification of high-
resolution forecast grids of precipitation.  

ARL has employed MET MODE in prior assessments such as that of Cai and 
Dumais (2015). They evaluated the 3-km grid spacing High Resolution Rapid 
Refresh (HRRR) model to demonstrate the utility of a nontraditional object-based 
technique in providing additional information to improve model precipitation 
forecasts to complement the information provided by traditional verification 
techniques. In a separate study, Vaucher and Raby (2014) developed the 
capability to use MODE for object-based assessment of 1-km grid spacing WRE–
N output of continuous meteorological variables. For this study, the only source 
of gridded observations available was from the National Oceanic and 
Atmospheric Administration (NOAA)–National Centers for Environmental 
Prediction (NCEP) Real-Time Mesoscale Analysis (RTMA) product (De Pondeca 
et al. 2011). In Vaucher and Raby (2014), the RTMA product, generated at a 
horizontal grid spacing of 2.5 km, was used with the WRE–N output that was 
remapped from a 1-km grid to a 2.5-km grid to produce the required matching 
grid.  

MODE proved to be useful as an assessment tool for the WRE–N over an Army-
scale domain, and plans were made to expand its use to perform evaluations of 
continuous meteorological variables generated by the WRE–N at 1.75-km grid 
spacing. Collaborations with NOAA’s Global Systems Division (GSD) resulted in 
the generation of 1.75-km grids of observations of surface meteorological 
variables for the same domain as the WRE-N using the NOAA–GSD Local 
Analysis and Prediction System (LAPS).  

The WRE–N was run with and without FDDA for 5 case-study days over a  
1.75-km grid-spacing domain in Southern California over highly varied terrain 
and with a dense observational network that provided a robust data set of model 
output for analysis. The case-study days from February–March 2012 were picked 
to vary weather conditions from a strong synoptic forcing situation to a quiescent 
situation. (The weather conditions for each study day are described in Section 
2.3.)  

This study explores the utility of MET Series-Analysis and expands the utility of 
MODE for assessing the WRE–N at tactically significant grid spacings; also, it 
evaluates the accuracy of WRE–N spatial forecasts of continuous meteorological 
variables that have been filtered using a threshold similar to the way MyWIDA 
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uses WRE–N output to provide spatial distributions of forecast weather impacts to 
Army missions and systems.  

2. Domain and Model 

The ARL WRE–N (Dumais et al. 2004; Dumais et al. 2013) has been designed as 
a convection-allowing application of the WRF–ARW model (Skamarock et al. 
2008) with an observation-nudging FDDA option (Deng et al. 2009; Liu et al. 
2005). For this investigation, the WRE–N was configured to run over a multi-nest 
set of domains to produce a fine inner mesh with 1.75-km grid spacing and 
leveraged an external global model for cold-start initial conditions and time-
dependent lateral boundary conditions for the outermost nest. Table 1 describes 
the dimensions for the triple-nested domain. This global model for ARL 
development and testing has been the National Center for Environmental 
Prediction’s Global Forecast System (GFS) model (EMC 2003). The WRE–N is 
envisioned to be a rapid-update cycling application of WRF–ARW with FDDA 
and optimally could refresh itself at intervals up to hourly (dependent upon the 
observation network) (Dumais and Reen 2013; Dumais et al. 2012). 

Table 1 WRE–N triple-nested domain dimensions in km 

East–West dimension North–South dimension Grid spacing 
1780 1780 15.75 
761 761 5.25 
506 506 1.75 

 
For this study, the model runs had a base time of 1200 coordinated universal time 
(UTC) and produced output for each hour from 1200 UTC to 0600 UTC of the 
following day for a total of 19 hourly model outputs, which were produced for 
each of 5 days in February and March 2012. The modeling domains are depicted 
in Fig. 1. 
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Fig. 1 Triple-nested model domains: domain center points are coincident and are 
centered near San Diego, California (Google Earth 2016) 

2.1 Observations for Assimilation 

The initial conditions were constructed by starting with the GFS data as the first 
guess for an analysis using observations. Most observations were obtained from 
the Meteorological Assimilation Data Ingest System (MADIS) (NOAA 2014), 
except for the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) 
(Daniels et al. 2006) observations, which were obtained from AirDat, LLC. The 
MADIS database included standard surface observations, mesonet* surface 
observations, maritime surface observations, wind-profiler measurements, 
rawinsonde soundings, and Aircraft Communications, Addressing, and Reporting 
System (ACARS) data. Use and reject lists were obtained from developers of the 
RTMA system (De Pondeca et al. 2011), and these were used to filter MADIS 
mesonet observations. This quality-assurance evaluation is especially important 
given the greater tendency of mesonet observations to be more poorly sited than 
other, more standard, surface observations. 

 
*A network of automated meteorological observation stations. 
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The Obsgrid component of WRF was used for quality control of all observations. 
This included gross-error checks, comparison of observations to a background 
field (here GFS), and comparison of observations to nearby observations. We 
modified Obsgrid to allow for single-level observations such as the TAMDAR 
and ACARS data to be more effectively compared against the GFS background 
field. The quality-controlled observations were output in hourly, “little_r” 
formatted text files for use as ground-truth data for model assessment. We 
employed observation nudging to the observations from these same sources for 
the preforecast period of 1200–1800 UTC (0- through 6-h lead times), followed 
by 1 h ramping down of the nudging from 1800 to 1900 UTC, during which no 
new observations are assimilated. The true, free forecast period thus begins at 
1800 UTC, because no observations after this time are assimilated.  

2.2 Parameterizations 

For the parameterization of turbulence in WRE–N, a modified version of the 
Mellor–Yamada–Janjić (MYJ) planetary boundary layer (PBL) (Janjić 1994) 
scheme was used. This modification decreases the background turbulent kinetic 
energy (TKE) and alters the diagnosis of the boundary-layer depth used for model 
output and data assimilation (Reen et al. 2014). The WRF single-moment, 5-class 
microphysics parameterization is used on all domains (Hong et al. 2004), while 
the Kain–Fritsch (Kain 2004) cumulus parameterization is used only on the  
15.75-km outer domain. For radiation, the Rapid Radiative Transfer Model 
(RRTM) parameterization (Mlawer et al. 1997) is used for longwave radiation and 
the Dudhia (1989) scheme for shortwave radiation. The Noah land-surface model 
(Chen and Dudhia 2001a, 2001b) is used. Additional references and other details 
for these parameterization schemes are available from Skamarock et al. (2008). 
Table 2 lists the WRF configuration settings. 
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Table 2 WRE–N configuration 

Configuration Y/N? 
WRF-ARW V3.4.1 Yes 
Obs-nudging FDDA Yes 
Multinest (15.75/5.25/1.75 km) Yes 
MADIS observations (FDDA) Yes 
TAMDAR observations (FDDA) Yes 
Ship/buoy observations (FDDA) Yes 
Filter obs (use/reject) (FDDA) Yes 
RUNWPSPLUS QC (FDDA) Yes 
Obs-nudge rad 120,60,20 Yes 
MYJ-PBL scheme (modified) Yes 
WRF, sgl-moment, 5-class mp Yes 
Option 8 – microphysics  Yes 
End FDDA 360 mins Yes 
Kain-Fritsch cum param (outer dom) Yes 
RRTM longwave rad (Mlawer) Yes 
Short wave rad (Dudhia) Yes 
Noah land surface model Yes 
Fix for nudge to low water vapor Yes 
Model top 10 hPa Yes 
Feedback on Yes 
Obs weighting function 4E-4 Yes 
57 vertical levels  Yes 
48-s time step Yes 

2.3 Case-Study Days 

The case-study days were selected on the basis of the prevailing synoptic weather 
conditions over the nested domains. Table 3 provides a short description of these 
conditions. 

Table 3 Synoptic conditions for the case-study days considered 

Case Dates (all 2012) Description 
1 February 07–08 Upper-level trough moved onshore, which led to widespread 

precipitation in the region. 
2 February 09–10 Quiescent weather was in place with a 500-hPa ridge 

centered over central California at 1200 UTC. 
3 February 16–17 An upper-level low located near the California–Arizona 

border with Mexico at 1200 UTC brought precipitation to 
that portion of the domain. This pattern moved south and east 
over the course of the day. 

4 March 01–02 A weak shortwave trough resulted in precipitation in northern 
California at the beginning of the period that spread to 
Nevada, then moved southward and decreased in coverage. 

5 March 05–06 Widespread high-level cloudiness due to weak upper-level 
low pressure but very limited precipitation. 
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2.4 Observations for Verification 

The LAPS gridded observation data sets produced by NOAA–GSD consisted of 
12 hourly Gridded Binary format, edition 2 (GRIB2) files of 2-m above-ground-
level (AGL) temperature (TMP), relative humidity (RH), and dew-point 
temperature (DPT), and 10-m AGL U-component and V-component winds for the 
period of 1200–2300 UTC (forecast lead times 0 through 11) on each of the 5 
cases. The output grid used by the LAPS was 289 × 289 with 1.75-km grid 
spacing.  

3. Data Preparation Using MET 

The model and observational data were preprocessed into the formats required by 
MET Series-Analysis and MODE. The WRE–N model output data were 
converted from native Network Common Data Form (NetCDF) files to hourly 
Gridded Binary format, edition 1 (GRIB) files by the WRF Unified Post 
Processor, which destaggers the data onto an Arakawa-A Grid containing  
288 × 288 grid points. The hourly GRIB2 files on a 289 × 289 grid had to be 
remapped to the 288 × 288 grid to match that of the WRE–N grid. The NCAR 
“COPYGB” utility program was used to remap the observations and convert the 
files to GRIB (Developmental Testbed Center 2016). We used MET Series-
Analysis to generate the grid-to-grid, categorical-error statistics for surface 
meteorological variables TMP and DPT in degrees Kelvin (deg K), RH (%), and 
wind speed in meters per second (WIND). Series-Analysis computed the 
contingency-table statistics and skill scores for each forecast hour for 5 different 
thresholds (categories) at every grid point over all 12 forecast lead times and all 5 
case-study days. The thresholds were specified using the FORTRAN convention 
of “GE” to indicate greater than or equal to the given threshold value and are 
shown in Table 4.  

Table 4 Thresholds used in MET Series-Analysis 

TMP (deg K) DPT (deg K) RH (%) WIND (m/s) 
270 262 25 2 
275 267 40 5 
280 272 55 8 
285 277 70 11 
290 282 85 14 

 
MET Series-Analysis generates many categorical skill scores and contingency-
table statistics. Of these, Table 5 lists those which were output initially.  
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Table 5 Initial Series-Analysis skill scores and contingency-table statistics 

Score/statistic Description 
BASER Base rate 
FMEAN Mean forecast value 
PODY Hit rate 
FAR False alarm ratio 
FBIAS Frequency bias 
CSI Critical success index 
GSS Gilbert skill score 
ACC Accuracy 

 
For this study, we reduced our analysis to consider only CSI and FBIAS for the 
variables of 2-m AGL TMP and RH and 10-m AGL WIND to accomplish a 
preliminary evaluation of the utility of categorical verification in assessing the 
accuracy of WRE–N output that was filtered by application of a threshold. The 
Series-Analysis output NetCDF file was ingested into the Unidata Integrated Data 
Viewer, which was used to generate graphics displaying the spatial distribution of 
the CSI and FBIAS over the WRE–N domain (Murray et al. 2016). 

We used MET MODE to generate statistics from the comparison of objects in the 
forecast fields and observed fields for each variable for each forecast hour for a 
single threshold (category) over all 12 forecast lead times and all 5 case-study 
days. The statistics computed were total number of objects and total area of 
objects defined by the threshold for each modeled and observed variable. The 
thresholds used were selected from those used for MET Series-Analysis and were 
specified as GE to the given threshold value and are shown in Table 6. 

Table 6 Thresholds used in MET MODE 

TMP (deg K) DPT (deg K) RH (%) WIND (m/s) 
290 282 85 11 

4. Data Analysis  

4.1 Analysis of MET Series-Analysis Results 

The CSI and FBIAS are defined by a ratio of counts determined using a 2 × 2 
contingency table. Table 7 shows the contingency table with notation consistent 
with the formulae for the scores and statistics as implemented in the MET 
(NCAR, 2013). 
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Table 7 The 2 × 2 contingency table from the MET User’s Guide 4.1 

 
The CSI score (Eq. 1) is computed as described in the MET User’s Guide 4.1: 

 

with CSI being the ratio of the number of times the event was correctly forecasted 
to occur to the number of times it was either forecasted or occurred. CSI ignores 
the “correct rejections” category (i.e., n00). 

The value of the CSI ranges between 0 and 1, with 1 being a perfect forecast and 
0 being a forecast with no skill.  

The FBIAS score is computed as described in Eq. 2: 

 

with FBIAS defined as the ratio of the total number of forecasts of an event to the 
total number of observations of the event. A “good” value of Frequency Bias is 
close to 1; a value greater than 1 indicates the event was forecasted too frequently 
and a value less than 1 indicates the event was not forecasted frequently enough. 

 

,                   (1) 

,         (2) 
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4.1.1 Apply CSI for Assessment of the WRE–N 

A display of the spatial distribution of the CSI for TMP is shown in Fig. 2. The 
CSI for TMP shows scoring in all areas with the exception of high elevations in 
the mountains in the central portion of the domain—as indicated by white 
coloring—that do not contain calculated values for CSI. This is due to the lack of 
event occurrences with which to calculate a score. This is not inconsistent with 
the expectations for lower TMPs at higher elevation. The higher values of CSI are 
located inland over lower-elevation areas with the exception of the Salton Sea, 
which has anomalously low CSI. Subsequent investigation of the LAPS gridded 
observations revealed that the land-surface model used was of insufficient 
resolution to adequately distinguish the water area of the Salton Sea from the 
surrounding land area; thus, it did not provide a good ground-truth representation 
for this area. The CSI over the ocean is homogeneously near zero while over land 
the CSI varies irregularly.  

 

Fig. 2 CSI for 2-m AGL TMP at GE 290 K 
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Considering the factors that affect the CSI, the occurrence of near-zero CSI over 
the ocean may be related to the lack of a significant number of occurrences of 
TMP GE 290 K, since this TMP is at the highest part of the range for the entire 
domain and the likelihood for this to occur over the ocean is lower. More analysis 
of additional scores and statistics is needed to discern whether this is the case or 
there is another reason. 

A display of the spatial distribution of the CSI for RH is shown in Fig. 3. 

 

Fig. 3 CSI for 2-m AGL RH at GE 85% 

The CSI for RH shows scoring over a large portion of the domain, but there is a 
significant part of the domain over interior land areas that has no scoring—as 
indicated by the white color—due to no occurrences of RH at GE 85%. There is a 
limited area of moderate to high CSI located inland in the coastal zone and lower-
elevation areas, while a significant portion of the land area has low CSI. The CSI 
over the ocean is low to moderate.  
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The distribution of low to moderate CSI lies roughly equally between land areas 
and ocean areas. Over the water and some coastal areas (and perhaps some of the 
higher-elevation areas) the expectation of occurrences of RH at GE 85% is higher; 
thus, insufficient numbers of occurrences are not considered the cause of low 
scores in these areas. Analysis of additional scores and statistics is needed to 
understand the reasons for the poor performance in these areas. 

A display of the spatial distribution of the CSI for WIND is shown in Fig. 4. 

 

Fig. 4 CSI for 10-m AGL WIND at GE 11 m/s 

The CSI for WIND shows that low to moderate CSI dominates the domain with 
higher CSI in isolated, small areas over the ocean. There are also extensive areas 
with no event occurrences for scoring, as indicated by the white color.  

The poor performance in most of the domain may be related to low numbers of 
occurrences of WIND at GE 11 m/s. Analysis of additional scores and statistics is 
needed to understand the reasons for the overall poor performance. 



 

Approved for public release; distribution is unlimited. 
13 

4.1.2 Apply FBIAS for Assessment of the WRE–N 

A display of the spatial distribution of the FBIAS for TMP is shown in Fig. 5. The 
FBIAS for TMP shows scoring over the entire domain with the exception of high-
elevation locations in the mountains in the central portion of the domain (as 
indicated by white coloring), which represents no event occurrences for 
calculating scores. Most of the land areas have little bias with a notable exception 
in higher terrain in Mexico, where there are areas with a tendency to overforecast 
TMPs GE 290 K. The Salton Sea appears to be an area of anomalous 
underforecasting of the event for the reasons previously mentioned. The oceanic 
areas are homogeneous and also have a tendency for underforecasting of the 
event. 

 

Fig. 5 Frequency bias for 2-m AGL TMP at GE 290 K 

Noting a uniform pattern of underforecasting over the oceans coinciding with a 
similar uniform pattern of low CSI, again, this may be related to the lack of 
occurrences of TMP GE 290 K: this TMP is at the highest part of the range for the 
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entire domain and the likelihood for this to occur over the ocean is low. The 
extensive areas of small bias over land show good forecast skill, but not all of this 
area showed equally good CSI scores. The lower-elevation areas in the eastern 
part of Southern California are where higher CSI coincided with little or no bias 
and reflect good performance by the model. More analysis of additional scores 
and statistics is needed to better understand the uniform pattern of the 
underforecasting tendency over the ocean. 

A display of the spatial distribution of the FBIAS for RH is shown in Fig. 6.  

 

Fig. 6 Frequency bias for 2-m AGL RH at GE 85% 

The FBIAS for RH at GE 85% gives a limited assessment of the model over land. 
There are significant areas over land with no apparent scoring, as indicated by the 
white color. Where there is scoring over land, there are areas of underforecasting 
bias and little to no bias over coastal areas and lower elevations of the 
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southeastern part of the domain. Over the ocean, the prevailing tendency is for 
overforecasting of RH. 

The areas with no FBIAS scoring are most likely the result of the lack of 
occurrences of RH at GE 85%. Analysis of additional scores and statistics is 
needed to understand the reasons for the significant tendency for overforecasting 
of RH over the ocean. 

A display of the spatial distribution of the FBIAS for 10-m AGL WIND is shown 
in Fig. 7.  

 

Fig. 7 Frequency bias for 10-m AGL WIND at GE 11 m/s 

The FBIAS for WIND at GE 11 m/s shows a very limited assessment of the 
model. There are extensive areas with no scoring over land. The limited areas 
where there is scoring show small bias over higher-elevations locations in the 
United States and a notable underforecast tendency at higher elevations in 
Mexico. Over the ocean, there is better coverage of scoring with large areas of 



 

Approved for public release; distribution is unlimited. 
16 

underforecast bias surrounding a significant area of overforecast bias and with 
limited areas of little or no bias. 

The areas with no FBIAS scoring are most likely the result of the lack of 
occurrences of WIND at GE 11 m/s. Analysis of additional scores and statistics is 
needed to understand the reasons for the limited amount of scoring. 

4.1.3 Compare CSI and FBIAS Results for WRE–N with, without FDDA 

MET Series-Analysis was run using output from the WRE–N that was produced 
without the FDDA to provide a basis for comparison of categorical skill scores 
with the WRE–N that was produced with the FDDA. Figures 8 and 9 display the 
spatial distribution of the CSI and FBIAS for TMP at GE 290 K and WIND at GE 
11 m/s for both runs of the WRE–N. 

 

Fig. 8 CSI for 2-m AGL TMP at GE 290 K and WIND at GE 11 m/s for WRE–N with 
and without FDDA 
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Fig. 9 Frequency bias for 2-m AGL TMP at GE 290 K and WIND at GE 11 m/s for 
WRE–N with and without FDDA 

The purpose of running the WRE–N with FDDA is to improve the quality of the 
forecasts. The CSI and FBIAS were computed from forecasts generated by the 
WRE–N with and without FDDA to quantify the quality of each model run so a 
comparison could be made to determine the value added by running the model 
with FDDA. The CSI and FBIAS for both temperature and WIND show there is 
little apparent difference between the spatial distributions of the scores for both 
runs. 

4.1.4 Summary of Application of Categorical Verification Techniques 

The frequency of occurrence of forecast events determined by the application of a 
threshold to a continuous variable field varies over the domain and affects the CSI 
and FBIAS scores in a way that may give a misleading assessment of the model’s 
ability to forecast objects. Analysis of more scores and contingency-table 
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statistics is needed to improve assessments of the ability of the model to forecast 
objects. Improved assessments of this aspect of model performance will lead to 
model improvements to enable better prediction of objects, which will, in turn, 
translate into better TDA weather-impact predictions.  

The accuracy of the model judged from the scores varies considerably over the 
domain due to a combination of terrain characteristics and mesoscale variations in 
the air-mass characteristics. Analysis of more scores and contingency-table 
statistics is needed to better relate them to terrain and air-mass characteristics. The 
implications of this variability suggest that weather impacts on Army systems and 
missions vary considerably in space. 

The value-added use of FDDA as judged from spatial displays of categorical 
scores and statistics is difficult to quantify. There are areas where the patterns of 
the scores computed with and without FDDA vary slightly over space, which 
implies the FDDA’s value is a function of the terrain and/or mesoscale variations 
in air-mass characteristics present over the domain. Analysis of such differences 
using other approaches may provide more insight as to their causes.  

The selection of the threshold to be used for generation of categorical verification 
scores and statistics will directly impact the extent of useful scores and statistics 
over the domain. Thus, it is important to include actual system and mission 
thresholds to more accurately assess the ability of the model to predict objects that 
are meaningful to the Army. That said, the use of actual thresholds will 
significantly reduce the number of locations and time periods in which the 
atmospheric conditions can provide the range of variable values that encompass 
these thresholds. The impact of these 2 situations—each at odds with the other—
has to be judged with the understanding that meaningful conclusions about model 
performance can only come from the analysis of large numbers of cases. So, there 
is a tradeoff between analysis of data sets for fewer cases where tactically 
significant thresholds can be applied and data sets that were developed using 
thresholds defined by using the actual ranges of the variables present over the 
domain. The former presents challenges due to lack of statistically significant 
numbers of cases; the latter presents a challenge of limited application for 
assessment of the ability of models to forecast objects using mission- and system-
specific thresholds. 

4.2 Analysis of MET MODE Results 

Traditional grid-versus-grid forecast-verification scores, such as CSI and FBIAS, 
provide a simple, straightforward picture of forecast quality—but, they offer very 
little diagnostic information, which is essential for modelers as well as model 
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users to better understand model performance. Feature- or object-based forecast-
evaluation methods such as MODE were designed to fill the gap so that the 
reasons why a particular forecast is good or bad can be inferred. Traditionally, 
MODE has only been applied to sporadic, discontinuous fields such as 
precipitation, since it is natural to treat storms that produce precipitation as 
objects. There was no need to apply MODE to continuous variables such as TMP, 
RH, or WIND since continuous variables were normally verified against station 
observations using grid-to-point methods. However, a unique Army need to 
evaluate continuous variables as objects was identified when we consider that 
some Army TDAs, such as MyWIDA, employ thresholds on continuous variables 
such as TMP, RH, and WIND to identify potentially hazardous regions for Army 
operations. When such thresholds are applied by TDAs on a continuous field, an 
object is automatically created within that field. Therefore, it is desirable to know, 
for example, how well an object defined by WIND over 15 m/s in forecast is 
matched to its corresponding observed object. In other words, we strive to 
understand how the TDA’s warning area is affected by forecast accuracy. 
Literature review as of this writing suggests our approach using MODE applied to 
continuous variables is unique. Lessons learned from this study will lay a solid 
foundation for future evaluations of the effectiveness of TDAs using 
meteorological data as their input. 

The same method developed by Cai and Dumais (2015) for precipitation objects 
has been applied to surface TMP, RH, and WIND for the 5 case days described in 
Section 2 as a proof-of-concept study. Two statistics, the total area and total 
number of objects, were compiled as a function of forecast lead time. Since there 
was a 6-h preforecast period when FDDA was applied, the true free forecast starts 
at the 6-h lead time in the MODE analysis. The total area and total number of 
TMP, RH, and WIND objects with and without FDDA are shown in Figs. 10, 11, 
and 12, respectively. (Table 6 list the thresholds for TMP, RH, and WIND.)  

Figure 10 shows an overforecast of total number of TMP objects (~100%) and an 
underforecast of total area of TMP objects (~25%), implying too many small 
objects in the forecast. Notably, the model did a great job at forecasting the trend 
of the total number and area of TMP objects, which corroborates what other 
researchers have determined (e.g., Wilson et al. 2010). Finally, Fig. 10 also seems 
to suggest that FDDA did not have noticeable impact on the results, which 
appears counter-intuitive and needs further investigation. One possible 
explanation: Because FDDA was performed on a point basis, its impact on the 
TMP objects, which are usually rather large in size and contain many grid points, 
is therefore limited unless the assimilated data points happened to be on the 
boundary of an object. 
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Fig. 10 Total area (left) and total number (right) of TMP objects compared to observations 
(green) for the WRE–N with FDDA (red) and without FDDA (blue) as a function of forecast 
lead time for the 5 case days described in Section 2.3. The TMP threshold used to identify 
objects in both forecast and observation is 290 K. 

The total area and total number of RH objects compared to observations are 
shown in Fig. 11. Similar to TMP, the difference with and without FDDA is 
small, although the total number of objects without FDDA seems slightly better 
than with FDDA. Both the total number and total area of objects were 
overforecasted (approximately a factor of 2 for total number of objects and ~50% 
for total area of objects, respectively), which could have significant implications 
to TDAs. 

 

Fig. 11 Total area (left) and total number (right) of RH objects compared to observations 
(green) for the WRE–N with FDDA (red) and without FDDA (blue) as a function of forecast 
lead time for the 5 case days. The RH threshold used to identify objects in both forecast and 
observation is 85%. 

Finally, the total area and total number of WIND objects are shown in Fig. 12. An 
overforecast of approximately a factor of 3 for the total number of objects was 
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noted in Fig. 12 while the total area of WIND objects was close to observations. 
This implies there are many small objects in the forecast compared to 
observations. Again, consistent with Figs. 10 and 11, the impact of FDDA seems 
insignificant, and the model did a good job at forecasting trend. 

 

Fig. 12 Total area (left) and total number (right) of WIND objects compared to 
observations (green) for the WRE–N with FDDA (red) and without FDDA (blue) as a 
function of forecast lead time for the 5 case days. The WIND threshold used to identify 
objects in both forecast and observation is 11 m s–1. 

In summary, the model appears to have the lowest bias in terms of the total area 
of WIND objects, while it tends to underforecast the total area of TMP objects 
(~25%) but overforecast the total area of RH objects (~50%). Gaining a general 
idea of the bias of the model forecast could be beneficial for estimating the impact 
of forecast accuracy on TDAs used in Army operations. 

This research serves as a proof of concept for using object-based forecast-
evaluation tools such as MODE to assess the forecast that will be fed into a TDA. 
Thus, this preliminary study can be improved in many ways. For example, we 
should greatly expand the number of cases, trying a number of different 
thresholds—especially the thresholds that are meaningful for TDAs such as 
MyWIDA. Also, we could analyze more meteorological variables and compute 
more object attributes such as object-size distribution, just to name a few 
possibilities. The ultimate goal is to gauge the impact of forecast accuracy on 
TDAs used in Army operations, and we still have a long way to go. Hopefully this 
study will serve as a springboard to spearhead the efforts in that direction.  
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5. Conclusion and Final Comments 

We have found the traditional method for verification of categorical forecasts 
offers a straightforward approach to assess the ability of the model to predict 
objects defined by the application of a threshold to a spatial forecast of a 
continuous variable. This study demonstrated 1) the applicability of the MET 
Series-Analysis tool for generating spatially distributed, categorical contingency-
table statistics and scores for continuous meteorological variable fields and 2) that 
the CSI and FBIAS statistics will provide a limited assessment of model accuracy. 
However, due to the high spatial variability of these 2 statistics, analysis of 
additional scores and more cases is necessary. One reason for this is the choice of 
the value of the threshold: If the threshold is at the high end of the full range of 
the variable, there will be areas where no events will occur, which limits the area 
where scores can be calculated. Another reason for the limited assessment is the 
restriction of the analysis to only 2 statistics. There are numerous contingency-
table scores and statistics that can be calculated and, when analyzed together, may 
reveal more information about model performance and provide a background to 
support more understanding of all the scores and statistics. We believe a more 
comprehensive approach of combining results from the traditional methods with 
those generated from the application of nontraditional object-based methods is 
best for an assessment of the skill of the model in predicting fields of a continuous 
variable that have been filtered by a threshold. Judging from the complexity of the 
spatial distribution of the CSI and the FBIAS, this more rigorous approach will 
certainly require a large amount of data so that statistically significant results can 
be obtained. In addition, it is found that the quality of the gridded observation data 
sets has an impact on the quality of the scores and statistics generated using the 
categorical method. 

This preliminary study also documented the first attempt of applying an object-
based forecast-evaluation method (i.e., MODE) to continuous meteorological 
variables. To the best of our knowledge, this novel approach has never been done 
before. Considering the Army TDAs mostly rely upon critical thresholds in 
continuous variables such as temperature, relative humidity, and wind speed to 
issue warnings that might affect Army operations, it is imperative to evaluate the 
impact of forecast accuracy on Army TDAs. By employing both traditional and 
nontraditional forecast-evaluation methods (such as those demonstrated in this 
study), a more complete picture of model-forecast performance can be gleaned by 
analyzing large amount of forecast data. Heading into that direction, future work 
will focus on more statistics and, most importantly, more cases so that statistically 
significant results can be obtained.  
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Finally, a Geographic Information System, which for the atmospheric sciences 
has not been extensively used, should be exploited for its ability to contextualize 
and analyze geospatial information such as terrain type/slope, land-use effects, 
and other spatial and temporal variables as explanatory metrics in model 
assessments (Smith et al. 2015; Smith et al. 2016a; Smith et al. 2016b). This 
technique has considerable promise of becoming an important new tool that, in 
addition to the methods described in this study, offers a comprehensive approach 
to model verification. 
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List of Symbols, Abbreviations, and Acronyms  

ACARS Aircraft Communications, Addressing, and Reporting System 

AGL  above ground level 

ARL  US Army Research Laboratory 

ARW  Advanced Research Weather Research and Forecasting model 

CSI  critical success index 

Deg K  degrees Kelvin 

DPT  dew-point temperature 

FBIAS  frequency bias 

FDDA  Four-Dimensional Data Assimilation 

GE  greater than or equal to 

GFS  Global Forecast System 

GRIB  Gridded Binary format, edition 1 

GRIB2  Gridded Binary format, edition 2 

GSD  Global Systems Division 

hPa  Hectopascal 

HRRR  High Resolution Rapid Refresh 

LAPS  Local Analysis and Prediction System 

MADIS Meteorological Assimilation Data Ingest System 

MET  Model Evaluation Tools 

MODE  Method for Object-Based Diagnostic Evaluation 

MYJ  Mellor–Yamada–Janjic 

MyWIDA My Weather Impacts Decision Aid 

NCAR  National Center for Atmospheric Research 

NCEP  National Centers for Environmental Prediction 

NOAA  National Oceanic and Atmospheric Administration 
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NWP  Numerical Weather Prediction 

NetCDF Network Common Data Form 

PBL  planetary boundary layer 

RH  relative humidity 

RRTM  Rapid Radiative Transfer Model 

RTMA  Real-Time Mesoscale Analysis 

TAMDAR Tropospheric Airborne Meteorological Data Reporting 

TDA  Tactical Decision Aid 

TKE  turbulent kinetic energy 

TMP  temperature 

UTC  Coordinated Universal Time 

WIND  wind speed 

WRE–N Weather Running Estimate–Nowcast 

WRF  Weather Research and Forecasting 

WRF–ARW Weather Research and Forecasting, Advanced Research WRF 
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