

 ARL-TR-7767 ● AUG 2016

 US Army Research Laboratory

Industrial Control System Process-Oriented
Intrusion Detection (iPoid) Algorithm

by Daniel T Sullivan, Edward J Colbert, Kenneth D Renard,
Phillip L Tucker, Travis W Parker, Stephen R Neyens, and
Christopher A Walsh

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7767 ● AUG 2016

 US Army Research Laboratory

Industrial Control System Process-Oriented
Intrusion Detection (iPoid) Algorithm

by Daniel T Sullivan, Edward J Colbert, Kenneth D Renard,
Phillip L Tucker, Travis W Parker, Stephen R Neyens, and
Christopher A Walsh
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

August 2016
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

July 2014–June 2016
4. TITLE AND SUBTITLE

Industrial Control System Process-Oriented Intrusion Detection (iPoid)
Algorithm

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Daniel T Sullivan, Edward J Colbert, Kenneth D Renard, Phillip L Tucker,
Travis W Parker, Stephen R Neyens, and Christopher A Walsh

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-S
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7767

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the software architecture and capabilities of an industrial control system process-oriented intrusion
detection (iPoid) algorithm developed in the Army Cyber-Research Analytics Laboratory (ACAL) at the US Army Research
Laboratory. The iPoid algorithm performs packet inspection of Modbus transmission control protocol communications by
applying rules to detect suspicious activity. ACAL’s iPoid creates alert messages for security analysts if further investigation
is required. We illustrate the iPoid algorithm using a research intrusion-detection system. This report describes the iPoid
algorithm and how its software functions, how to write the analysis rules, and how to test the software.

15. SUBJECT TERMS

supervisory control and data acquisition (SCADA), Modbus, industrial control system, intrusion detection system

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

34

19a. NAME OF RESPONSIBLE PERSON

Daniel T Sullivan
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-0248
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribuiton unlimited.
iii

Contents

List of Figures iv

List of Tables iv

Acknowledgments v

1. Background 1

2. iPoid Modbus Packet-Inspection Capability 2

2.1 Software Requirements 2

2.2 Startup Dependencies 3

2.3 iPoid Rules Format 3

2.3.1 Individual Function-Rule Format 4

2.3.2 Individual Value-Rule Format 6

2.3.3 Updating Modbus Inspection Rules 9

2.4 iPoid Alert-Message Format 9

3. Examples of iPoid Implementation 10

3.1 Protect Critical-Process Variables 11

3.2 Protect Against Unallowed Modbus Commands 12

4. Conclusion and Discussion 13

5. References 14

Appendix. Unit Test Procedures 15

List of Symbols, Abbreviations, and Acronyms 24

Distribution List 26

Approved for public release; distribuiton unlimited.
iv

List of Figures

Fig. 1 Notional corporate and ICS networks ... 1

Fig. 2 iPoid components on a sensor.. 3

Fig. 3 JSON rule file’s structure... 4

Fig. 4 Individual function-rule structure: rule condition consists of the
Modbus function code, PLC IP address, and relative coil or register
address ... 5

Fig. 5 Coil or register value-rule structure is different from a function rule
because it has a comparison operator and setpoint to compare to the
current coil or register value. ... 7

Fig. 6 Value-rule structure to detect specified differences in register state:
Use “Changes” as the <Operator> and the “ChangeOp” keyword with
the delta value. .. 8

Fig. 7 iPoid alert-message format .. 10

Fig. 8 Example deployment to monitor critical-process variables 11

Fig. 9 ICS network with data historian .. 12

Fig. A-1 Unit test network .. 17

List of Tables

Table 1 Modbus function codes, data types, and address ranges capable of
being monitored by iPoid ... 5

Table 2 Example Modbus function rules .. 6

Table 3 PLC value-rule relationship–operator syntax ... 7

Table 4 PLC value rule’s data-type identifiers... 7

Table 5 Example Modbus value rules... 9

Table 6 Example of value rule to alert when oven’s holding-register value is
below 350 °F ... 12

Table 7 Example of rule to detect an unallowed Modbus command 13

Table A-1 Test network configuration .. 17

Approved for public release; distribuiton unlimited.
v

Acknowledgments

We appreciate Dr Alexander Kott’s and Mr Curtis Arnold’s support of Industrial
Control Systems–Supervisory Control and Data Acquisition research at the US
Army Research Laboratory.

Approved for public release; distribution unlimited.
1

1. Background

An industrial control system (ICS) manages automated processes in multiple
sectors of the global economy. ICSs can be found in manufacturing plants,
transportation systems, food and medicine production, and critical infrastructure.
An ICS may be local to one factory or it may control automated processes across
thousands of miles as in the energy sector. The key discriminator separating an ICS
from an information technology (IT) system is that an ICS monitors or interacts
with something physical in the real world. Previously, ICSs were isolated networks;
however, due to a demand for greater productivity and efficiency, IT and ICS
networks are being interconnected. This may expose an ICS network to the same
threats as a corporate IT network.1

In Fig. 1 we depict a typical manufacturing plant with a corporate IT network and
an ICS network. The ICS network consists of the Supervisory Control and Basic
Control layers and any field bus networks connected to plant sensors or actuators.
In accordance with best practices, an Operations demilitarized zone (DMZ) protects
the ICS from external network threats. In this design, the ICS and corporate
networks do not share resources to minimize intrusion risks. Each network will
have its own Active Directory, human–machine interface (HMI), Dynamic Host
Configuration Protocol (DHCP), and Domain Name System (DNS) servers to
provide these services.

Fig. 1 Notional corporate and ICS networks

Approved for public release; distribuiton unlimited.
2

The Modbus protocol is often used for communications between an HMI and a
PLC. A PLC is an electronic device that controls machinery and receives inputs
from physical-plant sensors and actuators. An HMI is a software application that
polls a PLC frequently for status information and sends instructions to PLCs to
modify the behavior of the ICS. A human plant operator monitors the HMI for
situational awareness about the ICS. HMIs may also provide a capability for the
human operator to manually control a process, if needed.

A network intrusion-detection system (IDS) may detect suspicious network activity
using behavior analysis or signature-based methods. The US Army Research
Laboratory’s (ARL’s) Army Cyber-Research Analytics Laboratory created the ICS
process-oriented intrusion detection (iPoid) algorithm. It is useful in protecting an
ICS by monitoring critical-process variables. We define “critical-process variables”
as those a plant operator deems the most critical for operation.2 Critical-process
variables and their severity should be defined cooperatively by security analysts
and plant operators. We define a “plant operator” as an ICS professional who
monitors the automation processes and knows the nominal values and low/high
thresholds of critical-process variables. Baselining automation processes during
quiescent operations will aid in crafting rules.

In this report, we describe how to use the ARL iPoid software to inspect Modbus
Transmission Control Protocol (TCP) packets for anomalies and how to write
inspection rules. To test iPoid, we simulated a PLC using software (see the
Appendix for the unit test procedures).

2. iPoid Modbus Packet-Inspection Capability

The iPoid inspects Modbus TCP packets and creates alert messages for security
analysts. In our algorithm, we define an “alert” as automatically generated
information sent to a security analyst. The iPoid algorithm can be extended to
inspect additional ICS protocols.

2.1 Software Requirements

The iPoid can be installed on an IDS sensor node running “Bro” software. The iPoid
requires Bro Version 2.4.1 or later and Python 2 or later. The iPoid algorithm is
implemented using 2 scripts: a Python script “ApplyRules.py” and a Bro script
“PlcState.bro”. In addition, a rules file is needed, which is written in the JavaScript
Object Notation (JSON) format. We depict a sample sensor configuration in Fig. 2.

The PlcState.bro script creates a string of data in JSON format that represents the
state of a PLC coil or register after a Modbus request–response message exchange

Approved for public release; distribuiton unlimited.
3

has completed. The ApplyRules.py script reads in rules written to create an alert
message for a security analyst to investigate an intrusion with support from plant
operators. The rule-checking process is performed outside Bro to enable users to
dynamically update the inspection rules without restarting Bro. This avoids a risk
of Bro missing packets on the wire.

Fig. 2 iPoid components on a sensor

2.2 Startup Dependencies

The ApplyRules.py script must be started prior to Bro. At startup, the
ApplyRules.py process will establish a named pipe to receive the Modbus data in
JSON format from the PlcState.bro script executed by Bro. The ApplyRules.py
script is started with the name of the rules file in the command line. After the
ApplyRules.py process is running, then Bro can be started with the PlcState.bro
script. Bro is typically configured to launch scripts listed in the local.bro file. Bro
can also run the PlcState.bro script as a command-line argument.

2.3 iPoid Rules Format

The rules are leveraged by iPoid to ensure the current PLC state, inferred from
Modbus traffic, is within normal operating conditions.

Two categories of rules may be specified. Function rules watch for Modbus
function codes that reveal actions within the ICS and PLCs. Value rules monitor

Approved for public release; distribuiton unlimited.
4

the values of registers or coils, which is the current system state of the ICS and
PLCs. A rules file may contain a block of one or both types of rules. For example,
a plant IDS may only use value rules to monitor critical-process variables.
However, the file may not have multiple blocks of the same rule type.

A rule file is written in JSON format; Fig. 3 diagrams the structure.

Fig. 3 JSON rule file’s structure

A rule file begins and ends with a brace. A list of rules begins either with the
keyword “FunctionRules” or “ValueRules” followed by a comma-separated list of
the respective rule type.

Each individual rule in Fig. 3 is written in the Backus–Naur Format (BNF) notation
of {<condition>, <action>} whose construction is described in Sections 2.3.1 and
2.3.2. In both types of rules, the relative address of the register or coil is needed. If
“Ignore” is written anywhere in a rule (e.g., for testing), the rule will not be
evaluated.

A rule is evaluated as either “TRUE” or “FALSE” when applied to a Modbus
transaction. If the rule evaluates to TRUE, then an alert message is created from the
text in the <action> section of a rule.

A rule <action> field begins with the keyword “Message” and concludes with the
text message that will be the alert text. The severity (Critical, High, etc.) should be
included in the alert message.

2.3.1 Individual Function-Rule Format

A function rule may be used to alert the security analyst if a threat actor is
enumerating a PLC or is sending write commands to change setpoints, which can

Approved for public release; distribuiton unlimited.
5

affect production. This rule type checks if a user-specified Modbus function code
is applied to a register or coil. Figure 4 illustrates the rule structure.

Fig. 4 Individual function-rule structure: rule condition consists of the Modbus function
code, PLC IP address, and relative coil or register address

The function-rule condition field begins with a Modbus function identifier followed
by 2 pairs of keywords and values to identify the PLC and data address to apply the
rule to. Table 1 lists each Modbus function code supported by iPoid along with the
data type, address range, and Modbus function identifier for the rule.

Table 1 Modbus function codes, data types, and address ranges capable of being
monitored by iPoid

Modbus
function code Description Data

width
Address

range <Function> identifier in rule

1 Read coils 1 bit 00001 –
10000 READ_COILS

3 Read multiple
holding registers 16 bits 40001 –

50000 READ_HOLDING_REGISTER

4 Read input register 16 bits 30001 –
40000 READ_INPUT_REGISTER

5 Write single coil 1 bit 00001 –
10000 WRITE_COILS

6 Write single
holding register 16 bits 40001 –

50000 WRITE_HOLDING_REGISTER

15 Write multiple
coils 16 bits 00001 –

10000 WRITE_COILS

16 Write multiple
holding registers 16 bits 40001 –

50000 WRITE_HOLDING_REGISTER

After the Modbus function identifier is the PLC IP address and unit number to be
monitored. The next field specifies the Modbus address of interest. This is the end

Approved for public release; distribuiton unlimited.
6

of the condition section of a function rule. (The action format of the rule was
described previously in Section 2.3.)

Table 2 gives a few examples of function rules and describes when an alert message
is created for each.

Table 2 Example Modbus function rules

Rule Description

{“Function”: “READ_HOLDING_REGISTER”,
“Target”: [“192.168.200.13”, 1], “Address”: 5,
“Message”: “Severity: Low. Read Holding Register
40006 at 192.168.200.13.1”}

An alert will be created when PLC Unit 1 with
IP address 192.168.200.13 has holding register
address 40006 polled. The alert will contain
the content of the “Message” field.

{“Function”: “WRITE_HOLDING_REGISTER”,
“Target”: [“192.168.200.13”, 1], “Address”: 3,
“Message”: “Severity: High. Write Holding Register
40004 at 192.168.200.13.1”}

An alert will be sent when PLC Unit 1 with IP
address 192.168.200.13 has data written to
holding register address 40004.

{“Function”: “READ_COIL”, “Target”:
[192.168.200.13”, 1], “Address”: 3, “Message”:
“Severity: Low. Read Coil 00004”}

An alert will be generated when PLC Unit 1
with IP address 192.168.200.13 has a coil read
at address 00004.

2.3.2 Individual Value-Rule Format

A value rule enables iPoid to alert the security analyst when a register or coil value
changes or if a register value is equal to, not equal to, less than, or greater than a
setpoint. In addition, a rule can be written to create an alert if a register value
changes by an amount (i.e., exceeds a delta). A value rule is useful to alert a security
analyst if a cyber attacker is trying to change the PLC configuration or if the ICS is
in a dangerous state. Rules can be written to alert if a critical-process variable
exceeds upper or lower limits. The ApplyRules.py process creates a state table of
each register and coil based upon the data in Modbus messages. When assessing if
a register or coil has changed, the current value parsed from the most recent
message is compared to the previous value contained in the ApplyRules.py process
state table. Figure 5 illustrates the structure of <condition> and <action> fields for
value rules.

Approved for public release; distribuiton unlimited.
7

Fig. 5 Coil or register value-rule structure is different from a function rule because it has
a comparison operator and setpoint to compare to the current coil or register value.

A value rule begins with the keyword “Op” followed by the condition expression.
The <Operator> in Fig. 5 specifies the relationship to apply when comparing the
current PLC holding register or coil value to the value in the rule. Each relationship
operator has several ways to be designated (see Table 3). The text for the
relationship operator is not case sensitive.

Table 3 PLC value-rule relationship–operator syntax

Relationship between value in rule to PLC value Allowed <Operator> identifier in
rule

PLC data IS EQUAL to value in rule Equal, Equals, =, ==

PLC data IS NOT EQUAL to value in rule NotEqual, NotEquals, !=

PLC data is GREATER THAN value in rule GreaterThan, Greater, >

PLC data is LESS THAN PLC value in rule LessThan, Less, <

PLC data CHANGED from value in rule Changes, Change

Following the relationship identifier is the “Target” keyword with IP address and
unit number of the PLC. The next field specifies the data type to be compared (coil
or register); see Table 4 for allowed values.

Table 4 PLC value rule’s data-type identifiers

Modbus data
type

Data length <Reg or Coil> field in
rule

Holding register 16 bits HoldingRegister

Input register 16 bits InputRegister

Discrete output
(coil)

1 bit Coils

Approved for public release; distribuiton unlimited.
8

The next 2 fields are optional. If the rule specifies a value (e.g., threshold) to
compare against the coil or register value, include a “Value” keyword and then the
value to be compared. For a coil, this is 1 (TRUE) or 0 (FALSE) or a numeric value
for a register.

To create an alert if a register value has changed by a certain amount (delta), include
the “ChangeOp” keyword and then the relationship operator (see Table 3, second
column) to apply when comparing the current register value to the one in the rule.
When a rule with “ChangeOp” is evaluated, the previous PLC register value from
the ApplyRules.py state table is compared to the current value and an alert message
is created if the difference meets the conditions in the rule. Figure 6 illustrates the
structure of a value rule to perform a delta comparison.

Fig. 6 Value-rule structure to detect specified differences in register state: Use “Changes”
as the <Operator> and the “ChangeOp” keyword with the delta value.

Table 5 has several examples of Modbus value rules and describes the
corresponding alert criterion.

Approved for public release; distribuiton unlimited.
9

Table 5 Example Modbus value rules

Value rule Description

{“Op”: “Changes”, “Target”: [“192.168.200.13”,
1], “HoldingRegister”: “0”, “Message”:
“Severity: High. Holding Register 40001
changed”}

An alert will be created when PLC Unit 1
with IP address 192.168.200.13 has a
change in holding register address 40001.
The detect will contain the content of the
“Message” field. The alert will be created
for any change in the holding register.

{“Op”: “Equals”, “Target”: [“192.168.200.13”, 1],
“Coils”: 3, “Value”: 0, “Message”: “Severity:
Critical. Valve is closed - Coil 00004 at
192.168.200.13.1”}

An alert will be sent when PLC Unit 1
with IP address 192.168.200.13 has a
FALSE value at coil address 00004.

{“Op”: “Changes”, “Target”: [192.168.200.13”,
1], “InputRegister”: 1, “ChangeOp”, “>”,
“Value”: 100, “Message”: “Severity: High.
Analog Input 30004 has changed greater than 100
psi”}

An alert will be generated when PLC Unit
1 with IP address 192.168.200.13 has a
change of greater than 100 for input
register at address 30004.

2.3.3 Updating Modbus Inspection Rules

The inspection rules may be updated without interruption to running processes. The
ApplyRules.py process may be instructed to reload the inspection rules by a user
sending a signal hangup (SIGHUP) message to the process. We illustrate the steps
to update the rules in the following procedures:

Step 1: Update the inspection rules in a JSON-formatted text file. Step 2:
Obtain the process identifier (ID) of the ApplyRules.py process.

 $ ps aux | grep ApplyRules.py

The process ID will be returned with the command line that initiated the
ApplyRules.py process.

Step 3: Send a SIGHUP command to the process ID of ApplyRules.py.

 $ kill –HUP <process ID of ApplyRules.py>

You will see this message in the ApplyRules.py process-standard out window or
file: > Loaded new ruleset

2.4 iPoid Alert-Message Format

The ApplyRules.py process will write an alert message to the operating system’s
(OS’s) standard output when a rule is triggered (i.e., anomalous activity detected).
This alert can also be piped to a file or to an IDS application programming interface
(API) for additional processing and display.

As Fig. 7 shows, an alert consists of 2 rows of text. The first row presents
information about the PLC and the second row is a message for the security analyst.

Approved for public release; distribuiton unlimited.
10

The structure of the alert first row is an “A” character followed by the IP address
of the PLC, followed by the PLC unit number. Next is a “T” character for data
type. After the “T” character may follow a “1” if the alert was caused by a holding
register value; a “2” if the cause is an input register value; a “3” if this alert is due
to a coil; or “0” if the data type is undefined.

An “O” character follows with the type of Modbus operation (“R” for read and “W”
for write). Next is the timestamp (i.e., “TS”) of the alert in epoch format. After the
timestamp is a list of the current PLC coil and register values parsed from the
Modbus transaction that triggered the alert.

The second row of the alert message is text from the <action> section of the rule.
We recommend as much context as possible about the severity of the alert and
impacted process and that a point of contact be included in the alert message. These
details will assist the security analyst with their investigation.

Fig. 7 iPoid alert-message format

3. Examples of iPoid Implementation

In this section we present 2 examples of how iPoid can be deployed with a research
IDS to protect ICS networks. In Section 3.1 we demonstrate how iPoid can monitor
critical-process variables. In Section 3.2 we explain how iPoid can detect an
unallowed Modbus command sent to a PLC.

Approved for public release; distribuiton unlimited.
11

3.1 Protect Critical-Process Variables

Figure 8 illustrates part of a Meal, Ready-To-Eat (MRE) process where a research
IDS and iPoid are monitoring critical-process variables.3 The MRE plant produces
high-quality meals for Soldiers. The meat and vegetables are cooked separately and
once cooked, the meals are prepared and packaged using high-pressure processing
to have a long shelf life. As depicted, a switched port analyzer (SPAN) port of each
switch forwards network traffic to each sensor. Software within the IDS
management servers connect to each sensor and retrieve the packet data.

Fig. 8 Example deployment to monitor critical-process variables

The plant operator has identified all critical-process variables and one of the critical
variables is the chicken cooker’s temperature. The oven temperature must be above
350 °F during production operations, otherwise the chicken will be undercooked
and pose health risks to Soldiers later consuming the MREs. The chicken-cooker
PLC stores the oven temperature in a holding register and this value is reported to
the HMI every 30 s during routine polling. Table 6 illustrates a rule in the JSON
format to create an alert message if the Modbus holding-register value for the oven
temperature is below 350 °F.

Approved for public release; distribuiton unlimited.
12

Table 6 Example of value rule to alert when oven’s holding-register value is below 350 °F

Value rule Description

{“Op”: “LessThan”, “Target”: [“192.168.200.13”,
1], “HoldingRegister”: “0”, “Value”: 350,
“Message”: “Severity: High. Oven temp setpoint
less than 350F”}

An alert will be created when the chicken
cooker’s PLC (IP address
192.168.200.13) has a temperature (stored
in holding register with offset 0 [address
40001]) is below 350 °F. The alert will
contain the content of the “Message”
field.

3.2 Protect Against Unallowed Modbus Commands

Figure 9 portrays the same MRE manufacturing process with a data historian in an
additional Operations Support enclave polling PLC-state data from each HMI. In
this topology, the plant operator has designated allowed Modbus function codes for
each enclave. The plant operator specified that hosts in the Operations Support
enclave should not send Modbus write commands to a PLC.

Fig. 9 ICS network with data historian

Table 7 illustrates a rule for the sensor monitoring the Operations Support enclave
to create an alert message if a Modbus write command is sent to a PLC.

Approved for public release; distribuiton unlimited.
13

Table 7 Example of rule to detect an unallowed Modbus command

Value rule Description
{“Function”:
“WRITE_HOLDING_REGISTER”, “Target”:
[“192.168.200.13”, 1], “Address”: “0”,
“Message”: “Severity: Critical. Unauthorized
Write Command Sent to PLC Holding Register
40001”}

An alert will be created when a host in the
Operations Support enclave sends a
Modbus holding register write command
(function Code 6) to the chicken cooker’s
PLC (IP address 192.168.200.13) for
address 40001.

4. Conclusion and Discussion

The ARL iPoid’s inspection capability is flexible and can be customized to monitor
any ICS network using the Modbus TCP protocol. The iPoid can check for
unallowed Modbus commands sent to a PLC and verify critical-process variables
are within safe limits. These functions are not available in corporate IDSs. We
recommend security analysts and plant operators collaboratively write the iPoid
rules. Each rule should include a severity level as well as contextual information to
assist security analysts in responding to an alert. ICS networks rarely change in
order to maintain high availability, so any alert created by iPoid may indicate an
intrusion has occurred.

Approved for public release; distribution unlimited.
14

5. References

1. Colbert EJM, Kott A, editors. Cyber-security of SCADA and other industrial
control systems. New York (NY): Springer; 2016.

2. Colbert E, Sullivan D, Hutchinson S, Renard K, Smith S. A process-oriented
intrusion detection method for industrial control systems. Paper presented at:
ICCWS 2016. Proceedings of the 11th International Conference on Cyber
Warfare and Security; 2016 Mar 17–18; Boston (MA).

3. Sullivan DT, Colbert EJ. Demonstration of supervisory control and data
acquisition (SCADA) virtualization capability in the US Army Research
Laboratory (ARL)/Sustaining Base Network Assurance Branch (SBNAB) US
Army Cyber Analytics Laboratory (ACAL) SCADA hardware testbed.
Adelphi Laboratory Center (MD): Army Research Laboratory (US); 2015
May. Report No.: ARL-CR-0773.

Approved for public release; distribuiton unlimited.
15

Appendix. Unit Test Procedures

Approved for public release; distribuiton unlimited.
16

This appendix describes how a tester or security analyst can exercise industrial
control system process-oriented intrusion detection (iPoid) and test inspection rules
using an intrusion-detection system (IDS) sensor, a simulated Programmable Logic
Controller (PLC), and a Modbus client operating on virtual machines (VMs) in a
test lab. The sensor must be capable of running Bro 2.4.1, or later. (At the time of
this writing, Bro can only run on hosts with UNIX1 operating systems.)

A.1 Test Setup

Several components are required and these can be hosted on VMs in a lab
environment. To conduct unit testing, below are the required components which
can be virtualized with software such as VirtualBox2:

• Sensor with Bro 2.4.1 and Python 2.7.

• Modbus TCP server to simulate a PLC. We used ModSim323 to simulate a
PLC because this tool simulates coils, contacts, holding registers, and input
registers.

• Modbus TCP client such as Simply Modbus TCP Client.4 This tool can craft
messages for all Modbus functions that can be inspected by iPoid.

We present an example of the network topology to test the Modbus packet
inspection capability in Fig. A-1. In this unit test network, the tester can create
transactions of different function codes to poll a simulated PLC using Modbus TCP.
The tester can set values for coils, input, and holding registers in ModSim32 as a
real PLC would have.

1 UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
2 VirtualBox. Version 5.0.18. Redwood Shores (CA); Oracle Corporation; [accessed 2016 May
16]. https://www.virtualbox.org.
3 ModSim32. Version 4.A00-04. Lewisburg (WV): WinTECH Software Design; [accessed 2016
June 27]. http://www.win-tech.com/html/modsim32.htm.
4 Simply Modbus TCP Client. Version 1.4. Simply Modbus; [accessed 2016 June 27].
http://www.simplymodbus.ca/TCPclient.htm.

Approved for public release; distribuiton unlimited.
17

Fig. A-1 Unit test network

Table A-1 lists each virtualized host of the test network, the IP address of each
interface, and which virtual switch an interface connects to.

Table A-1 Test network configuration

Virtual machine Interface Virtual switch
name

IP address

Tester’s workstation eth0 esxi 10.10.0.1

Sensor
eth0 esxi 10.10.10.1
eth1 INT-Test 127.1.1.1

Simply Modbus TCP
client eth0 INT-Test 192.168.210.14

ModSim32 (simulate a
PLC) eth0 INT-Test 192.168.210.13

In this test network, interface eth1 of the sensor functions as the packet-sniffing
interface and is connected to the INT-Test virtual switch. The sensor’s VM network
configuration has eth1 configured for “Allow All” for the Promiscuous Mode
setting in VirtualBox to enable packet sniffing to work.

A.2 Test Procedures

We present sample test cases to verify the Modbus packet-inspection software is
working correctly. Each test case is written to detect a condition when the PLC is
in a state out of compliance with normal plant operations. Since this is unit testing
on the sensor, we will present the alert-message output from the ApplyRules.py
script when a rule to detect an anomalous condition is met. This message can be
sent to the IDS graphical user interface (GUI) via the IDS application programming
interface (API). However, for unit testing, seeing the alert message printed to the
operating system’s (OS’s) standard output is sufficient to validate iPoid is working.

Approved for public release; distribuiton unlimited.
18

The sample test cases are the following:

1) Unallowed Modbus function code sent to a holding register.

2) Coil value has changed to an unallowed value.

3) Holding register is below a setpoint.

4) Input register value changed above a threshold.

We depict a separate rules file for each case to codify the conditions when the PLC
state, inferred by the Modbus messages, is not according to plant-design
parameters.

A.2.1 How to Run Each Test Case

For unit testing, we recommend the tester use a separate Linux workstation with X-
Windows and open remote-terminal windows to the sensor using secure shell
(SSH) to run the test cases. Perform the following steps to run ApplyRules.py and
Bro for unit testing:

Step 1. Open a SSH terminal window to the sensor and run ApplyRules.py with the
rules file for each test case. The output of each test case will be displayed in this
window by the OS standard out stream. This step will create a named pipe to receive
Modbus transaction data from Bro.

$ python ApplyRules.py <Name of rules file in JSON format>

Example:

$ python ApplyRules.py plc_state_rules.json

Step 2. Open a separate SSH terminal window to the sensor. Elevate your privileges
to the root user and start Bro with the PlcState.bro script. Root privileges are
required in order for Bro to capture packets on interface eth1.

/usr/local/bro/bin/bro –b –i eth1 ./PlcState.bro

A.2.2 Test Case 1

In Test Case 1, the ApplyRules.py process will create an alert message if a Modbus
write command is sent to holding register 40003.

Step 1. Using a text editor, create a text file with name test-case-1-rule.json and
enter this rule:

{“FunctionRules”:

Approved for public release; distribuiton unlimited.
19

 [{“Function”: “WRITE_HOLDING_REGISTER”, “Target”:
[“192.168.200.13”, 1], “Address”: 2, “Message”: “Severity:
Medium. Write Holding Register 40003 Detected”}]
}
Step 2. Start ApplyRules.py with the name of the rules file on the command line,
then start Bro (as detailed in Section A.2.1).

Step 3. In ModSim32, start the server function by clicking on these menu
commands: Connection-> Connect-> Modbus/TCP Svr.

Step 4. In ModSim32, set the Device Id to 1, Address to 0001, and Modbus Point
Type to “03: Holding Register”. You will see a table of Modbus holding registers
with their data values starting at address 40001.

Step 5. In the Simply Modbus TCP Client window, establish a TCP connection to
ModSim32. Set the Slave ID to “1”. Press the “Write” button and a window will
appear with parameters to enter to create a Modbus write message. Set the Function
Code to “6”, Minus Offset to “0”, First Register to “1”, #Values to Write to “1”,
and Register Size to “16 bit registers”. Set Values to Write to any number, then
press the Send button.

Step 6. In the terminal window with the ApplyRules.py process you should not see
an alert message. You should see the value you entered in the Simply Modbus TCP
Client Write window appear in holding register 40002 in the ModSim32 window.
This validates the rule did not trigger because the write command was not sent to
address 40003.

Step 7. In the Simply Modbus TCP Client Write window, set the First Register to
“2”, then press the Send button. This will send the write message to ModSim32
again.

Step 8. In the terminal window with the ApplyRules.py process you should see an
alert message similar to this:

A192.168.200.13:U1:T1:OW:TS1467056889.7762811:V{2:10}
Severity: Medium. Write Holding Register 40003 Detected

A.2.3 Test Case 2

In Test Case 2, the ApplyRules.py process will create an alert message if a coil with
address 00003 has a value of 0 (FALSE). This could be an example of a critical
valve in a manufacturing process being closed.

Step 1. Using a text editor, create a text file with name test-case-2-rule.json and
enter this rule:

Approved for public release; distribuiton unlimited.
20

{“ValueRules”:
 [{“Op”: “Equal”, “Target”: [“192.168.200.13”, 1],
“Coils”: “2”, “Value”: 0, “Message”: “Severity: Critical.
Valve at Address 00003 is Closed”}]
}

Step 2. Start ApplyRules.py with the name of the rules file on the command line,
then start Bro (as detailed in Section A.2.1).

Step 3. In ModSim32, start the server function by clicking on these menu
commands: Connection-> Connect-> Modbus/TCP Svr.

Step 4. In ModSim32, set the Device Id to “1”, Address to “0001”, and Modbus
Point Type to “01: Coil Status”. You will see a table of Modbus coils with their
data values starting at address 00001. Set the values of the first 5 coils to “1”
(TRUE).

Step 5. In the Simply Modbus TCP Client window, establish a TCP connection to
ModSim32. Set the Slave ID to “1”. Set the Function Code to “1”, Minus Offset to
“0”, First Coil to “0”, No. of Coils to “5”, and Register Size to “1 bit coils”, then
press the Send button.

Step 6. In the terminal window with the ApplyRules.py process you should not see
an alert message. This validates the rule did not trigger because coil address 00003
is “1” (TRUE).

Step 7. In ModSim32, set the value of coil 00003 to “0” (FALSE).

Step 8. In the Simply Modbus TCP Client window, press the Send button. This will
poll ModSim32 again.

Step 9. In the terminal window with the ApplyRules.py process you should see an
alert message similar to this:

A192.168.200.13:U1:T3:OR:TS1467058805.2187691:V{0: True, 1:
True, 2: False, 3: True, 4: True}
Severity: Critical. Valve At Address 00003 is closed

A.2.4 Test Case 3

In Test Case 3, the ApplyRules.py process will create an alert message if a holding
register value is above a setpoint. Holding register 40010 will be above 50000 psi,
which could be an extreme pressure in a storage container.

Approved for public release; distribuiton unlimited.
21

Step 1. Using a text editor, create a text file with name test-case-3-rule.json and
enter this rule:

{“ValueRules”:
 [{“Op”: “GreaterThan”, “Target”: [“192.168.200.13”,
1], “HoldingRegister”: “9”, “Value”: 50000, “Message”:
“Severity: High. Tank pressure at Address 40010 is above
50000 psi”}]
}

Step 2. Start ApplyRules.py with the name of the rules file on the command line,
then start Bro (as detailed in Section A.2.1).

Step 3. In ModSim32, start the server function by clicking on these menu
commands: Connection-> Connect-> Modbus/TCP Svr.

Step 4. In ModSim32, set the Device Id to 1, Address to 0001, and Modbus Point
Type to “03: Holding Register”. You will see a table of Modbus holding registers
with their data values starting at address 00001. Set the value of holding register
40010 to 500.

Step 5. In the Simply Modbus TCP Client window, establish a TCP connection to
ModSim32. Set the Slave ID to “1”. Set the Function Code to “3”, Minus Offset to
“0”, First Register to “9”, No. of Regs to “1”, and Register Size to “16 bit registers”,
then press the Send button.

Step 6. In the terminal window with the ApplyRules.py process you should not see
an alert message. This validates the rule did not trigger because the holding register
at address 40010 does not have a value above 50000.

Step 7. In ModSim32, set the value of holding register 40010 to “50001”.

Step 8. In the Simply Modbus TCP Client window, press the Send button. This will
poll ModSim32 again.

Step 9. In the terminal window with the ApplyRules.py process you should see an
alert message similar to this:

A192.168.200.13:U1:T1:OR:TS1467117361.855993:V{9: 50001}
Severity: High. Tank pressure at Address 40010 is above
50000 psi

Approved for public release; distribuiton unlimited.
22

A.2.5 Test Case 4

In Test Case 4, the ApplyRules.py process will create an alert message if an input
register value changes more than a set amount. This simulates an analog pressure
sensor reporting a sudden change of more than 1000 psi in a storage tank.

Step 1. Using a text editor, create a text file with name test-case-4-rule.json and
enter this rule:

{“ValueRules”:
 [{“Op”: “Changes”, “Target”: [“192.168.200.13”, 1],
“InputRegister”: “9”, “ChangeOp” : “>”, “Value”: 1000,
“Message”: “Severity: Medium. Tank pressure at Address
30010 has changed more than 1000 psi”}]
}

Step 2. Start ApplyRules.py with the name of the rules file on the command line,
then start Bro (as detailed in Section A.2.1).

Step 3. In ModSim32, start the server function by clicking on these menu
commands: Connection-> Connect-> Modbus/TCP Svr.

Step 4. In ModSim32, set the Device Id to 1, Address to 0001, and Modbus Point
Type to “04: Input Register”. You will see a table of Modbus input registers with
their data values starting at address 00001. Set the value of holding register 30010
to 500.

Step 5. In the Simply Modbus TCP Client window, establish a TCP connection to
ModSim32. Set the Slave ID to “1”. Set the Function Code to “4”, Minus Offset to
“0”, First Register to “9”, No. of Regs to “1”, and Register Size to “16 bit registers”,
then press the Send button. The ApplyRules.py process will create a state table for
the PLC with the value of 500 assigned to input register 30010.

Step 6. In ModSim32, set the value of holding register 30010 to “1500”.

Step 7. In the terminal window with the ApplyRules.py process you should not see
an alert message. This validates the rule did not trigger because the amount of
change of input register at address 30010 did not exceed 1000.

Step 8. In ModSim32, set the value of holding register 30010 to “1501”.

Step 9. In the Simply Modbus TCP Client window, press the Send button. This will
poll ModSim32 again.

Step 10. In the terminal window with the ApplyRules.py process you should see
an alert message similar to this:

Approved for public release; distribuiton unlimited.
23

A192.168.200.13:U1:T2:OR:TS1467120811.7215459:V{9: 1501}
Severity: Medium. Tank pressure at Address 30010 has
changed more than 1000 psi

Approved for public release; distribuiton unlimited.
24

List of Symbols, Abbreviations, and Acronyms

ACAL Army Cyber-Research and Analytics Laboratory

API application programming interface

ARL US Army Research Laboratory

BNF Backus–Naur Format

DHCP Dynamic Host Configuration Protocol

DMZ demilitarized zone

DNS Domain Name System

DOD Department of Defense

GUI graphical user interface

HMI human–machine interface

ICS industrial control system

ID identifier

IDS intrusion-detection system

IP Internet Protocol

iPoid ICS process-oriented intrusion detection

IT information technology

JSON JavaScript Object Notation

MRE Meal, Ready-To-Eat

OS operating system

PLC Programmable Logic Controller

SCADA supervisory control and data acquisition

SIGHUP signal hangup

SPAN Switched Port Analyzer

SSH secure shell

TCP Transmission Control Protocol

Approved for public release; distribuiton unlimited.
25

VM virtual machine

Approved for public release; distribuiton unlimited.
26

 1 DEFENSE TECH INFO CTR
 (PDF) DTIC OCA

 2 US ARMY RSRCH LAB
 (PDF) IMAL HRA MAIL & RECORDS MGMT
 RDRL CIO L TECHL LIB

 1 GOVT PRNTG OFC
 (PDF) A MALHOTRA

 12 US ARMY RSRCH LAB
 (PDF) RDRL CIH C
 J CLARKE
 K RENARD
 RDRL CIN
 A KOTT
 N VALLESTERO
 RDRL CIN D
 B RESCHLY
 E COLBERT
 T PARKER
 RDRL CIN S
 JW SCHAUM
 C ARNOLD
 C WALSH
 D SULLIVAN
 P TUCKER

Approved for public release; distribuiton unlimited.
27

INTENTIONALLY LEFT BLANK.

	List of Figures
	List of Tables
	Acknowledgments
	1. Background
	2. iPoid Modbus Packet-Inspection Capability
	2.1 Software Requirements
	2.2 Startup Dependencies
	2.3 iPoid Rules Format
	2.3.1 Individual Function-Rule Format
	2.3.2 Individual Value-Rule Format
	2.3.3 Updating Modbus Inspection Rules

	2.4 iPoid Alert-Message Format

	3. Examples of iPoid Implementation
	3.1 Protect Critical-Process Variables
	3.2 Protect Against Unallowed Modbus Commands

	4. Conclusion and Discussion
	5. References
	Appendix. Unit Test Procedures
	A.1 Test Setup
	A.2 Test Procedures
	A.2.1 How to Run Each Test Case
	A.2.2 Test Case 1
	A.2.3 Test Case 2
	A.2.4 Test Case 3
	A.2.5 Test Case 4

	List of Symbols, Abbreviations, and Acronyms

