
Defense AT&L: March-April 2009 26Defense AT&L: March-April 2009 26

Members of the Air Force Studies Board recently wrote a book with the catchy title Pre-
Milestone A and Early-Phase Systems Engineering: A Retrospective Review and Benefits
for Future Air Force Acquisition. It’s actually more interesting and readable than the
title suggests, and you can download the PDF version for free at <http://books.
nap.edu/catalog.php?record_id=12065>.

I read the book while sitting on a remote tropical island, sipping a frozen adult beverage of my
choice, and enjoying the kind of cheeseburger Jimmy Buffet sings about. As the warm sun turned
my skin the color of the tomato on my burger, one line jumped out at me. On page 88, I read, “At
least one major prime contractor known to the committee has decided to eliminate the term ‘sys-
tems engineering’ altogether after finding that many of the accumulated documented processes
in government, academia, and industry are useless.”

Systems Engineering In Paradise
Maj. Dan Ward, USAF

S Y S T E M S E N G I N E E R I N G

Ward, currently a student at the Air Force Institute of Technology studying systems engineering, holds degrees in elec-
trical engineering and engineering management. He is Level III certified in SPRDE and Level I in PM, T&E, and IT.

Illustration by Jim Elmore

 27 Defense AT&L: March-April 2009

Because I am about to complete a master’s de-
gree in systems engineering, this rejection hit a little
close to home. Plus, I wasn’t really on a tropical is-
land. I was in Ohio, and I wasn’t eating a cheeseburger.

Anyway, the authors go on to talk about “the adverse effects
of obsolete and non-relevant process requirements” and the
importance of “allowing systems engineering and program
management the leeway to tailor compliance with required
processes to suit the needs of each specific program.” Ah,
leeway to tailor compliance—now they’re singing my song.

But all this discussion about obsolete and irrelevant pro-
cesses made me suspect that systems engineering was
getting a bum rap in some circles. See, I’m not sure systems
engineering is really all about establishing strict, formal pro-
cesses, despite the best efforts of some to make it so. In fact,
while systems engineers certainly need to understand pro-
cess work and often use a process-driven approach, systems
engineering is actually a more organic activity than some
people make it sound. With all due respect to my friends at
INCOSE (the International Council on Systems Engineering),
systems engineering has got to be more than “a structured
development process” if it’s going to be of much use.

So, in keeping with my preference for principles over rules
(see “Socrates in DC,” Defense AT&L, July-August 2008)
and people over process (see everything I’ve ever written), I
pulled together the following collection of systems engineer-
ing principles. This grossly incomplete grouping contains
a few of the insights the discipline of systems engineering
contributes to technology development efforts and perhaps
sheds some light on the contributions a systems engineer
can make. It may not completely redeem the term systems
engineering, but I do hope it helps.

Principle #1: You can’t do just one thing
Systems engineering is concerned with the development
of complex systems. Accordingly, systems engineers must
address the interactions of a variety of entities within their
systems, including components, subsystems, and stakehold-
ers. Changes to any one aspect of the system (from funding
to function to form) ripple through and affect many, if not
most, other aspects of the system.

For example, changing a particular system interface (either in-
ternal or external) not only impacts the physical components
associated with that interface, but could also have an effect
on cost and schedule. It might take time and money to imple-
ment the new interface, or the new implementation might
save time and money. A new interface might also change the
system’s performance, maintainability, or reliability. The good
news is, it is possible to improve all these things by imple-
menting a dependable, standardized, maintainable interface.
The bad news is, it is also possible a new interface will have
a negative impact on these factors. The key thing to keep in
mind is that we never simply redesign an interface.

Thus, systems engineers can never do just one thing to a
system. Every change has more than one implication, and
systems engineers must be aware of as many of these impli-
cations as possible. A systems engineer’s holistic approach
involves an awareness of the system’s interconnected, inter-
related, complex nature.

Principle #2: Complexity and functionality are
not always directly proportional
Systems engineers build systems that do things. Whether
it is an aircraft, a satellite constellation, or an enterprise
information infrastructure, systems engineering projects
are designed to accomplish certain functions. The project
is deemed a success largely based on whether (or to what
degree) the system performs the required functions upon
delivery.

However, if we simplistically equate functionality with suc-
cess, it is easy to fall into the “more is better” trap, and assess
the value of a system solely in terms of the sheer number
of functions it performs. This approach can lead to over-
engineered, excessively complicated systems in which com-
plexity overwhelms functionality.

The engineering process might begin with a blank sheet of
paper or a collection of legacy systems. In either case, the
systems engineer typically begins by adding functions to
ensure the system meets the user’s requirements. This pro-
cess of generating new functions is appropriate and neces-
sary … to a point. Adding too many functions decreases the
system’s overall value, making it worse, not better.

There are two ways this error can be manifest. First, the
system can become too large and unwieldy, making test-
ing, analysis, operations, and maintenance difficult, time-
intensive, and expensive. In short, the complexity makes the
system difficult to use. Alternately, the conflicting demands
of multiple functions might require performance tradeoffs
and compromises, which degrade the system’s overall utility.
In this case, complexity dulls the system’s edge.

The end result of this error is either a large, complicated
system that makes it difficult to do things well or an overly
generic system that does not do anything particularly well.
These two outcomes are actually quite similar in that they
both result in degraded operational performance, albeit for
different reasons. The worst possible outcome is a combina-
tion of both—a system that is excessively complicated and
not particularly good at any one thing. So, while the systems
engineering discipline is concerned with producing complex
systems, one of the main objectives is to constrain that com-
plexity and make sure it is not excessive.

Principle #3: Foster common understanding
And the users exclaimed with a laugh and a taunt:
“It’s just what we asked for but not what we want.”

Anonymous

 27 Defense AT&L: March-April 2009

Defense AT&L: March-April 2009 28

When we say systems engineering is “multi-disciplinary,”
that doesn’t mean it involves spankings and detentions.
Sure, some systems engineers feel the need to act like the
vice principal of discipline at an elementary school, rein-
ing in the unruly and the truant, but that’s not why they’re
there. The multi-disciplinary nature of systems engineering
is actually about providing translations between the various
communities and tribes involved in developing a large, com-
plex project, fostering communication and building shared
understanding.

Any given systems engineering project inevitably involves a
large group of stakeholders, including the people who pay
for, design, use, maintain, or dispose of the system. Regularly
getting these people together in a timely and meaningful
manner and helping them understand each other is one of
the key functions of systems engineering.

The various stakeholders each have their own sets of priori-
ties, values, interests, requirements, and talents. These do
not necessarily align with those of the other stakeholders—
they might even be mutually exclusive—nor are they all de-
fined to equal levels of coherence. Systems engineers need
to avoid simply focusing on the loudest, biggest, or most
clearly documented requirements and instead consider the
full range of inputs. Thus, systems engineering involves a
lot of active listening, careful documentation, and extensive
networking to establish a shared understanding of what the
system needs to do and in what kind of environments (physi-
cal, political, and financial) it needs to operate.

Stakeholders even have their own languages, and an appar-
ently clear statement of a requirement might be misleading,
misunderstood, or even mistaken. For example, I recall at-
tending a meeting in which a special operations commander
stood up, pounded the table, and insisted “We need more
training on these systems!” It turns out what he actually
needed was a simpler system that required less training, not
more. So along with active listening and thoughtful transla-
tion, a systems engineer needs to inject insightful and cre-
ative alternatives into the discussion, helping to shepherd
the stakeholders toward a project that meets their actual
needs and not simply their perceived needs.

Principle #4: Iterate, iterate, iterate (aka The
SAWABI Principle)

It’s not at all important to get it right the first time.
It’s vitally important to get it right the last time.

Andrew Hunt and David Thomas

The complexities involved in systems engineering, both
technical and political, virtually assure that the first draft
and the final product will be different to a certain degree.
Fred Brooks, author of The Mythical Man-Month, suggests
that programmers should “Plan to throw one away. You will
anyhow.” Other writers have suggested that if we plan to
throw one away, we’ll end up throwing away two. In any case,
the need to throw one (or more) away should not come as
a surprise.

The point is that design is an iterative process. This is par-
ticularly true for systems engineering design, given the in-
herent complexities and the large numbers of stakeholders,
compounded by the difficulties inherent in communicating
complexities across large groups, as discussed in the first
three principles.

Good systems engineers avoid becoming overly attached
to the initial products, since refusing to discard a failed ap-
proach is unwise. Therefore, one of the key tasks for a sys-
tems engineer is to plan and coordinate the various itera-
tions of each product (requirements, architectures, budgets,
organizations, etc.), to include mechanisms for gracefully
discarding initial versions.

In an article for the July-August 2004 issue of Defense AT&L,
I coined the term SAWABI to describe just such a mecha-
nism. SAWABI stands for Start Again With A Better Idea
(not to be confused with Sawabi, Pakistan). The SAWABI
principle involves recognizing the need to replace the cur-
rent version of something with a better version. Depend-
ing on the scale and impact of the change, SAWABI might
require a large quantity of humility, creativity, honesty, and
courage. It might be easy to SAWABI a single requirement,
while SAWABIing an entire architecture is probably much
harder—but perhaps just as necessary. Good networking
and communication skills (see Principle #3) make SAWABI
much easier, but we must keep Principle #1 in mind as well
and be aware of the potentially widespread implications of
any change.

Principle #5: Speed is a virtue
Instability, in all its forms, is one of the biggest challenges
faced by systems engineers. Budgets, schedules, and re-
quirements can all change over time, often in inconvenient
combinations (i.e., concurrent budget cuts and increased
performance requirements) or with unintended conse-
quences (see Principle #1). Stakeholders, team members,
critics, and supporters come and go, and their replace-
ments may have different priorities, perspectives, and
skillsets. One way to help stabilize the systems engineer-

Defense AT&L: March-April 2009 28

Every change has more
than one implication, and

systems engineers must be
aware of as many of these
implications as possible.

 29 Defense AT&L: March-April 2009

ing environment, and thus improve the outcome, is to work
on a short timeline.

Generally speaking (and perhaps counter-intuitively), speed
is a systems engineer’s friend. While working on a short
timeline injects potentially uncomfortable pressure to de-
liver, it also reduces the risk of budget cuts or requirements
creep, which can be even more uncomfortable. On a short
schedule, there simply isn’t enough time for anyone to inject
significant changes to budgets or requirements. Addition-
ally, a near-term delivery deadline provides a strong justi-
fication for systems engineers to resist the introduction of
counterproductive change. A short timeline also increases
the likelihood of personnel stability, as the project can be
completed before too many people move on to bigger and
better things. As noted in Principle #1, changes to one ele-
ment tend to ripple throughout the rest of the system, so
stability increases the likelihood the system will be ready
when needed and effective when used.

Speed also decreases the risk of delivering obsolete systems
because the faster the project moves, the less the technol-
ogy environment will change. Further, speedy projects tend
to incorporate mature technology rather than spend time
developing (or waiting for) new, as-yet-undiscovered com-
ponents. So, speed helps systems engineers avoid the dual
risks of bringing obsolete technology forward or expecting
to incorporate potentially unavailable technology.

On the other hand, speed introduces a temptation to cut cor-
ners, oversimplify, or prematurely optimize a design. These
are serious dangers that degrade the system’s performance
and should be avoided. However, they are no more serious
than the risk of requirements creep, personnel turnover,
or funding instability inherent in slow, long-term projects.
More importantly, project leaders and systems engineers
have direct influence over speed-induced risks, while a slow
project’s risks are largely external and beyond the systems
engineer’s control. In my opinion, the risks and problems
introduced by being fast are preferable to those introduced
by being slow.

Principle #6: Talent trumps process
The field of systems engineering has produced a number of
methods, processes, tools, and techniques for use in devel-
oping complex systems. Those each have varying degrees
of utility, and their establishment represents a real step
forward in our ability to manage and create big, complex
projects. However, the best process or tool in the world is
useless in the wrong hands, and a talented systems engineer
can deliver a meaningful product despite a bad process or
suboptimal tools. Thus, this principle states “talent trumps
process.”

Systems engineering talent includes, but is not limited to, the
abilities to see connections within a system (see Principle
#1), to appreciate the value of complexity and distinguish

between simplisticness and simplicity (see Principle #2),
to communicate and persuade (see Principle #3), and to
recognize when to start over (see Principle #4). Talent also
includes the ability to work fast and help a team meet a
deadline (see Principle #5). And as CalTech’s Dr. Joel Sercel
pointed out, “Systems engineering without domain knowl-
edge is a net negative.” So this entire discussion rests on
the assumption that the system engineer knows something
about the area in which he or she is working.

While the INCOSE fellows talk about systems engineer-
ing as primarily focused on “creating and executing an
interdisciplinary process,” I think it really comes down
to thinking—systems thinking, to be precise—and at this
point in history, thinking (systems or otherwise) is a hu-
man-only activity. While our tools and processes are use-
ful in accomplishing tasks, tool or process cannot think for
us. Thinking skills are, therefore, the ultimate elements of
systems engineering talent.

Because talent trumps process, a good systems engineer
knows how to unleash talent—both his or her own as well
as the talent of others. And ironically, the best way to un-
leash talent is to not have too much of it. Smaller teams are
inherently more streamlined and agile, making it easier for
team members to apply their talents. In fact, small teams of
talented people generally outperform large committees of
similarly talented people because in a big group, it is harder
to communicate, harder to see the big picture, harder to in-
ject new ideas, harder to change direction, and harder to
be fast. An oversupply of talent is paradoxically counter-
productive, so systems engineers would do well to foster
and mentor a small cadre of talented people rather than a
large stable of mediocre people who basically function as
interchangeable parts.

But wait, there’s more…
If systems engineering is treated as a formal, inflexible, com-
plexly structured, requirement-heavy development process,
more and more enterprises will follow the example of the
unnamed “major prime contractor” and eliminate the term
altogether. They would not be wrong to do so. But the sys-
tems engineering discipline, properly understood, does have
some powerfully useful insights and principles for technol-
ogy development project leaders. It would be a shame to
reject the entire concept just because it has been defined
too narrowly, misapplied, and generally abused.

The six principles outlined here are only a few of the contri-
butions systems engineering provides. No doubt there are
many, many more that could be written, but I’m already over
my word limit for this article. Plus, there’s a cheeseburger in
paradise calling my name …

The author welcomes comments and questions and can be
contacted at daniel.ward@afit.edu.

 29 Defense AT&L: March-April 2009

