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1. Introduction 

This report describes the ongoing development of a robotic control architecture called the 
Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS).  The system was 
inspired by computational cognitive architectures from the discipline of cognitive psychology.  
The idea is that by applying cognitive psychological principles to robotics, perhaps some of the 
more difficult problems of localization and mapping might be solved.   

Cognitive psychologists have made enormous progress in understanding the human mind over 
the past two decades; moreover, psychologists have had great success in implementing human 
cognitive theories computationally (1).  The implementation of human cognitive function in a 
computational format has allowed cognitive theories to become more bounded, rigorous, and 
testable.  This development has allowed for cognitive theories to be tested on computer systems, 
including robotic systems.  The goal of this research is to show how cognitive psychological 
principles can be applied to simultaneous localization and mapping (SLAM) problems. 

Humans have an inexact sense of space and spatial relationships.  Understanding how humans 
develop a spatial knowledge of the world may help to develop robotic platforms that have an 
efficient working spatial knowledge of the world.  Robots, like humans, have sensors that render 
an inexact representation of the world.  Thus, any representational mechanism of spatial 
knowledge implemented on a robot must support incomplete and error-prone data, or what one 
psychological researcher calls “states of partial knowledge” (2).  The conclusion from many 
psychologists is that humans use minimal spatial representations and try to maximize the benefit 
from such a paucity of spatial representation. 

One classic example of using minimal representations of spatial maps is from an experiment 
done by Stevens and Coupe (3).  In the study, students at the University of San Diego in 
California were asked to estimate the direction of their city from Reno, Nevada.  Most students 
estimated the direction as northeast, when in fact, Reno is northwest of San Diego.  The authors 
hypothesized that the participants’ estimates were influenced by the fact that Nevada is basically 
due east of California.  Other studies have found similar results.  Studies have shown that North 
Americans tend to locate European cities south of North America when they are of similar 
latitudes (4).  Thus, it would seem that participants had a general hierarchical cognitive 
representation of the United States that is generally minimalist, and from this, they generalized 
their decisions about individual points within the United States.   

The robotics community has devoted an inordinate amount of time and computational power to 
creating exact Euclidian maps of environments, when it is not clear that this is absolutely 
necessary for efficient navigation through the world.  Research from cognitive psychology tells 
us that general maps of topological relationships are more efficient and robust.  There have been 
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some recent papers in the robotics community showing promise for solving the SLAM problem 
without using explicit localization (5).  The SLAM problem involves defining locations and 
possible locations for the robot to navigate to without using a predefined map.  We feel that a 
non-explicit representation for robot localization is the most promising direction for future 
research. 
 

2. Method 

For this research, a Pioneer P3-DX robot from ActivMedia Robotics was used.  The robot had an 
on-board computer system running the Linus Torvald’s UNIX1 version 7.3 operating system.  
The robot was equipped with the ARIA (Advanced Robotic Interface for Applications) 
development environment which is a collection of C++ libraries developed by ActivMedia for 
robotic control.  The robot was equipped with SONAR (sound navigation and ranging), a SICK2 
laser system and a Canon VC-C4 camera.  During the early stages of knowledge generation for 
this study, a real-world area with real obstacles was used.  For the second part of the study, when 
the specific interest was localization, the simulated robot software provided by ActivMedia was 
used.  The ActivMedia simulator software also simulates error associated with robot movement 
and localization. 
 

3. Procedure 

For the knowledge development phase, a robotic test bed was developed in order to allow the 
robot to explore a small world in real time.  The test bed included boxes and obstacles which 
were positioned in a room to allow the robot to navigate in a fairly complex world.  This world 
was also duplicated in the simulated environment for the localization phase. 

3.1 Background 

The SS-RICS was greatly inspired by recent developments in cognitive psychology, especially 
computational models of cognition, primarily ACT-R (Adaptive Control of Thought – Rational).  
The SS-RICS is an all-encompassing architecture, (i.e., it includes most major aspects of human 
cognitive functioning).  The architecture includes an ACT-R-like production system, as well as 
lower structures that mimic human problem-solving behavior.  The architecture does not at this 
time include emotional behavior or metacognitive behavior.   

                                                 
1UNIX is a registered trademark of  Lucent Technologies, Bell Labs Innovations. 
2Not an acronym 
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ACT-R is considered a production system architecture.  Production system architectures have 
been used successfully to mimic human behavior (1) and the production system is the basis of 
ACT-R, as well as other cognitive architectures including Soar (6).  A production system uses a 
deductive reasoning system that uses relatively simple “if-then” type rules to reach conclusions.  
The SS-RICS uses the production system as a rule-based problem-solving system.  For example, 
if an action is to determine the identity of a scene, a production system with a specific set of 
localization rules will be loaded into the SS-RICS and used for localization.   

ACT-R was developed through a long history of psychological research, especially in the area of 
human memory.  The SS-RICS uses algorithms developed to mimic human memory.  In SS-
RICS, the strength of memory items is a power function and was based on the activation function 
developed in ACT-R (1) (figure 1).  However, within the SS-RICS, a function was added to 
allow the activation levels to return to zero (RTZ); this is different from the activation equations 
developed by Anderson and Lebiere (1).  By adding an RTZ, this allows the simulation of a 
refractory period normally exhibited by neurons. 
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Figure 1.  Activation values decreasing, increasing and returning to zero. 

3.2 Knowledge Development 

Our robot was capable of detecting “points” using its SICK laser system.  These points are planar 
points (i.e., points on one continuous plane) that the robot can use to detect the approximate 
distance to objects in the world.  Our first phase of perceptual processing for the robot was called 
the “neuron level.”  (Note, while this is called the neuron layer, it is NOT a neural network.)  The 
neuron level uses algorithms to immediately start looking for points in the world which might be 
grouped together as lines.  The overall architecture then attaches an activation value to areas in 
the robot’s SICK laser perception which correspond to areas where possible lines have been 
detected (figure 2).  
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The two graphs in figure 2 showing the robot visual field should be examined together.  The top 
graph shows the robot visual field in degrees and the bottom graph shows the activation value to 
the corresponding visual field.  As shown, activation increases in areas where there is a 
continuous line representation and decreases in areas where the line representation is not as 
continuous.  This gives the robot a “sense” of where lines are in its SICK laser perceptual field.  
More importantly, this mimics systems within the human perceptual system at the neuron level 
by highly activating or strengthening the activity of cells that correspond to important items in 
the perceptual field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Robotic visual angle in degrees and activation values associated with line objects. 

In some ways, the problems of object recognition and the problems of SLAM are intimately tied 
together.  For example, people frequently use object identification as a basis for navigation 
through the world, (i.e., go to the church, turn left, then go to the large oak tree, and turn right).  
So, before addressing problems of SLAM, the robot needed a basic understanding of objects in 
the world before it could determine where in the world it was at any given time. 
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In order to allow the robot to navigate through its own environment, the SS-RICS was developed 
to allow for goal-directed behavior.  Cognitive psychologists have shown that much of human 
behavior is primarily goal directed (7).  Goals for human beings can include goals to achieve 
success, goals to procreate, or goals to satiate hunger.  Goals in the SS-RICS architecture may 
include goals to avoid objects, goals to examine objects, or goals to acquire new information.  
Goal-directed behavior is not simply the execution of one goal or another but rather a set of 
conflicting goals that allow complex behavior to emerge from their dynamic interaction.  New 
goals may be added as behavior matures or develops.  Conflicting goals also compete for 
behavioral control, depending on the activation strength of each goal, and internal or external 
stimuli can change the activation strengths of each goal.   

For SS-RICS, goals were developed that were similar to goals that one would expect to see in an 
intelligent human infant.  The main goal was to explore the world; this also included subgoals of 
avoiding objects and creating memories of the world.  Next, the robot gradually developed a goal 
to ask questions about the world.  While the robot was wandering around the room, it 
periodically asked questions about lines that it had detected.  For example, if the robot was 
interested in a certain line that its neuron layer had identified as important or salient, the robot 
would ask, “what is this thing at degree -90 to -69?,” to which the operator would answer, “it is a 
line.”  This was then added to the production system as the symbolic representation (LINE) for 
what the robot was perceiving at the time it encountered the line.  Later in the interaction, the 
robot may develop another goal to know how the operator knows what constitutes a line or the 
rules for a line.  The user would then enter into the robot what the rules are for a line (lines have 
end points and start points).  This again is added to the production system as rules that constitute 
a line.  

The human-robotic interaction was necessary for the localization behavior, in that it served as a 
building block for the symbolic representation of the world.  Additionally, this interaction 
simulated how humans learn symbolic rules for objects in the world.  It is similar to a child 
asking “why” over and over.  Answers from parents to children’s “why” questions frequently 
include rules.  In this case, the robot was motivated by a goal to ask what a line was from its own 
perceptual experience.  It then learned the symbolic representation of a line from its interaction 
with an operator.  It was then able to use the rules that it learned to help determine what objects 
are in the world, and subsequently, where it was in the world. 

3.3 Localization 

The robot was implemented to develop topological maps that the production system (ACT-R) 
was capable of loading and analyzing.  For example, once the robot was able to identify “lines,” 
it then grouped lines together as scenes.  So, in addition to asking questions about objects in the 
world, the robot gradually developed a goal to store scenes or specific locations of the world.  
The robot did this by asking “where am I” to which the operator replied “front right of room.”  

The robot learned five locations of a room that were entered into the ACT-R production system.  
An approximate layout of the room with each of the five locations is shown in figure 3.  A 
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sample set of what was generated for the production system is show in table 1.  (Note: the line 
numbers are arbitrary.) 
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Figure 3.  Approximate layout of room and five locations  

the robot was to learn. 

Table 1.  Five scene locations, in rule based format, first scan. 

Location 1 Location 2 Location 3 Location 4 Location 5 
(near-left line5) 
(near-right line1) 
(near-right line2) 
(near-right line3) 
(near-right line4) 

(far-left line8) 
(left line4) 
(left line5) 
(left line7) 
(near line3) 
(near-left line6) 
(near-right line1) 
(near-right line2) 

(near line3) 
(near-left line4) 
(near-left line5) 
(near-right line1) 
(near-right line2) 

(center line7) 
(left line8) 
(near-left line9) 
(near-right line2) 
(near-right line4) 
(near-right line5) 
(near-right line6) 
(right line1) 
(right line3) 

(center line7) 
(left line11) 
(near-left line10) 
(near-left line8) 
(near-left line9) 
(near-right line4) 
(near-right line5) 
(right line1) 
(right line2) 
(right line3) 
(right line6) 

 
As can be seen from the table 1, the production system included only one type of object, a line.  
Next, the robot was able to encode the general location of the line (i.e., near, far, left, center or 
right (which are based on threshold values)).  This was the only information about each one of 
the five locations.  Next, the robot was placed into approximately the same locations by a human 
operator in the robotic simulator.  The operator only had a rough map of the general locations as 
shown in figure 3.  This new placement generated a new set of five locations.  Those locations 
are listed in table 2.  Once the robot was placed in each location the second time, using the ACT-
R production system, the robot was able to identify each of the five locations.  So, by using only 
line information and general information about the location of each line (i.e., near-left) the robot 
was able to determine its locations for five different scenes.  
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Table 2.  Five scene locations, rule based format, second scan. 

Location 1 Location 2 Location 3 Location 4 Location 5 
(near line6) 
(near-left line7) 
(near-right line1) 
(near-right line2) 
(near-right line3) 
(near-right line4) 
(near-right line5) 

(far-left line11) 
(left line10) 
(left line6) 
(left line7) 
(near-left line8) 
(near-left line9) 
(near-right line1) 
(near-right line2) 
(near-right line3) 
(near-right line4) 
(right line5) 

(near line3) 
(near-left line4) 
(near-left line5) 
(near-right line1) 
(near-right line2) 

(center line5) 
(left line6) 
(near-left line7) 
(near-right line2) 
(near-right line4) 
(right line1) 
(right line3) 

(center line6) 
(left line11) 
(near-left line10) 
(near-left line7) 
(near-left line8) 
(near-left line9) 
(near-right line2) 
(near-right line3) 
(near-right line4) 
(right line1) 
(right line5) 

 
As can be seen from table 3, because of the inherent error in sensor readings, each scan from the 
same location is slightly different.  The near-left line occasionally switches to a near line and 
then back to a near-left line. 

Table 3.  Four scans of location 1. 

Scan 1 Scan 2 Scan 3 Scan 4 
(near-left line5) (near line5) (near-left line5) (near line5) 
(near-right line1) (near-left line6) (near-right line1) (near-left line6) 
(near-right line2) (near-right line1) (near-right line2) (near-right line1) 
(near-right line3) (near-right line2) (near-right line3) (near-right line2) 
(near-right line4) (near-right line3) (near-right line4) (near-right line3) 
 (near-right line4)  (near-right line4) 
    

 
By using the activation values within ACT-R, this helped to reduce the effects of the error 
associated with each scan.  First, ACT-R groups the lines of similar types together (i.e., near 
right), then does a comparison of each scan and does a match with existing scans that it has in its 
memory.  Scans that match existing memories receive higher activation values.  The logic here is 
that the more common a scan is, the more likely the scan reflects reality, since the error scans 
occur less frequently.  As can be seen from figure 4, after three ACT-R cycles of matching three 
groups of lines, ACT-R has determined that the near-right group is the most stable and matches 
the best to the previous location scans (note, not all the scans used in the ACT-R analysis are 
included in table 3).  Next, the near-left group is slightly less active, primarily because it occurs 
less often (only one instance in each group, while the near-right group line instance occurs four 
times in its group).   ACT-R has concluded that since it is less active, it is considered less stable 
and less a representation of true reality.  Finally, the near group (which is actually not a group 
because it is only one line, but the word “group” here is used for consistency since it is treated 
the same as the other groups of lines within ACT-R) is the least active.  This activation level is 
because it does not occur at all in scans 1 and 3 and occurs only once in instances 2 and 4.  This 
instance would be considered an error and would be grounds for ignoring or removal in future 
calculations of localization within ACT-R. 
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Another note about the psychological plausibility of this analysis:  With the SS-RICS 
architecture and by using ACT-R, meaningful representations have been grouped together (line 
groups).  For example, with the scene analysis, the representation starts with points, then 
progresses to lines, then progresses to groups of lines.  (ACT-R allows manipulation of the near-
left group of lines shown in the graph as one memory object, so it can be thought of as a single 
representation.)  This is very similar to human memory and gestalt-type knowledge organization. 
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Figure 4.  Line group activation values for three groups of lines. 

3.4 Summary 

Using this simple representation, the robot creates general representations of specific locations.  
By using general representations, we hope that the overall representation is more robust and less 
prone to failure.  Furthermore, this representation should not be affected by increased scaling, 
which has caused problems for traditional SLAM techniques.  The error in this representation 
does not necessarily increase with the size of the map.   

In our study, the five scenes were arbitrary locations on the map.  However, ideally, the scenes 
should be considered “landmarks” or important and salient features of the environment.  For 
example, passing through a doorway, rounding the corner of a hallway, or entering a stairwell 
would be the kinds of important and salient landmarks that the robot would store in its memory.  
Ideally, the robot would learn from trial and error navigation that certain salient features of the 
environment are important for navigation and localization.  However, in this case, we have hard 
coded this information. 
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Typically, there should be no need for any representation between the landmarks.  The robot 
only needs to know that it is located at one landmark and perhaps is moving to another landmark.  
The only representation it might have is that it is “between” landmarks.  If an interruption 
signaled the need to move to a new landmark, then a new landmark could be created at the spot 
of the interruption which might be between two landmarks.  The location of the interruption 
would create an important event, which would generate the need for a new landmark.  However, 
this would be one of the rare instances when a representation between landmarks would be 
needed. 
 

4. Conclusions 

SS-RICS represents the ongoing development of a robotic control architecture that is based 
heavily on the principles of cognitive psychology.  This architecture gave our robot the ability to 
explore a space in much the same way a human infant would explore a space.  By developing a 
neuron layer similar to the human neuron layer, the robot was attracted to certain salient features 
of its environment.  By examining salient objects and asking the operator questions about salient 
objects, the robot was then able to develop a symbolic representation of the space and use that 
representation for localization procedures.  The robot was able to correctly identify five similar 
locations in a simulated environment.  The robot was also capable of chunking together 
representations:  first for points, then lines, and then groups of lines and was able to organize 
groups of lines into a coherent knowledge set.  Activation values (developed from human 
memory decay algorithms) were used to reduce the influence of noise on our localization 
procedures.  Also, note that the robot was able to recognize similar spaces by using a small 
amount of representations (i.e., lines and locations of lines).  It is encouraging to see that just a 
small amount of representation can go a long way to identifying locations in a space. 

Further research will be done to move this simulation into the real world to see if the robot is 
capable of performing the same tasks in the real world as in the simulation.  Additionally, a task 
will be to give the robot a more detailed representations (edges, corners) and more information 
about movement (global X,Y locations) in order to further improve the topological localization 
strategies. 
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  ATTN AMSRD ARL HR MM DR V RICE 
  BLDG 4011 RM 217 
  1750 GREELEY RD 
  FT SAM HOUSTON TX 78234-5094 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN  AMSRD ARL HR MG  R SPINE 
  BUILDING 333 
  PICATINNY ARSENAL  NJ   07806-5000 
 
 1 ARL HRED  ARMC FLD ELMT 
  ATTN AMSRD ARL HR MH  C BURNS 
  BLDG 1467B  ROOM 336 
  THIRD AVENUE 
  FT KNOX  KY  40121 
 
 1 ARMY RSCH LABORATORY - HRED 
  AVNC FIELD ELEMENT 
  ATTN AMSRD ARL HR MJ D DURBIN 
  BLDG 4506 (DCD) RM 107 
  FT RUCKER  AL  36362-5000  
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MK MR J REINHART 
  10125 KINGMAN RD 
  FT BELVOIR VA 22060-5828 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MV HQ USAOTC 
   S MIDDLEBROOKS 
  91012 STATION AVE  ROOM 111 
  FT HOOD TX   76544-5073 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MY  M BARNES 
  2520 HEALY AVE STE 1172 BLDG 51005 
  FT HUACHUCA AZ  85613-7069 
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 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MP  D UNGVARSKY 
  BATTLE CMD BATTLE LAB 
  415 SHERMAN AVE UNIT 3 
  FT LEAVENWORTH KS  66027-2326 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MJK   J HANSBERGER 
  JFCOM JOINT EXPERIMENTATION  J9 
  JOINT FUTURES LAB 
  115 LAKEVIEW PARKWAY SUITE B 
  SUFFOLK VA  23435 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MQ M R FLETCHER 
  US ARMY SBCCOM  NATICK SOLDIER CTR  
  AMSRD NSC SS E    BLDG 3 RM 341 
  NATICK  MA  01760-5020 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MY  DR J CHEN 
  12423 RESEARCH PARKWAY 
  ORLANDO FL  32826 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MS MR C MANASCO 
  SIGNAL TOWERS   RM 303A 
  FORT GORDON  GA  30905-5233 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MU  M SINGAPORE 
  6501 E 11 MILE RD MAIL STOP 284 
  BLDG 200A 2ND FL RM 2104 
  WARREN  MI  48397-5000 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MF MR C HERNANDEZ 
  BLDG 3040  RM 220 
  FORT SILL  OK  73503-5600 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN AMSRD ARL HR MW  E REDDEN 
  BLDG 4  ROOM 332 
  FT BENNING  GA  31905-5400 
 
 1 ARMY RSCH LABORATORY - HRED 
  ATTN  AMSRD ARL HR MN  R SPENCER 
  DCSFDI HF 
  HQ USASOC BLDG E2929 
  FORT BRAGG  NC   28310-5000 
 
 1 ARMY G1 
  ATTN DAPE MR  B KNAPP 
  300 ARMY PENTAGON ROOM 2C489 
  WASHINGTON DC 20310-0300 

NO.  OF 
COPIES ORGANIZATION 
 
 
  ABERDEEN PROVING GROUND 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL CI OK  (TECH LIB) 
  BLDG 4600  
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL CI OK TP  S FOPPIANO 
  BLDG 459  
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN AMSRD ARL HR MR   
      F PARAGALLO 
  BLDG 459 
 
 5 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN AMSRD ARL HR SE  T KELLEY 
  BLDG 459 
 
 
 


