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Abstract. The performance of a reject option classifiers is quantified
using 0 − d − 1 loss where d ∈ (0, .5) is the loss for rejection. In this
paper, we propose double ramp loss function which gives a continuous
upper bound for (0 − d − 1) loss. Our approach is based on minimizing
regularized risk under the double ramp loss using difference of convex
programming. We show the effectiveness of our approach through exper-
iments on synthetic and benchmark datasets. Our approach performs
better than the state of the art reject option classification approaches.

1 Introduction

The primary focus of classification problems has been on algorithms that return
a prediction on every example. However, in many real life situations, it may be
prudent to reject an example rather than run the risk of a costly potential mis-
classification. Consider, for instance, a physician who has to return a diagnosis
for a patient based on the observed symptoms and a preliminary examination. If
the symptoms are either ambiguous, or rare enough to be unexplainable without
further investigation, then the physician might choose not to risk misdiagnosing
the patient. He might instead ask for further medical tests to be performed, or
refer the case to an appropriate specialist. The principal response in these cases
is to “reject” the example. This paper focuses on learning a classifier with a
reject option. From a geometric standpoint, we can view the classifier as being
possessed of a decision surface as well as a rejection surface. The rejection region
impacts the proportion of examples that are likely to be rejected, as well as
the proportion of predicted examples that are likely to be correctly classified.
A well-optimized classifier with a reject option is the one which minimizes the
rejection rate as well as the mis-classification rate on the predicted examples.

Let x ∈ R
p is the feature vector and y ∈ {−1,+1} is the class label. Let

D(x, y) be the joint distribution of x and y. A typical reject option classifier is
defined using a bandwidth parameter (ρ) and a separating surface (f(x) = 0).
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ρ is the parameter which determines the rejection region. Then a reject option
classifier h(f(x), ρ) is formed as:

h(f(x), ρ) = 1.I{f(x)>ρ} + 0.I{|f(x)|≤ρ} − 1.I{f(x)<−ρ} (1)

where I{A} is an indicator function which takes value 1 if predicate ’A’ is true,
else 0. The reject option classifier can be viewed as two parallel surfaces with the
rejection area in between. The goal is to determine f(x) as well as ρ simultane-
ously. The performance of this classifier is evaluated using L0−d−1 [8,12] which
is

L0−d−1(f(x), y, ρ) = 1.I{yf(x)<−ρ} + d.I{|f(x)|≤ρ} + 0.I{yf(x)≥−ρ} (2)

In the above loss, d is the cost of rejection. If d = 0, then we will always reject.
When d > .5, then we will never reject (because expected loss of random labeling
is 0.5). Thus, we always take d ∈ (0, .5).

To learn a reject option classifier, the expectation of L0−d−1(., ., .) with
respect to D(x, y) (risk) is minimized. Since D(x, y) is fixed but unknown, the
empirical risk minimization principle is used. The risk under L0−d−1 is mini-
mized by generalized Bayes discriminant [4,8]. h(f(x), ρ) (Eq. (1)) is shown to
be infinite sample consistent with respect to the generalized Bayes classifier [13].

Table 1. Convex surrogates for L0−d−1

Loss Function Definition

Generalized Hinge LGH(f(x), y) =

⎧
⎪⎨

⎪⎩

1− 1−d
d
yf(x), if yf(x) < 0

1− yf(x), if 0 ≤ yf(x) < 1

0, otherwise

Double Hinge LDH(f(x), y) = max[−y(1− d)f(x) +H(d),−ydf(x) +H(d), 0]
where H(d) = −d log(d)− (1− d) log(1− d)

Since minimizing the risk under L0−d−1 is computationally cumbersome,
convex surrogates for L0−d−1 have been proposed. Generalized hinge loss LGH

(see Table 1) is a convex surrogate for L0−d−1 [3,12]. It is shown that a min-
imizer of risk under LGH is consistent to the generalized Bayes classifier [3].
Double hinge loss LDH (see Table 1) is another convex surrogate for L0−d−1

[7]. Minimizer of the risk under LDH is shown to be strongly universally con-
sistent to the generalized Bayes classifier [7]. We observe that these convex loss
functions have some limitations. For example, LGH is a convex upper bound to
L0−d−1 provided ρ < 1− d and LDH forms an upper bound to L0−d−1 provided
ρ ∈ ( 1−H(d)

1−d , H(d)−d
d ) (see Fig. 1). Also, both LGH and LDH increase linearly

in the rejection region instead of remaining constant. These convex losses can
become unbounded for misclassified examples with the scaling of parameters of
f . Moreover, limited experimental results are shown to validate the practical
significance of these losses [3,7,12]. A non-convex formulation for learning reject
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Fig. 1. LGH and LDH for d = 0.2. (a) For ρ = 0.7, both the losses upper bound the
L0−d−1. For ρ = 2, both the losses fail to upper bound L0−d−1. LGH and LDH both
increase linearly even in the rejection region than being flat.

option classifier is proposed in [5]. However, theoretical guarantees for the app-
roach proposed in [5] are not known. While learning a reject option classifier,
one has to deal with the overlapping class regions and outliers. SVM and other
convex loss based approaches are less robust to label noise and outliers in the
data [10]. It is shown that ramp loss based approach is more robust to noise [6].

Motivated by this, we propose double ramp loss (LDR) which incorporates a
different loss value for rejection. LDR forms a continuous nonconvex upper bound
for L0−d−1 and overcomes many of the issues of convex surrogates of L0−d−1.
To learn a reject option classifier, we minimize the regularized risk under LDR

which becomes an instance of difference of convex (DC) functions. To minimize
it, we use DC programming approach [1]. The proposed method has following
advantages: (1) the proposed loss LDR gives a tighter upper bound to the L0−d−1,
(2) LDR requires no constraint on ρ unlike LGH and LDH, (3) our approach can
be easily kernelized for dealing with nonlinear problems.

The rest of the paper is organized as follows. In Section 2 we define the double
ramp loss (LDR). Then we discuss its properties and the proposed formulation
based on LDR. In Section 3 we derive the (LDR) based reject option classifier
learning algorithm. We present experimental results in Section 4. We conclude
the paper with the discussion in Section 5.

2 Proposed Approach

Our approach for learning classifier with reject option is based on minimizing
regularized risk under LDR (double ramp loss).
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2.1 Double Ramp Loss

Double ramp loss is defined as a sum of two ramp loss functions as follows:

LDR(f(x), y, ρ) =
d

μ

[[
μ− yf(x) + ρ

]
+
− [− μ2 − yf(x) + ρ

]
+

]

+
(1− d)
μ

[[
μ− yf(x)− ρ]

+
− [− μ2 − yf(x)− ρ]

+

]
(3)
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Fig. 2. LDR and L0−d−1 : ∀μ ≥ 0, ρ ≥ 0, LDR is an upper bound for L0−d−1

where [a]+ = max(0, a). μ ∈ (0, 1] defines the slope of ramps in the loss1.
Parameter ρ defines the width of the rejection region. Fig. 2 shows LDR for
d = 0.2, ρ = 2 for different μ.

Theorem 1. (i) LDR ≥ L0−d−1,∀μ > 0, ρ ≥ 0. (ii) limμ→0 LDR(f(x), ρ, y) =
L0−d−1(f(x), ρ, y). (iii) In the rejection region, yf(x) ∈ (ρ − μ2,−ρ + μ),
LDR(f(x), y, ρ) = d(1 + μ), a const. (iv) LDR ≤ (1 + μ),∀ρ ≥ 0, d ≥ 0. (v)
When ρ = 0, LDR is same as μ-ramp loss ([11]). (vi) LDR is a non-convex
function of (yf(x), ρ).

The proof of Theorem 1 is omitted due to the space constraints. We see that
LDR does not put any restriction on ρ for it to be an upper bound of L0−d−1.

2.2 Risk Formulation Using LDR

Let S = {(xn, yn), n = 1 . . . N} be the training dataset, where xn ∈ R
p, yn ∈

{−1,+1}, ∀n. As discussed, we minimize regularized risk under LDR to find
1 While LDR is parametrized by μ and d as well, we omit them for the sake of notational

consistency.
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a reject option classifier. In this paper, we use l2 regularization. Let Θ =
[wT b ρ]T . Thus, for f(x) = (wTφ(x) + b), regularized risk under double
ramp loss is

R(Θ) =
1
2
||w||2 +

C

μ

N∑

n=1

{
d
[
μ− ynf(xn) + ρ

]
+
− d[− μ2 − ynf(xn) + ρ

]
+

+(1− d)[μ− ynf(xn)− ρ
]
+
− (1− d)[− μ2 − ynf(xn)− ρ

]
+

}

=
1
2
||w||2 +

C

μ

N∑

n=1

{
d
[
μ− ynf(xn) + ρ

]
+

+ (1− d)[μ− ynf(xn)− ρ
]
+

−d[− μ2 − ynf(xn) + ρ
]
+
− (1− d)[− μ2 − ynf(xn)− ρ

]
+

}

where C is regularization parameter. While minimizing R(Θ), no non-negativity
condition on ρ is required due to the following lemma.

Lemma 1. At the minimum of R(Θ), ρ must be non-negative.

Proof. Let Θ′ = (w′, b′, ρ′) minimizes R(Θ), where ρ′ < 0. Thus −ρ′ > 0.
Consider Θ′′ = (w′, b′,−ρ′) as another point.

R(Θ′)−R(Θ′′) =
C(1− 2d)

μ

N∑

n=1

{
− [μ− ynf(xn) + ρ′

]
+

+
[− μ2 − ynf(xn) + ρ′

]
+

+
[
μ− ynf(xn)− ρ′]

+
− [− μ2 − ynf(xn)− ρ′]

+

}

= C(1− 2d)
N∑

n=1

{
Lramp(ynf(xn) + ρ′)− Lramp(ynf(xn)− ρ′)

}

where Lramp(t) = 1
μ ([μ − t]+ − [−μ2 − t]+) is a monotonically non-increasing

function of t [11]. Since ρ′ < 0, thus, ynf(xn) + ρ′ < ynf(xn) − ρ′, ∀n. This
implies Lramp(ynf(xn)+ρ′) ≥ Lramp(ynf(xn)−ρ′), ∀n. Also (1−2d) ≥ 0, since
0 ≤ d ≤ 0.5. Thus R(Θ′) − R(Θ′′) ≥ 0, which contradicts that Θ′ minimizes
R(Θ). Thus, at the minimum of R(Θ), ρ must be non-negative.

3 Solution Methodology

R(Θ) (Eq. (4)) is a nonconvex function of Θ. However, R(Θ) can be written as
R(Θ) = R1(Θ)−R2(Θ), where R1(Θ) and R2(Θ) are convex functions of Θ.

R1(Θ) =
1
2
||w||2 +

C

μ

N∑

n=1

[
d
[
μ− ynf(xn) + ρ

]
+

+ (1− d)[μ− ynf(xn)− ρ
]
+

]

R2(Θ) =
C

μ

N∑

n=1

[
d
[− μ2 − ynf(xn) + ρ

]
+

+ (1− d)[− μ2 − ynf(xn)− ρ
]
+

]
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In this case, DC programming guarantees to find a local optima of R(Θ) [1].
In the simplified DC algorithm [1], an upper bound of R(Θ) is found using the
convexity property of R2(Θ) as follows.

R(Θ) ≤ R1(Θ)−R2(Θ(l))− (Θ −Θ(l))T∇R2(Θ(l)) =: ub(Θ,Θ(l)) (4)

where Θ(l) is the parameter vector after (l)th iteration, ∇R2(Θ(l)) is a sub-
gradient of R2 at Θ(l). Θ(l+1) is found by minimizing ub(Θ,Θ(l)). Thus,
R(Θ(l+1)) ≤ ub(Θ(l+1), Θ(l)) ≤ ub(Θ(l), Θ(l)) = R(Θ(l)). Which means, in every
iteration, the DC program reduces the value of R(Θ).

3.1 Learning Reject Option Classifier Using DC Programming

In this section, we will derive a DC algorithm for minimizing R(Θ). We initialize
with Θ = Θ(0). Given Θ(l), we find Θ(l+1) as

Θ(l+1) ∈ arg min
Θ

ub(Θ,Θ(l)) = arg min
Θ

R1(Θ)−ΘT∇R2(Θ(l)) (5)

where ∇R2(Θ(l)) is the subgradient of R2(Θ) at Θ(l). We choose ∇R2(Θ(l)) as:

∇R2(Θ(l)) =
N∑

n=1

β′(l)n [−ynφ(xn)T − yn 1]T +
N∑

n=1

β′′(l)n [−ynφ(xn)T − yn − 1]T

where
{
β
′(l)
n = Cd

μ I{yn(φ(xn)T w(l)+b(l))−ρ(l)<−μ2}
β
′′(l)
n = C(1−d)

μ I{yn(φ(xn)T w(l)+b(l))+ρ(l)<−μ2}
(6)

For f(x) = (wTφ(x) + b), we rewrite the upper bound minimization problem
described in Eq. (5) as follows,

P (l+1) = minΘ R1(Θ)−ΘT∇R2(Θ(l))

= min
w,b,ρ

1

2
||w||2 +

C

μ

N∑

n=1

[
d
[
μ− ynf(xn) + ρ

]
+

+ (1− d)
[
μ− ynf(xn)− ρ]

+

]

+
N∑

n=1

β′(l)n [ynf(xn)− ρ] +
N∑

n=1

β′′(l)n [ynf(xn) + ρ]

We rewrite P (l+1) as

P (l+1) = min
w,b,ξ′

,ξ′′
,ρ

1

2
||w||2 +

C

μ

N∑

n=1

[
dξ′n + (1− d)ξ′′n

]
+

N∑

n=1

β′(l)n [yn(wTφ(xn) + b)− ρ]

+

N∑

n=1

β′′(l)n [yn(wTφ(xn) + b) + ρ]

s.t. yn(wTφ(xn) + b) ≥ ρ+ μ− ξ′n, ξ′n ≥ 0, n = 1 . . . N

yn(wTφ(xn) + b) ≥ −ρ+ μ− ξ′′n, ξ′′n ≥ 0 n = 1 . . . N
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where ξ′ = [ξ′1 ξ′2 . . . ξ
′
N ]T and ξ′′ = [ξ′′1 ξ′′2 . . . ξ

′′
N ]T . The dual optimization

problem D(l+1) of P (l+1) is as follows.

D(l+1) = min
γ′,γ′′

1
2

N∑

n=1

N∑

m=1

ynym(γ′n + γ′′n)(γ′m + γ′′m)k(xn,xm)− μ
N∑

n=1

(γ′n + γ′′n)

s.t.

⎧
⎪⎨

⎪⎩

−β′(l)n ≤ γ′n ≤ Cd
μ − β′(l)n n = 1 . . . N

−β′′(l)n ≤ γ′′n ≤ C(1−d)
μ − β′′(l)n n = 1 . . . N

∑N
n=1 yn(γ

′
n + γ′′n) = 0

∑N
n=1(γ

′
n − γ′′n) = 0

where γ′ = [γ′1 γ′2 . . . . . . γ
′
n]
T and γ′′ = [γ′′1 γ′′2 . . . . . . γ

′′
n]T are dual variables.

At the optimality of P (l+1), w can be found as w =
∑N
n=1 yn(γ

′
n + γ′′n)φ(xn).

Since P (l+1) has quadratic objective and linear constraints, it holds strong
duality with D(l+1). Solving D(l+1) is more useful as it can be easily kernelized
for non-linear problems. Behavior of γ′n and γ′′n under different cases is as follows.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn(wTφ(xn) + b)− μ > ρ ⇒ γ′n = −β′(l)n ; γ′′n = −β′′(l)n

yn(wTφ(xn) + b)− μ = ρ ⇒ γ′n ∈
(− β′(l)n , Cd

μ
− β′(l)n

)
; γ′′n = −β′′(l)n

yn(wTφ(xn) + b)− μ ∈ (−ρ, ρ) ⇒ γ′n = Cd
μ
− β′(l)n ; γ′′n = −β′′(l)n

yn(wTφ(xn) + b)− μ = −ρ ⇒ γ′n = Cd
μ
− β′(l)n ; γ′′n ∈

(− β′′(l)n , C(1−d)
μ
− β′′(l)n

)

yn(wTφ(xn) + b)− μ < −ρ ⇒ γ′n = Cd
μ
− β′(l)n ; γ′′n = C(1−d)

μ
− β′′(l)n

3.2 Finding b(l+1) and ρ(l+1)

To find b(l+1) and ρ(l+1), we consider xn ∈ SV′(l+1) ∪ SV′′(l+1), where

SV′(l+1) = {xn | yn(φ(xn)Tw(l+1) + b(l+1)) = ρ(l+1) + μ}
SV′′(l+1) = {xn | yn(φ(xn)Tw(l+1) + b(l+1)) = −ρ(l+1) + μ}

We already saw that

1. If xn ∈ SV′(l+1), then γ′(l+1)
n ∈ (− β′(l)n , Cdμ − β′n(l)

)
and γ′′(l+1)

n = −β′′(l)n

2. If xn ∈ SV′′(l+1), then γ
′(l+1)
n = Cd

μ − β′(l)n and γ′′(l+1)
n ∈ (− β′′(l)n , C(1−d)

μ −
β
′′(l)
n

)

We solve the system of linear equations corresponding to sets SV′(l+1) and
SV′′(l+1) for identifying b(l+1) and ρ(l+1).

3.3 Summary of the Algorithm

We fix d ∈ [0, .5], μ ∈ (0, 1] and C and initialize the parameter vector Θ as
Θ(0). In any iteration (l), we find β′(l)n , β

′′(l)
n , n = 1 . . . N (see Eq. (6)). We solve
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D(l+1) to find γ′(l+1),γ′′(l+1). w(l+1) is found as w(l+1) =
∑N
n=1 yn(γ

′(l+1)
n +

γ
′′(l+1)
n )φ(xn). We find b(l+1) and ρ(l+1) as described in Section 3.2. Thus, we

have found Θ(l+1). Using Θ(l+1), we now find β
′(l+1)
n , β

′′(l+1)
n , n = 1 . . . N . We

repeat the above two steps until the parameter vector Θ changes significantly.
More formal description of our algorithm is provided in Algorithm 1.

Algorithm 1. Learning Reject Option Classifier by Minimizing R(Θ)
Input : d ∈ [0, .5], μ ∈ (0, 1], C > 0, S
Output : w∗, b∗, ρ∗

Initialize w(0), b(0), ρ(0), l = 0
repeat

Compute β
′(l)
n = Cd

μ
I{yn(φ(xn)T w(l)+b(l))−ρ(l)<−μ2}

β
′′(l)
n = C(1−d)

μ
I{yn(φ(xn)T w(l)+b(l))+ρ(l)<−μ2}

Find γ′(l+1),γ′′(l+1) by solving D(l+1) described in Eq. (7)

Find w(l+1) =
∑N

n=1 yn(γ
′(l+1)
n + γ

′′(l+1)
n )φ(xn)

Find b(l+1) and ρ(l+1) by solving the system of linear equations corresponding to
sets SV

(l+1)
1 and SV

(l+1)
2 , where

SV′(l+1) = {xn | yn(φ(xn)T w(l+1) + b(l+1)) = ρ(l+1) + μ}
SV′′(l+1) = {xn | yn(φ(xn)T w(l+1) + b(l+1)) = −ρ(l+1) + μ}

until convergence of Θ(l)

3.4 γ′ and γ′′ at the Convergence of Algorithm 1

At the convergence of Algorithm 1, let γ′∗n , γ
′′∗
n , n = 1 . . . N become the values

of the dual variables. The behavior of γ′∗n and γ′′∗n is described in Table 2. For
any xn, only one of γ′∗n and γ′′∗n can be nonzero. We observe that parameters
w, b and ρ are determined by the points whose margin (yf(x)) is in the range
[ρ−μ2, ρ+μ]∪ [−ρ−μ2,−ρ+μ]. We call these points as support vectors. We also
see that xn for which ynf(xn) ∈ (ρ+ μ,∞)∪ (−ρ+ μ, ρ− μ2)∪ (−∞,−ρ− μ2),
both γ′∗n , γ

′′∗
n = 0. Thus, points which are correctly classified with margin at least

(ρ+μ), points falling close to the decision boundary with margin in the interval
(−ρ+ μ, ρ− μ2) and points misclassified with a high negative margin (less than
−ρ− μ2), are ignored in the final classifier. Thus, our approach not only rejects
points falling in the overlapping region of classes, it also ignores potential outliers.
We illustrate these insights through experiments on a synthetic dataset as shown
in Fig. 3. 400 points are uniformly sampled from the square region [0 1]× [0 1].
We consider the diagonal passing through the origin as the separating surface
and assign labels {−1,+1} to all the points using it. We changed the labels of
80 points inside the band (width=0.225) around the separating surface.

Fig. 3 shows the reject option classifier learnt using the proposed method. We
see that the proposed approach learns the rejection region accurately. We also
observe that all of the support vectors are near the two parallel hyperplanes.
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Table 2. Behavior of γ′∗ and γ′′∗

Condition γ′∗n ∈ γ′′∗n ∈
yn(wTφ(xn) + b) ∈ (ρ+ μ,∞) 0 0

yn(wTφ(xn) + b) = ρ+ μ (0, Cd
μ

) 0

yn(wTφ(xn) + b) ∈ [ρ− μ2, ρ+ μ) Cd
μ

0

yn(wTφ(xn) + b) ∈ (−ρ+ μ, ρ− μ2) 0 0

yn(wTφ(xn) + b) = −ρ+ μ 0 (0, C(1−d)
μ

)

yn(wTφ(xn) + b) ∈ [−ρ− μ2,−ρ+ μ) 0 C(1−d)
μ

yn(wTφ(xn) + b) ∈ (−∞,−ρ− μ2) 0 0
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Fig. 3. Left figure shows that label noise affects points near the true classification
boundary. Right figure shows reject option classifier learnt using LDR based approach
(C = 100, μ = 1, d = .2). Filled circles and triangles represent the support vectors.

4 Experimental Results

We show the effectiveness of our approach by showing its performance on several
datasets. We also compare our approach with the approach proposed in [7].

4.1 Dataset Description

We report experimental results on 1 synthetic datasets and 2 datasets taken
from UCI ML repository [2].

1. Synthetic Dataset : Let f1 and f2 be two mixture density functions in R
2

defined as follows:

f1(x) = 0.45U([1, 0]× [1, 1]) + 0.5U([4, 3]× [0, 1]) + 0.05U([10, 0]× [5, 5])
f2(x) = 0.45U([0, 1]× [1, 1]) + 0.5U([9, 10]× [1, 0]) + 0.05U([0, 10]× [5, 5])
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where U(A) denotes the uniform density function with support set A. We
sample 150 points independently each from f1 and f2. We label these points
using the hyperplane with w = [1 0]T and b = 0. We choose 10% of these
points uniformly at random and flip their labels.

2. Ionosphere Dataset [2] : This dataset describes the problem of discrimi-
nating good versus bad radars based on whether they send some useful infor-
mation about the Ionosphere. There are 34 variables and 351 observations.

3. Parkinsons Disease Dataset [2] : This dataset is used to discriminate
people with Parkinsons disease from the healthy people. There are 195 fea-
ture vectors with each vector having 22 features.

4.2 Experimental Setup

In the proposed LDR based approach, for solving the dualD(l) at every iteration,
we have used the kernlab package [9] in R. We thank the authors of LDH based
method [7] for providing the codes for their approach. For nonlinear problems,
we use RBF kernel. In our approach, we set μ = 1. C and σ (width parameter
for RBF kernel) are chosen using 10-fold cross validation.

4.3 Simulation Results

We report results for values of d in the interval [0.05 .5] with the step size of 0.05.
For every value of d, we find the cross validation risk (under L0−d−1), % accuracy
on the non-rejected examples (Acc) and % rejection rate (RR). The results
provided are based on 10 repetitions of 10-fold cross validation (CV). We show
the average values and standard deviation (computed over the 10 repetitions).

We now discuss the experimental results. Fig. 4(a) shows the Synthetic
dataset and the true classification boundary. Fig. 4(b) and (c) show the clas-
sifiers learnt using LDR and LDH based approaches respectively for d = 0.2. LDR

based approach accurately finds the true classification boundary as oppose to
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Fig. 4. (a) Synthetic Dataset and the true classification boundary. Reject option clas-
sifiers learnt using (b) proposed LDR based approach for d = 0.2, (c) LDH based
approach for d = 0.2.
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Table 3. Comparison results on Synthetic dataset (linear classifiers for both the
approaches)

d LDR (C = 2) LDH (C = 32)

Risk RR Acc(unrej) Risk RR Acc(unrej)

0.05 0.068±0.015 90.87±5.79 75.87±7.95 0.05 100 NA
0.1 0.138±0.023 70.35±12.18 79.05±6.87 0.105±0.002 95.53±1.69 77.20±6.06
0.15 0.135±0.003 65.41±5.06 89.66±0.90 0.136 72.77±0.23 90.56±0.66
0.2 0.155±0.006 43.18±4.31 88.56±0.75 0.17 72.67 90.36±1.44
0.25 0.164±0.014 32.13±8.43 87.97±1.42 0.204±0.003 66.5±1.7 91±0.74
0.3 0.148±0.012 13.23±7.52 87.67±0.69 0.197 46.73±0.14 89.37±0.32
0.35 0.134±0.005 4.57±1.80 87.68±0.23 0.21±0.002 43.33±0.65 90.02±0.38
0.4 0.131±0.003 1.51±0.56 87.29±0.30 0.21±0.006 31.17±1.26 87.41±0.55
0.45 0.128±0.002 0.86±0.45 87.45±0.25 0.265±0.008 9.13±1.1 75.58±0.98
0.5 0.136±0.01 0 86.41±0.99 0.297±0.004 0 70.27±0.44

Table 4. Comparison results on Ionosphere dataset (nonlinear classifiers using RBF
kernel for both the approaches)

d LDR (C = 2, γ = 0.125) LDH (C = 16, γ = 0.125)

Risk RR Acc(unrej) Risk RR Acc(unrej)

0.05 0.025±0.002 34.84±0.92 98.94±0.31 0.029 52.61±0.73 99.47±0.06
0.1 0.027±0.003 8.81±0.32 97.99±0.33 0.047±0.002 43.44±0.85 99.46±0.17
0.15 0.039±0.003 5.78±0.57 96.81±0.29 0.042±0.003 24.02±1.62 99.3±0.37
0.2 0.044±0.001 3.46±0.51 96.18±0.15 0.04±0.002 17.43±0.59 99.42±0.25
0.25 0.047±0.002 1.76±0.41 95.68±0.23 0.046±0.001 14.47±0.79 98.9±0.16
0.3 0.052±0.003 0.92±0.46 95.08±0.35 0.051±0.003 12.57±0.75 98.56±0.31
0.35 0.051±0.003 0.03±0.09 94.88±0.29 0.054±0.002 9.33±0.59 97.72±0.21
0.4 0.051±0.002 0 94.95±0.24 0.054±0.003 6.72±0.86 97.09±0.35
0.45 0.054±0.002 0 94.64±0.21 0.055±0.003 3.53±0.41 95.97±0.36
0.5 0.054±0.001 0 94.62±0.13 0.055±0.005 0 94.55±0.47

LDH based approach. Also, the reject region found by LDR based approach is
the most ambiguous region unlike LDH based approach which rejects almost all
the points.

Table 3-5 show the experimental results on all the datasets. We observe the
following:

1. We see that the proposed LDR based method outperforms LDH based app-
roach in terms of the risk (expectation of L0−d−1). For Synthetic dataset,
except for d = 0.05 and 0.1, LDR based method has lower CV risk. Similarly,
for Ionosphere dataset, except for d = 0.2, 0.25 and 0.3, LDR based method
has lower CV risk. For Parkinsons dataset, LDR based method has lower CV
risk except for d = 0.35.

2. We also observe that LDR based method outputs classifiers with significantly
lesser rejection rate for all the datasets and for all values of d.

Thus, the proposed LDR based approach outputs classifiers with lesser risk and
lesser rejection rate compared to the LDH based approach.
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Table 5. Comparison results on Parkinsons Disease dataset (linear classifiers for both
the approaches)

d LDR (C = 32) LDH (C = 32)

Risk RR Acc(unrej) Risk RR Acc(unrej)

0.05 0.031±0.002 43.88±0.80 98.33±0.49 0.043±0.001 86.38±0.92 100
0.1 0.051±0.004 41.79±0.77 98.07±1.03 0.061±0.002 53.76±1.64 98.61±0.62
0.15 0.071±0.002 40.08±1.21 98.14±0.48 0.086±0.004 39.56±1.13 95.8±0.72
0.2 0.095±0.004 37.67±1.04 96.99±0.55 0.125±0.008 29.78±2.06 90.86±1.5
0.25 0.133±0.009 20.46±2.79 90.26±1.30 0.142±0.004 22.3±1.95 89.02±0.73
0.3 0.129±0.01 4.06±2.06 87.83±1.15 0.131±0.009 14.19±1.05 89.76±1.01
0.35 0.134±0.007 2.49±1.04 87.19±0.76 0.133±0.004 9.97±1.18 89.10±0.57
0.4 0.131±0.008 0.56±0.44 87.06±0.75 0.133±0.006 6.10±1.62 88.53±0.92
0.45 0.133±0.013 0.05±0.17 86.72±1.28 0.14±0.009 2.92±1.09 86.96±1.05
0.5 0.133±0.009 0 86.65±0.94 0.139±0.008 0 86.06±0.76

5 Conclusion and Future Work

In this paper, we have proposed a new loss LDR (double ramp) for learning the
reject option classifier. LDR gives tighter upper bound for L0−d−1 compared to
convex losses LDH and LGH. Our approach learns the classifier by minimizing the
regularized risk under the double ramp loss which becomes an instance of DC
optimization problem. Our approach can also learn nonlinear classifiers by using
appropriate kernel function. Experimentally, we have shown that our approach
works superior to LDH based approach for learning reject option classifiers.
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